
Automatizzare con REST

ONTAP Select
NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/it-it/ontap-select-9161/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Sommario

Automatizzare con REST. 1

Concetti . 1

Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster ONTAP Select 1

Come accedere all’API ONTAP Select Deploy . 2

Controllo delle versioni dell’API ONTAP Select Deploy . 2

Caratteristiche operative di base dell’API ONTAP Select Deploy . 3

Transazione API di richiesta e risposta per ONTAP Select . 4

Elaborazione asincrona tramite l’oggetto Job per ONTAP Select . 7

Accesso tramite browser . 8

Prima di accedere all’API ONTAP Select Deploy con un browser . 8

Accedi alla pagina della documentazione di ONTAP Select Deploy . 9

Comprendere ed eseguire una chiamata API ONTAP Select Deploy . 9

Processi del flusso di lavoro. 10

Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy . 10

Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select su ESXi. 11

Accesso con Python. 17

Prima di accedere all’API ONTAP Select Deploy tramite Python . 17

Comprendere gli script Python per ONTAP Select Deploy . 18

Esempi di codice Python . 19

Script per creare un cluster ONTAP Select . 19

JSON per script per creare un cluster ONTAP Select . 26

Script per aggiungere una licenza di nodo ONTAP Select. 31

Script per eliminare un cluster ONTAP Select . 34

Modulo Python di supporto comune per ONTAP Select . 36

Script per ridimensionare i nodi del cluster ONTAP Select . 40

Automatizzare con REST

Concetti

Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster
ONTAP Select

Il Representational State Transfer (REST) è uno stile per la creazione di applicazioni web
distribuite. Applicato alla progettazione di un’API di servizi web, stabilisce un insieme di
tecnologie e best practice per l’esposizione delle risorse basate su server e la gestione
dei loro stati. Utilizza protocolli e standard tradizionali per fornire una base flessibile per
l’implementazione e la gestione di cluster ONTAP Select .

Architettura e vincoli classici

REST è stato formalmente articolato da Roy Fielding nel suo dottorato di ricerca "dissertazione" presso
l’Università della California, Irvine, nel 2000. Definisce uno stile architetturale attraverso una serie di vincoli,
che nel loro insieme migliorano le applicazioni web e i protocolli sottostanti. I vincoli stabiliscono
un’applicazione di servizi web RESTful basata su un’architettura client/server che utilizza un protocollo di
comunicazione stateless.

Risorse e rappresentanza statale

Le risorse sono i componenti di base di un sistema basato sul web. Quando si crea un’applicazione di servizi
web REST, le prime attività di progettazione includono:

• Identificazione delle risorse di sistema o basate su server Ogni sistema utilizza e gestisce risorse. Una
risorsa può essere un file, una transazione aziendale, un processo o un’entità amministrativa. Uno dei
primi compiti nella progettazione di un’applicazione basata su servizi web REST è l’identificazione delle
risorse.

• Definizione degli stati delle risorse e delle operazioni di stato associate Le risorse si trovano sempre in uno
di un numero finito di stati. Gli stati, così come le operazioni associate utilizzate per influenzare i
cambiamenti di stato, devono essere chiaramente definiti.

I messaggi vengono scambiati tra il client e il server per accedere e modificare lo stato delle risorse secondo il
modello CRUD (Crea, Leggi, Aggiorna ed Elimina) generico.

Endpoint URI

Ogni risorsa REST deve essere definita e resa disponibile utilizzando uno schema di indirizzamento ben
definito. Gli endpoint in cui le risorse sono localizzate e identificate utilizzano un Uniform Resource Identifier
(URI). L’URI fornisce un framework generale per la creazione di un nome univoco per ciascuna risorsa nella
rete. L’Uniform Resource Locator (URL) è un tipo di URI utilizzato con i servizi web per identificare e accedere
alle risorse. Le risorse sono in genere esposte in una struttura gerarchica simile a una directory di file.

Messaggi HTTP

Il protocollo HTTP (Hypertext Transfer Protocol) è il protocollo utilizzato dal client e dal server dei servizi web
per scambiare messaggi di richiesta e risposta relativi alle risorse. Durante la progettazione di un’applicazione
di servizi web, i verbi HTTP (come GET e POST) vengono mappati alle risorse e alle corrispondenti azioni di
gestione dello stato.

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

HTTP è un protocollo stateless. Pertanto, per associare un insieme di richieste e risposte correlate in un’unica
transazione, è necessario includere informazioni aggiuntive nelle intestazioni HTTP trasportate con i flussi di
dati di richiesta/risposta.

Formattazione JSON

Sebbene le informazioni possano essere strutturate e trasferite tra un client e un server in diversi modi,
l’opzione più diffusa (e quella utilizzata con la Deploy REST API) è JavaScript Object Notation (JSON). JSON
è uno standard industriale per la rappresentazione di strutture dati semplici in testo normale e viene utilizzato
per trasferire informazioni sullo stato che descrivono le risorse.

Come accedere all’API ONTAP Select Deploy

Grazie alla flessibilità intrinseca dei servizi Web REST, è possibile accedere all’API
ONTAP Select Deploy in diversi modi.

Distribuisci l’interfaccia utente nativa dell’utilità

Il modo principale per accedere all’API è tramite l’interfaccia utente web ONTAP Select Deploy. Il browser
effettua chiamate all’API e riformatta i dati in base al design dell’interfaccia utente. È possibile accedere all’API
anche tramite l’interfaccia a riga di comando dell’utility Deploy.

Pagina della documentazione online ONTAP Select Deploy

La pagina della documentazione online ONTAP Select Deploy fornisce un punto di accesso alternativo quando
si utilizza un browser. Oltre a fornire un modo per eseguire direttamente singole chiamate API, la pagina
include anche una descrizione dettagliata dell’API, inclusi i parametri di input e altre opzioni per ciascuna
chiamata. Le chiamate API sono organizzate in diverse aree funzionali o categorie.

Programma personalizzato

È possibile accedere all’API Deploy utilizzando diversi linguaggi di programmazione e strumenti. Tra i più
diffusi ci sono Python, Java e cURL. Un programma, uno script o uno strumento che utilizza l’API funge da
client di servizi web REST. L’utilizzo di un linguaggio di programmazione consente di comprendere meglio l’API
e offre l’opportunità di automatizzare le distribuzioni ONTAP Select .

Controllo delle versioni dell’API ONTAP Select Deploy

All’API REST inclusa in ONTAP Select Deploy viene assegnato un numero di versione. Il
numero di versione dell’API è indipendente dal numero di release di Deploy. È necessario
conoscere la versione dell’API inclusa nella release di Deploy e come questa potrebbe
influire sull’utilizzo dell’API.

La versione corrente dell’utility di amministrazione Deploy include la versione 3 dell’API REST. Le versioni
precedenti dell’utility Deploy includono le seguenti versioni dell’API:

Distribuisci 2.8 e versioni successive

ONTAP Select Deploy 2.8 e tutte le versioni successive includono la versione 3 dell’API REST.

Distribuisci 2.7.2 e versioni precedenti

ONTAP Select Deploy 2.7.2 e tutte le versioni precedenti includono la versione 2 dell’API REST.

2

Le versioni 2 e 3 dell’API REST non sono compatibili. Se si esegue l’aggiornamento a Deploy
2.8 o versioni successive da una versione precedente che include la versione 2 dell’API, è
necessario aggiornare qualsiasi codice esistente che acceda direttamente all’API, nonché tutti
gli script che utilizzano l’interfaccia a riga di comando.

Caratteristiche operative di base dell’API ONTAP Select Deploy

Sebbene REST stabilisca un insieme comune di tecnologie e best practice, i dettagli di
ciascuna API possono variare in base alle scelte progettuali. È necessario conoscere i
dettagli e le caratteristiche operative dell’API ONTAP Select Deploy prima di utilizzarla.

Host dell’hypervisor rispetto al nodo ONTAP Select

Un host hypervisor è la piattaforma hardware principale che ospita una macchina virtuale ONTAP Select .
Quando una macchina virtuale ONTAP Select viene distribuita e attiva su un host hypervisor, la macchina
virtuale viene considerata un nodo ONTAP Select. Con la versione 3 dell’API REST Deploy, gli oggetti host e
nodo sono separati e distinti. Ciò consente una relazione uno-a-molti, in cui uno o più nodi ONTAP Select
possono essere eseguiti sullo stesso host hypervisor.

Identificatori di oggetti

A ogni istanza o oggetto di risorsa viene assegnato un identificatore univoco al momento della creazione.
Questi identificatori sono globalmente univoci all’interno di una specifica istanza di ONTAP Select Deploy.
Dopo aver eseguito una chiamata API che crea una nuova istanza di oggetto, il valore ID associato viene
restituito al chiamante nel location Intestazione della risposta HTTP. È possibile estrarre l’identificatore e
utilizzarlo nelle chiamate successive quando si fa riferimento all’istanza della risorsa.

Il contenuto e la struttura interna degli identificatori degli oggetti possono cambiare in qualsiasi
momento. Si consiglia di utilizzare gli identificatori solo nelle chiamate API applicabili, quando
necessario, quando si fa riferimento agli oggetti associati.

Identificatori di richiesta

A ogni richiesta API andata a buon fine viene assegnato un identificatore univoco. L’identificatore viene
restituito nel request-id Intestazione della risposta HTTP associata. È possibile utilizzare un identificatore di
richiesta per fare riferimento collettivamente alle attività di una singola transazione API richiesta-risposta
specifica. Ad esempio, è possibile recuperare tutti i messaggi di evento per una transazione in base all’ID di
richiesta.

Chiamate sincrone e asincrone

Esistono due modi principali in cui un server esegue una richiesta HTTP ricevuta da un client:

• Sincrono Il server esegue la richiesta immediatamente e risponde con un codice di stato 200, 201 o 204.

• Asincrono: il server accetta la richiesta e risponde con un codice di stato 202. Questo indica che il server
ha accettato la richiesta del client e ha avviato un’attività in background per completarla. L’esito positivo o
negativo finale non è immediatamente disponibile e deve essere determinato tramite ulteriori chiamate API.

Confermare il completamento di un lavoro di lunga durata

In genere, qualsiasi operazione che può richiedere molto tempo per essere completata viene elaborata in
modo asincrono utilizzando un’attività in background sul server. Con l’API REST Deploy, ogni attività in

3

background è ancorata a un oggetto Job che tiene traccia dell’attività e fornisce informazioni, come lo stato
corrente. Un oggetto Job, incluso il suo identificatore univoco, viene restituito nella risposta HTTP dopo la
creazione di un’attività in background.

È possibile interrogare direttamente l’oggetto Job per determinare l’esito positivo o negativo della chiamata API
associata. Per ulteriori informazioni, consultare elaborazione asincrona tramite l’oggetto Job.

Oltre all’utilizzo dell’oggetto Job, esistono altri modi per determinare il successo o il fallimento di una richiesta,
tra cui:

• Messaggi di evento È possibile recuperare tutti i messaggi di evento associati a una specifica chiamata
API utilizzando l’ID della richiesta restituito con la risposta originale. I messaggi di evento in genere
contengono un’indicazione di successo o fallimento e possono essere utili anche durante il debug di una
condizione di errore.

• Stato o status della risorsa Molte risorse mantengono un valore di stato o status che è possibile interrogare
per determinare indirettamente il successo o il fallimento di una richiesta.

Sicurezza

L’API Deploy utilizza le seguenti tecnologie di sicurezza:

• Transport Layer Security: tutto il traffico inviato sulla rete tra il server e il client Deploy viene crittografato
tramite TLS. L’utilizzo del protocollo HTTP su un canale non crittografato non è supportato. È supportata la
versione 1.2 di TLS.

• Autenticazione HTTP: l’autenticazione di base viene utilizzata per ogni transazione API. Un’intestazione
HTTP, che include nome utente e password in una stringa base64, viene aggiunta a ogni richiesta.

Transazione API di richiesta e risposta per ONTAP Select

Ogni chiamata all’API Deploy viene eseguita come una richiesta HTTP alla macchina
virtuale Deploy, che genera una risposta associata al client. Questa coppia
richiesta/risposta è considerata una transazione API. Prima di utilizzare l’API Deploy, è
necessario acquisire familiarità con le variabili di input disponibili per controllare una
richiesta e il contenuto dell’output della risposta.

Variabili di input che controllano una richiesta API

È possibile controllare il modo in cui viene elaborata una chiamata API tramite i parametri impostati nella
richiesta HTTP.

Intestazioni di richiesta

È necessario includere diverse intestazioni nella richiesta HTTP, tra cui:

• content-type Se il corpo della richiesta include JSON, questa intestazione deve essere impostata su
application/json.

• accetta Se il corpo della risposta includerà JSON, questa intestazione deve essere impostata su
application/json.

• autorizzazione L’autenticazione di base deve essere impostata con il nome utente e la password codificati
in una stringa base64.

4

Corpo della richiesta

Il contenuto del corpo della richiesta varia a seconda della chiamata specifica. Il corpo della richiesta HTTP è
costituito da uno dei seguenti elementi:

• Oggetto JSON con variabili di input (ad esempio, il nome di un nuovo cluster)

• Vuoto

Filtra oggetti

Quando si esegue una chiamata API che utilizza GET, è possibile limitare o filtrare gli oggetti restituiti in base a
qualsiasi attributo. Ad esempio, è possibile specificare un valore esatto da ricercare:

<field>=<query value>

Oltre alla corrispondenza esatta, sono disponibili altri operatori per restituire un set di oggetti su un intervallo di
valori. ONTAP Select supporta gli operatori di filtro mostrati di seguito.

Operatore Descrizione

= Uguale a

< Meno di

> Maggiore di

⇐ Minore o uguale a

>= Maggiore o uguale a

O

! Non uguale a

* Jolly avido

È anche possibile restituire un set di oggetti in base al fatto che un campo specifico sia impostato o meno
utilizzando la parola chiave null o la sua negazione (!null) come parte della query.

Selezione dei campi oggetto

Per impostazione predefinita, l’emissione di una chiamata API tramite GET restituisce solo gli attributi che
identificano in modo univoco l’oggetto o gli oggetti. Questo set minimo di campi funge da chiave per ciascun
oggetto e varia in base al tipo di oggetto. È possibile selezionare proprietà aggiuntive dell’oggetto utilizzando il
parametro di query fields nei seguenti modi:

• Campi economici Specificare fields=* per recuperare i campi oggetto che sono mantenuti nella
memoria del server locale o per i quali è richiesta poca elaborazione per accedervi.

• Campi costosi Specificare fields=** per recuperare tutti i campi dell’oggetto, compresi quelli che
richiedono un’ulteriore elaborazione del server per accedervi.

• Selezione campo personalizzato Usa fields=FIELDNAME per specificare il campo esatto desiderato.
Quando si richiedono più campi, i valori devono essere separati da virgole senza spazi.

5

Come buona pratica, dovresti sempre identificare i campi specifici che desideri. Recupera il set
di campi economici o costosi solo quando necessario. La classificazione di campi economici e
costosi è determinata da NetApp in base all’analisi interna delle prestazioni. La classificazione di
un determinato campo può cambiare in qualsiasi momento.

Ordina gli oggetti nel set di output

I record in una raccolta di risorse vengono restituiti nell’ordine predefinito definito dall’oggetto. È possibile
modificare l’ordine utilizzando il parametro di query order_by con il nome del campo e la direzione di
ordinamento come segue:
order_by=<field name> asc|desc

Ad esempio, è possibile ordinare il campo tipo in ordine decrescente seguito da id in ordine crescente:
order_by=type desc, id asc

Quando si includono più parametri, è necessario separare i campi con una virgola.

Paginazione

Quando si effettua una chiamata API tramite GET per accedere a una raccolta di oggetti dello stesso tipo, per
impostazione predefinita vengono restituiti tutti gli oggetti corrispondenti. Se necessario, è possibile limitare il
numero di record restituiti utilizzando il parametro di query max_records nella richiesta. Ad esempio:
max_records=20

Se necessario, è possibile combinare questo parametro con altri parametri di query per restringere il set di
risultati. Ad esempio, il seguente comando restituisce fino a 10 eventi di sistema generati dopo l’intervallo di
tempo specificato:
time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

È possibile inviare più richieste per scorrere gli eventi (o qualsiasi tipo di oggetto). Ogni successiva chiamata
API dovrebbe utilizzare un nuovo valore temporale basato sull’evento più recente nell’ultimo set di risultati.

Interpretare una risposta API

Ogni richiesta API genera una risposta al client. È possibile esaminare la risposta per determinare se è andata
a buon fine e recuperare dati aggiuntivi se necessario.

Codice di stato HTTP

Di seguito sono descritti i codici di stato HTTP utilizzati dall’API REST Deploy.

Codice Senso Descrizione

200 OK Indica il successo delle chiamate che non creano un nuovo oggetto.

201 Creato Un oggetto è stato creato correttamente; l’intestazione della risposta
sulla posizione include l’identificatore univoco per l’oggetto.

202 Accettato È stato avviato un processo in background di lunga durata per
eseguire la richiesta, ma l’operazione non è ancora stata completata.

400 Brutta richiesta L’input della richiesta non è riconosciuto o è inappropriato.

403 Vietato L’accesso è negato a causa di un errore di autorizzazione.

404 Non trovato La risorsa a cui si fa riferimento nella richiesta non esiste.

6

Codice Senso Descrizione

405 Metodo non
consentito

Il verbo HTTP nella richiesta non è supportato per la risorsa.

409 Conflitto Il tentativo di creare un oggetto non è riuscito perché l’oggetto esiste
già.

500 Errore interno Si è verificato un errore interno generale sul server.

501 Non implementato L’URI è noto ma non è in grado di eseguire la richiesta.

Intestazioni di risposta

Nella risposta HTTP generata dal server Deploy sono incluse diverse intestazioni, tra cui:

• request-id A ogni richiesta API riuscita viene assegnato un identificatore di richiesta univoco.

• posizione Quando viene creato un oggetto, l’intestazione posizione include l’URL completo del nuovo
oggetto, incluso l’identificatore univoco dell’oggetto.

Corpo della risposta

Il contenuto della risposta associata a una richiesta API varia in base all’oggetto, al tipo di elaborazione e
all’esito positivo o negativo della richiesta. Il corpo della risposta viene visualizzato in formato JSON.

• Singolo oggetto. Un singolo oggetto può essere restituito con un set di campi in base alla richiesta. Ad
esempio, è possibile utilizzare GET per recuperare proprietà selezionate di un cluster utilizzando
l’identificatore univoco.

• Oggetti multipli È possibile restituire più oggetti da una raccolta di risorse. In tutti i casi, viene utilizzato un
formato coerente, con num_records Indica il numero di record e record contenenti un array delle istanze
dell’oggetto. Ad esempio, è possibile recuperare tutti i nodi definiti in un cluster specifico.

• Oggetto Job: se una chiamata API viene elaborata in modo asincrono, viene restituito un oggetto Job che
ancora l’attività in background. Ad esempio, la richiesta POST utilizzata per distribuire un cluster viene
elaborata in modo asincrono e restituisce un oggetto Job.

• Oggetto Errore Se si verifica un errore, viene sempre restituito un oggetto Errore. Ad esempio, si riceverà
un errore quando si tenta di creare un cluster con un nome già esistente.

• Vuoto In alcuni casi, non vengono restituiti dati e il corpo della risposta è vuoto. Ad esempio, il corpo della
risposta è vuoto dopo aver utilizzato DELETE per eliminare un host esistente.

Elaborazione asincrona tramite l’oggetto Job per ONTAP Select

Alcune chiamate API Deploy, in particolare quelle che creano o modificano una risorsa,
possono richiedere più tempo rispetto ad altre. ONTAP Select Deploy elabora queste
richieste di lunga durata in modo asincrono.

Richieste asincrone descritte utilizzando l’oggetto Job

Dopo aver effettuato una chiamata API eseguita in modo asincrono, il codice di risposta HTTP 202 indica che
la richiesta è stata convalidata e accettata correttamente, ma non è ancora stata completata. La richiesta viene
elaborata come un’attività in background che continua a essere eseguita dopo la risposta HTTP iniziale al
client. La risposta include l’oggetto Job che ancora la richiesta, incluso il suo identificatore univoco.

7

Per determinare quali chiamate API funzionano in modo asincrono, fare riferimento alla pagina
della documentazione online ONTAP Select Deploy.

Interroga l’oggetto Job associato a una richiesta API

L’oggetto Job restituito nella risposta HTTP contiene diverse proprietà. È possibile interrogare la proprietà di
stato per determinare se la richiesta è stata completata correttamente. Un oggetto Job può trovarsi in uno dei
seguenti stati:

• In coda

• Corsa

• Successo

• Fallimento

Esistono due tecniche che è possibile utilizzare quando si interroga un oggetto Job per rilevare uno stato
terminale per l’attività, ovvero successo o fallimento:

• Richiesta di polling standard Lo stato del lavoro corrente viene restituito immediatamente

• Richiesta di polling lungo Lo stato del lavoro viene restituito solo quando si verifica una delle seguenti
situazioni:

◦ Lo stato è cambiato più di recente rispetto al valore data-ora fornito nella richiesta di sondaggio

◦ Il valore di timeout è scaduto (da 1 a 120 secondi)

Il polling standard e il polling lungo utilizzano la stessa chiamata API per interrogare un oggetto Job. Tuttavia,
una richiesta di polling lungo include due parametri di query: poll_timeout E last_modified .

È consigliabile utilizzare sempre il polling lungo per ridurre il carico di lavoro sulla macchina
virtuale Deploy.

Procedura generale per l’emissione di una richiesta asincrona

Per completare una chiamata API asincrona, è possibile utilizzare la seguente procedura di alto livello:

1. Emettere la chiamata API asincrona.

2. Ricevere una risposta HTTP 202 che indica l’accettazione corretta della richiesta.

3. Estrarre l’identificatore per l’oggetto Job dal corpo della risposta.

4. All’interno di un ciclo, eseguire quanto segue in ogni ciclo:

a. Ottieni lo stato attuale del lavoro con una richiesta di sondaggio lungo

b. Se il Job è in uno stato non terminale (in coda, in esecuzione), eseguire nuovamente il ciclo.

5. Interrompere quando il lavoro raggiunge uno stato terminale (successo, fallimento).

Accesso tramite browser

Prima di accedere all’API ONTAP Select Deploy con un browser

Ci sono diverse cose che dovresti sapere prima di utilizzare la pagina della

8

documentazione online di Deploy.

Piano di distribuzione

Se si intende effettuare chiamate API nell’ambito di specifiche attività di distribuzione o amministrative, è
consigliabile creare un piano di distribuzione. Questi piani possono essere formali o informali e generalmente
contengono gli obiettivi e le chiamate API da utilizzare. Per ulteriori informazioni, consultare Processi di flusso
di lavoro che utilizzano l’API REST per la distribuzione.

Esempi JSON e definizioni dei parametri

Ogni chiamata API è descritta nella pagina della documentazione utilizzando un formato coerente. Il contenuto
include note di implementazione, parametri di query e codici di stato HTTP. Inoltre, è possibile visualizzare i
dettagli sul codice JSON utilizzato con le richieste e le risposte API come segue:

• Valore di esempio Se fai clic su Valore di esempio in una chiamata API, viene visualizzata una tipica
struttura JSON per la chiamata. Puoi modificare l’esempio in base alle tue esigenze e utilizzarlo come input
per la tua richiesta.

• Modello Se si fa clic su Modello, viene visualizzato un elenco completo dei parametri JSON, con una
descrizione per ciascun parametro.

Attenzione quando si emettono chiamate API

Tutte le operazioni API eseguite tramite la pagina della documentazione di Deploy sono operazioni live. È
necessario prestare attenzione a non creare, aggiornare o eliminare per errore dati di configurazione o altri
dati.

Accedi alla pagina della documentazione di ONTAP Select Deploy

È necessario accedere alla pagina della documentazione online ONTAP Select Deploy
per visualizzare la documentazione API e per emettere manualmente una chiamata API.

Prima di iniziare

Devi avere quanto segue:

• Indirizzo IP o nome di dominio della macchina virtuale ONTAP Select Deploy

• Nome utente e password per l’amministratore

Passi

1. Digita l’URL nel tuo browser e premi Invio:

https://<ip_address>/api/ui

2. Sign in utilizzando il nome utente e la password dell’amministratore.

Risultato

Nella parte inferiore della pagina viene visualizzata la pagina web della documentazione di Deploy, con le
chiamate organizzate per categoria.

Comprendere ed eseguire una chiamata API ONTAP Select Deploy

I dettagli di tutte le chiamate API sono documentati e visualizzati utilizzando un formato

9

comune nella pagina web della documentazione online ONTAP Select Deploy.
Comprendendo una singola chiamata API, è possibile accedere e interpretare i dettagli di
tutte le chiamate API.

Prima di iniziare

È necessario aver effettuato l’accesso alla pagina web della documentazione online ONTAP Select Deploy. È
necessario che al cluster ONTAP Select sia stato assegnato l’identificativo univoco al momento della
creazione.

Informazioni su questo compito

È possibile recuperare le informazioni di configurazione che descrivono un cluster ONTAP Select utilizzando il
suo identificativo univoco. In questo esempio, vengono restituiti tutti i campi classificati come poco costosi.
Tuttavia, come best practice, è consigliabile richiedere solo i campi specifici necessari.

Passi

1. Nella pagina principale, scorri fino in fondo e clicca su Cluster.

2. Fare clic su GET /clusters/{cluster_id} per visualizzare i dettagli della chiamata API utilizzata per
restituire informazioni su un cluster ONTAP Select .

Processi del flusso di lavoro

Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy

Dovresti prepararti a rivedere e utilizzare i processi del flusso di lavoro.

Comprendere le chiamate API utilizzate nei flussi di lavoro

La pagina della documentazione online ONTAP Select include i dettagli di ogni chiamata API REST. Anziché
ripetere tali dettagli qui, ogni chiamata API utilizzata negli esempi di flusso di lavoro include solo le informazioni
necessarie per individuarla nella pagina della documentazione. Dopo aver individuato una specifica chiamata
API, è possibile esaminarne i dettagli completi, inclusi i parametri di input, i formati di output, i codici di stato
HTTP e il tipo di elaborazione della richiesta.

Per ogni chiamata API all’interno di un flusso di lavoro sono incluse le seguenti informazioni, che aiutano a
individuare la chiamata nella pagina della documentazione:

• Categoria Le chiamate API sono organizzate nella pagina della documentazione in aree o categorie
funzionalmente correlate. Per individuare una chiamata API specifica, scorrere fino alla fine della pagina e
fare clic sulla categoria API applicabile.

• Verbo HTTP Il verbo HTTP identifica l’azione eseguita su una risorsa. Ogni chiamata API viene eseguita
tramite un singolo verbo HTTP.

• Percorso Il percorso determina la risorsa specifica a cui si applica l’azione come parte dell’esecuzione di
una chiamata. La stringa del percorso viene aggiunta all’URL principale per formare l’URL completo che
identifica la risorsa.

Crea un URL per accedere direttamente all’API REST

Oltre alla pagina di documentazione ONTAP Select , è possibile accedere direttamente all’API REST Deploy
tramite un linguaggio di programmazione come Python. In questo caso, l’URL principale è leggermente diverso
dall’URL utilizzato per accedere alla pagina di documentazione online. Quando si accede direttamente all’API,
è necessario aggiungere /api alla stringa di dominio e porta. Ad esempio:

10

http://deploy.mycompany.com/api

Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select
su ESXi

È possibile distribuire un cluster ONTAP Select a nodo singolo su un host VMware ESXi
gestito da vCenter. Il cluster viene creato con una licenza di valutazione.

Il flusso di lavoro per la creazione del cluster varia nelle seguenti situazioni:

• L’host ESXi non è gestito da vCenter (host autonomo)

• All’interno del cluster vengono utilizzati più nodi o host

• Il cluster viene distribuito in un ambiente di produzione con una licenza acquistata

• L’hypervisor KVM viene utilizzato al posto di VMware ESXi

1. Registrare le credenziali del server vCenter

Quando si esegue la distribuzione su un host ESXi gestito da un server vCenter, è necessario aggiungere una
credenziale prima di registrare l’host. L’utilità di amministrazione Deploy può quindi utilizzare la credenziale per
l’autenticazione a vCenter.

Categoria Verbo HTTP Sentiero

Distribuire INVIARE /sicurezza/credenziali

Arricciare

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

Input JSON (passaggio 01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Tipo di elaborazione

Asincrono

Produzione

• ID credenziale nell’intestazione della risposta sulla posizione

• Oggetto di lavoro

11

2. Registrare un host hypervisor

È necessario aggiungere un host hypervisor in cui verrà eseguita la macchina virtuale contenente il nodo
ONTAP Select .

Categoria Verbo HTTP Sentiero

Grappolo INVIARE /ospiti

Arricciare

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

Input JSON (passaggio 2)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Tipo di elaborazione

Asincrono

Produzione

• ID host nell’intestazione della risposta sulla posizione

• Oggetto di lavoro

3. Creare un cluster

Quando si crea un cluster ONTAP Select , la configurazione di base del cluster viene registrata e i nomi dei
nodi vengono generati automaticamente da Deploy.

Categoria Verbo HTTP Sentiero

Grappolo INVIARE /cluster

Arricciare

Per un cluster a nodo singolo, il parametro di query node_count deve essere impostato su 1.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

12

Input JSON (passaggio 03)

{

 "name": "my_cluster"

}

Tipo di elaborazione

Sincrono

Produzione

• ID cluster nell’intestazione della risposta alla posizione

4. Configurare il cluster

Ci sono diversi attributi che devi fornire come parte della configurazione del cluster.

Categoria Verbo HTTP Sentiero

Grappolo TOPPA /cluster/{id_cluster}

Arricciare

È necessario fornire l’ID del cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Input JSON (passaggio 04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Tipo di elaborazione

Sincrono

Produzione

Nessuno

13

5. Recupera il nome del nodo

L’utilità di amministrazione Deploy genera automaticamente gli identificatori e i nomi dei nodi quando viene
creato un cluster. Prima di poter configurare un nodo, è necessario recuperare l’ID assegnato.

Categoria Verbo HTTP Sentiero

Grappolo OTTENERE /cluster/{cluster_id}/nodi

Arricciare

È necessario fornire l’ID del cluster.

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Tipo di elaborazione

Sincrono

Produzione

• Array registra ciascuno che descrive un singolo nodo con ID e nome univoci

6. Configurare i nodi

È necessario fornire la configurazione di base per il nodo, che è la prima delle tre chiamate API utilizzate per
configurare un nodo.

Categoria Verbo HTTP Sentiero

Grappolo SENTIERO /cluster/{id_cluster}/nodi/{id_nodo}

Arricciare

È necessario fornire l’ID del cluster e l’ID del nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Input JSON (passaggio 06)

È necessario fornire l’ID host su cui verrà eseguito il nodo ONTAP Select .

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

14

Tipo di elaborazione

Sincrono

Produzione

Nessuno

7. Recuperare le reti dei nodi

È necessario identificare le reti dati e di gestione utilizzate dal nodo nel cluster a nodo singolo. La rete interna
non viene utilizzata in un cluster a nodo singolo.

Categoria Verbo HTTP Sentiero

Grappolo OTTENERE /cluster/{cluster_id}/nodi/{node_id}/reti

Arricciare

È necessario fornire l’ID del cluster e l’ID del nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Tipo di elaborazione

Sincrono

Produzione

• Array di due record, ciascuno dei quali descrive una singola rete per il nodo, inclusi l’ID univoco e lo
scopo

8. Configurare la rete dei nodi

È necessario configurare le reti dati e di gestione. La rete interna non viene utilizzata con un cluster a nodo
singolo.

Eseguire la seguente chiamata API due volte, una per ciascuna rete.

Categoria Verbo HTTP Sentiero

Grappolo TOPPA /cluster/{id_cluster}/nodi/{id_nodo}/reti/{id_rete}

Arricciare

È necessario fornire l’ID del cluster, l’ID del nodo e l’ID della rete.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

15

Input JSON (passaggio 08)

È necessario fornire il nome della rete.

{

 "name": "sDOT_Network"

}

Tipo di elaborazione

Sincrono

Produzione

Nessuno

9. Configurare il pool di archiviazione del nodo

Il passaggio finale nella configurazione di un nodo consiste nel collegare uno storage pool. È possibile
determinare gli storage pool disponibili tramite il client web vSphere o, facoltativamente, tramite l’API REST
"Deploy".

Categoria Verbo HTTP Sentiero

Grappolo TOPPA /cluster/{id_cluster}/nodi/{id_nodo}/reti/{id_rete}

Arricciare

È necessario fornire l’ID del cluster, l’ID del nodo e l’ID della rete.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Input JSON (passaggio 09)

La capacità del pool è di 2 TB.

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Tipo di elaborazione

Sincrono

16

Produzione

Nessuno

10. Distribuire il cluster

Dopo aver configurato il cluster e il nodo, è possibile distribuire il cluster.

Categoria Verbo HTTP Sentiero

Grappolo INVIARE /cluster/{cluster_id}/distribuisci

Arricciare

È necessario fornire l’ID del cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

Input JSON (passaggio 10)

È necessario fornire la password per l’account amministratore ONTAP .

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Tipo di elaborazione

Asincrono

Produzione

• Oggetto di lavoro

Informazioni correlate

"Distribuisci un’istanza di valutazione di 90 giorni di un cluster ONTAP Select"

Accesso con Python

Prima di accedere all’API ONTAP Select Deploy tramite Python

È necessario preparare l’ambiente prima di eseguire gli script Python di esempio.

Prima di eseguire gli script Python, è necessario assicurarsi che l’ambiente sia configurato correttamente:

• È necessario installare l’ultima versione applicabile di Python2. I codici di esempio sono stati testati
utilizzando Python2. Dovrebbero essere portabili anche su Python3, ma non ne è stata testata la
compatibilità.

• È necessario installare le librerie Requests e urllib3. È possibile utilizzare pip o un altro strumento di

17

https://docs.netapp.com/it-it/ontap-select-9161/deploy-evaluation-ontap-select-ovf-template.html

gestione Python, a seconda del proprio ambiente.

• La workstation client in cui vengono eseguiti gli script deve avere accesso di rete alla macchina virtuale
ONTAP Select Deploy.

Inoltre, è necessario disporre delle seguenti informazioni:

• Indirizzo IP della macchina virtuale di distribuzione

• Nome utente e password di un account amministratore di Deploy

Comprendere gli script Python per ONTAP Select Deploy

Gli script Python di esempio consentono di eseguire diverse attività. È consigliabile
comprendere gli script prima di utilizzarli in un’istanza Deploy live.

Caratteristiche di progettazione comuni

Gli script sono stati progettati con le seguenti caratteristiche comuni:

• Esecuzione dall’interfaccia della riga di comando su un computer client. È possibile eseguire gli script
Python da qualsiasi computer client correttamente configurato. Per ulteriori informazioni, vedere Prima di

iniziare.

• Accetta i parametri di input della CLI Ogni script è controllato dalla CLI tramite parametri di input.

• Leggi file di input Ogni script legge un file di input in base al suo scopo. Quando si crea o si elimina un
cluster, è necessario fornire un file di configurazione JSON. Quando si aggiunge una licenza di nodo, è
necessario fornire un file di licenza valido.

• Utilizzare un modulo di supporto comune Il modulo di supporto comune deploy_requests.py contiene una
singola classe. Viene importato e utilizzato da ciascuno degli script.

Crea un cluster

È possibile creare un cluster ONTAP Select utilizzando lo script cluster.py. In base ai parametri CLI e al
contenuto del file di input JSON, è possibile modificare lo script in base al proprio ambiente di distribuzione
come segue:

• Hypervisor È possibile eseguire il deployment su ESXI o KVM (a seconda della versione di Deploy). In
caso di deployment su ESXi, l’hypervisor può essere gestito da vCenter o può essere un host autonomo.

• Dimensione del cluster È possibile distribuire un cluster a nodo singolo o a più nodi.

• Licenza di valutazione o di produzione È possibile distribuire un cluster con una licenza di valutazione o
acquistata per la produzione.

I parametri di input CLI per lo script includono:

• Nome host o indirizzo IP del server di distribuzione

• Password per l’account utente amministratore

• Nome del file di configurazione JSON

• Flag dettagliato per l’output del messaggio

18

Aggiungi una licenza nodo

Se si sceglie di distribuire un cluster di produzione, è necessario aggiungere una licenza per ciascun nodo
utilizzando lo script add_license.py. È possibile aggiungere la licenza prima o dopo aver distribuito il cluster.

I parametri di input CLI per lo script includono:

• Nome host o indirizzo IP del server di distribuzione

• Password per l’account utente amministratore

• Nome del file di licenza

• Nome utente ONTAP con privilegi per aggiungere la licenza

• Password per l’utente ONTAP

Elimina un cluster

È possibile eliminare un cluster ONTAP Select esistente utilizzando lo script delete_cluster.py.

I parametri di input CLI per lo script includono:

• Nome host o indirizzo IP del server di distribuzione

• Password per l’account utente amministratore

• Nome del file di configurazione JSON

Esempi di codice Python

Script per creare un cluster ONTAP Select

È possibile utilizzare lo script seguente per creare un cluster basato sui parametri definiti
nello script e su un file di input JSON.

#!/usr/bin/env python

##--

#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

19

##--

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter[

'hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter[

'hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username', 'password

']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

 hosts = config.get('hosts', [])

 for host in hosts:

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

 if 'password' in host and not deploy.resource_exists(

'/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host['name

']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host[

20

'password']}

 deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host[

'type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

 host_config['credential'] = {

 "password": host['password'], "username": host['user

']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

21

 '''

 log_debug_trace()

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

22

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource('/clusters/{}/nodes/{}/networks

'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

23

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

 node_ids = get_node_ids(deploy, cluster_id)

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

24

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'][

'ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

 logging.WARNING)

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

25

 cluster_id = create_cluster_config(deploy, config)

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

JSON per script per creare un cluster ONTAP Select

Quando si crea o si elimina un cluster ONTAP Select utilizzando gli esempi di codice
Python, è necessario fornire un file JSON come input per lo script. È possibile copiare e
modificare l’esempio JSON appropriato in base ai propri piani di distribuzione.

Cluster a nodo singolo su ESXi

{

 "hosts": [

 {

 "password": "mypassword1",

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

26

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

27

]

 }

 }

]

}

Cluster a nodo singolo su ESXi utilizzando vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

28

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

Cluster a nodo singolo su KVM

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

29

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

30

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Script per aggiungere una licenza di nodo ONTAP Select

È possibile utilizzare il seguente script per aggiungere una licenza per un nodo ONTAP
Select .

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

31

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

 data = {}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

32

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

its used

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

33

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help=

'Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Script per eliminare un cluster ONTAP Select

È possibile utilizzare il seguente script CLI per eliminare un cluster esistente.

#!/usr/bin/env python

##--

#

File: delete_cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

34

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

35

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config[

'cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Modulo Python di supporto comune per ONTAP Select

Tutti gli script Python utilizzano una classe Python comune in un singolo modulo.

#!/usr/bin/env python

##--

#

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

36

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

37

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

38

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get(

'num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

 def resource_exists(self, path, name, value):

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

39

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Script per ridimensionare i nodi del cluster ONTAP Select

È possibile utilizzare il seguente script per ridimensionare i nodi in un cluster ONTAP
Select .

#!/usr/bin/env python

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

40

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

41

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

 if not cluster_id:

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json()[

'record']

def _get_request_body(parsed_args, cluster):

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

42

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

 return 1

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

 sys.exit(main())

43

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e
dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM’È" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL’ATTIVITÀ AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L’UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA L’EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l’utilizzo dei
prodotti o materiali descritti nel presente documento, con l’eccezione di quanto concordato espressamente e
per iscritto da NetApp. L’utilizzo o l’acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di
NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l’utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l’utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

44

http://www.netapp.com/TM

	Automatizzare con REST : ONTAP Select
	Sommario
	Automatizzare con REST
	Concetti
	Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster ONTAP Select
	Come accedere all’API ONTAP Select Deploy
	Controllo delle versioni dell’API ONTAP Select Deploy
	Caratteristiche operative di base dell’API ONTAP Select Deploy
	Transazione API di richiesta e risposta per ONTAP Select
	Elaborazione asincrona tramite l’oggetto Job per ONTAP Select

	Accesso tramite browser
	Prima di accedere all’API ONTAP Select Deploy con un browser
	Accedi alla pagina della documentazione di ONTAP Select Deploy
	Comprendere ed eseguire una chiamata API ONTAP Select Deploy

	Processi del flusso di lavoro
	Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy
	Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select su ESXi

	Accesso con Python
	Prima di accedere all’API ONTAP Select Deploy tramite Python
	Comprendere gli script Python per ONTAP Select Deploy

	Esempi di codice Python
	Script per creare un cluster ONTAP Select
	JSON per script per creare un cluster ONTAP Select
	Script per aggiungere una licenza di nodo ONTAP Select
	Script per eliminare un cluster ONTAP Select
	Modulo Python di supporto comune per ONTAP Select
	Script per ridimensionare i nodi del cluster ONTAP Select

