Automatizzare con REST
ONTAP Select

NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/it-it/ontap-select-9161/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Sommario

Automatizzare con REST

Concetti
Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster ONTAP Select
Come accedere all’APlI ONTAP Select Deploy
Controllo delle versioni del’API ONTAP Select Deploy
Caratteristiche operative di base del’API ONTAP Select Deploy
Transazione API di richiesta e risposta per ONTAP Select
Elaborazione asincrona tramite 'oggetto Job per ONTAP Select
Accesso tramite browser
Prima di accedere all’API ONTAP Select Deploy con un browser
Accedi alla pagina della documentazione di ONTAP Select Deploy
Comprendere ed eseguire una chiamata APl ONTAP Select Deploy
Processi del flusso di lavoro
Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy
Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select su ESXi
Accesso con Python
Prima di accedere all’API ONTAP Select Deploy tramite Python
Comprendere gli script Python per ONTAP Select Deploy
Esempi di codice Python
Script per creare un cluster ONTAP Select
JSON per script per creare un cluster ONTAP Select
Script per aggiungere una licenza di nodo ONTAP Select
Script per eliminare un cluster ONTAP Select
Modulo Python di supporto comune per ONTAP Select
Script per ridimensionare i nodi del cluster ONTAP Select

© © 0 0 N B WDNDN-=2 2 -

AW W WN 2 A A A A A =2
O o0 b A0 ©W © 0NN -~ O O

Automatizzare con REST

Concetti

Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster
ONTAP Select

Il Representational State Transfer (REST) € uno stile per la creazione di applicazioni web
distribuite. Applicato alla progettazione di un’API di servizi web, stabilisce un insieme di
tecnologie e best practice per I'esposizione delle risorse basate su server e la gestione
dei loro stati. Utilizza protocolli e standard tradizionali per fornire una base flessibile per
limplementazione e la gestione di cluster ONTAP Select .

Architettura e vincoli classici

REST e stato formalmente articolato da Roy Fielding nel suo dottorato di ricerca "dissertazione" presso
I’'Universita della California, Irvine, nel 2000. Definisce uno stile architetturale attraverso una serie di vincoli,
che nel loro insieme migliorano le applicazioni web e i protocolli sottostanti. | vincoli stabiliscono
un’applicazione di servizi web RESTful basata su un’architettura client/server che utilizza un protocollo di
comunicazione stateless.

Risorse e rappresentanza statale

Le risorse sono i componenti di base di un sistema basato sul web. Quando si crea un’applicazione di servizi
web REST, le prime attivita di progettazione includono:

* Identificazione delle risorse di sistema o basate su server Ogni sistema utilizza e gestisce risorse. Una
risorsa puo essere un file, una transazione aziendale, un processo o un’entita amministrativa. Uno dei
primi compiti nella progettazione di un’applicazione basata su servizi web REST ¢ l'identificazione delle
risorse.

 Definizione degli stati delle risorse e delle operazioni di stato associate Le risorse si trovano sempre in uno
di un numero finito di stati. Gli stati, cosi come le operazioni associate utilizzate per influenzare i
cambiamenti di stato, devono essere chiaramente definiti.

| messaggi vengono scambiati tra il client e il server per accedere e modificare lo stato delle risorse secondo il
modello CRUD (Crea, Leggi, Aggiorna ed Elimina) generico.

Endpoint URI

Ogni risorsa REST deve essere definita e resa disponibile utilizzando uno schema di indirizzamento ben
definito. Gli endpoint in cui le risorse sono localizzate e identificate utilizzano un Uniform Resource Identifier
(URI). LURI fornisce un framework generale per la creazione di un nome univoco per ciascuna risorsa nella
rete. L'Uniform Resource Locator (URL) € un tipo di URI utilizzato con i servizi web per identificare e accedere
alle risorse. Le risorse sono in genere esposte in una struttura gerarchica simile a una directory di file.

Messaggi HTTP

Il protocollo HTTP (Hypertext Transfer Protocol) € il protocollo utilizzato dal client e dal server dei servizi web
per scambiare messaggi di richiesta e risposta relativi alle risorse. Durante la progettazione di un’applicazione
di servizi web, i verbi HTTP (come GET e POST) vengono mappati alle risorse e alle corrispondenti azioni di
gestione dello stato.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

HTTP & un protocollo stateless. Pertanto, per associare un insieme di richieste e risposte correlate in un’unica
transazione, € necessario includere informazioni aggiuntive nelle intestazioni HTTP trasportate con i flussi di
dati di richiesta/risposta.

Formattazione JSON

Sebbene le informazioni possano essere strutturate e trasferite tra un client e un server in diversi modi,
I'opzione piu diffusa (e quella utilizzata con la Deploy REST API) & JavaScript Object Notation (JSON). JSON
e uno standard industriale per la rappresentazione di strutture dati semplici in testo normale e viene utilizzato
per trasferire informazioni sullo stato che descrivono le risorse.

Come accedere all’API ONTAP Select Deploy

Grazie alla flessibilita intrinseca dei servizi Web REST, é possibile accedere all’API
ONTAP Select Deploy in diversi modi.

Distribuisci I'interfaccia utente nativa dell’utilita

Il modo principale per accedere all’API & tramite I'interfaccia utente web ONTAP Select Deploy. Il browser
effettua chiamate all’API e riformatta i dati in base al design dell’'interfaccia utente. E possibile accedere all’API
anche tramite I'interfaccia a riga di comando dell’utility Deploy.

Pagina della documentazione online ONTAP Select Deploy

La pagina della documentazione online ONTAP Select Deploy fornisce un punto di accesso alternativo quando
si utilizza un browser. Oltre a fornire un modo per eseguire direttamente singole chiamate API, la pagina
include anche una descrizione dettagliata dell’API, inclusi i parametri di input e altre opzioni per ciascuna
chiamata. Le chiamate API sono organizzate in diverse aree funzionali o categorie.

Programma personalizzato

E possibile accedere all’API Deploy utilizzando diversi linguaggi di programmazione e strumenti. Tra i piu
diffusi ci sono Python, Java e cURL. Un programma, uno script o uno strumento che utilizza I'API funge da
client di servizi web REST. L'utilizzo di un linguaggio di programmazione consente di comprendere meglio I'API
e offre 'opportunita di automatizzare le distribuzioni ONTAP Select .

Controllo delle versioni del’API ONTAP Select Deploy

AI'API REST inclusa in ONTAP Select Deploy viene assegnato un numero di versione. Il
numero di versione dell’API & indipendente dal numero di release di Deploy. E necessario
conoscere la versione dell’API inclusa nella release di Deploy e come questa potrebbe
influire sull’utilizzo dell’API.

La versione corrente dell’'utility di amministrazione Deploy include la versione 3 del’API REST. Le versioni
precedenti dell’utility Deploy includono le seguenti versioni del’API:

Distribuisci 2.8 e versioni successive
ONTAP Select Deploy 2.8 e tutte le versioni successive includono la versione 3 dellAPI REST.

Distribuisci 2.7.2 e versioni precedenti
ONTAP Select Deploy 2.7.2 e tutte le versioni precedenti includono la versione 2 del’API REST.

Le versioni 2 e 3 del’API REST non sono compatibili. Se si esegue I'aggiornamento a Deploy

@ 2.8 o versioni successive da una versione precedente che include la versione 2 dell’API, &
necessario aggiornare qualsiasi codice esistente che acceda direttamente allAPI, nonché tutti
gli script che utilizzano l'interfaccia a riga di comando.

Caratteristiche operative di base dell’API ONTAP Select Deploy

Sebbene REST stabilisca un insieme comune di tecnologie e best practice, i dettagli di
ciascuna API possono variare in base alle scelte progettuali. E necessario conoscere i
dettagli e le caratteristiche operative dellAPI ONTAP Select Deploy prima di utilizzarla.

Host dell’hypervisor rispetto al nodo ONTAP Select

Un host hypervisor ¢ la piattaforma hardware principale che ospita una macchina virtuale ONTAP Select .
Quando una macchina virtuale ONTAP Select viene distribuita e attiva su un host hypervisor, la macchina
virtuale viene considerata un nodo ONTAP Select. Con la versione 3 del’API REST Deploy, gli oggetti host e
nodo sono separati e distinti. Cido consente una relazione uno-a-molti, in cui uno o piu nodi ONTAP Select
possono essere eseguiti sullo stesso host hypervisor.

Identificatori di oggetti

A ogni istanza o oggetto di risorsa viene assegnato un identificatore univoco al momento della creazione.
Questi identificatori sono globalmente univoci all'interno di una specifica istanza di ONTAP Select Deploy.
Dopo aver eseguito una chiamata API che crea una nuova istanza di oggetto, il valore ID associato viene
restituito al chiamante nel location Intestazione della risposta HTTP. E possibile estrarre I'identificatore e
utilizzarlo nelle chiamate successive quando si fa riferimento all’istanza della risorsa.

Il contenuto e la struttura interna degli identificatori degli oggetti possono cambiare in qualsiasi
momento. Si consiglia di utilizzare gli identificatori solo nelle chiamate API applicabili, quando
necessario, quando si fa riferimento agli oggetti associati.

Identificatori di richiesta

A ogni richiesta API andata a buon fine viene assegnato un identificatore univoco. L'identificatore viene
restituito nel request-id Intestazione della risposta HTTP associata. E possibile utilizzare un identificatore di
richiesta per fare riferimento collettivamente alle attivita di una singola transazione API richiesta-risposta
specifica. Ad esempio, € possibile recuperare tutti i messaggi di evento per una transazione in base all’'ID di
richiesta.

Chiamate sincrone e asincrone

Esistono due modi principali in cui un server esegue una richiesta HTTP ricevuta da un client:

« Sincrono Il server esegue la richiesta immediatamente e risponde con un codice di stato 200, 201 o0 204.

 Asincrono: il server accetta la richiesta e risponde con un codice di stato 202. Questo indica che il server
ha accettato la richiesta del client e ha avviato un’attivita in background per completarla. L’esito positivo o
negativo finale non & immediatamente disponibile e deve essere determinato tramite ulteriori chiamate API.

Confermare il completamento di un lavoro di lunga durata

In genere, qualsiasi operazione che pud richiedere molto tempo per essere completata viene elaborata in
modo asincrono utilizzando un’attivita in background sul server. Con 'API REST Deploy, ogni attivita in

background & ancorata a un oggetto Job che tiene traccia dell’attivita e fornisce informazioni, come lo stato
corrente. Un oggetto Job, incluso il suo identificatore univoco, viene restituito nella risposta HTTP dopo la
creazione di un’attivita in background.

E possibile interrogare direttamente I'oggetto Job per determinare I'esito positivo o negativo della chiamata API
associata. Per ulteriori informazioni, consultare elaborazione asincrona tramite I'oggetto Job.

Oltre all’'utilizzo dell’oggetto Job, esistono altri modi per determinare il successo o il fallimento di una richiesta,
tra cui:

« Messaggi di evento E possibile recuperare tutti i messaggi di evento associati a una specifica chiamata
API utilizzando I'ID della richiesta restituito con la risposta originale. | messaggi di evento in genere
contengono un’indicazione di successo o fallimento e possono essere utili anche durante il debug di una
condizione di errore.

« Stato o status della risorsa Molte risorse mantengono un valore di stato o status che & possibile interrogare
per determinare indirettamente il successo o il fallimento di una richiesta.

Sicurezza

L'API Deploy utilizza le seguenti tecnologie di sicurezza:

» Transport Layer Security: tutto il traffico inviato sulla rete tra il server e il client Deploy viene crittografato
tramite TLS. L'utilizzo del protocollo HTTP su un canale non crittografato non & supportato. E supportata la
versione 1.2 di TLS.

» Autenticazione HTTP: 'autenticazione di base viene utilizzata per ogni transazione API. Un’intestazione
HTTP, che include nome utente e password in una stringa base64, viene aggiunta a ogni richiesta.

Transazione API di richiesta e risposta per ONTAP Select

Ogni chiamata all’API Deploy viene eseguita come una richiesta HTTP alla macchina
virtuale Deploy, che genera una risposta associata al client. Questa coppia
richiesta/risposta € considerata una transazione API. Prima di utilizzare I'’API Deploy, &
necessario acquisire familiarita con le variabili di input disponibili per controllare una
richiesta e il contenuto dell’output della risposta.

Variabili di input che controllano una richiesta API

E possibile controllare il modo in cui viene elaborata una chiamata API tramite i parametri impostati nella
richiesta HTTP.

Intestazioni di richiesta

E necessario includere diverse intestazioni nella richiesta HTTP, tra cui:
 content-type Se il corpo della richiesta include JSON, questa intestazione deve essere impostata su
application/json.

« accetta Se il corpo della risposta includera JSON, questa intestazione deve essere impostata su
application/json.

* autorizzazione L’autenticazione di base deve essere impostata con il nome utente e la password codificati
in una stringa base64.

Corpo della richiesta

Il contenuto del corpo della richiesta varia a seconda della chiamata specifica. Il corpo della richiesta HTTP &
costituito da uno dei seguenti elementi:

* Oggetto JSON con variabili di input (ad esempio, il nome di un nuovo cluster)
* Vuoto
Filtra oggetti

Quando si esegue una chiamata API che utilizza GET, € possibile limitare o filtrare gli oggetti restituiti in base a
qualsiasi attributo. Ad esempio, € possibile specificare un valore esatto da ricercare:

<field>=<query value>

Oltre alla corrispondenza esatta, sono disponibili altri operatori per restituire un set di oggetti su un intervallo di
valori. ONTAP Select supporta gli operatori di filtro mostrati di seguito.

Operatore Descrizione

= Uguale a

< Meno di

> Maggiore di

& Minore o uguale a

>= Maggiore o uguale a
O

! Non uguale a

Jolly avido

E anche possibile restituire un set di oggetti in base al fatto che un campo specifico sia impostato o meno
utilizzando la parola chiave null o la sua negazione (!null) come parte della query.

Selezione dei campi oggetto

Per impostazione predefinita, I'emissione di una chiamata API tramite GET restituisce solo gli attributi che
identificano in modo univoco I'oggetto o gli oggetti. Questo set minimo di campi funge da chiave per ciascun
oggetto e varia in base al tipo di oggetto. E possibile selezionare proprieta aggiuntive dell’oggetto utilizzando il
parametro di query fields nei seguenti modi:

* Campi economici Specificare fields=* per recuperare i campi oggetto che sono mantenuti nella
memoria del server locale o per i quali € richiesta poca elaborazione per accedervi.

* Campi costosi Specificare fields=** per recuperare tutti i campi dell'oggetto, compresi quelli che
richiedono un'’ulteriore elaborazione del server per accedervi.

* Selezione campo personalizzato Usa fields=FIELDNAME per specificare il campo esatto desiderato.
Quando si richiedono piu campi, i valori devono essere separati da virgole senza spazi.

Come buona pratica, dovresti sempre identificare i campi specifici che desideri. Recupera il set

di campi economici o costosi solo quando necessario. La classificazione di campi economici e
costosi € determinata da NetApp in base all’analisi interna delle prestazioni. La classificazione di
un determinato campo pud cambiare in qualsiasi momento.

Ordina gli oggetti nel set di output

| record in una raccolta di risorse vengono restituiti nell’ordine predefinito definito dall’oggetto. E possibile
modificare I'ordine utilizzando il parametro di query order_by con il nome del campo e la direzione di
ordinamento come segue:

order by=<field name> asc|desc

Ad esempio, € possibile ordinare il campo tipo in ordine decrescente seguito da id in ordine crescente:
order by=type desc, id asc

Quando si includono piu parametri, &€ necessario separare i campi con una virgola.

Paginazione

Quando si effettua una chiamata API tramite GET per accedere a una raccolta di oggetti dello stesso tipo, per
impostazione predefinita vengono restituiti tutti gli oggetti corrispondenti. Se necessario, € possibile limitare il
numero di record restituiti utilizzando il parametro di query max_records nella richiesta. Ad esempio:

max records=20

Se necessario, & possibile combinare questo parametro con altri parametri di query per restringere il set di
risultati. Ad esempio, il seguente comando restituisce fino a 10 eventi di sistema generati dopo l'intervallo di
tempo specificato:

time= 2019-04-04T15:41:29.140265Z&max _records=10

E possibile inviare piu richieste per scorrere gli eventi (o qualsiasi tipo di oggetto). Ogni successiva chiamata
API dovrebbe utilizzare un nuovo valore temporale basato sull’evento piu recente nell’ultimo set di risultati.

Interpretare una risposta API

Ogni richiesta API genera una risposta al client. E possibile esaminare la risposta per determinare se & andata
a buon fine e recuperare dati aggiuntivi se necessario.

Codice di stato HTTP

Di seguito sono descritti i codici di stato HTTP utilizzati dal’API REST Deploy.

Codice Senso Descrizione

200 OK Indica il successo delle chiamate che non creano un nuovo oggetto.

201 Creato Un oggetto & stato creato correttamente; l'intestazione della risposta
sulla posizione include I'identificatore univoco per I'oggetto.

202 Accettato E stato avviato un processo in background di lunga durata per
eseguire la richiesta, ma I'operazione non € ancora stata completata.

400 Brutta richiesta L'input della richiesta non & riconosciuto o & inappropriato.

403 Vietato L’accesso & negato a causa di un errore di autorizzazione.

404 Non trovato La risorsa a cui si fa riferimento nella richiesta non esiste.

Codice Senso Descrizione

405 Metodo non Il verbo HTTP nella richiesta non & supportato per la risorsa.
consentito
409 Conflitto Il tentativo di creare un oggetto non & riuscito perché 'oggetto esiste
gia.
500 Errore interno Si & verificato un errore interno generale sul server.
501 Non implementato L’'URI & noto ma non € in grado di eseguire la richiesta.

Intestazioni di risposta

Nella risposta HTTP generata dal server Deploy sono incluse diverse intestazioni, tra cui:

* request-id A ogni richiesta API riuscita viene assegnato un identificatore di richiesta univoco.

* posizione Quando viene creato un oggetto, l'intestazione posizione include 'URL completo del nuovo
oggetto, incluso I'identificatore univoco dell’oggetto.

Corpo della risposta

Il contenuto della risposta associata a una richiesta API varia in base all'oggetto, al tipo di elaborazione e
all’esito positivo o negativo della richiesta. Il corpo della risposta viene visualizzato in formato JSON.

+ Singolo oggetto. Un singolo oggetto puo essere restituito con un set di campi in base alla richiesta. Ad
esempio, € possibile utilizzare GET per recuperare proprieta selezionate di un cluster utilizzando
l'identificatore univoco.

« Oggetti multipli E possibile restituire piti oggetti da una raccolta di risorse. In tutti i casi, viene utilizzato un
formato coerente, con num_records Indica il numero di record e record contenenti un array delle istanze
dell'oggetto. Ad esempio, & possibile recuperare tutti i nodi definiti in un cluster specifico.

» Oggetto Job: se una chiamata API viene elaborata in modo asincrono, viene restituito un oggetto Job che
ancora l'attivita in background. Ad esempio, la richiesta POST utilizzata per distribuire un cluster viene
elaborata in modo asincrono e restituisce un oggetto Job.

» Oggetto Errore Se si verifica un errore, viene sempre restituito un oggetto Errore. Ad esempio, si ricevera
un errore quando si tenta di creare un cluster con un nome gia esistente.

* Vuoto In alcuni casi, non vengono restituiti dati e il corpo della risposta € vuoto. Ad esempio, il corpo della
risposta € vuoto dopo aver utilizzato DELETE per eliminare un host esistente.

Elaborazione asincrona tramite ’oggetto Job per ONTAP Select

Alcune chiamate API Deploy, in particolare quelle che creano o modificano una risorsa,
possono richiedere piu tempo rispetto ad altre. ONTAP Select Deploy elabora queste
richieste di lunga durata in modo asincrono.

Richieste asincrone descritte utilizzando 'oggetto Job

Dopo aver effettuato una chiamata API eseguita in modo asincrono, il codice di risposta HTTP 202 indica che
la richiesta & stata convalidata e accettata correttamente, ma non & ancora stata completata. La richiesta viene
elaborata come un’attivita in background che continua a essere eseguita dopo la risposta HTTP iniziale al
client. La risposta include I'oggetto Job che ancora la richiesta, incluso il suo identificatore univoco.

@ Per determinare quali chiamate API funzionano in modo asincrono, fare riferimento alla pagina
della documentazione online ONTAP Select Deploy.

Interroga I'oggetto Job associato a una richiesta API

L’oggetto Job restituito nella risposta HTTP contiene diverse proprieta. E possibile interrogare la proprieta di
stato per determinare se la richiesta € stata completata correttamente. Un oggetto Job pu0 trovarsi in uno dei
seguenti stati:

* In coda

» Corsa

» Successo

» Fallimento
Esistono due tecniche che € possibile utilizzare quando si interroga un oggetto Job per rilevare uno stato
terminale per I'attivita, ovvero successo o fallimento:

* Richiesta di polling standard Lo stato del lavoro corrente viene restituito immediatamente

* Richiesta di polling lungo Lo stato del lavoro viene restituito solo quando si verifica una delle seguenti
situazioni:

> Lo stato & cambiato piu di recente rispetto al valore data-ora fornito nella richiesta di sondaggio
o |l valore di timeout & scaduto (da 1 a 120 secondi)

Il polling standard e il polling lungo utilizzano la stessa chiamata API per interrogare un oggetto Job. Tuttavia,
una richiesta di polling lungo include due parametri di query: poll timeout E last modified.

E consigliabile utilizzare sempre il polling lungo per ridurre il carico di lavoro sulla macchina
virtuale Deploy.

Procedura generale per I’emissione di una richiesta asincrona

Per completare una chiamata API asincrona, & possibile utilizzare la seguente procedura di alto livello:

1. Emettere la chiamata API asincrona.
2. Ricevere una risposta HTTP 202 che indica I'accettazione corretta della richiesta.
3. Estrarre I'identificatore per 'oggetto Job dal corpo della risposta.
4. Allinterno di un ciclo, eseguire quanto segue in ogni ciclo:
a. Ottieni lo stato attuale del lavoro con una richiesta di sondaggio lungo
b. Se il Job & in uno stato non terminale (in coda, in esecuzione), eseguire nuovamente il ciclo.

5. Interrompere quando il lavoro raggiunge uno stato terminale (successo, fallimento).

Accesso tramite browser

Prima di accedere all’API ONTAP Select Deploy con un browser

Ci sono diverse cose che dovresti sapere prima di utilizzare la pagina della

documentazione online di Deploy.

Piano di distribuzione

Se si intende effettuare chiamate API nell’ambito di specifiche attivita di distribuzione o amministrative, &
consigliabile creare un piano di distribuzione. Questi piani possono essere formali o informali e generalmente
contengono gli obiettivi e le chiamate API da utilizzare. Per ulteriori informazioni, consultare Processi di flusso
di lavoro che utilizzano 'API REST per la distribuzione.

Esempi JSON e definizioni dei parametri

Ogni chiamata API & descritta nella pagina della documentazione utilizzando un formato coerente. Il contenuto
include note di implementazione, parametri di query e codici di stato HTTP. Inoltre, & possibile visualizzare i
dettagli sul codice JSON utilizzato con le richieste e le risposte APl come segue:

 Valore di esempio Se fai clic su Valore di esempio in una chiamata API, viene visualizzata una tipica
struttura JSON per la chiamata. Puoi modificare I'esempio in base alle tue esigenze e utilizzarlo come input
per la tua richiesta.

* Modello Se si fa clic su Modello, viene visualizzato un elenco completo dei parametri JSON, con una
descrizione per ciascun parametro.

Attenzione quando si emettono chiamate API

Tutte le operazioni API eseguite tramite la pagina della documentazione di Deploy sono operazioni live. E
necessario prestare attenzione a non creare, aggiornare o eliminare per errore dati di configurazione o altri
dati.

Accedi alla pagina della documentazione di ONTAP Select Deploy

E necessario accedere alla pagina della documentazione online ONTAP Select Deploy
per visualizzare la documentazione API e per emettere manualmente una chiamata API.

Prima di iniziare

Devi avere quanto segue:

¢ Indirizzo IP 0 nome di dominio della macchina virtuale ONTAP Select Deploy

* Nome utente e password per 'amministratore

Passi
1. Digita 'URL nel tuo browser e premi Invio:

https://<ip address>/api/ui

2. Sign in utilizzando il nome utente e la password del’amministratore.

Risultato

Nella parte inferiore della pagina viene visualizzata la pagina web della documentazione di Deploy, con le
chiamate organizzate per categoria.

Comprendere ed eseguire una chiamata APlI ONTAP Select Deploy

| dettagli di tutte le chiamate API sono documentati e visualizzati utilizzando un formato

comune nella pagina web della documentazione online ONTAP Select Deploy.
Comprendendo una singola chiamata API, & possibile accedere e interpretare i dettagli di
tutte le chiamate API.

Prima di iniziare
E necessario aver effettuato I'accesso alla pagina web della documentazione online ONTAP Select Deploy. E

necessario che al cluster ONTAP Select sia stato assegnato I'identificativo univoco al momento della
creazione.

Informazioni su questo compito

E possibile recuperare le informazioni di configurazione che descrivono un cluster ONTAP Select utilizzando il
suo identificativo univoco. In questo esempio, vengono restituiti tutti i campi classificati come poco costosi.
Tuttavia, come best practice, &€ consigliabile richiedere solo i campi specifici necessari.

Passi
1. Nella pagina principale, scorri fino in fondo e clicca su Cluster.

2. Fare clic su GET /clusters/{cluster_id} per visualizzare i dettagli della chiamata API utilizzata per
restituire informazioni su un cluster ONTAP Select .

Processi del flusso di lavoro

Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy

Dovresti prepararti a rivedere e utilizzare i processi del flusso di lavoro.

Comprendere le chiamate API utilizzate nei flussi di lavoro

La pagina della documentazione online ONTAP Select include i dettagli di ogni chiamata API REST. Anziché
ripetere tali dettagli qui, ogni chiamata API utilizzata negli esempi di flusso di lavoro include solo le informazioni
necessarie per individuarla nella pagina della documentazione. Dopo aver individuato una specifica chiamata
API, & possibile esaminarne i dettagli completi, inclusi i parametri di input, i formati di output, i codici di stato
HTTP e il tipo di elaborazione della richiesta.

Per ogni chiamata API all’interno di un flusso di lavoro sono incluse le seguenti informazioni, che aiutano a
individuare la chiamata nella pagina della documentazione:

» Categoria Le chiamate APl sono organizzate nella pagina della documentazione in aree o categorie
funzionalmente correlate. Per individuare una chiamata API specifica, scorrere fino alla fine della pagina e
fare clic sulla categoria API applicabile.

* Verbo HTTP Il verbo HTTP identifica 'azione eseguita su una risorsa. Ogni chiamata API viene eseguita
tramite un singolo verbo HTTP.

 Percorso Il percorso determina la risorsa specifica a cui si applica 'azione come parte dell’esecuzione di
una chiamata. La stringa del percorso viene aggiunta al’URL principale per formare 'URL completo che
identifica la risorsa.

Crea un URL per accedere direttamente al’API REST

Oltre alla pagina di documentazione ONTAP Select , € possibile accedere direttamente allAPlI REST Deploy
tramite un linguaggio di programmazione come Python. In questo caso, I'URL principale € leggermente diverso
dallURL utilizzato per accedere alla pagina di documentazione online. Quando si accede direttamente all’API,
€ necessario aggiungere /api alla stringa di dominio e porta. Ad esempio:

10

http://deploy.mycompany.com/api

Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select
su ESXi

E possibile distribuire un cluster ONTAP Select a nodo singolo su un host VMware ESXi
gestito da vCenter. Il cluster viene creato con una licenza di valutazione.

Il flusso di lavoro per la creazione del cluster varia nelle seguenti situazioni:

* L’host ESXi non € gestito da vCenter (host autonomo)
* Allinterno del cluster vengono utilizzati piu nodi o host
* |l cluster viene distribuito in un ambiente di produzione con una licenza acquistata

* L’hypervisor KVM viene utilizzato al posto di VMware ESXi

1. Registrare le credenziali del server vCenter

Quando si esegue la distribuzione su un host ESXi gestito da un server vCenter, & necessario aggiungere una
credenziale prima di registrare I'host. L'utilita di amministrazione Deploy puo quindi utilizzare la credenziale per
'autenticazione a vCenter.

Categoria Verbo HTTP Sentiero

Distribuire INVIARE /sicurezzalcredenziali
Arricciare

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials'

Input JSON (passaggio 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Tipo di elaborazione
Asincrono

Produzione
* ID credenziale nell'intestazione della risposta sulla posizione

» Oggetto di lavoro

11

2. Registrare un host hypervisor

E necessario aggiungere un host hypervisor in cui verra eseguita la macchina virtuale contenente il nodo
ONTAP Select .

Categoria Verbo HTTP Sentiero
Grappolo INVIARE /ospiti

Arricciare

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts’

Input JSON (passaggio 2)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo di elaborazione
Asincrono

Produzione
* ID host nell’intestazione della risposta sulla posizione

» Oggetto di lavoro

3. Creare un cluster

Quando si crea un cluster ONTAP Select , la configurazione di base del cluster viene registrata e i nomi dei
nodi vengono generati automaticamente da Deploy.

Categoria Verbo HTTP Sentiero
Grappolo INVIARE [cluster

Arricciare
Per un cluster a nodo singolo, il parametro di query node_count deve essere impostato su 1.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

12

Input JSON (passaggio 03)

"name": "my cluster

Tipo di elaborazione
Sincrono

Produzione
* ID cluster nell'intestazione della risposta alla posizione
4. Configurare il cluster

Ci sono diversi attributi che devi fornire come parte della configurazione del cluster.

Categoria Verbo HTTP Sentiero
Grappolo TOPPA [cluster/{id_cluster}

Arricciare
E necessario fornire I'ID del cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Input JSON (passaggio 04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]

I

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Tipo di elaborazione
Sincrono

Produzione
Nessuno

13

5. Recupera il nome del nodo

L'utilita di amministrazione Deploy genera automaticamente gli identificatori e i nomi dei nodi quando viene
creato un cluster. Prima di poter configurare un nodo, & necessario recuperare I'ID assegnato.

Categoria Verbo HTTP Sentiero
Grappolo OTTENERE [cluster/{cluster_id}/nodi

Arricciare
E necessario fornire I'ID del cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Tipo di elaborazione
Sincrono

Produzione
* Array registra ciascuno che descrive un singolo nodo con ID e nhome univoci

6. Configurare i nodi

E necessario fornire la configurazione di base per il nodo, che & la prima delle tre chiamate AP utilizzate per
configurare un nodo.

Categoria Verbo HTTP Sentiero
Grappolo SENTIERO [cluster/{id_cluster}/nodi/{id_nodo}

Arricciare
E necessario fornire I'ID del cluster e I'ID del nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Input JSON (passaggio 06)
E necessario fornire I'ID host su cui verra eseguito il nodo ONTAP Select .

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

14

Tipo di elaborazione
Sincrono

Produzione
Nessuno

7. Recuperare le reti dei nodi

E necessario identificare le reti dati e di gestione utilizzate dal nodo nel cluster a nodo singolo. La rete interna

non viene utilizzata in un cluster a nodo singolo.

Categoria Verbo HTTP Sentiero
Grappolo OTTENERE [cluster/{cluster_id}/nodi/{node_id}/reti

Arricciare
E necessario fornire I'ID del cluster e I'ID del nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=1id, purpose’

Tipo di elaborazione
Sincrono

Produzione

* Array di due record, ciascuno dei quali descrive una singola rete per il nodo, inclusi I'lD univoco e lo
SCOpo

8. Configurare la rete dei nodi

E necessario configurare le reti dati e di gestione. La rete interna non viene utilizzata con un cluster a nodo
singolo.

@ Eseguire la seguente chiamata API due volte, una per ciascuna rete.

Categoria Verbo HTTP Sentiero
Grappolo TOPPA [cluster/{id_cluster}/nodi/{id_nodo}/reti/{id_rete}

Arricciare
E necessario fornire I'ID del cluster, I'ID del nodo e I'ID della rete.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

15

Input JSON (passaggio 08)
E necessario fornire il nome della rete.

"name": "sDOT Network"

Tipo di elaborazione
Sincrono

Produzione
Nessuno

9. Configurare il pool di archiviazione del nodo

Il passaggio finale nella configurazione di un nodo consiste nel collegare uno storage pool. E possibile
determinare gli storage pool disponibili tramite il client web vSphere o, facoltativamente, tramite 'API REST
"Deploy".

Categoria Verbo HTTP Sentiero
Grappolo TOPPA [cluster/{id_cluster}/nodi/{id_nodo}/reti/{id_rete}

Arricciare
E necessario fornire I'ID del cluster, I'ID del nodo e I'ID della rete.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Input JSON (passaggio 09)
La capacita del pool & di 2 TB.

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo di elaborazione
Sincrono

16

Produzione
Nessuno

10. Distribuire il cluster

Dopo aver configurato il cluster e il nodo, & possibile distribuire il cluster.

Categoria Verbo HTTP Sentiero
Grappolo INVIARE [cluster/{cluster_id}/distribuisci

Arricciare
E necessario fornire I'ID del cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Input JSON (passaggio 10)
E necessario fornire la password per 'account amministratore ONTAP .

"ontap credentials": {
"password": "mypassword"

Tipo di elaborazione
Asincrono

Produzione
» Oggetto di lavoro

Informazioni correlate

"Distribuisci un’istanza di valutazione di 90 giorni di un cluster ONTAP Select"

Accesso con Python

Prima di accedere all’API ONTAP Select Deploy tramite Python

E necessario preparare 'ambiente prima di eseguire gli script Python di esempio.

Prima di eseguire gli script Python, € necessario assicurarsi che 'ambiente sia configurato correttamente:
« E necessario installare I'ultima versione applicabile di Python2. | codici di esempio sono stati testati

utilizzando Python2. Dovrebbero essere portabili anche su Python3, ma non ne é stata testata la
compatibilita.

« E necessario installare le librerie Requests e urllib3. E possibile utilizzare pip o un altro strumento di

17

https://docs.netapp.com/it-it/ontap-select-9161/deploy-evaluation-ontap-select-ovf-template.html

gestione Python, a seconda del proprio ambiente.
» La workstation client in cui vengono eseguiti gli script deve avere accesso di rete alla macchina virtuale
ONTAP Select Deploy.

Inoltre, & necessario disporre delle seguenti informazioni:

 Indirizzo IP della macchina virtuale di distribuzione

* Nome utente e password di un account amministratore di Deploy

Comprendere gli script Python per ONTAP Select Deploy

Gli script Python di esempio consentono di eseguire diverse attivita. E consigliabile
comprendere gli script prima di utilizzarli in un’istanza Deploy live.

Caratteristiche di progettazione comuni

Gli script sono stati progettati con le seguenti caratteristiche comuni:

+ Esecuzione dall’interfaccia della riga di comando su un computer client. E possibile eseguire gli script
Python da qualsiasi computer client correttamente configurato. Per ulteriori informazioni, vedere Prima di
iniziare.

* Accetta i parametri di input della CLI Ogni script &€ controllato dalla CLI tramite parametri di input.

* Leggi file di input Ogni script legge un file di input in base al suo scopo. Quando si crea o si elimina un
cluster, & necessario fornire un file di configurazione JSON. Quando si aggiunge una licenza di nodo, &
necessario fornire un file di licenza valido.

« Utilizzare un modulo di supporto comune Il modulo di supporto comune deploy requests.py contiene una
singola classe. Viene importato e utilizzato da ciascuno degli script.

Crea un cluster

E possibile creare un cluster ONTAP Select utilizzando lo script cluster.py. In base ai parametri CLI e al
contenuto del file di input JSON, & possibile modificare lo script in base al proprio ambiente di distribuzione
come segue:

« Hypervisor E possibile eseguire il deployment su ESXI o KVM (a seconda della versione di Deploy). In
caso di deployment su ESXi, I'hypervisor pud essere gestito da vCenter o pud essere un host autonomo.

+ Dimensione del cluster E possibile distribuire un cluster a nodo singolo o a pit nodi.

+ Licenza di valutazione o di produzione E possibile distribuire un cluster con una licenza di valutazione o
acquistata per la produzione.

| parametri di input CLI per lo script includono:

* Nome host o indirizzo IP del server di distribuzione
» Password per I'account utente amministratore
* Nome del file di configurazione JSON

* Flag dettagliato per I'output del messaggio

18

Aggi

Se si sceglie di distribuire un cluster di produzione, € necessario aggiungere una licenza per ciascun nodo
utilizzando lo script add_license.py. E possibile aggiungere la licenza prima o dopo aver distribuito il cluster.

ungi una licenza nodo

| parametri di input CLI per lo script includono:

* Nome host o indirizzo IP del server di distribuzione

» Password per 'account utente amministratore

* Nome del file di licenza

* Nome utente ONTAP con privilegi per aggiungere la licenza

» Password per I'utente ONTAP

Elimina un cluster

E possibile eliminare un cluster ONTAP Select esistente utilizzando lo script delete_cluster.py.

| parametri di input CLI per lo script includono:

* Nome host o indirizzo IP del server di distribuzione

» Password per I'account utente amministratore

* Nome del file di configurazione JSON

Esempi di codice Python

Script per creare un cluster ONTAP Select

E possibile utilizzare lo script seguente per creare un cluster basato sui parametri definiti
nello script e su un file di input JSON.

#!

e T T T

/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

19

20

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log_debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]|
'hostname']) :

log_info ("Registering vcenter {} credentials".format (vcenter|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username',6 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log _debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',

'username': host['username'], 'password': host|

'password']}
deploy.post('/security/credentials', data)

def register unkown hosts (deploy, config):
""" Registers all hosts with the deploy server.

The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log_debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log _and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
p
host config['credential'] = {
"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

21

LI |

log_debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (

**cluster config))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns _info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node_count:{}'.format(num_nodes),

data)
cluster id = resp.headers.get('Location').split('/") [-1]

return cluster id

def get node ids(deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''

log_debug trace ()

response = deploy.get('/clusters/{}/nodes'.format(cluster id))
node ids = [node['id'] for node in response.json() .get('records')]

return node ids

def add node_ attributes(deploy, cluster id, node id, node):

'''" Set all the needed properties on a node '''

log_debug trace ()
log_info ("Adding node '{}' properties".format (node id))
data = {k: nodelk] for k in ['ip', 'serial number', 'instance type',

'is storage efficiency enabled'] if k in

node}

22

Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format(data))
deploy.patch('/clusters/{}/nodes/{}"'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):

Set the network information for a node '''
log _debug trace ()

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network|['purpose'] == 'internal':

continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}

if 'vlian' in network and network['vlan']:

23

data['vlan id'] = network['vlan']
deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (

cluster id, node id, network id), data)

def add node_storage (deploy, cluster_ id, node_id, node):
''' Set all the storage information on a node '''
log _debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log _info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,
node id), data)

def create_ cluster_ config(deploy, config):

""" Construct a cluster config in the deploy server using the input
json data '''

log_debug trace ()

cluster id = add_cluster_attributes(deploy, config)

node ids = get node ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_ storage (deploy, cluster id, node id, node config)

return cluster id
def deploy cluster (deploy, cluster id, config):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log _debug trace ()

log _info ("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

data, wait for job=True)

def log debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %$s()' % parent function)
def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getlLogger ('deploy') .error (msg)
exit (1)
def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)
def main(args):

configure logging (args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add vcenter credentials(deploy, config)
add standalone host credentials (deploy, config)

register unkown hosts (deploy, config)

25

cluster id = create_cluster config(deploy, config)

deploy cluster (deploy, cluster id, config)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')

parser.add argument('-c', '--config file', help='Filename of the
cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == "' main ':
args = parseArgs ()
main (args)

JSON per script per creare un cluster ONTAP Select

Quando si crea o si elimina un cluster ONTAP Select utilizzando gli esempi di codice
Python, & necessario fornire un file JSON come input per lo script. E possibile copiare e
modificare 'esempio JSON appropriato in base ai propri piani di distribuzione.

Cluster a nodo singolo su ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
1,
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

26

I

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"

"nodes": [

{

"serial number": "3200000nn",

"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
I
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

27

Cluster a nodo singolo su ESXi utilizzando vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
I

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",
"username":"selectadmin”

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",

28

"networks": |

{

"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster a nodo singolo su KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"

29

"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1,

30

"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Script per aggiungere una licenza di nodo ONTAP Select

E possibile utilizzare il seguente script per aggiungere una licenza per un nodo ONTAP
Select .

#!/usr/bin/env python

R T e . s

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import json

from deploy requests import DeployRequests

def post new_license (deploy, license filename) :

log _info('Posting a new license: {}'.format(license filename))

31

Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},
files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
'"'"' If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license(deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log _and exit("The license file seems to be missing the

32

serialNumber")

def

def

def

return serialNumber

log_info (msgqg) :
logging.getLogger ('deploy') .info (msg)

log_and exit (msqg) :
logging.getlLogger ('deploy') .error (msg)
exit(1l)

configure logging () :

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool') .

setLevel (logging.WARNING)

def main(args):

configure logging ()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-

number

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if

its used

if deploy.find_resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to

the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")

else:
License exists, but its not used

put_free license(deploy, serial number, args.license)

33

else:
No license exists, so register a new one as an available license

for later use
post new license (deploy, args.license)

def parseArgs() :
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add_argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add_argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')

return parser.parse_args ()
if name == "' main ':

args = parseArgs ()
main (args)

Script per eliminare un cluster ONTAP Select

E possibile utilizzare il seguente script CLI per eliminare un cluster esistente.

#!/usr/bin/env python

=

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1s provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

R T

provided that the above copyright notice appears in all copies and

34

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format (cluster id), {'availability':

'powered off'}, True)

def delete_cluster (deploy, cluster id):
log_info ("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging () :
FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

35

with open(args.config file) as json data:
config = json.load(json_data)

cluster id = find cluster (deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add_argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main J g

args = parseArgs ()
main (args)

odulo Python di supporto comune per ONTAP Select

Tutti gli script Python utilizzano una classe Python comune in un singolo modulo.

36

#!/usr/bin/env python

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

S oS S S S S S 9 % o

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LN |

Wrapper class for requests that simplifies the ONTAP Select Deploy

path creation and header manipulations for simpler code.

LI |

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/json'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: %$s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def patch(self, path, data, wait for job=False):

37

self.logger.debug('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit_on_errors(response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def put(self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit_on_errors(response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """

38

response = requests.delete(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def find resource (self, path, name, value):
""" Returns the 'id' of the resource if it exists, otherwise None

resource = None
self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

response

if response.status code == 200 and response.json () .get (
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):
""" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

if response.status_code == 200
return response.json().get('num records')
return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))

job body = response.json().get('record', {})

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB: %s',
job body)
exit(1l) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

Script per ridimensionare i nodi del cluster ONTAP Select

E possibile utilizzare il seguente script per ridimensionare i nodi in un cluster ONTAP
Select .

#!/usr/bin/env python

File: resize nodes.py

#
(C) Copyright 2019 NetApp, Inc.

40

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H H= H H H H H H FH H H= H

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mman

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add _argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add _argument ('--deploy-password', required=True, help=(

'The password for the ONTAP Select Deploy admin user.'

41

))
parser.add_argument('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'

))

parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(

'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:

admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all

nodes in'
' the cluster. If a list of nodes is provided, it must be provided

in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" TLocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None
return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1f provided, use the list of nodes given, else use all the nodes in

42

the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:

nodes = [node for node in nodes if node['name'] in parsed args

.nodes]

changes|['nodes'] = [

{'instance type': parsed args.instance type, 'id': node['id'

node 1in nodes]

return changes

def main () :
then send
the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig (
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

]} for

Set up the resize operation by gathering the necessary data and

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit(main())

43

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright pud essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
0 meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp € soggetto alla seguente licenza e
dichiarazione di non responsabilita:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSI COM’E" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, ATITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITA E IDONEITA PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRA CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, ATITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITA DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITA AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITA, SIAESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA LEVENTUALITA DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilita circa I'utilizzo dei
prodotti o materiali descritti nel presente documento, con I'eccezione di quanto concordato espressamente e
per iscritto da NetApp. L'utilizzo o I'acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprieta intellettuale di
NetApp.

Il prodotto descritto in questa guida puo essere protetto da uno o piu brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: I'utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

| dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprieta di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. | diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

44

http://www.netapp.com/TM

	Automatizzare con REST : ONTAP Select
	Sommario
	Automatizzare con REST
	Concetti
	Fondamenti di servizi Web REST per la distribuzione e la gestione di cluster ONTAP Select
	Come accedere all’API ONTAP Select Deploy
	Controllo delle versioni dell’API ONTAP Select Deploy
	Caratteristiche operative di base dell’API ONTAP Select Deploy
	Transazione API di richiesta e risposta per ONTAP Select
	Elaborazione asincrona tramite l’oggetto Job per ONTAP Select

	Accesso tramite browser
	Prima di accedere all’API ONTAP Select Deploy con un browser
	Accedi alla pagina della documentazione di ONTAP Select Deploy
	Comprendere ed eseguire una chiamata API ONTAP Select Deploy

	Processi del flusso di lavoro
	Prima di utilizzare i flussi di lavoro dell’API ONTAP Select Deploy
	Flusso di lavoro 1: creare un cluster di valutazione a nodo singolo ONTAP Select su ESXi

	Accesso con Python
	Prima di accedere all’API ONTAP Select Deploy tramite Python
	Comprendere gli script Python per ONTAP Select Deploy

	Esempi di codice Python
	Script per creare un cluster ONTAP Select
	JSON per script per creare un cluster ONTAP Select
	Script per aggiungere una licenza di nodo ONTAP Select
	Script per eliminare un cluster ONTAP Select
	Modulo Python di supporto comune per ONTAP Select
	Script per ridimensionare i nodi del cluster ONTAP Select

