■ NetApp

Gestione degli oggetti

StorageGRID

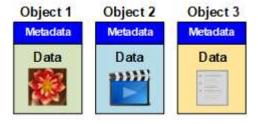
NetApp April 10, 2024

This PDF was generated from https://docs.netapp.com/it-it/storagegrid-116/primer/how-storagegrid-manages-data.html on April 10, 2024. Always check docs.netapp.com for the latest.

Sommario

Gestione degli oggetti	 	 	1
Come StorageGRID gestisce i dati	 	 	1
Ciclo di vita degli oggetti	 	 	3

Gestione degli oggetti


Come StorageGRID gestisce i dati

Quando si inizia a lavorare con il sistema StorageGRID, è utile comprendere come il sistema StorageGRID gestisce i dati.

Che cos'è un oggetto

Con lo storage a oggetti, l'unità di storage è un oggetto, piuttosto che un file o un blocco. A differenza della gerarchia ad albero di un file system o di uno storage a blocchi, lo storage a oggetti organizza i dati in un layout piatto e non strutturato. Lo storage a oggetti separa la posizione fisica dei dati dal metodo utilizzato per memorizzare e recuperare tali dati.

Ogni oggetto in un sistema di storage basato su oggetti ha due parti: Dati oggetto e metadati oggetto.

Dati dell'oggetto

I dati degli oggetti possono essere qualsiasi cosa, ad esempio una fotografia, un filmato o un documento medico.

Metadati dell'oggetto

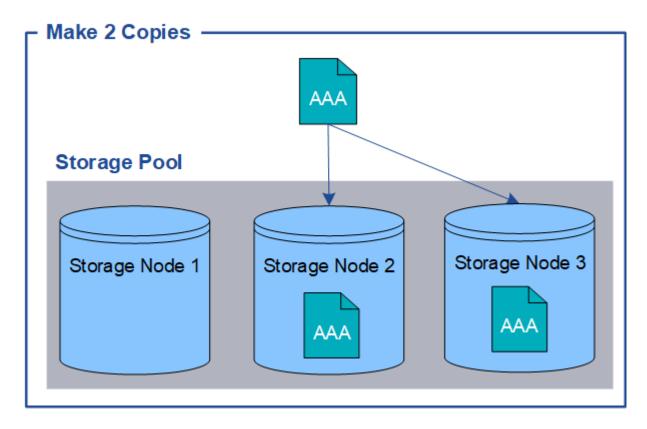
I metadati degli oggetti sono informazioni che descrivono un oggetto. StorageGRID utilizza i metadati degli oggetti per tenere traccia delle posizioni di tutti gli oggetti nella griglia e gestire il ciclo di vita di ciascun oggetto nel tempo.

I metadati dell'oggetto includono informazioni come:

- Metadati di sistema, tra cui un ID univoco per ciascun oggetto (UUID), il nome dell'oggetto, il nome del bucket S3 o del container Swift, il nome o l'ID dell'account tenant, la dimensione logica dell'oggetto, la data e l'ora in cui l'oggetto è stato creato per la prima volta, e la data e l'ora dell'ultima modifica dell'oggetto.
- · La posizione di storage corrente di ogni copia di oggetto o frammento con codifica di cancellazione.
- Qualsiasi metadati utente associato all'oggetto.

I metadati degli oggetti sono personalizzabili ed espandibili, il che lo rende flessibile per l'utilizzo da parte delle applicazioni.

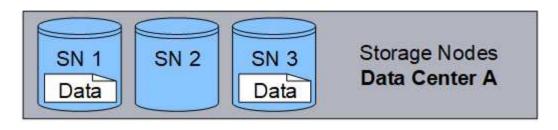
Per informazioni dettagliate su come e dove StorageGRID memorizza i metadati degli oggetti, visitare il sito Gestire lo storage dei metadati degli oggetti.

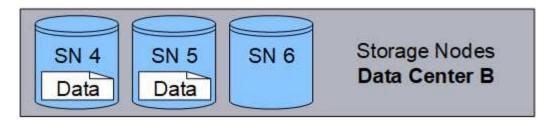

Modalità di protezione dei dati degli oggetti

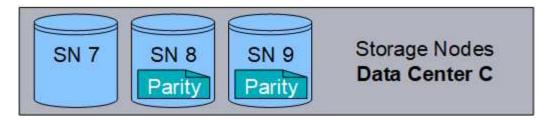
Il sistema StorageGRID offre due meccanismi per proteggere i dati degli oggetti dalla perdita: Replica e erasure coding.

Replica

Quando StorageGRID associa gli oggetti a una regola ILM (Information Lifecycle Management) configurata per creare copie replicate, il sistema crea copie esatte dei dati degli oggetti e li memorizza nei nodi di storage, nei nodi di archivio o nei pool di storage cloud. Le regole ILM determinano il numero di copie effettuate, la posizione in cui vengono memorizzate e la durata della conservazione da parte del sistema. Se una copia viene persa, ad esempio, a causa della perdita di un nodo di storage, l'oggetto rimane disponibile se una copia di esso esiste altrove nel sistema StorageGRID.


Nell'esempio seguente, la regola Make 2 copies specifica che due copie replicate di ciascun oggetto devono essere collocate in un pool di storage che contiene tre nodi di storage.



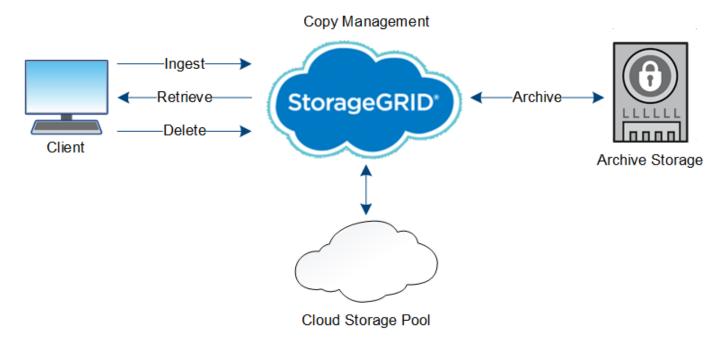

Erasure coding

Quando StorageGRID associa oggetti a una regola ILM configurata per creare copie con codifica di cancellazione, slice i dati degli oggetti in frammenti di dati, calcola ulteriori frammenti di parità e memorizza ogni frammento su un nodo di storage diverso. Quando si accede a un oggetto, questo viene riassemblato utilizzando i frammenti memorizzati. Se un dato o un frammento di parità viene corrotto o perso, l'algoritmo di erasure coding può ricreare quel frammento utilizzando un sottoinsieme dei rimanenti dati e frammenti di parità. Le regole ILM e i profili di erasure coding determinano lo schema di erasure coding utilizzato.

Nell'esempio riportato di seguito viene illustrato l'utilizzo della codifica erasure sui dati di un oggetto. In questo esempio, la regola ILM utilizza uno schema di erasure coding 4+2. Ciascun oggetto viene suddiviso in quattro frammenti di dati uguali e due frammenti di parità vengono calcolati dai dati dell'oggetto. Ciascuno dei sei frammenti viene memorizzato su un nodo di storage diverso in tre data center per fornire protezione dei dati in caso di guasti al nodo o perdita del sito.

Informazioni correlate

- · Gestire gli oggetti con ILM
- Utilizza la gestione del ciclo di vita delle informazioni


Ciclo di vita degli oggetti

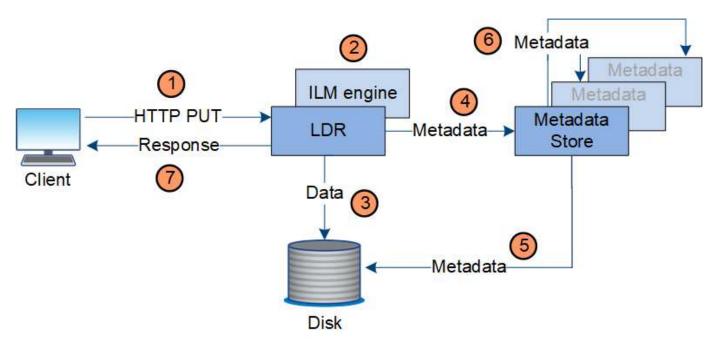
La vita di un oggetto

La vita di un oggetto è costituita da varie fasi. Ogni fase rappresenta le operazioni che avvengono con l'oggetto.

La durata di un oggetto include le operazioni di acquisizione, gestione delle copie, recupero ed eliminazione.

- **Ingest**: Il processo di un'applicazione client S3 o Swift che salva un oggetto su HTTP nel sistema StorageGRID. In questa fase, il sistema StorageGRID inizia a gestire l'oggetto.
- Gestione delle copie: Processo di gestione delle copie replicate e codificate in cancellazione in StorageGRID, come descritto dalle regole ILM nella policy ILM attiva. Durante la fase di gestione delle copie, StorageGRID protegge i dati degli oggetti dalla perdita creando e mantenendo il numero e il tipo specificati di copie degli oggetti nei nodi di storage, in un pool di storage cloud o nel nodo di archiviazione.
- **Recupera**: Il processo di accesso di un'applicazione client a un oggetto memorizzato dal sistema StorageGRID. Il client legge l'oggetto, che viene recuperato da un nodo di storage, un pool di storage cloud o un nodo di archivio.
- **Delete**: Processo di rimozione di tutte le copie di oggetti dalla griglia. Gli oggetti possono essere eliminati in seguito all'invio da parte dell'applicazione client di una richiesta di eliminazione al sistema StorageGRID o in seguito a un processo automatico eseguito da StorageGRID alla scadenza della vita dell'oggetto.

Informazioni correlate


- · Gestire gli oggetti con ILM
- Utilizza la gestione del ciclo di vita delle informazioni

Acquisire il flusso di dati

Un'operazione di acquisizione, o salvataggio, consiste in un flusso di dati definito tra il client e il sistema StorageGRID.

Flusso di dati

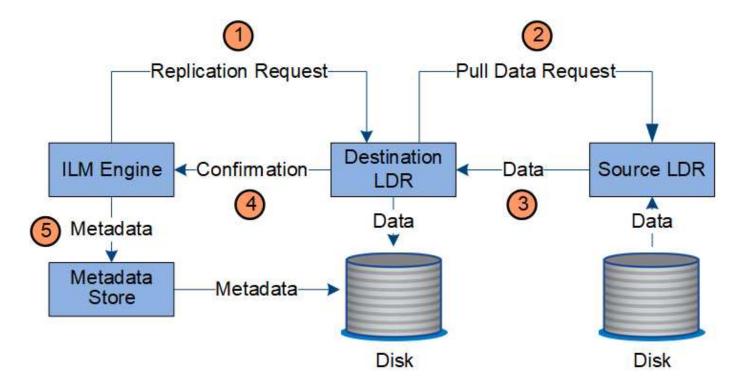
Quando un client acquisisce un oggetto nel sistema StorageGRID, il servizio LDR sui nodi di storage elabora la richiesta e memorizza i metadati e i dati su disco.

- 1. L'applicazione client crea l'oggetto e lo invia al sistema StorageGRID tramite una richiesta HTTP PUT.
- 2. L'oggetto viene valutato in base al criterio ILM del sistema.
- 3. Il servizio LDR salva i dati dell'oggetto come copia replicata o come copia codificata in cancellazione. (Il diagramma mostra una versione semplificata della memorizzazione di una copia replicata su disco).
- 4. Il servizio LDR invia i metadati dell'oggetto all'archivio di metadati.
- 5. L'archivio di metadati salva i metadati dell'oggetto su disco.
- 6. L'archivio di metadati propaga le copie dei metadati degli oggetti ad altri nodi di storage. Queste copie vengono salvate anche su disco.
- 7. Il servizio LDR restituisce una risposta HTTP 200 OK al client per confermare che l'oggetto è stato acquisito.

Gestione delle copie

I dati degli oggetti vengono gestiti dal criterio ILM attivo e dalle relative regole ILM. Le regole ILM effettuano copie replicate o erasure coded per proteggere i dati degli oggetti dalla perdita.

Potrebbero essere necessari diversi tipi o posizioni di copie di oggetti in momenti diversi della vita dell'oggetto. Le regole ILM vengono periodicamente valutate per garantire che gli oggetti vengano posizionati come richiesto.

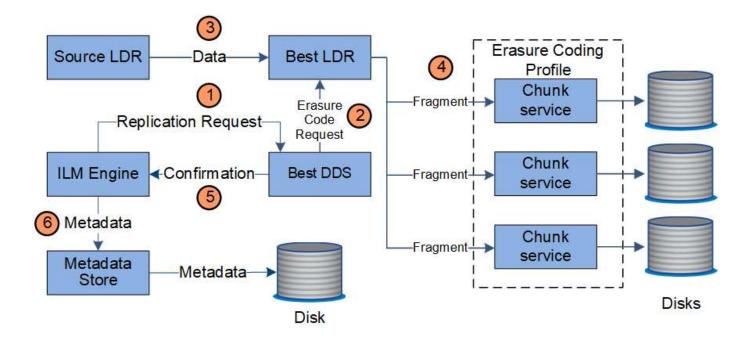

I dati degli oggetti vengono gestiti dal servizio LDR.

Protezione del contenuto: Replica

Se le istruzioni di posizionamento del contenuto di una regola ILM richiedono copie replicate dei dati dell'oggetto, le copie vengono eseguite e memorizzate su disco dai nodi di storage che compongono il pool di storage configurato.

Flusso di dati

Il motore ILM nel servizio LDR controlla la replica e garantisce che il numero corretto di copie venga memorizzato nelle posizioni corrette e per il tempo corretto.

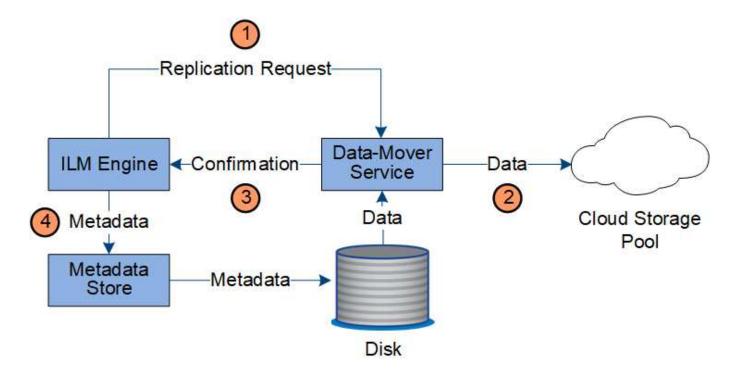

- Il motore ILM interroga il servizio ADC per determinare il servizio LDR di destinazione migliore all'interno del pool di storage specificato dalla regola ILM. Quindi, invia al servizio LDR un comando per avviare la replica.
- 2. Il servizio LDR di destinazione interroga il servizio ADC per la migliore posizione di origine. Quindi, invia una richiesta di replica al servizio LDR di origine.
- 3. Il servizio LDR di origine invia una copia al servizio LDR di destinazione.
- 4. Il servizio LDR di destinazione notifica al motore ILM che i dati dell'oggetto sono stati memorizzati.
- 5. Il motore ILM aggiorna l'archivio di metadati con i metadati della posizione dell'oggetto.

Protezione del contenuto: Erasure coding

Se una regola ILM include istruzioni per eseguire copie codificate di cancellazione dei dati dell'oggetto, lo schema di erasure coding applicabile suddivide i dati dell'oggetto in dati e frammenti di parità e distribuisce tali frammenti tra i nodi di storage configurati nel profilo di codifica Erasure.

Flusso di dati

Il motore ILM, che è un componente del servizio LDR, controlla la codifica di cancellazione e garantisce che il profilo di codifica Erasure venga applicato ai dati dell'oggetto.

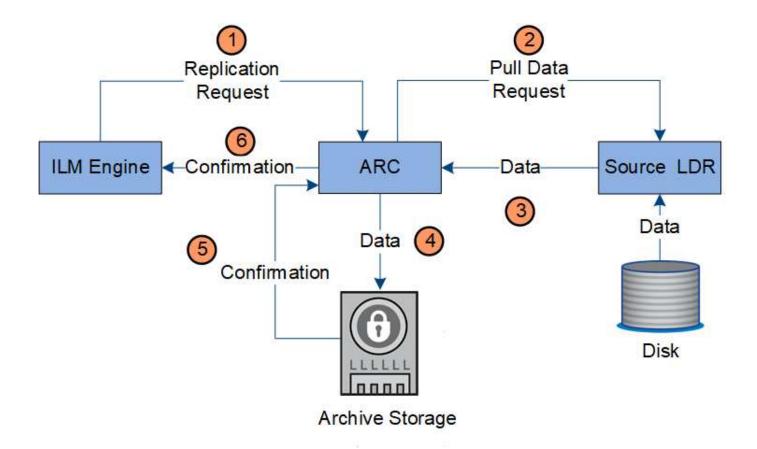

- Il motore ILM interroga il servizio ADC per determinare quale servizio DDS può eseguire al meglio l'operazione di erasure coding. Una volta stabilito, il motore ILM invia una richiesta di "inizializzazione" a tale servizio.
- 2. Il servizio DDS richiede a un LDR di eseguire la cancellazione del codice dei dati dell'oggetto.
- 3. Il servizio LDR di origine invia una copia al servizio LDR selezionato per la cancellazione del codice.
- 4. Una volta suddiviso nel numero appropriato di parità e frammenti di dati, il servizio LDR distribuisce questi frammenti tra i nodi di storage (servizi Chunk) che costituiscono il pool di storage del profilo di codifica Erasure.
- 5. Il servizio LDR notifica al motore ILM, confermando che i dati dell'oggetto sono stati distribuiti correttamente.
- Il motore ILM aggiorna l'archivio di metadati con i metadati della posizione dell'oggetto.

Protezione dei contenuti: Pool di storage cloud

Se le istruzioni di posizionamento del contenuto di una regola ILM richiedono che una copia replicata dei dati dell'oggetto venga memorizzata in un Cloud Storage Pool, i dati dell'oggetto vengono duplicati nel bucket S3 esterno o nel container di storage Azure Blob specificato per il Cloud Storage Pool.

Flusso di dati

Il motore ILM, che è un componente del servizio LDR, e il servizio Data Mover controllano lo spostamento degli oggetti nel Cloud Storage Pool.



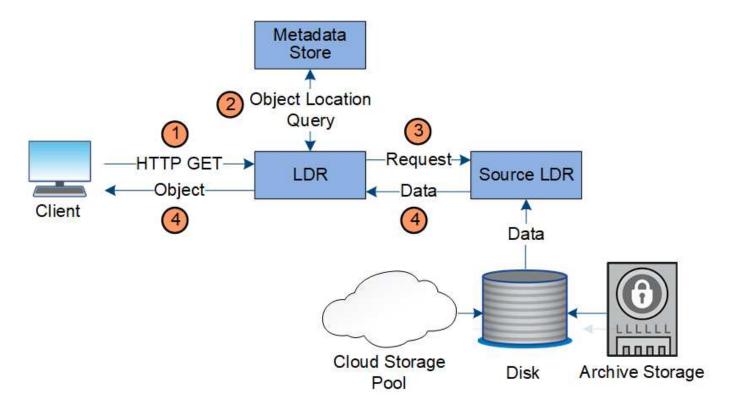
- 1. Il motore ILM seleziona un servizio Data Mover da replicare nel Cloud Storage Pool.
- 2. Il servizio Data Mover invia i dati dell'oggetto al Cloud Storage Pool.
- 3. Il servizio Data Mover notifica al motore ILM che i dati dell'oggetto sono stati memorizzati.
- 4. Il motore ILM aggiorna l'archivio di metadati con i metadati della posizione dell'oggetto.

Protezione del contenuto: Archivio

Un'operazione di archiviazione consiste in un flusso di dati definito tra il sistema StorageGRID e il client.

Se il criterio ILM richiede l'archiviazione di una copia dei dati dell'oggetto, il motore ILM, che è un componente del servizio LDR, invia una richiesta al nodo di archiviazione, che a sua volta invia una copia dei dati dell'oggetto al sistema di archiviazione di destinazione.

- 1. Il motore ILM invia una richiesta al servizio ARC per memorizzare una copia su un supporto di archiviazione.
- 2. Il servizio ARC interroga il servizio ADC per la migliore posizione di origine e invia una richiesta al servizio LDR di origine.
- 3. Il servizio ARC recupera i dati degli oggetti dal servizio LDR.
- 4. Il servizio ARC invia i dati dell'oggetto alla destinazione del supporto di archiviazione.
- 5. Il supporto di archiviazione notifica al servizio ARC che i dati dell'oggetto sono stati memorizzati.
- 6. Il servizio ARC notifica al motore ILM che i dati dell'oggetto sono stati memorizzati.


Recuperare il flusso di dati

Un'operazione di recupero consiste in un flusso di dati definito tra il sistema StorageGRID e il client. Il sistema utilizza gli attributi per tenere traccia del recupero dell'oggetto da un nodo di storage o, se necessario, da un pool di storage cloud o da un nodo di archivio.

Il servizio LDR di Storage Node interroga l'archivio di metadati per la posizione dei dati dell'oggetto e li recupera dal servizio LDR di origine. Preferenzialmente, il recupero avviene da un nodo di storage. Se l'oggetto non è disponibile su un nodo di storage, la richiesta di recupero viene indirizzata a un pool di storage cloud o a un nodo di archivio.

Se l'unica copia dell'oggetto si trova sullo storage AWS Glacier o sul Tier Azure Archive, l'applicazione client deve emettere una richiesta di ripristino S3 POST Object per ripristinare una copia recuperabile nel Cloud Storage Pool.

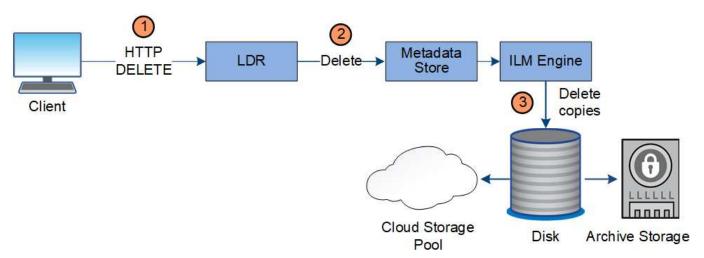
- 1. Il servizio LDR riceve una richiesta di recupero dall'applicazione client.
- 2. Il servizio LDR interroga l'archivio di metadati per la posizione dei dati dell'oggetto e i metadati.
- 3. Il servizio LDR inoltra la richiesta di recupero al servizio LDR di origine.
- 4. Il servizio LDR di origine restituisce i dati dell'oggetto dal servizio LDR interrogato e il sistema restituisce l'oggetto all'applicazione client.

Eliminare il flusso di dati

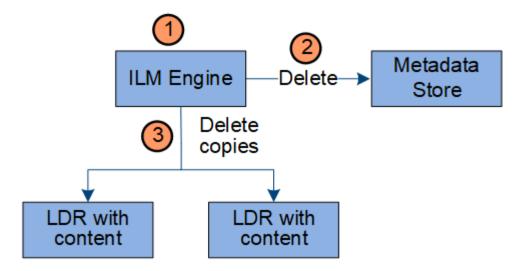
Tutte le copie degli oggetti vengono rimosse dal sistema StorageGRID quando un client esegue un'operazione di eliminazione o quando scade la durata dell'oggetto, attivandone la rimozione automatica. Esiste un flusso di dati definito per l'eliminazione degli oggetti.

Gerarchia di eliminazione

StorageGRID offre diversi metodi per controllare quando gli oggetti vengono conservati o cancellati. Gli oggetti possono essere cancellati automaticamente o su richiesta del client. StorageGRID assegna sempre la priorità a qualsiasi impostazione di blocco oggetti S3 rispetto alle richieste di eliminazione del client, che hanno la priorità sul ciclo di vita del bucket S3 e sulle istruzioni di posizionamento ILM.


- S3 Object Lock: Se l'impostazione globale S3 Object Lock è attivata per la griglia, i client S3 possono creare bucket con S3 Object Lock abilitato e quindi utilizzare l'API REST S3 per specificare le impostazioni di conservazione fino alla data e conservazione legale per ogni versione di oggetto aggiunta a quel bucket.
 - · Una versione dell'oggetto sottoposta a blocco legale non può essere eliminata con alcun metodo.
 - Prima che venga raggiunta la data di conservazione di una versione a oggetti, tale versione non può essere eliminata da alcun metodo.
 - Gli oggetti nei bucket con S3 Object Lock abilitato vengono conservati da ILM "forever". Tuttavia, una volta raggiunta la data di conservazione, una versione dell'oggetto può essere eliminata da una richiesta del client o dalla scadenza del ciclo di vita del bucket.

- Se i client S3 applicano una data di conservazione predefinita al bucket, non devono specificare una data di conservazione per ciascun oggetto.
- Richiesta di eliminazione del client: Un client S3 o Swift può emettere una richiesta di eliminazione dell'oggetto. Quando un client elimina un oggetto, tutte le copie dell'oggetto vengono rimosse dal sistema StorageGRID.
- Ciclo di vita del bucket S3: I client S3 possono aggiungere una configurazione del ciclo di vita ai bucket che specifica un'azione di scadenza. Se esiste un ciclo di vita del bucket, StorageGRID elimina automaticamente tutte le copie di un oggetto quando viene soddisfatta la data o il numero di giorni specificati nell'azione di scadenza, a meno che il client non elimini prima l'oggetto.
- Istruzioni di posizionamento ILM: Supponendo che il bucket non abbia attivato il blocco oggetti S3 e che non vi sia alcun ciclo di vita del bucket, StorageGRID elimina automaticamente un oggetto al termine dell'ultimo periodo di tempo della regola ILM e non vi sono ulteriori posizionamenti specificati per l'oggetto.


L'azione Expiration (scadenza) in un ciclo di vita del bucket S3 sovrascrive sempre le impostazioni ILM. Di conseguenza, un oggetto potrebbe essere conservato sulla griglia anche dopo che sono scadute le istruzioni ILM per il posizionamento dell'oggetto.

Eliminazione del flusso di dati per il client

- 1. Il servizio LDR riceve una richiesta di eliminazione dall'applicazione client.
- 2. Il servizio LDR aggiorna l'archivio di metadati in modo che l'oggetto venga cancellato dalle richieste del client e istruisce il motore ILM a rimuovere tutte le copie dei dati dell'oggetto.
- L'oggetto viene rimosso dal sistema. L'archivio di metadati viene aggiornato per rimuovere i metadati degli oggetti.

Flusso di dati per l'eliminazione di ILM

- 1. Il motore ILM determina che l'oggetto deve essere cancellato.
- 2. Il motore ILM invia una notifica all'archivio di metadati. L'archivio di metadati aggiorna i metadati degli oggetti in modo che l'oggetto venga cancellato dalle richieste del client.
- 3. Il motore ILM rimuove tutte le copie dell'oggetto. L'archivio di metadati viene aggiornato per rimuovere i metadati degli oggetti.

Informazioni sul copyright

Copyright © 2024 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d'America. Nessuna porzione di questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM'È" E SENZA QUALSIVOGLIA TIPO DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE, SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITÀ AZIENDALE) CAUSATO IN QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO) INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN PRESENZA DI UN PREAVVISO CIRCA L'EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l'utilizzo dei prodotti o materiali descritti nel presente documento, con l'eccezione di quanto concordato espressamente e per iscritto da NetApp. L'utilizzo o l'acquisto del presente prodotto non comporta il rilascio di una licenza nell'ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l'utilizzo, la duplicazione o la divulgazione da parte degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile, mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp, Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.