■ NetApp

Utilizzare Astra Trident

Astra Trident

NetApp April 04, 2024

This PDF was generated from https://docs.netapp.com/it-it/trident-2304/trident-use/worker-node-prep.html on April 04, 2024. Always check docs.netapp.com for the latest.

Sommario

U	tilizzare Astra Trident	1
	Preparare il nodo di lavoro	1
	Configurare i backend	5
	Crea backend con kubectl	106
	Eseguire la gestione del back-end con kubectl	113
	Eseguire la gestione back-end con tridentctl	114
	Passare da un'opzione di gestione back-end all'altra	116
	Gestire le classi di storage	122
	Eseguire operazioni sui volumi	124
	Condividere un volume NFS tra spazi dei nomi	150
	Monitorare Astra Trident	153

Utilizzare Astra Trident

Preparare il nodo di lavoro

Tutti i nodi di lavoro nel cluster Kubernetes devono essere in grado di montare i volumi forniti per i pod. Per preparare i nodi di lavoro, è necessario installare gli strumenti NFS o iSCSI in base alla selezione del driver.

Selezionare gli strumenti giusti

Se si utilizza una combinazione di driver, è necessario installare i tool NFS e iSCSI.

Strumenti NFS

Installa gli strumenti NFS se utilizzi: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-netapp-files, gcp-cvs

Strumenti iSCSI

Installare gli strumenti iSCSI se si utilizzano: ontap-san, ontap-san-economy, solidfire-san

Le versioni recenti di RedHat CoreOS hanno NFS e iSCSI installati per impostazione predefinita.

Rilevamento del servizio del nodo

Astra Trident tenta di rilevare automaticamente se il nodo può eseguire servizi iSCSI o NFS.

Il rilevamento del servizio nodo identifica i servizi rilevati ma non garantisce che i servizi siano configurati correttamente. Al contrario, l'assenza di un servizio rilevato non garantisce il mancato funzionamento del montaggio del volume.

Rivedere gli eventi

Astra Trident crea eventi per il nodo per identificare i servizi rilevati. Per rivedere questi eventi, eseguire:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node
name>

Esaminare i servizi rilevati

Astra Trident identifica i servizi abilitati per ciascun nodo sul nodo Trident CR. Per visualizzare i servizi rilevati, eseguire:

tridentctl get node -o wide -n <Trident namespace>

Volumi NFS

Installa gli strumenti NFS utilizzando i comandi del tuo sistema operativo. Assicurarsi che il servizio NFS venga avviato durante l'avvio.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

Riavviare i nodi di lavoro dopo aver installato gli strumenti NFS per evitare errori durante il collegamento dei volumi ai container.

Volumi iSCSI

Astra Trident può stabilire automaticamente una sessione iSCSI, eseguire la scansione delle LUN e rilevare i dispositivi multipath, formattarli e montarli su un pod.

Funzionalità di riparazione automatica di iSCSI

Per i sistemi ONTAP, Astra Trident esegue la riparazione automatica di iSCSI ogni cinque minuti per:

- 1. **Identificare** lo stato della sessione iSCSI desiderato e lo stato della sessione iSCSI corrente.
- 2. **Confrontare** lo stato desiderato con quello corrente per identificare le riparazioni necessarie. Astra Trident determina le priorità di riparazione e quando anticipare le riparazioni.
- 3. **Eseguire le riparazioni** necessarie per riportare lo stato della sessione iSCSI corrente allo stato della sessione iSCSI desiderato.

I registri delle attività di riparazione automatica si trovano in trident-main Container sul rispettivo pod Demonset. Per visualizzare i registri, è necessario aver impostato debug "True" durante l'installazione di Astra Trident.

Le funzionalità di riparazione automatica iSCSI di Astra Trident possono contribuire a prevenire:

 Sessioni iSCSI obsolete o non funzionanti che potrebbero verificarsi dopo un problema di connettività di rete. In caso di sessione obsoleta, Astra Trident attende sette minuti prima di disconnettersi per ristabilire la connessione con un portale.

Ad esempio, se i segreti CHAP sono stati ruotati sul controller di storage e la rete perde la connettività, i vecchi segreti CHAP (*stale*) potrebbero persistere. L'autoriparazione è in grado di riconoscerlo e ristabilire automaticamente la sessione per applicare i segreti CHAP aggiornati.

- · Sessioni iSCSI mancanti
- · LUN mancanti

Installare gli strumenti iSCSI

Installare gli strumenti iSCSI utilizzando i comandi del sistema operativo.

Prima di iniziare

- Ogni nodo del cluster Kubernetes deve avere un IQN univoco. Questo è un prerequisito necessario.
- Se si utilizza RHCOS versione 4.5 o successiva, o un'altra distribuzione Linux compatibile con RHEL, con solidfire-san Driver ed Element OS 12.5 o versioni precedenti, assicurarsi che l'algoritmo di autenticazione CHAP sia impostato su MD5 in /etc/iscsi/iscsid.conf. Gli algoritmi CHAP conformi a FIPS sicuri SHA1, SHA-256 e SHA3-256 sono disponibili con Element 12.7.

```
sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf
```

 Quando si utilizzano nodi di lavoro che eseguono RHEL/RedHat CoreOS con iSCSI PVS, specificare discard MountOption in StorageClass per eseguire la rigenerazione dello spazio inline. Vedere "La documentazione di RedHat".

RHEL 8+

1. Installare i seguenti pacchetti di sistema:

```
\verb|sudo| yum install -y lsscsi iscsi-initiator-utils sg3_utils device-mapper-multipath|
```

2. Verificare che la versione di iscsi-initiator-utils sia 6.2.0.874-2.el7 o successiva:

```
rpm -q iscsi-initiator-utils
```

3. Impostare la scansione su manuale:

```
sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf
```

4. Abilitare il multipathing:

```
sudo mpathconf --enable --with multipathd y --find multipaths n
```


Assicurarsi etc/multipath.conf contiene find_multipaths no sotto defaults.

5. Assicurarsi che iscsid e. multipathd sono in esecuzione:

```
sudo systemctl enable --now iscsid multipathd
```

6. Attivare e avviare iscsi:

```
sudo systemctl enable --now iscsi
```

Ubuntu

1. Installare i seguenti pacchetti di sistema:

```
sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools
```

2. Verificare che la versione Open-iscsi sia 2.0.874-5ubuntu2.10 o successiva (per il bionico) o 2.0.874-7.1ubuntu6.1 o successiva (per il focale):

```
dpkg -l open-iscsi
```

3. Impostare la scansione su manuale:

```
sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf
```

4. Abilitare il multipathing:

```
sudo tee /etc/multipath.conf <<-'EOF
defaults {
    user_friendly_names yes
    find_multipaths no
}
EOF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart</pre>
```


Assicurarsi etc/multipath.conf contiene find_multipaths no sotto defaults.

5. Assicurarsi che open-iscsi e. multipath-tools sono abilitati e in esecuzione:

```
sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi
```


Per Ubuntu 18.04, è necessario rilevare le porte di destinazione con iscsiadm prima di iniziare open-iscsi Per avviare il daemon iSCSI. In alternativa, è possibile modificare iscsi servizio da avviare iscsid automaticamente.

Riavviare i nodi di lavoro dopo aver installato gli strumenti iSCSI per evitare errori durante il collegamento dei volumi ai container.

Configurare i backend

Configurare i backend

Un backend definisce la relazione tra Astra Trident e un sistema storage. Spiega ad Astra Trident come comunicare con quel sistema storage e come Astra Trident dovrebbe

eseguire il provisioning dei volumi da esso.

Astra Trident offre automaticamente pool di storage da backend che soddisfano i requisiti definiti da una classe di storage. Scopri come configurare il back-end per il tuo sistema storage.

- "Configurare un backend Azure NetApp Files"
- "Configurare un Cloud Volumes Service per il backend della piattaforma cloud Google"
- "Configurare un backend NetApp HCI o SolidFire"
- "Configurare un backend con driver NAS ONTAP o Cloud Volumes ONTAP"
- "Configurare un backend con i driver SAN ONTAP o Cloud Volumes ONTAP"
- "Utilizza Astra Trident con Amazon FSX per NetApp ONTAP"

Azure NetApp Files

Configurare un backend Azure NetApp Files

È possibile configurare Azure NetApp Files (ANF) come backend per Astra Trident. È possibile collegare volumi NFS e SMB utilizzando un backend ANF.

Considerazioni

- Il servizio Azure NetApp Files non supporta volumi inferiori a 100 GB. Astra Trident crea automaticamente volumi da 100 GB se viene richiesto un volume più piccolo.
- Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows.

Prepararsi a configurare un backend Azure NetApp Files

Prima di poter configurare il backend Azure NetApp Files, è necessario assicurarsi che siano soddisfatti i seguenti requisiti.

Prerequisiti per volumi NFS e SMB

Se si utilizza Azure NetApp Files per la prima volta o in una nuova posizione, è necessaria una configurazione iniziale per configurare Azure NetApp Files e creare un volume NFS. Fare riferimento a. "Azure: Configura Azure NetApp Files e crea un volume NFS".

Per configurare e utilizzare un "Azure NetApp Files" back-end, sono necessari i seguenti elementi:

- Un pool di capacità. Fare riferimento a. "Microsoft: Creare un pool di capacità per Azure NetApp Files".
- Una subnet delegata a Azure NetApp Files. Fare riferimento a. "Microsoft: Delegare una subnet a Azure NetApp Files".
- subscriptionID Da un abbonamento Azure con Azure NetApp Files attivato.
- tenantID, clientID, e. clientSecret da un "Registrazione dell'app" In Azure Active Directory con autorizzazioni sufficienti per il servizio Azure NetApp Files. La registrazione dell'applicazione deve utilizzare:
 - Il ruolo di Proprietario o collaboratore "Predefinito da Azure".
 - ° R "Ruolo di collaboratore personalizzato" a livello di abbonamento (assignableScopes) Con le

seguenti autorizzazioni limitate solo a quanto richiesto da Astra Trident. Dopo aver creato il ruolo personalizzato, "Assegnare il ruolo utilizzando il portale Azure".

```
"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",
    "properties": {
        "roleName": "custom-role-with-limited-perms",
        "description": "custom role providing limited permissions",
        "assignableScopes": [
            "/subscriptions/<subscription-id>"
        ],
        "permissions": [
            {
                "actions": [
"Microsoft.NetApp/netAppAccounts/capacityPools/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read
",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ
e",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele
te",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/rea
d",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/wri
te",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/del
ete",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/Get
```

```
Metadata/action",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r
ead",
                    "Microsoft.Network/virtualNetworks/read",
                    "Microsoft.Network/virtualNetworks/subnets/read",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/read",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/write",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/delete",
                    "Microsoft.Features/features/read",
                    "Microsoft.Features/operations/read",
                    "Microsoft.Features/providers/features/read",
"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",
"Microsoft.Features/subscriptionFeatureRegistrations/read"
                ],
                "notActions": [],
                "dataActions": [],
                "notDataActions": []
            }
       ]
    }
}
```

 Azure location che ne contiene almeno uno "subnet delegata". A partire da Trident 22.01, il location parametro è un campo obbligatorio al livello superiore del file di configurazione back-end. I valori di posizione specificati nei pool virtuali vengono ignorati.

Requisiti aggiuntivi per i volumi SMB

Per creare un volume SMB, è necessario disporre di:

- Active Directory configurato e connesso a Azure NetApp Files. Fare riferimento a. "Microsoft: Creazione e
 gestione delle connessioni Active Directory per Azure NetApp Files".
- Un cluster Kubernetes con un nodo controller Linux e almeno un nodo di lavoro Windows che esegue Windows Server 2019. Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows.
- Almeno un segreto di Astra Trident contenente le credenziali di Active Directory in modo che Azure NetApp Files possa autenticarsi in Active Directory. Per generare un segreto smbcreds:

kubectl create secret generic smbcreds --from-literal username=user
--from-literal password='password'

• Proxy CSI configurato come servizio Windows. Per configurare un csi-proxy, fare riferimento a. "GitHub: Proxy CSI" oppure "GitHub: Proxy CSI per Windows" Per i nodi Kubernetes in esecuzione su Windows.

Opzioni di configurazione back-end Azure NetApp Files ed esempi

Scopri le opzioni di configurazione backend NFS e SMB per ANF e consulta gli esempi di configurazione.

Opzioni di configurazione back-end

Astra Trident utilizza la configurazione del backend (subnet, rete virtuale, livello di servizio e posizione) per creare volumi ANF su pool di capacità disponibili nella posizione richiesta e corrispondenti al livello di servizio e alla subnet richiesti.

Astra Trident non supporta i pool di capacità QoS manuali.

I back-end FORNISCONO queste opzioni di configurazione.

Parametro	Descrizione	Predefinito
version		Sempre 1
storageDriverName	Nome del driver di storage	"azure-netapp-files"
backendName	Nome personalizzato o backend dello storage	Nome del driver + "_" + caratteri casuali
subscriptionID	L'ID dell'abbonamento dell'abbonamento Azure	
tenantID	L'ID tenant di una registrazione app	
clientID	L'ID client di una registrazione dell'applicazione	
clientSecret	Il segreto del client da una registrazione dell'applicazione	
serviceLevel	Uno di Standard, Premium, O. Ultra	"" (casuale)
location	Nome della posizione di Azure in cui verranno creati i nuovi volumi	
resourceGroups	Elenco dei gruppi di risorse per filtrare le risorse rilevate	"[]" (nessun filtro)
netappAccounts	Elenco degli account NetApp per il filtraggio delle risorse rilevate	"[]" (nessun filtro)
capacityPools	Elenco dei pool di capacità per filtrare le risorse rilevate	"[]" (nessun filtro, casuale)

Parametro	Descrizione	Predefinito
virtualNetwork	Nome di una rete virtuale con una subnet delegata	""
subnet	Nome di una subnet delegata a. Microsoft.Netapp/volumes	1111
networkFeatures	Serie di funzionalità VNET per un volume, potrebbe essere Basic oppure Standard. Le funzioni di rete non sono disponibili in tutte le regioni e potrebbero essere abilitate in un abbonamento. Specificare networkFeatures se la funzionalità non è attivata, il provisioning del volume non viene eseguito correttamente.	1111
nfsMountOptions	Controllo dettagliato delle opzioni di montaggio NFS. Ignorato per i volumi SMB. Per montare i volumi utilizzando NFS versione 4.1, include nfsvers=4 Nell'elenco delle opzioni di montaggio delimitate da virgole, scegliere NFS v4.1. Le opzioni di montaggio impostate in una definizione di classe di storage sovrascrivono le opzioni di montaggio impostate nella configurazione backend.	"nfsvers=3"
limitVolumeSize	Il provisioning non riesce se le dimensioni del volume richiesto sono superiori a questo valore	"" (non applicato per impostazione predefinita)
debugTraceFlags	Flag di debug da utilizzare per la risoluzione dei problemi. Esempio, \{"api": false, "method": true, "discovery": true}. Non utilizzare questa opzione a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.	nullo

Parametro	Descrizione	Predefinito
nasType	Configurare la creazione di volumi NFS o SMB.	nfs
	Le opzioni sono nfs, smb o nullo. L'impostazione su Null consente di impostare i volumi NFS come predefiniti.	

Per ulteriori informazioni sulle funzioni di rete, fare riferimento a. "Configurare le funzionalità di rete per un volume Azure NetApp Files".

Autorizzazioni e risorse richieste

Se durante la creazione di un PVC viene visualizzato il messaggio di errore "Nessun pool di capacità trovato", è probabile che la registrazione dell'applicazione non disponga delle autorizzazioni e delle risorse necessarie (subnet, rete virtuale, pool di capacità). Se il debug è attivato, Astra Trident registra le risorse Azure rilevate al momento della creazione del backend. Verificare che venga utilizzato un ruolo appropriato.

I valori per resourceGroups, netappAccounts, capacityPools, virtualNetwork, e. subnet può essere specificato utilizzando nomi brevi o completi. Nella maggior parte dei casi, si consiglia di utilizzare nomi completi, in quanto i nomi brevi possono corrispondere a più risorse con lo stesso nome.

Il resourceGroups, netappAccounts, e. capacityPools i valori sono filtri che limitano l'insieme di risorse rilevate a quelle disponibili per questo backend di storage e possono essere specificati in qualsiasi combinazione. I nomi pienamente qualificati seguono questo formato:

Tipo	Formato
Gruppo di risorse	<resource group=""></resource>
Account NetApp	<resource group="">/<netapp account=""></netapp></resource>
Pool di capacità	<resource group="">/<netapp account="">/<capacity pool=""></capacity></netapp></resource>
Rete virtuale	<resource group="">/<virtual network=""></virtual></resource>
Subnet	<resource group="">/<virtual network="">/<subnet></subnet></virtual></resource>

Provisioning di volumi

È possibile controllare il provisioning del volume predefinito specificando le seguenti opzioni in una sezione speciale del file di configurazione. Fare riferimento a. Configurazioni di esempio per ulteriori informazioni.

Parametro	Descrizione	Predefinito
exportRule	Regole di esportazione per nuovi volumi. exportRule Deve essere un elenco separato da virgole di qualsiasi combinazione di indirizzi IPv4 o subnet IPv4 nella notazione CIDR.	"0.0.0.0/0"
	Ignorato per i volumi SMB.	
snapshotDir	Controlla la visibilità della directory .snapshot	"falso"
size	La dimensione predefinita dei nuovi volumi	"100 G"
unixPermissions	Le autorizzazioni unix dei nuovi volumi (4 cifre ottali). Ignorato per i volumi SMB.	"" (funzione di anteprima, richiede la whitelist nell'abbonamento)

Configurazioni di esempio

Esempio 1: Configurazione minima

Questa è la configurazione backend minima assoluta. Con questa configurazione, Astra Trident rileva tutti gli account NetApp, i pool di capacità e le subnet delegate ad ANF nella posizione configurata e inserisce i nuovi volumi in uno di questi pool e sottoreti in modo casuale. Perché nasType viene omesso, il nfs Viene applicato il valore predefinito e il backend eseguirà il provisioning dei volumi NFS.

Questa configurazione è ideale quando si inizia a utilizzare ANF e si provano le cose, ma in pratica si desidera fornire un ambito aggiuntivo per i volumi che si esegue il provisioning.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET
location: eastus

Esempio 2: Configurazione specifica del livello di servizio con filtri del pool di capacità

Questa configurazione di back-end consente di posizionare i volumi in Azure eastus posizione in un Ultra pool di capacità. Astra Trident rileva automaticamente tutte le subnet delegate ad ANF in quella posizione e inserisce un nuovo volume su una di esse in modo casuale.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf
clientID: dd043f63-bf8e-fake-8076-8de91e5713aa
clientSecret: SECRET
location: eastus
serviceLevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2

Esempio 3: Configurazione avanzata

Questa configurazione di back-end riduce ulteriormente l'ambito del posizionamento del volume in una singola subnet e modifica alcune impostazioni predefinite di provisioning del volume.

```
version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf
clientID: dd043f63-bf8e-fake-8076-8de91e5713aa
clientSecret: SECRET
location: eastus
serviceLevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
 exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
 snapshotDir: 'true'
 size: 200Gi
 unixPermissions: '0777'
```

Esempio 4: Configurazione del pool virtuale

Questa configurazione di back-end definisce più pool di storage in un singolo file. Ciò è utile quando si dispone di più pool di capacità che supportano diversi livelli di servizio e si desidera creare classi di storage in Kubernetes che ne rappresentano. Le etichette dei pool virtuali sono state utilizzate per differenziare i pool in base a. performance.

```
version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf
clientID: dd043f63-bf8e-fake-8076-8de91e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3, proto=tcp, timeo=600
  cloud: azure
storage:
- labels:
    performance: gold
  serviceLevel: Ultra
  capacityPools:
  - ultra-1
  - ultra-2
  networkFeatures: Standard
- labels:
   performance: silver
  serviceLevel: Premium
  capacityPools:
  - premium-1
- labels:
    performance: bronze
  serviceLevel: Standard
  capacityPools:
  - standard-1
  - standard-2
```

Definizioni delle classi di storage

Quanto segue StorageClass le definizioni si riferiscono ai pool di storage sopra indicati.

Definizioni di esempio con parameter. selector campo

Utilizzo di parameter. selector è possibile specificare per ciascuno StorageClass il pool virtuale utilizzato per ospitare un volume. Gli aspetti del volume saranno definiti nel pool selezionato.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gold
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: silver
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: bronze
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=bronze"
allowVolumeExpansion: true
```

Definizioni di esempio per volumi SMB

Utilizzo di nasType, node-stage-secret-name, e. node-stage-secret-namespace, È possibile specificare un volume SMB e fornire le credenziali Active Directory richieste.

Esempio 1: Configurazione di base sullo spazio dei nomi predefinito

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
    backendType: "azure-netapp-files"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
    csi.storage.k8s.io/node-stage-secret-namespace: "default"
```

Esempio 2: Utilizzo di segreti diversi per spazio dei nomi

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
    backendType: "azure-netapp-files"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
    csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
```

Esempio 3: Utilizzo di segreti diversi per volume

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
    backendType: "azure-netapp-files"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}
    csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
```


nasType: `smb Filtri per pool che supportano volumi SMB. nasType: `nfs oppure nasType: `null Filtri per i pool NFS.

Creare il backend

Dopo aver creato il file di configurazione back-end, eseguire il seguente comando:

```
tridentctl create backend -f <backend-file>
```

Se la creazione del backend non riesce, si è verificato un errore nella configurazione del backend. È possibile visualizzare i log per determinare la causa eseguendo il seguente comando:

```
tridentctl logs
```

Dopo aver identificato e corretto il problema con il file di configurazione, è possibile eseguire nuovamente il comando create.

Configurare un Cloud Volumes Service per il backend di Google Cloud

Scopri come configurare NetApp Cloud Volumes Service per Google Cloud come backend per la tua installazione Astra Trident utilizzando le configurazioni di esempio fornite.

Scopri di più sul supporto di Astra Trident per Cloud Volumes Service per Google Cloud

Astra Trident può creare volumi Cloud Volumes Service in uno dei due "tipi di servizio":

- CVS-Performance: Il tipo di servizio Astra Trident predefinito. Questo tipo di servizio ottimizzato per le performance è più adatto per i carichi di lavoro di produzione che apprezzano le performance. Il tipo di servizio CVS-Performance è un'opzione hardware che supporta volumi con una dimensione minima di 100 GiB. È possibile scegliere tra "tre livelli di servizio":
 - ° standard
 - ° premium
 - ° extreme
- CVS: Il tipo di servizio CVS offre un'elevata disponibilità zonale con livelli di performance da limitati a
 moderati. Il tipo di servizio CVS è un'opzione software che utilizza pool di storage per supportare volumi di
 dimensioni pari a 1 GiB. Il pool di storage può contenere fino a 50 volumi in cui tutti i volumi condividono la
 capacità e le performance del pool. È possibile scegliere tra "due livelli di servizio":
 - ° standardsw
 - ° zoneredundantstandardsw

Di cosa hai bisogno

Per configurare e utilizzare "Cloud Volumes Service per Google Cloud" back-end, sono necessari i seguenti elementi:

Un account Google Cloud configurato con NetApp Cloud Volumes Service

- Numero di progetto dell'account Google Cloud
- Account di servizio Google Cloud con netappcloudvolumes.admin ruolo
- File delle chiavi API per l'account Cloud Volumes Service

Opzioni di configurazione back-end

Ogni back-end esegue il provisioning dei volumi in una singola area di Google Cloud. Per creare volumi in altre regioni, è possibile definire backend aggiuntivi.

Parametro	Descrizione	Predefinito
version		Sempre 1
storageDriverName	Nome del driver di storage	"gcp-cvs"
backendName	Nome personalizzato o backend dello storage	Nome del driver + "_" + parte della chiave API
storageClass	Parametro facoltativo utilizzato per specificare il tipo di servizio CVS. Utilizzare software Per selezionare il tipo di servizio CVS. In caso contrario, Astra Trident presuppone il tipo di servizio CVS-Performance (hardware).	
storagePools	Solo tipo di servizio CVS. Parametro facoltativo utilizzato per specificare i pool di storage per la creazione di volumi.	
projectNumber	Numero di progetto dell'account Google Cloud. Il valore si trova nella home page del portale Google Cloud.	
hostProjectNumber	Necessario se si utilizza una rete VPC condivisa. In questo scenario, projectNumber è il progetto di servizio, e. hostProjectNumber è il progetto host.	
apiRegion	La regione di Google Cloud in cui Astra Trident crea volumi Cloud Volumes Service. Quando si creano cluster Kubernetes con più aree, i volumi creati in un apiRegion Può essere utilizzato nei carichi di lavoro pianificati su nodi in più aree di Google Cloud.	
	Il traffico interregionale comporta un costo aggiuntivo.	

Parametro	Descrizione	Predefinito
apiKey	Chiave API per l'account del servizio Google Cloud con netappcloudvolumes.admin ruolo. Include il contenuto in formato JSON di un file di chiave privata dell'account di un servizio Google Cloud (copia integrale nel file di configurazione del backend).	
proxyURL	URL del proxy se il server proxy ha richiesto di connettersi all'account CVS. Il server proxy può essere un proxy HTTP o un proxy HTTPS. Per un proxy HTTPS, la convalida del certificato viene ignorata per consentire l'utilizzo di certificati autofirmati nel server proxy. I server proxy con autenticazione abilitata non sono supportati.	
nfsMountOptions	Controllo dettagliato delle opzioni di montaggio NFS.	"nfsvers=3"
limitVolumeSize	Il provisioning non riesce se le dimensioni del volume richiesto sono superiori a questo valore.	"" (non applicato per impostazione predefinita)
serviceLevel	Livello di servizio CVS- Performance o CVS per i nuovi volumi. I valori CVS-Performance sono standard, premium, o. extreme. I valori CVS sono standardsw oppure zoneredundantstandardsw.	CVS-Performance (prestazioni CVS) è "standard". Il valore predefinito di CVS è "standardsw".
network	Rete Google Cloud utilizzata per i volumi Cloud Volumes Service.	"predefinito"

Flag di debug da utilizzare per la	
risoluzione dei problemi. Esempio, \{"api":false, "method":true}. Non utilizzare questa opzione a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.	nullo
Per abilitare l'accesso multi- regione, la definizione StorageClass per allowedTopologies deve includere tutte le regioni. Ad esempio: - key: topology.kubernetes.io/reg ion values: - us-east1	
	\{"api":false, "method":true}. Non utilizzare questa opzione a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log. Per abilitare l'accesso multi- regione, la definizione StorageClass per allowedTopologies deve includere tutte le regioni. Ad esempio: - key: topology.kubernetes.io/reg ion values:

Opzioni di provisioning dei volumi

È possibile controllare il provisioning del volume predefinito in defaults del file di configurazione.

Parametro	Descrizione	Predefinito
exportRule	Le regole di esportazione per i nuovi volumi. Deve essere un elenco separato da virgole di qualsiasi combinazione di indirizzi IPv4 o subnet IPv4 nella notazione CIDR.	"0.0.0.0/0"
snapshotDir	Accesso a .snapshot directory	"falso"
snapshotReserve	Percentuale di volume riservato agli snapshot	"" (accettare CVS come valore predefinito 0)
size	Le dimensioni dei nuovi volumi. Performance CVS minima: 100 GiB. CVS minimo: 1 GiB.	Per impostazione predefinita, il tipo di servizio CVS-Performance è "100GiB". Il tipo di servizio CVS non imposta un valore predefinito, ma richiede un minimo di 1 GiB.

Esempi di tipo di servizio CVS-Performance		
I seguenti esempi forniscono configurazioni di esempio per il tipo di servizio CVS-Performance.		

Questa è la configurazione di backend minima che utilizza il tipo di servizio CVS-Performance predefinito con il livello di servizio "standard" predefinito.

```
version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901'
apiRegion: us-west2
apiKey:
  type: service account
  project id: my-gcp-project
  private key id: "<id value>"
  private key: |
    ----BEGIN PRIVATE KEY----
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    XsYg6gyxy4zq70lwWgLwGa==
    ----END PRIVATE KEY----
  client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
  client id: '123456789012345678901'
```

```
auth_uri: https://accounts.google.com/o/oauth2/auth
token_uri: https://oauth2.googleapis.com/token
auth_provider_x509_cert_url:
https://www.googleapis.com/oauth2/v1/certs
client_x509_cert_url:
https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com
```

In questo esempio vengono illustrate le opzioni di configurazione back-end, inclusi il livello di servizio e i valori predefiniti del volume.

```
version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901'
apiRegion: us-west2
apiKey:
  type: service account
  project id: my-gcp-project
  private key id: "<id value>"
  private key: |
    ----BEGIN PRIVATE KEY----
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    XsYg6gyxy4zq70lwWgLwGa==
    ----END PRIVATE KEY----
  client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
  client id: '123456789012345678901'
```

```
auth uri: https://accounts.google.com/o/oauth2/auth
  token uri: https://oauth2.googleapis.com/token
  auth provider x509 cert url:
https://www.googleapis.com/oauth2/v1/certs
  client x509 cert url:
https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
serviceLevel: premium
defaults:
  snapshotDir: 'true'
  snapshotReserve: '5'
  exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
  size: 5Ti
```

Questo esempio utilizza storage per configurare i pool virtuali e il StorageClasses che fanno riferimento a loro. Fare riferimento a. Definizioni delle classi di storage per vedere come sono state definite le classi di storage.

In questo caso, vengono impostati valori predefiniti specifici per tutti i pool virtuali, che impostano snapshotReserve al 5% e a. exportRule a 0.0.0.0/0. I pool virtuali sono definiti in storage sezione. Ogni singolo pool virtuale definisce il proprio serviceLevel`e alcuni pool sovrascrivono i valori predefiniti. Le etichette dei pool virtuali sono state utilizzate per differenziare i pool in base a. `performance @ protection.

```
version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901'
apiRegion: us-west2
apiKey:
 type: service account
 project id: my-gcp-project
 private key id: "<id value>"
 private key: |
    ----BEGIN PRIVATE KEY----
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
```

```
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    XsYg6gyxy4zq70lwWgLwGa==
    ----END PRIVATE KEY----
  client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
  client id: '123456789012345678901'
  auth uri: https://accounts.google.com/o/oauth2/auth
  token uri: https://oauth2.googleapis.com/token
  auth provider x509 cert url:
https://www.googleapis.com/oauth2/v1/certs
  client x509 cert url:
https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com
nfsMountOptions: vers=3,proto=tcp,timeo=600
defaults:
  snapshotReserve: '5'
  exportRule: 0.0.0.0/0
labels:
  cloud: gcp
region: us-west2
storage:
- labels:
    performance: extreme
    protection: extra
  serviceLevel: extreme
  defaults:
    snapshotDir: 'true'
    snapshotReserve: '10'
    exportRule: 10.0.0.0/24
- labels:
   performance: extreme
    protection: standard
  serviceLevel: extreme
- labels:
    performance: premium
    protection: extra
  serviceLevel: premium
  defaults:
    snapshotDir: 'true'
    snapshotReserve: '10'
- labels:
    performance: premium
    protection: standard
  serviceLevel: premium
- labels:
    performance: standard
```

serviceLevel: standard

Definizioni delle classi di storage

Le seguenti definizioni di StorageClass si applicano all'esempio di configurazione del pool virtuale. Utilizzo di parameters. selector, È possibile specificare per ogni StorageClass il pool virtuale utilizzato per ospitare un volume. Gli aspetti del volume saranno definiti nel pool selezionato.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extreme-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extreme-standard-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-premium-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-premium
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-standard
provisioner: netapp.io/trident
parameters:
  selector: "performance=standard"
allowVolumeExpansion: true
```

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "protection=extra"
allowVolumeExpansion: true
```

- Il primo StorageClass (cvs-extreme-extra-protection) viene mappato al primo pool virtuale. Questo è l'unico pool che offre performance estreme con una riserva di snapshot del 10%.
- L'ultima StorageClass (cvs-extra-protection) richiama qualsiasi pool di storage che fornisce una riserva di snapshot del 10%. Astra Trident decide quale pool virtuale è selezionato e garantisce che il requisito di riserva snapshot sia soddisfatto.

Esempi di tipo di servizio CVS

I seguenti esempi forniscono configurazioni di esempio per il tipo di servizio CVS.

Questa è la configurazione backend minima utilizzata storageClass Per specificare il tipo di servizio CVS e il valore predefinito standardsw livello di servizio.

```
version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901'
storageClass: software
apiRegion: us-east4
apiKey:
 type: service account
 project id: my-gcp-project
 private key id: "<id value>"
 private key: |
    ----BEGIN PRIVATE KEY----
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOquSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m
   XsYq6qyxy4zq70lwWqLwGa==
    ----END PRIVATE KEY----
 client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
```

```
client_id: '123456789012345678901'
  auth_uri: https://accounts.google.com/o/oauth2/auth
  token_uri: https://oauth2.googleapis.com/token
  auth_provider_x509_cert_url:
https://www.googleapis.com/oauth2/v1/certs
  client_x509_cert_url:
https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-sa%40my-gcp-project.iam.gserviceaccount.com
  serviceLevel: standardsw
```

Questo esempio di configurazione di backend utilizza storagePools per configurare un pool di storage.

```
version: 1
storageDriverName: gcp-cvs
backendName: gcp-std-so-with-pool
projectNumber: '531265380079'
apiRegion: europe-west1
apiKey:
  type: service account
  project id: cloud-native-data
  private key id: "<id value>"
  private key: |-
    ----BEGIN PRIVATE KEY----
    MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQDaT+Oui9FBAw19
    L1AGEkrYU5xd9K5Nl05jMkIFND5wCD+Nv+jd1GvtFRLaLK5RvXyF5wzvztmODNS+
    qtScpQ+5cFpQkuGtv9U9+N6qtuVYYO3b504Kp5CtqVPJCqMJaK2j8pZTIqUiMum/
    5/Y9oTbZrjAHSMqJm2nHzFq2X0rqVMaHqhI6ATm4DOuWx8XGWKTGIPlc0qPqJlqS
    LLaWOH4VIZQZCAyW5IUp9CAmwqHqdG0uhFNfCqMmED6PBUvVLsLvcq86X+QSWR9k
    ETqElj/sGCenPF7ti1DhGBFafd9hPnxg9PZY29ArEZwY9G/ZjZQX7WPgs0VvxiNR
    DxZRC3GXAgMBAAECggEACn5c59bG/qnVEVI1CwMAalM5M2z09JFhlLlljKwntNPj
    Vilw2eTW2+UE7HbJru/S7KQqA5Dnn9kvCraEahPRuddUMrD0vG4kT1/IODV6uFuk
    Y0sZfbqd4jMUQ21smvGsqFzwloYWS5qzO1W83ivXH/HW/iqkmY2eW+EPRS/hwSSu
    SscR+SojI7PB0BWSJhlV4yqYf3vcD/D95el2CVHfRCkL85DKumeZ+yHEnpiXGZAE
    t8xSs4a500Pm6NHhevCw2a/UQ95/foXNUR450HtbjieJo5o+FF6EYZQGfU2ZHZO8
    37FBKuaJkdGW5xqaI9TL7aqkGkFMF4F2qvOZM+vy8QKBqQD4oVuOkJDlhkTHP86W
    esFlw1kpWyJR9ZA7LI0g/rVpslnX+XdDq0WQf4umdLNau5hYEH9LU6ZSGs1Xk3/B
    NHwR6OXFuqEKNiu83d0zSlHhTy7PZpOZdj5a/vVvQfPDMz7OvsqLRd7YCAbdzuQ0
    +Ahq0Ztwvq0HQ64hdW0ukpYRRwKBqQDqyHj98oqswoYuIa+pP1yS0pPwLmjwKyNm
    /HayzCp+Qjiyy7Tzg8AUqlH1Ou83XbV428jvg7kDh07PCCKFq+mMmfqHmTpb0Maq
    KpKnZq4ipsqP1yHNNEoRmcailXbwIhCLewMqMrqqUiLOmCw4PscL5nK+4GKu2XE1
    jLqjWAZFMQKBqFHkQ9XXRAJ1kR3XpGHoGN890pZOkCVSrqju6aUef/5KY1FCt8ew
    F/+aIxM2iQSvmWQYOvVCnhuY/F2GFaQ7d0om3decuwI0CX/xy7PjHMkLXa2uaZs4
    WR17sLduj62RqXRLX0c0QkwBiNFyHbRcpdkZJQujbYMhBa+7j7SxT4BtAoGAWMWT
    UucocRXZm/pdvz9wteNH3YDWnJLMxm1KC06qMXbBoYrliY4sm3ywJWMC+iCd/H8A
    Gecxd/xVu5mA2L2N3KMq18Zhz8Th0G5DwKyDRJq0Q0Q46yuNXOoYEjlo4Wjyk8Me
    +tlQ8iK98E0UmZnhTgfSpSNElbz2AqnzQ3MN9uECgYAqdvdVPnKGfvdtZ2DjyMoJ
    E89UIC41WjjJGmHsd8W65+3X0RwMzKMT6aZc5tK9J5dHvmWIETnbM+lTImdBBFga
    NWOC6f3r2xbGXHhaWS1+nobpTuvlo56ZRJVvVk71FMsiddzMuHH8pxfqNJemwA4P
    ThDHCejv035NNV6KyoO0tA==
    ----END PRIVATE KEY----
  client email: cloudvolumes-admin-sa@cloud-native-
data.iam.gserviceaccount.com
  client id: '107071413297115343396'
```

```
auth_uri: https://accounts.google.com/o/oauth2/auth
token_uri: https://oauth2.googleapis.com/token
auth_provider_x509_cert_url:
https://www.googleapis.com/oauth2/v1/certs
client_x509_cert_url:
https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-west1-b
network: default
storagePools:
- 1bc7f380-3314-6005-45e9-c7dc8c2d7509
serviceLevel: Standardsw
```

Quali sono le prossime novità?

Dopo aver creato il file di configurazione back-end, esequire il seguente comando:

```
tridentctl create backend -f <backend-file>
```

Se la creazione del backend non riesce, si è verificato un errore nella configurazione del backend. È possibile visualizzare i log per determinare la causa esequendo il seguente comando:

```
tridentctl logs
```

Dopo aver identificato e corretto il problema con il file di configurazione, è possibile eseguire nuovamente il comando create.

Configurare un backend NetApp HCI o SolidFire

Scopri come creare e utilizzare un backend Element con l'installazione di Astra Trident.

Prima di iniziare

Prima di creare un backend elemento, è necessario quanto segue.

- Un sistema storage supportato che esegue il software Element.
- Credenziali per un amministratore del cluster NetApp HCI/SolidFire o un utente tenant in grado di gestire i volumi.
- Tutti i nodi di lavoro di Kubernetes devono disporre dei tool iSCSI appropriati. Vedere "informazioni sulla preparazione del nodo di lavoro".

Modalità volume

Il solidfire-san il driver di storage supporta entrambe le modalità di volume: file e block. Per Filesystem

VolumeMode, Astra Trident crea un volume e un filesystem. Il tipo di file system viene specificato da StorageClass.

Driver	Protocollo	VolumeMode	Modalità di accesso supportate	File system supportati
solidfire-san	ISCSI	Blocco	RWO, ROX, RWX	Nessun filesystem. Dispositivo a blocchi raw.
solidfire-san	ISCSI	Blocco	RWO, ROX, RWX	Nessun filesystem. Dispositivo a blocchi raw.
solidfire-san	ISCSI	Filesystem	RWO, ROX	xfs, ext3, ext4
solidfire-san	ISCSI	Filesystem	RWO, ROX	xfs, ext3, ext4

Astra Trident utilizza CHAP quando funziona come provider CSI avanzato. Se si utilizza CHAP (che è l'impostazione predefinita per CSI), non sono necessarie ulteriori operazioni di preparazione. Si consiglia di impostare in modo esplicito UseCHAP Opzione per utilizzare CHAP con Trident non CSI. In caso contrario, vedere "qui".

I gruppi di accesso ai volumi sono supportati solo dal framework convenzionale non CSI per Astra Trident. Se configurato per funzionare in modalità CSI, Astra Trident utilizza CHAP.

In caso contrario AccessGroups oppure UseCHAP viene impostata una delle seguenti regole:

- Se l'impostazione predefinita trident viene rilevato un gruppo di accesso, vengono utilizzati i gruppi di accesso.
- Se non viene rilevato alcun gruppo di accesso e Kubernetes versione 1.7 o successiva, viene utilizzato CHAP.

Opzioni di configurazione back-end

Per le opzioni di configurazione del backend, consultare la tabella seguente:

Parametro	Descrizione	Predefinito
version		Sempre 1
storageDriverName	Nome del driver di storage	"Solidfire-san"
backendName	Nome personalizzato o backend dello storage	"SolidFire_" + indirizzo IP dello storage (iSCSI)
Endpoint	MVIP per il cluster SolidFire con credenziali tenant	
SVIP	Porta e indirizzo IP dello storage (iSCSI)	

Parametro	Descrizione	Predefinito
labels	Set di etichette arbitrarie formattate con JSON da applicare sui volumi.	ш
TenantName	Nome tenant da utilizzare (creato se non trovato)	
InitiatorIFace	Limitare il traffico iSCSI a un'interfaccia host specifica	"predefinito"
UseCHAP	Utilizzare CHAP per autenticare iSCSI	vero
AccessGroups	Elenco degli ID del gruppo di accesso da utilizzare	Trova l'ID di un gruppo di accesso denominato "tridente"
Types	Specifiche QoS	
limitVolumeSize	Fallire il provisioning se la dimensione del volume richiesta è superiore a questo valore	"" (non applicato per impostazione predefinita)
debugTraceFlags	Flag di debug da utilizzare per la risoluzione dei problemi. Ad esempio, {"api":false,} method":true	nullo

Non utilizzare debugTraceFlags a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.

Esempio 1: Configurazione back-end per solidfire-san driver con tre tipi di volume

Questo esempio mostra un file backend che utilizza l'autenticazione CHAP e modellazione di tre tipi di volume con specifiche garanzie di QoS. È molto probabile che si definiscano le classi di storage per utilizzarle utilizzando IOPS parametro della classe di storage.

```
version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
  k8scluster: dev1
 backend: dev1-element-cluster
UseCHAP: true
Types:
- Type: Bronze
  Qos:
    minIOPS: 1000
    maxIOPS: 2000
   burstIOPS: 4000
- Type: Silver
  Qos:
   minIOPS: 4000
    maxIOPS: 6000
   burstIOPS: 8000
- Type: Gold
  Qos:
    minIOPS: 6000
    maxIOPS: 8000
    burstIOPS: 10000
```

Esempio 2: Configurazione del backend e della classe di storage per solidfire-san driver con pool virtuali

Questo esempio mostra il file di definizione back-end configurato con i pool virtuali insieme a StorageClasses che fanno riferimento ad essi.

Astra Trident copia le etichette presenti su un pool di storage nel LUN dello storage back-end al momento del provisioning. Per comodità, gli amministratori dello storage possono definire le etichette per ogni pool virtuale e raggruppare i volumi per etichetta.

Nel file di definizione del backend di esempio mostrato di seguito, vengono impostati valori predefiniti specifici per tutti i pool di storage, che impostano type In Silver. I pool virtuali sono definiti in storage sezione. In questo esempio, alcuni pool di storage impostano il proprio tipo e alcuni pool sovrascrivono i valori predefiniti impostati in precedenza.

```
version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
```

```
TenantName: "<tenant>"
UseCHAP: true
Types:
- Type: Bronze
 Oos:
   minIOPS: 1000
   maxIOPS: 2000
   burstIOPS: 4000
- Type: Silver
 Qos:
   minIOPS: 4000
   maxIOPS: 6000
   burstIOPS: 8000
- Type: Gold
 Oos:
   minIOPS: 6000
   maxIOPS: 8000
   burstIOPS: 10000
type: Silver
labels:
 store: solidfire
 k8scluster: dev-1-cluster
region: us-east-1
storage:
- labels:
   performance: gold
   cost: '4'
 zone: us-east-1a
 type: Gold
- labels:
   performance: silver
   cost: '3'
  zone: us-east-1b
 type: Silver
- labels:
   performance: bronze
   cost: '2'
 zone: us-east-1c
 type: Bronze
- labels:
   performance: silver
    cost: '1'
  zone: us-east-1d
```

Le seguenti definizioni di StorageClass si riferiscono ai pool virtuali sopra indicati. Utilizzando il parameters.selector Ciascun StorageClass richiama i pool virtuali che possono essere utilizzati per

ospitare un volume. Gli aspetti del volume saranno definiti nel pool virtuale scelto.

Il primo StorageClass (solidfire-gold-four) verrà mappato al primo pool virtuale. Questo è l'unico pool che offre performance eccellenti con un Volume Type QoS Dell'oro. L'ultima StorageClass (solidfire-silver) definisce qualsiasi pool di storage che offra performance di livello silver. Astra Trident deciderà quale pool virtuale è selezionato e garantirà il rispetto dei requisiti di storage.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-gold-four
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=gold; cost=4"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver-three
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver; cost=3"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-bronze-two
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=bronze; cost=2"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver-one
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver; cost=1"
 fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver"
  fsType: "ext4"
```

Trova ulteriori informazioni

• "Gruppi di accesso ai volumi"

Driver SAN ONTAP

Panoramica del driver SAN ONTAP

Informazioni sulla configurazione di un backend ONTAP con driver SAN ONTAP e Cloud Volumes ONTAP.

Informazioni importanti sui driver SAN ONTAP

Astra Control offre protezione perfetta, disaster recovery e mobilità (spostamento di volumi tra cluster Kubernetes) per i volumi creati con ontap-nas, ontap-nas-flexgroup, e. ontap-san driver. Vedere "Prerequisiti per la replica di Astra Control" per ulteriori informazioni.

- È necessario utilizzare ontap-nas per i carichi di lavoro di produzione che richiedono protezione dei dati, disaster recovery e mobilità.
- Utilizzare ontap-san-economy Quando si prevede che l'utilizzo del volume sia molto superiore a quello supportato da ONTAP.
- Utilizzare ontap-nas-economy Solo quando si prevede che l'utilizzo previsto del volume sia molto superiore a quello supportato da ONTAP e a. ontap-san-economy impossibile utilizzare il driver.
- Non utilizzare ontap-nas-economy se prevedete la necessità di protezione dei dati, disaster recovery o mobilità.

Autorizzazioni utente

Astra Trident prevede di essere eseguito come amministratore di ONTAP o SVM, in genere utilizzando admin utente del cluster o un vsadmin Utente SVM o un utente con un nome diverso che ha lo stesso ruolo. Per le implementazioni di Amazon FSX per NetApp ONTAP, Astra Trident prevede di essere eseguito come amministratore di ONTAP o SVM, utilizzando il cluster fsxadmin utente o a. vsadmin Utente SVM o un utente con un nome diverso che ha lo stesso ruolo. Il fsxadmin user è un sostituto limitato per l'utente amministratore del cluster.

Se si utilizza limitAggregateUsage parametro, sono richieste le autorizzazioni di amministrazione del cluster. Quando si utilizza Amazon FSX per NetApp ONTAP con Astra Trident, il limitAggregateUsage il parametro non funziona con vsadmin e. fsxadmin account utente. L'operazione di configurazione non riesce se si specifica questo parametro.

Sebbene sia possibile creare un ruolo più restrittivo all'interno di ONTAP che un driver Trident può utilizzare, non lo consigliamo. La maggior parte delle nuove release di Trident chiamerà API aggiuntive che dovrebbero essere considerate, rendendo gli aggiornamenti difficili e soggetti a errori.

Prepararsi a configurare il backend con i driver SAN ONTAP

Comprendere i requisiti e le opzioni di autenticazione per la configurazione di un backend ONTAP con i driver SAN ONTAP.

Requisiti

Per tutti i backend ONTAP, Astra Trident richiede almeno un aggregato assegnato alla SVM.

È inoltre possibile eseguire più di un driver e creare classi di storage che puntino all'una o all'altra. Ad esempio, è possibile configurare un san-dev classe che utilizza ontap-san driver e a. san-default classe che utilizza ontap-san-economy uno.

Tutti i nodi di lavoro di Kubernetes devono disporre dei tool iSCSI appropriati. Fare riferimento a. "Preparare il nodo di lavoro" per ulteriori informazioni.

Autenticare il backend ONTAP

Astra Trident offre due modalità di autenticazione di un backend ONTAP.

- Basato sulle credenziali: Nome utente e password di un utente ONTAP con le autorizzazioni richieste. Si consiglia di utilizzare un ruolo di accesso di sicurezza predefinito, ad esempio admin oppure vsadmin Per garantire la massima compatibilità con le versioni di ONTAP.
- Basato su certificato: Astra Trident può anche comunicare con un cluster ONTAP utilizzando un certificato installato sul backend. In questo caso, la definizione di backend deve contenere i valori codificati in Base64 del certificato client, della chiave e del certificato CA attendibile, se utilizzato (consigliato).

È possibile aggiornare i backend esistenti per passare da un metodo basato su credenziali a un metodo basato su certificato. Tuttavia, è supportato un solo metodo di autenticazione alla volta. Per passare a un metodo di autenticazione diverso, è necessario rimuovere il metodo esistente dalla configurazione di back-end.

Se si tenta di fornire **credenziali e certificati**, la creazione del backend non riesce e viene visualizzato un errore che indica che nel file di configurazione sono stati forniti più metodi di autenticazione.

Abilitare l'autenticazione basata su credenziali

Astra Trident richiede le credenziali di un amministratore con ambito SVM/cluster per comunicare con il backend ONTAP. Si consiglia di utilizzare ruoli standard predefiniti, ad esempio admin oppure vsadmin. Ciò garantisce la compatibilità con le future release di ONTAP che potrebbero esporre le API delle funzionalità da utilizzare nelle future release di Astra Trident. È possibile creare e utilizzare un ruolo di accesso di sicurezza personalizzato con Astra Trident, ma non è consigliato.

Una definizione di back-end di esempio avrà un aspetto simile al seguente:

YAML

```
version: 1
backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_nfs
username: vsadmin
password: password
```

JSON

```
"version": 1,
  "backendName": "ExampleBackend",
  "storageDriverName": "ontap-san",
  "managementLIF": "10.0.0.1",
  "svm": "svm_nfs",
  "username": "vsadmin",
  "password": "password"
}
```

Tenere presente che la definizione di backend è l'unica posizione in cui le credenziali vengono memorizzate in testo normale. Una volta creato il backend, i nomi utente e le password vengono codificati con Base64 e memorizzati come segreti Kubernetes. La creazione o l'aggiornamento di un backend è l'unico passaggio che richiede la conoscenza delle credenziali. Pertanto, si tratta di un'operazione di sola amministrazione, che deve essere eseguita dall'amministratore Kubernetes/storage.

Abilitare l'autenticazione basata su certificato

I backend nuovi ed esistenti possono utilizzare un certificato e comunicare con il backend ONTAP. Nella definizione di backend sono necessari tre parametri.

- ClientCertificate: Valore del certificato client codificato con base64.
- ClientPrivateKey: Valore codificato in base64 della chiave privata associata.
- TrustedCACertificate: Valore codificato in base64 del certificato CA attendibile. Se si utilizza una CA attendibile, è necessario fornire questo parametro. Questa operazione può essere ignorata se non viene utilizzata alcuna CA attendibile.

Un workflow tipico prevede i seguenti passaggi.

Fasi

1. Generare un certificato e una chiave del client. Durante la generazione, impostare il nome comune (CN) sull'utente ONTAP per l'autenticazione come.

```
openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key -out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"
```

2. Aggiungere un certificato CA attendibile al cluster ONTAP. Questo potrebbe essere già gestito dall'amministratore dello storage. Ignorare se non viene utilizzata alcuna CA attendibile.

```
security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>
ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca
<cert-authority>
```

Installare il certificato e la chiave del client (dal passaggio 1) sul cluster ONTAP.

```
security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true
```

4. Verificare che il ruolo di accesso di sicurezza di ONTAP supporti cert metodo di autenticazione.

```
security login create -user-or-group-name admin -application ontapi -authentication-method cert security login create -user-or-group-name admin -application http -authentication-method cert
```

5. Verifica dell'autenticazione utilizzando il certificato generato. Sostituire <LIF di gestione ONTAP> e <vserver name> con IP LIF di gestione e nome SVM.

```
curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'
```

Codifica certificato, chiave e certificato CA attendibile con Base64.

```
base64 -w 0 k8senv.pem >> cert_base64
base64 -w 0 k8senv.key >> key_base64
base64 -w 0 trustedca.pem >> trustedca_base64
```

7. Creare il backend utilizzando i valori ottenuti dal passaggio precedente.

```
cat cert-backend.json
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...OVaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SiqOyN",
"storagePrefix": "myPrefix "
tridentctl create backend -f cert-backend.json -n trident
+-----
+----+
  NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+----
+----+
| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |
online | 0 |
+----
+----+
```

Aggiornare i metodi di autenticazione o ruotare le credenziali

È possibile aggiornare un backend esistente per utilizzare un metodo di autenticazione diverso o per ruotare le credenziali. Questo funziona in entrambi i modi: I backend che utilizzano il nome utente/la password possono essere aggiornati per utilizzare i certificati; i backend che utilizzano i certificati possono essere aggiornati in base al nome utente/alla password. A tale scopo, è necessario rimuovere il metodo di autenticazione esistente e aggiungere il nuovo metodo di autenticazione. Quindi, utilizzare il file backend.json aggiornato contenente i parametri necessari per l'esecuzione tridentett backend update.

```
cat cert-backend-updated.json
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
+----
+----+
| NAME | STORAGE DRIVER |
                            UUID
STATE | VOLUMES |
+----
+----+
online | 9 |
+----
+----+
```


Quando si ruotano le password, l'amministratore dello storage deve prima aggiornare la password per l'utente su ONTAP. Seguito da un aggiornamento back-end. Durante la rotazione dei certificati, è possibile aggiungere più certificati all'utente. Il backend viene quindi aggiornato per utilizzare il nuovo certificato, dopodiché il vecchio certificato può essere cancellato dal cluster ONTAP.

L'aggiornamento di un backend non interrompe l'accesso ai volumi già creati, né influisce sulle connessioni dei volumi effettuate successivamente. Un aggiornamento back-end corretto indica che Astra Trident può comunicare con il backend ONTAP e gestire le future operazioni sui volumi.

Autenticare le connessioni con CHAP bidirezionale

Astra Trident può autenticare le sessioni iSCSI con CHAP bidirezionale per ontap-san e. ontap-san-economy driver. Per eseguire questa operazione, è necessario attivare useCHAP nella definizione del backend. Quando è impostato su true, Astra Trident configura la protezione predefinita dell'iniziatore SVM su CHAP bidirezionale e imposta il nome utente e i segreti del file backend. NetApp consiglia di utilizzare CHAP bidirezionale per autenticare le connessioni. Vedere la seguente configurazione di esempio:

version: 1

storageDriverName: ontap-san
backendName: ontap_san_chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin
password: password

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

Il useCHAP Parameter è un'opzione booleana che può essere configurata una sola volta. L'impostazione predefinita è false. Una volta impostato su true, non è possibile impostarlo su false.

Oltre a useCHAP=true, il chapInitiatorSecret, chapTargetInitiatorSecret, chapTargetUsername, e. chapUsername i campi devono essere inclusi nella definizione di backend. I segreti possono essere modificati dopo la creazione di un backend mediante l'esecuzione tridentctl update.

Come funziona

Per impostazione useCHAP A vero, l'amministratore dello storage istruisce Astra Trident a configurare CHAP sul backend dello storage. Ciò include quanto segue:

- Impostazione di CHAP su SVM:
 - Se il tipo di protezione initiator predefinito di SVM è None (impostato per impostazione predefinita) e
 non sono presenti LUN preesistenti nel volume, Astra Trident imposterà il tipo di protezione predefinito
 su CHAP E procedere alla configurazione dell'iniziatore CHAP e del nome utente e dei segreti di
 destinazione.
 - Se la SVM contiene LUN, Astra Trident non attiverà CHAP sulla SVM. Ciò garantisce che l'accesso alle LUN già presenti sulla SVM non sia limitato.
- Configurazione dell'iniziatore CHAP e del nome utente e dei segreti di destinazione; queste opzioni devono essere specificate nella configurazione del backend (come mostrato sopra).

Una volta creato il backend, Astra Trident crea un corrispondente tridentbackend CRD e memorizza i segreti CHAP e i nomi utente come segreti Kubernetes. Tutti i PVS creati da Astra Trident su questo backend verranno montati e fissati su CHAP.

Ruota le credenziali e aggiorna i back-end

È possibile aggiornare le credenziali CHAP aggiornando i parametri CHAP in backend.json file. Per eseguire questa operazione, è necessario aggiornare i segreti CHAP e utilizzare tridentati update per riflettere queste modifiche.

Quando si aggiornano i segreti CHAP per un backend, è necessario utilizzare tridentctl per aggiornare il backend. Non aggiornare le credenziali sul cluster di storage attraverso l'interfaccia utente CLI/ONTAP, in quanto Astra Trident non sarà in grado di rilevare queste modifiche.

```
cat backend-san.json
{
  "version": 1,
  "storageDriverName": "ontap-san",
  "backendName": "ontap san chap",
  "managementLIF": "192.168.0.135",
  "svm": "ontap_iscsi_svm",
  "useCHAP": true,
  "username": "vsadmin",
  "password": "password",
  "chapInitiatorSecret": "cl9qxUpDaTeD",
  "chapTargetInitiatorSecret": "rqxiqXqkeUpDaTeD",
  "chapTargetUsername": "iJF4heBRT0TCwxyz",
  "chapUsername": "uh2aNCLSd6cNwxyz",
}
./tridentctl update backend ontap san chap -f backend-san.json -n trident
+----
+----+
NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+-----
+----+
online |
      7 |
+----
+----+
```

Le connessioni esistenti rimarranno inalterate; continueranno a rimanere attive se le credenziali vengono aggiornate da Astra Trident sulla SVM. Le nuove connessioni utilizzeranno le credenziali aggiornate e le connessioni esistenti continueranno a rimanere attive. Disconnettendo e riconnettendo il vecchio PVS, verranno utilizzate le credenziali aggiornate.

Opzioni ed esempi di configurazione DELLA SAN ONTAP

Scopri come creare e utilizzare i driver SAN ONTAP con l'installazione di Astra Trident. Questa sezione fornisce esempi di configurazione back-end e dettagli su come mappare i backend a StorageClasses.

Opzioni di configurazione back-end

Per le opzioni di configurazione del backend, consultare la tabella seguente:

Parametro	Descrizione	Predefinito	
version		Sempre 1	
storageDriverName	Nome del driver di storage	ontap-nas, ontap-nas- economy, ontap-nas- flexgroup, ontap-san, ontap- san-economy	
backendName	Nome personalizzato o backend dello storage	Nome del driver + "_" + dataLIF	
managementLIF	Indirizzo IP di un cluster o LIF di gestione SVM Per uno switchover MetroCluster perfetto, è necessario specificare una LIF di gestione SVM. È possibile specificare un nome di dominio completo (FQDN). Può essere impostato per utilizzare gli indirizzi IPv6 se Astra Trident è stato installato utilizzandouse -ipv6 allarme. Gli indirizzi IPv6 devono essere definiti tra parentesi quadre, ad esempio [28e8:d9fb:a825:b7bf:69a8:d02f:9e 7b:3555].	"10.0.0.1", "[2001:1234:abcd::fefe]"	
dataLIF	Indirizzo IP del protocollo LIF. Non specificare iSCSI. utilizza Astra Trident "Mappa LUN selettiva ONTAP" Per scoprire i LIF iSCI necessari per stabilire una sessione multi-percorso. Viene generato un avviso se dataLIF è esplicitamente definito.	Derivato dalla SVM	
useCHAP	Utilizzare CHAP per autenticare iSCSI per i driver SAN ONTAP [booleano]. Impostare su true Affinché Astra Trident configuri e utilizzi CHAP bidirezionale come autenticazione predefinita per la SVM fornita nel backend. Fare riferimento a. "Prepararsi a configurare il backend con i driver SAN ONTAP" per ulteriori informazioni.	false	
chapInitiatorSecret	Segreto iniziatore CHAP. Necessario se useCHAP=true	····	

Parametro	Descrizione	Predefinito
labels	Set di etichette arbitrarie formattate con JSON da applicare sui volumi	""
chapTargetInitiatorSecret	CHAP target Initiator secret. Necessario se useCHAP=true	1111
chapUsername	Nome utente inbound. Necessario se useCHAP=true	1111
chapTargetUsername	Nome utente di destinazione. Necessario se useCHAP=true	1111
clientCertificate	Valore del certificato client codificato con base64. Utilizzato per l'autenticazione basata su certificato	1111
clientPrivateKey	Valore codificato in base64 della chiave privata del client. Utilizzato per l'autenticazione basata su certificato	1111
trustedCACertificate	Valore codificato in base64 del certificato CA attendibile. Opzionale. Utilizzato per l'autenticazione basata su certificato.	1111
username	Nome utente necessario per comunicare con il cluster ONTAP. Utilizzato per l'autenticazione basata su credenziali.	1111
password	Password necessaria per comunicare con il cluster ONTAP. Utilizzato per l'autenticazione basata su credenziali.	1111
svm	Macchina virtuale per lo storage da utilizzare	Derivato se un SVM managementLIF è specificato
storagePrefix	Prefisso utilizzato per il provisioning di nuovi volumi nella SVM. Non può essere modificato in seguito. Per aggiornare questo parametro, è necessario creare un nuovo backend.	trident

Parametro	Descrizione	Predefinito
limitAggregateUsage	Il provisioning non riesce se l'utilizzo è superiore a questa percentuale. Se si utilizza un backend Amazon FSX per NetApp ONTAP, non specificare limitAggregateUsage. Il fornito fsxadmin e. vsadmin Non includere le autorizzazioni necessarie per recuperare l'utilizzo aggregato e limitarlo utilizzando Astra Trident.	"" (non applicato per impostazione predefinita)
limitVolumeSize	Fallire il provisioning se la dimensione del volume richiesta è superiore a questo valore. Limita inoltre le dimensioni massime dei volumi gestiti per qtree e LUN.	"" (non applicato per impostazione predefinita)
lunsPerFlexvol	LUN massimi per FlexVol, devono essere compresi nell'intervallo [50, 200]	100
debugTraceFlags	Flag di debug da utilizzare per la risoluzione dei problemi. Ad esempio, {"api":false,} method":true Non utilizzare a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.	null

Parametro	Descrizione	Predefinito
Parametro useREST	Parametro booleano per l'utilizzo delle API REST di ONTAP. Anteprima tecnica useREST viene fornito come anteprima tecnica consigliata per ambienti di test e non per carichi di lavoro di produzione. Quando è impostato su true, Astra Trident utilizzerà le API REST di ONTAP per comunicare con il backend. Questa funzione richiede ONTAP 9.11.1 e versioni successive.	false
	Inoltre, il ruolo di accesso ONTAP utilizzato deve avere accesso a. ontap applicazione. Ciò è soddisfatto dal predefinito vsadmin e. cluster-admin ruoli. useREST Non è supportato con MetroCluster.	

Opzioni di configurazione back-end per il provisioning dei volumi

È possibile controllare il provisioning predefinito utilizzando queste opzioni in defaults della configurazione. Per un esempio, vedere gli esempi di configurazione riportati di seguito.

Parametro	Descrizione	Predefinito
spaceAllocation	Allocazione dello spazio per LUN	"vero"
spaceReserve	Modalità di riserva dello spazio; "nessuno" (sottile) o "volume" (spesso)	"nessuno"
snapshotPolicy	Policy di Snapshot da utilizzare	"nessuno"

Parametro	Descrizione	Predefinito
qosPolicy	Gruppo di criteri QoS da assegnare per i volumi creati. Scegliere tra qosPolicy o adaptiveQosPolicy per pool di storage/backend. L'utilizzo di gruppi di policy QoS con Astra Trident richiede ONTAP 9.8 o versione successiva. Si consiglia di utilizzare un gruppo di policy QoS non condiviso e di assicurarsi che il gruppo di policy venga applicato a ciascun componente singolarmente. Un gruppo di policy QoS condiviso applicherà il limite massimo per il throughput totale di tutti i carichi di lavoro.	
adaptiveQosPolicy	Gruppo di criteri QoS adattivi da assegnare per i volumi creati. Scegliere tra qosPolicy o adaptiveQosPolicy per pool di storage/backend	1111
snapshotReserve	Percentuale di volume riservato agli snapshot "0"	Se snapshotPolicy è "nessuno", altrimenti ""
splitOnClone	Separare un clone dal suo padre al momento della creazione	"falso"
encryption	Abilitare NetApp Volume Encryption (NVE) sul nuovo volume; il valore predefinito è false. NVE deve essere concesso in licenza e abilitato sul cluster per utilizzare questa opzione. Se NAE è attivato sul backend, tutti i volumi forniti in Astra Trident saranno abilitati per NAE. Per ulteriori informazioni, fare riferimento a: "Come funziona Astra Trident con NVE e NAE".	"falso"
luksEncryption	Attivare la crittografia LUKS. Fare riferimento a. "Utilizzo di Linux Unified Key Setup (LUKS)".	""
securityStyle	Stile di sicurezza per nuovi volumi	unix
tieringPolicy	Policy di tiering per utilizzare "nessuno"	"Solo snapshot" per configurazione SVM-DR precedente a ONTAP 9.5

Esempi di provisioning di volumi

Ecco un esempio con i valori predefiniti definiti:

```
version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: <password>
labels:
  k8scluster: dev2
  backend: dev2-sanbackend
storagePrefix: alternate-trident
debugTraceFlags:
  api: false
 method: true
defaults:
  spaceReserve: volume
  qosPolicy: standard
  spaceAllocation: 'false'
  snapshotPolicy: default
  snapshotReserve: '10'
```


Per tutti i volumi creati utilizzando ontap-san Driver, Astra Trident aggiunge una capacità extra del 10% a FlexVol per ospitare i metadati LUN. Il LUN viene fornito con le dimensioni esatte richieste dall'utente nel PVC. Astra Trident aggiunge il 10% al FlexVol (viene visualizzato come dimensione disponibile in ONTAP). A questo punto, gli utenti otterranno la quantità di capacità utilizzabile richiesta. Questa modifica impedisce inoltre che le LUN diventino di sola lettura, a meno che lo spazio disponibile non sia completamente utilizzato. Ciò non si applica a ontapsan-Economy.

Per i backend che definiscono snapshotReserve, Astra Trident calcola le dimensioni dei volumi come segue:

```
Total volume size = [(PVC requested size) / (1 - (snapshotReserve percentage) / 100)] * 1.1
```

Il 1.1 è il 10% aggiuntivo che Astra Trident aggiunge a FlexVol per ospitare i metadati LUN. Per snapshotReserve = 5% e richiesta PVC = 5GiB, la dimensione totale del volume è 5,79GiB e la dimensione disponibile è 5,5GiB. Il volume show il comando dovrebbe mostrare risultati simili a questo esempio:

Vserver	Volume	Aggregate	State	Type	Size	Available	Used%
-	_pvc_	89f1c156_380	1_4de4_9f9d	034d5	54c395f4		
		TO SECURE	online	RW	10GB	5.00GB	0%
	pvc	_e42ec6fe_3bar	a_4af6_996d	_134ac	lbbb8e6d		
			online	RW	5.79GB	5.50GB	0%
	pvc	e8372153_9ad	9_474a_951a	_08ae1	15e1c0ba		
			online	RW	1GB	511.8MB	0%
3 entries	were displaye	ed.					

Attualmente, il ridimensionamento è l'unico modo per utilizzare il nuovo calcolo per un volume esistente.

Esempi di configurazione minimi

Gli esempi seguenti mostrano le configurazioni di base che lasciano la maggior parte dei parametri predefiniti. Questo è il modo più semplice per definire un backend.

Se si utilizza Amazon FSX su NetApp ONTAP con Astra Trident, si consiglia di specificare i nomi DNS per i file LIF anziché gli indirizzi IP.

Esempio di configurazione minima SAN ONTAP

Si tratta di una configurazione di base che utilizza ontap-san driver.

```
version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
    k8scluster: test-cluster-1
    backend: testcluster1-sanbackend
username: vsadmin
password: <password>
```

Esempio di configurazione minima di ONTAP SAN economy

```
version: 1
storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1
svm: svm_iscsi_eco
username: vsadmin
password: <password>
```

Esempio di autenticazione basata su certificato

In questo esempio di configurazione di base clientCertificate, clientPrivateKey, e. trustedCACertificate (Facoltativo, se si utilizza una CA attendibile) sono inseriti in backend.json E prendere rispettivamente i valori codificati base64 del certificato client, della chiave privata e del certificato CA attendibile.

version: 1
storageDriverName: ontap-san
backendName: DefaultSANBackend
managementLIF: 10.0.0.1
svm: svm_iscsi
useCHAP: true
chapInitiatorSecret: cl9qxIm36DKyawxy
chapTargetInitiatorSecret: rqxigXgkesIpwxyz
chapTargetUsername: iJF4heBRT0TCwxyz
chapUsername: uh2aNCLSd6cNwxyz
clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

Esempi CHAP bidirezionali

Questi esempi creano un backend con useCHAP impostare su true.

Esempio di SAN ONTAP CHAP

```
version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
    k8scluster: test-cluster-1
    backend: testcluster1-sanbackend
useCHAP: true
chapInitiatorSecret: cl9qxIm36DKyawxy
chapTargetInitiatorSecret: rqxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin
password: <password>
```

Esempio di ONTAP SAN economy CHAP

```
version: 1
storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1
svm: svm_iscsi_eco
useCHAP: true
chapInitiatorSecret: cl9qxIm36DKyawxy
chapTargetInitiatorSecret: rqxigXgkesIpwxyz
chapTargetUsername: iJF4heBRT0TCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin
password: <password>
```

Esempi di backend con pool virtuali

In questi file di definizione back-end di esempio, vengono impostati valori predefiniti specifici per tutti i pool di storage, ad esempio spaceReserve a nessuno, spaceAllocation a false, e. encryption a falso. I pool virtuali sono definiti nella sezione storage.

Astra Trident imposta le etichette di provisioning nel campo "commenti". I commenti vengono impostati su FlexVol. Astra Trident copia tutte le etichette presenti su un pool virtuale nel volume di storage al momento del provisioning. Per comodità, gli amministratori dello storage possono definire le etichette per ogni pool virtuale e raggruppare i volumi per etichetta.

In questi esempi, alcuni dei pool di storage sono impostati in modo personalizzato spaceReserve,

spaceAllocation, e. encryption e alcuni pool sovrascrivono i valori predefiniti.

Esempio DI SAN ONTAP	

```
version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm iscsi
useCHAP: true
chapInitiatorSecret: cl9qxIm36DKyawxy
chapTargetInitiatorSecret: rqxiqXqkesIpwxyz
chapTargetUsername: iJF4heBRT0TCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin
password: <password>
defaults:
  spaceAllocation: 'false'
  encryption: 'false'
 qosPolicy: standard
labels:
  store: san store
  kubernetes-cluster: prod-cluster-1
region: us east 1
storage:
- labels:
   protection: gold
    creditpoints: '40000'
  zone: us east 1a
  defaults:
    spaceAllocation: 'true'
    encryption: 'true'
    adaptiveQosPolicy: adaptive-extreme
- labels:
   protection: silver
   creditpoints: '20000'
  zone: us east 1b
  defaults:
    spaceAllocation: 'false'
    encryption: 'true'
    qosPolicy: premium
- labels:
    protection: bronze
    creditpoints: '5000'
  zone: us east 1c
  defaults:
    spaceAllocation: 'true'
    encryption: 'false'
```

```
version: 1
storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1
svm: svm iscsi eco
useCHAP: true
chapInitiatorSecret: cl9qxIm36DKyawxy
chapTargetInitiatorSecret: rqxigXgkesIpwxyz
chapTargetUsername: iJF4heBRT0TCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin
password: <password>
defaults:
  spaceAllocation: 'false'
 encryption: 'false'
labels:
  store: san economy store
region: us east 1
storage:
- labels:
    app: oracledb
   cost: '30'
  zone: us_east_1a
  defaults:
    spaceAllocation: 'true'
    encryption: 'true'
- labels:
   app: postgresdb
   cost: '20'
  zone: us east 1b
  defaults:
    spaceAllocation: 'false'
    encryption: 'true'
- labels:
   app: mysqldb
    cost: '10'
  zone: us east 1c
  defaults:
    spaceAllocation: 'true'
    encryption: 'false'
- labels:
    department: legal
    creditpoints: '5000'
  zone: us_east_1c
```

```
defaults:
    spaceAllocation: 'true'
    encryption: 'false'
```

Mappare i backend in StorageClasses

Le seguenti definizioni di StorageClass fanno riferimento a. Esempi di backend con pool virtuali. Utilizzando il parameters. selector Ciascun StorageClass richiama i pool virtuali che possono essere utilizzati per ospitare un volume. Gli aspetti del volume saranno definiti nel pool virtuale scelto.

• Il protection-gold StorageClass verrà mappato al primo pool virtuale in ontap-san back-end. Questo è l'unico pool che offre una protezione di livello gold.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-gold
provisioner: netapp.io/trident
parameters:
   selector: "protection=gold"
   fsType: "ext4"
```

• Il protection-not-gold StorageClass eseguirà il mapping al secondo e al terzo pool virtuale in ontap-san back-end. Questi sono gli unici pool che offrono un livello di protezione diverso dall'oro.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-not-gold
provisioner: netapp.io/trident
parameters:
   selector: "protection!=gold"
   fsType: "ext4"
```

• Il app-mysqldb StorageClass eseguirà il mapping al terzo pool virtuale in ontap-san-economy back-end. Questo è l'unico pool che offre la configurazione del pool di storage per l'applicazione di tipo mysqldb.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: app-mysqldb
provisioner: netapp.io/trident
parameters:
   selector: "app=mysqldb"
   fsType: "ext4"
```

• Il protection-silver-creditpoints-20k StorageClass eseguirà il mapping al secondo pool virtuale in ontap-san back-end. Questo è l'unico pool che offre una protezione di livello Silver e 20000 punti di credito.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
   selector: "protection=silver; creditpoints=20000"
   fsType: "ext4"
```

• Il creditpoints-5k StorageClass eseguirà il mapping al terzo pool virtuale in ontap-san il back-end e il quarto pool virtuale in ontap-san-economy back-end. Queste sono le uniche offerte di pool con 5000 punti di credito.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
   selector: "creditpoints=5000"
   fsType: "ext4"
```

Astra Trident deciderà quale pool virtuale è selezionato e garantirà il rispetto dei requisiti di storage.

Driver NAS ONTAP

Panoramica del driver NAS ONTAP

Informazioni sulla configurazione di un backend ONTAP con driver NAS ONTAP e Cloud Volumes ONTAP.

Informazioni importanti sui driver NAS ONTAP

Astra Control offre protezione perfetta, disaster recovery e mobilità (spostamento di volumi tra cluster Kubernetes) per i volumi creati con ontap-nas, ontap-nas-flexgroup, e. ontap-san driver. Vedere "Prerequisiti per la replica di Astra Control" per ulteriori informazioni.

- È necessario utilizzare ontap-nas per i carichi di lavoro di produzione che richiedono protezione dei dati, disaster recovery e mobilità.
- Utilizzare ontap-san-economy Quando si prevede che l'utilizzo del volume sia molto superiore a quello supportato da ONTAP.
- Utilizzare ontap-nas-economy Solo quando si prevede che l'utilizzo previsto del volume sia molto superiore a quello supportato da ONTAP e a. ontap-san-economy impossibile utilizzare il driver.
- Non utilizzare ontap-nas-economy se prevedete la necessità di protezione dei dati, disaster recovery o mobilità.

Autorizzazioni utente

Astra Trident prevede di essere eseguito come amministratore di ONTAP o SVM, in genere utilizzando admin utente del cluster o un vsadmin Utente SVM o un utente con un nome diverso che ha lo stesso ruolo.

Per le implementazioni di Amazon FSX per NetApp ONTAP, Astra Trident prevede di essere eseguito come amministratore di ONTAP o SVM, utilizzando il cluster fsxadmin utente o a. vsadmin Utente SVM o un utente con un nome diverso che ha lo stesso ruolo. Il fsxadmin user è un sostituto limitato per l'utente amministratore del cluster.

Se si utilizza limitAggregateUsage parametro, sono richieste le autorizzazioni di amministrazione del cluster. Quando si utilizza Amazon FSX per NetApp ONTAP con Astra Trident, il limitAggregateUsage il parametro non funziona con vsadmin e. fsxadmin account utente. L'operazione di configurazione non riesce se si specifica questo parametro.

Sebbene sia possibile creare un ruolo più restrittivo all'interno di ONTAP che un driver Trident può utilizzare, non lo consigliamo. La maggior parte delle nuove release di Trident chiamerà API aggiuntive che dovrebbero essere considerate, rendendo gli aggiornamenti difficili e soggetti a errori.

Prepararsi a configurare un backend con i driver NAS ONTAP

Comprendere i requisiti, le opzioni di autenticazione e le policy di esportazione per la configurazione di un backend ONTAP con i driver NAS ONTAP.

Requisiti

- Per tutti i backend ONTAP, Astra Trident richiede almeno un aggregato assegnato alla SVM.
- È possibile eseguire più di un driver e creare classi di storage che puntano all'una o all'altra. Ad esempio, è possibile configurare una classe Gold che utilizza ontap-nas Driver e una classe Bronze che utilizza ontap-nas-economy uno.
- Tutti i nodi di lavoro di Kubernetes devono avere installati gli strumenti NFS appropriati. Vedere "qui" per ulteriori dettagli.
- Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows. Fare riferimento a. Preparatevi al provisioning dei volumi SMB per ulteriori informazioni.

Autenticare il backend ONTAP

Astra Trident offre due modalità di autenticazione di un backend ONTAP.

- Basato sulle credenziali: Nome utente e password di un utente ONTAP con le autorizzazioni richieste. Si consiglia di utilizzare un ruolo di accesso di sicurezza predefinito, ad esempio admin oppure vsadmin Per garantire la massima compatibilità con le versioni di ONTAP.
- Basato su certificato: Astra Trident può anche comunicare con un cluster ONTAP utilizzando un certificato installato sul backend. In questo caso, la definizione di backend deve contenere i valori codificati in Base64 del certificato client, della chiave e del certificato CA attendibile, se utilizzato (consigliato).

È possibile aggiornare i backend esistenti per passare da un metodo basato su credenziali a un metodo basato su certificato. Tuttavia, è supportato un solo metodo di autenticazione alla volta. Per passare a un metodo di autenticazione diverso, è necessario rimuovere il metodo esistente dalla configurazione di back-end.

Se si tenta di fornire **credenziali e certificati**, la creazione del backend non riesce e viene visualizzato un errore che indica che nel file di configurazione sono stati forniti più metodi di autenticazione.

Abilitare l'autenticazione basata su credenziali

Astra Trident richiede le credenziali di un amministratore con ambito SVM/cluster per comunicare con il backend ONTAP. Si consiglia di utilizzare ruoli standard predefiniti, ad esempio admin oppure vsadmin. Ciò garantisce la compatibilità con le future release di ONTAP che potrebbero esporre le API delle funzionalità da utilizzare nelle future release di Astra Trident. È possibile creare e utilizzare un ruolo di accesso di sicurezza personalizzato con Astra Trident, ma non è consigliato.

Una definizione di back-end di esempio avrà un aspetto simile al seguente:

YAML

```
version: 1
backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm_nfs
username: vsadmin
password: password
```

JSON

```
"version": 1,
  "backendName": "ExampleBackend",
  "storageDriverName": "ontap-nas",
  "managementLIF": "10.0.0.1",
  "dataLIF": "10.0.0.2",
  "svm": "svm_nfs",
  "username": "vsadmin",
  "password": "password"
}
```

Tenere presente che la definizione di backend è l'unica posizione in cui le credenziali vengono memorizzate in testo normale. Una volta creato il backend, i nomi utente e le password vengono codificati con Base64 e memorizzati come segreti Kubernetes. La creazione/l'updation di un backend è l'unico passaggio che richiede la conoscenza delle credenziali. Pertanto, si tratta di un'operazione di sola amministrazione, che deve essere eseguita dall'amministratore Kubernetes/storage.

Abilitare l'autenticazione basata su certificato

I backend nuovi ed esistenti possono utilizzare un certificato e comunicare con il backend ONTAP. Nella definizione di backend sono necessari tre parametri.

- ClientCertificate: Valore del certificato client codificato con base64.
- ClientPrivateKey: Valore codificato in base64 della chiave privata associata.
- TrustedCACertificate: Valore codificato in base64 del certificato CA attendibile. Se si utilizza una CA attendibile, è necessario fornire questo parametro. Questa operazione può essere ignorata se non viene utilizzata alcuna CA attendibile.

Un workflow tipico prevede i seguenti passaggi.

Fasi

1. Generare un certificato e una chiave del client. Durante la generazione, impostare il nome comune (CN)

sull'utente ONTAP per l'autenticazione come.

```
openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key -out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"
```

2. Aggiungere un certificato CA attendibile al cluster ONTAP. Questo potrebbe essere già gestito dall'amministratore dello storage. Ignorare se non viene utilizzata alcuna CA attendibile.

```
security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>
ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca
<cert-authority>
```

3. Installare il certificato e la chiave del client (dal passaggio 1) sul cluster ONTAP.

```
security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true
```

4. Verificare che il ruolo di accesso di sicurezza di ONTAP supporti cert metodo di autenticazione.

```
security login create -user-or-group-name vsadmin -application ontapi -authentication-method cert -vserver <vserver-name> security login create -user-or-group-name vsadmin -application http -authentication-method cert -vserver <vserver-name>
```

 Verifica dell'autenticazione utilizzando il certificato generato. Sostituire <LIF di gestione ONTAP> e </ri>
 vserver name> con IP LIF di gestione e nome SVM. Assicurarsi che la politica di servizio di LIF sia impostata su default-data-management.

```
curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'
```

6. Codifica certificato, chiave e certificato CA attendibile con Base64.

```
base64 -w 0 k8senv.pem >> cert_base64
base64 -w 0 k8senv.key >> key_base64
base64 -w 0 trustedca.pem >> trustedca_base64
```

7. Creare il backend utilizzando i valori ottenuti dal passaggio precedente.

```
cat cert-backend-updated.json
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...OVaLuESOtLSOK",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident
+----
+----+
  NAME | STORAGE DRIVER |
                                  UUID
STATE | VOLUMES |
+----
+----+
| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |
+----
```

Aggiornare i metodi di autenticazione o ruotare le credenziali

È possibile aggiornare un backend esistente per utilizzare un metodo di autenticazione diverso o per ruotare le credenziali. Questo funziona in entrambi i modi: I backend che utilizzano il nome utente/la password possono essere aggiornati per utilizzare i certificati; i backend che utilizzano i certificati possono essere aggiornati in base al nome utente/alla password. A tale scopo, è necessario rimuovere il metodo di autenticazione esistente e aggiungere il nuovo metodo di autenticazione. Quindi, utilizzare il file backend.json aggiornato contenente i parametri necessari per l'esecuzione tridentett update backend.

```
cat cert-backend-updated.json
{
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident
+----
+----+
  NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+----
+----+
| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |
online |
+----
+----+
```


Quando si ruotano le password, l'amministratore dello storage deve prima aggiornare la password per l'utente su ONTAP. Seguito da un aggiornamento back-end. Durante la rotazione dei certificati, è possibile aggiungere più certificati all'utente. Il backend viene quindi aggiornato per utilizzare il nuovo certificato, dopodiché il vecchio certificato può essere cancellato dal cluster ONTAP.

L'aggiornamento di un backend non interrompe l'accesso ai volumi già creati, né influisce sulle connessioni dei volumi effettuate successivamente. Un aggiornamento back-end corretto indica che Astra Trident può comunicare con il backend ONTAP e gestire le future operazioni sui volumi.

Gestire le policy di esportazione NFS

Astra Trident utilizza policy di esportazione NFS per controllare l'accesso ai volumi forniti dall'IT.

Astra Trident offre due opzioni quando si lavora con le policy di esportazione:

 Astra Trident è in grado di gestire dinamicamente la policy di esportazione; in questa modalità operativa, l'amministratore dello storage specifica un elenco di blocchi CIDR che rappresentano indirizzi IP consentiti. Astra Trident aggiunge automaticamente gli IP dei nodi che rientrano in questi intervalli ai criteri di esportazione. In alternativa, se non viene specificato alcun CIDR, qualsiasi IP unicast con ambito globale trovato nei nodi verrà aggiunto alla policy di esportazione. Gli amministratori dello storage possono creare una policy di esportazione e aggiungere regole manualmente. Astra Trident utilizza il criterio di esportazione predefinito, a meno che nella configurazione non venga specificato un nome diverso del criterio di esportazione.

Gestione dinamica delle policy di esportazione

La versione 20.04 di CSI Trident offre la possibilità di gestire dinamicamente le policy di esportazione per i backend ONTAP. In questo modo, l'amministratore dello storage può specificare uno spazio di indirizzi consentito per gli IP dei nodi di lavoro, invece di definire manualmente regole esplicite. Semplifica notevolmente la gestione delle policy di esportazione; le modifiche alle policy di esportazione non richiedono più l'intervento manuale sul cluster di storage. Inoltre, questo consente di limitare l'accesso al cluster di storage solo ai nodi di lavoro che hanno IP nell'intervallo specificato, supportando una gestione dettagliata e automatica.

La gestione dinamica delle policy di esportazione è disponibile solo per CSI Trident. È importante assicurarsi che i nodi di lavoro non vengano sottoposti a NATing.

Esempio

È necessario utilizzare due opzioni di configurazione. Ecco un esempio di definizione back-end:

```
version: 1
storageDriverName: ontap-nas
backendName: ontap_nas_auto_export
managementLIF: 192.168.0.135
svm: svm1
username: vsadmin
password: password
autoExportCIDRs:
- 192.168.0.0/24
autoExportPolicy: true
```


Quando si utilizza questa funzione, è necessario assicurarsi che la giunzione root di SVM disponga di un criterio di esportazione creato in precedenza con una regola di esportazione che consenta il blocco CIDR del nodo (ad esempio il criterio di esportazione predefinito). Seguire sempre le Best practice consigliate da NetApp per dedicare una SVM ad Astra Trident.

Ecco una spiegazione del funzionamento di questa funzione utilizzando l'esempio precedente:

- autoExportPolicy è impostato su true. Questo indica che Astra Trident creerà un criterio di esportazione per svm1 SVM e gestire l'aggiunta e l'eliminazione di regole utilizzando autoExportCIDRs blocchi di indirizzi. Ad esempio, un backend con UUID 403b5326-8482-40db-96d0-d83fb3f4daec e. autoExportPolicy impostare su true crea un criterio di esportazione denominato trident-403b5326-8482-40db-96d0-d83fb3f4daec Su SVM.
- autoExportCIDRs contiene un elenco di blocchi di indirizzi. Questo campo è opzionale e per impostazione predefinita è ["0.0.0.0/0", "::/0"]. Se non definito, Astra Trident aggiunge tutti gli indirizzi unicast con ambito globale trovati nei nodi di lavoro.

In questo esempio, il 192.168.0.0/24 viene fornito uno spazio per gli indirizzi. Ciò indica che gli IP dei nodi Kubernetes che rientrano in questo intervallo di indirizzi verranno aggiunti alla policy di esportazione creata da Astra Trident. Quando Astra Trident registra un nodo su cui viene eseguito, recupera gli indirizzi IP del nodo e li confronta con i blocchi di indirizzo forniti in autoExportCIDRs. Dopo aver filtrato gli IP, Astra Trident crea regole di policy di esportazione per gli IP client individuati, con una regola per ogni nodo identificato.

È possibile eseguire l'aggiornamento autoExportPolicy e. autoExportCIDRs per i backend dopo la creazione. È possibile aggiungere nuovi CIDR a un backend gestito automaticamente o eliminare i CIDR esistenti. Prestare attenzione quando si eliminano i CIDR per assicurarsi che le connessioni esistenti non vengano interrotte. È anche possibile scegliere di disattivare autoExportPolicy per un backend e tornare a una policy di esportazione creata manualmente. Questa operazione richiede l'impostazione di exportPolicy nella configurazione del backend.

Dopo che Astra Trident ha creato o aggiornato un backend, è possibile controllare il backend utilizzando tridentctl o il corrispondente tridentbackend CRD:

```
./tridentctl get backends ontap nas auto export -n trident -o yaml
items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
 config:
   aggregate: ""
   autoExportCIDRs:
    - 192.168.0.0/24
   autoExportPolicy: true
   backendName: ontap nas auto export
    chapInitiatorSecret: ""
    chapTargetInitiatorSecret: ""
    chapTargetUsername: ""
    chapUsername: ""
    dataLIF: 192.168.0.135
    debug: false
    debugTraceFlags: null
    defaults:
      encryption: "false"
     exportPolicy: <automatic>
      fileSystemType: ext4
```

Quando i nodi vengono aggiunti a un cluster Kubernetes e registrati con il controller Astra Trident, le policy di esportazione dei backend esistenti vengono aggiornate (a condizione che rientrino nell'intervallo di indirizzi specificato nella autoExportCIDRs per il back-end).

Quando un nodo viene rimosso, Astra Trident controlla tutti i backend in linea per rimuovere la regola di accesso per il nodo. Rimuovendo questo IP del nodo dalle policy di esportazione dei backend gestiti, Astra Trident impedisce i montaggi non autorizzati, a meno che questo IP non venga riutilizzato da un nuovo nodo nel cluster.

Per i backend esistenti in precedenza, aggiornare il backend con tridentctl update backend Garantisce che Astra Trident gestisca automaticamente le policy di esportazione. In questo modo si crea una nuova policy di esportazione denominata dopo l'UUID del backend e i volumi presenti sul backend utilizzeranno la policy di

esportazione appena creata una volta rimontati.

L'eliminazione di un backend con policy di esportazione gestite automaticamente elimina la policy di esportazione creata dinamicamente. Se il backend viene ricreato, viene trattato come un nuovo backend e si otterrà la creazione di una nuova policy di esportazione.

Se l'indirizzo IP di un nodo live viene aggiornato, è necessario riavviare il pod Astra Trident sul nodo. Astra Trident aggiornerà quindi la policy di esportazione per i backend che riesce a riflettere questa modifica IP.

Preparatevi al provisioning dei volumi SMB

Con un po' di preparazione aggiuntiva, puoi eseguire il provisioning dei volumi SMB utilizzando ontap-nas driver.

Per creare un, è necessario configurare entrambi i protocolli NFS e SMB/CIFS su SVM ontapnas-economy Volume SMB per ONTAP on-premise. La mancata configurazione di uno di questi protocolli causerà un errore nella creazione del volume SMB.

Prima di iniziare

Prima di eseguire il provisioning di volumi SMB, è necessario disporre di quanto segue.

- Un cluster Kubernetes con un nodo controller Linux e almeno un nodo di lavoro Windows che esegue Windows Server 2019. Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows.
- Almeno un segreto Astra Trident contenente le credenziali Active Directory. Per generare un segreto smbcreds:

```
kubectl create secret generic smbcreds --from-literal username=user
--from-literal password='password'
```

• Proxy CSI configurato come servizio Windows. Per configurare un csi-proxy, fare riferimento a. "GitHub: Proxy CSI" oppure "GitHub: Proxy CSI per Windows" Per i nodi Kubernetes in esecuzione su Windows.

Fasi

1. Per ONTAP on-premise, è possibile creare una condivisione SMB oppure Astra Trident ne può creare una per te.

Le condivisioni SMB sono richieste per Amazon FSX per ONTAP.

È possibile creare le condivisioni amministrative SMB in due modi utilizzando "Console di gestione Microsoft" Snap-in cartelle condivise o utilizzo dell'interfaccia CLI di ONTAP. Per creare le condivisioni SMB utilizzando la CLI ONTAP:

a. Se necessario, creare la struttura del percorso di directory per la condivisione.

Il vserver cifs share create il comando controlla il percorso specificato nell'opzione -path durante la creazione della condivisione. Se il percorso specificato non esiste, il comando non riesce.

b. Creare una condivisione SMB associata alla SVM specificata:

```
vserver cifs share create -vserver vserver_name -share-name
share_name -path path [-share-properties share_properties,...]
[other_attributes] [-comment text]
```

c. Verificare che la condivisione sia stata creata:

```
vserver cifs share show -share-name share_name
```


Fare riferimento a. "Creare una condivisione SMB" per informazioni dettagliate.

 Quando si crea il backend, è necessario configurare quanto segue per specificare i volumi SMB. Per tutte le opzioni di configurazione backend FSX per ONTAP, fare riferimento a. "FSX per le opzioni di configurazione e gli esempi di ONTAP".

Parametro	Descrizione	Esempio
E possibile specificare una delle seguenti opzioni: Il nome di una condivisione SMB creata utilizzando la console di gestione Microsoft o l'interfaccia utente di ONTAP; un nome per consentire ad Astra Trident di creare la condivisione SMB; oppure è possibile lasciare vuoto il parametro per impedire l'accesso condiviso ai volumi. Questo parametro è facoltativo per ONTAP on-premise. Questo parametro è obbligatorio per i backend Amazon FSX per ONTAP e non può essere vuoto.	smb-share	nasType
Deve essere impostato su smb. se null, il valore predefinito è nfs.	smb	securityStyle
Stile di sicurezza per nuovi volumi.	ntfs oppure mixed Per volumi SMB	unixPermissions
Deve essere impostato su ntfs oppure mixed Per volumi SMB.		

Opzioni ed esempi di configurazione del NAS ONTAP

Scopri come creare e utilizzare i driver NAS ONTAP con l'installazione di Astra Trident. Questa sezione fornisce esempi di configurazione back-end e dettagli su come mappare i

backend a StorageClasses.

Opzioni di configurazione back-end

Per le opzioni di configurazione del backend, consultare la tabella seguente:

Parametro	Descrizione	Predefinito
version		Sempre 1
storageDriverName	Nome del driver di storage	"ontap-nas", "ontap-nas-economy", "ontap-nas-flexgroup", "ontap-san", "ontap-san-economy"
backendName	Nome personalizzato o backend dello storage	Nome del driver + "_" + dataLIF
managementLIF	Indirizzo IP di un cluster o LIF di gestione SVM Per uno switchover MetroCluster perfetto, è necessario specificare una LIF di gestione SVM. È possibile specificare un nome di dominio completo (FQDN). Può essere impostato per utilizzare gli indirizzi IPv6 se Astra Trident è stato installato utilizzandouse -ipv6 allarme. Gli indirizzi IPv6 devono essere definiti tra parentesi quadre, ad esempio [28e8:d9fb:a825:b7bf:69a8:d02f:9e 7b:3555].	"10.0.0.1", "[2001:1234:abcd::fefe]"

Parametro	Descrizione	Predefinito
dataLIF	Indirizzo IP del protocollo LIF. Si consiglia di specificare dataLIF. Se non fornito, Astra Trident recupera i dati LIF dalla SVM. È possibile specificare un FQDN (Fully-qualified domain name) da utilizzare per le operazioni di montaggio NFS, consentendo di creare un DNS round-robin per il bilanciamento del carico tra più LIF di dati. Può essere modificato dopo l'impostazione iniziale. Fare riferimento a Può essere impostato per utilizzare gli indirizzi IPv6 se Astra Trident è stato installato utilizzandouse -ipv6 allarme. Gli indirizzi IPv6 devono essere definiti tra parentesi quadre, ad esempio [28e8:d9fb:a825:b7bf:69a8:d02f:9e 7b:3555].	Indirizzo specificato o derivato da SVM, se non specificato (non consigliato)
autoExportPolicy	Abilita la creazione e l'aggiornamento automatici dei criteri di esportazione [booleano]. Utilizzando il autoExportPolicy e. autoExportCIDRs Astra Trident è in grado di gestire automaticamente le policy di esportazione.	falso
autoExportCIDRs	Elenco di CIDR per filtrare gli IP dei nodi Kubernetes rispetto a quando autoExportPolicy è attivato. Utilizzando il autoExportPolicy e. autoExportCIDRs Astra Trident è in grado di gestire automaticamente le policy di esportazione.	["0.0.0.0/0", ":/0"]`
labels	Set di etichette arbitrarie formattate con JSON da applicare sui volumi	1111
clientCertificate	Valore del certificato client codificato con base64. Utilizzato per l'autenticazione basata su certificato	1111

Parametro	Descrizione	Predefinito
clientPrivateKey	Valore codificato in base64 della chiave privata del client. Utilizzato per l'autenticazione basata su certificato	1111
trustedCACertificate	Valore codificato in base64 del certificato CA attendibile. Opzionale. Utilizzato per l'autenticazione basata su certificato	1111
username	Nome utente per la connessione al cluster/SVM. Utilizzato per l'autenticazione basata sulle credenziali	
password	Password per la connessione al cluster/SVM. Utilizzato per l'autenticazione basata sulle credenziali	
svm	Macchina virtuale per lo storage da utilizzare	Derivato se un SVM managementLIF è specificato
storagePrefix	Prefisso utilizzato per il provisioning di nuovi volumi nella SVM. Non può essere aggiornato dopo l'impostazione	"tridente"
limitAggregateUsage	Il provisioning non riesce se l'utilizzo è superiore a questa percentuale.	"" (non applicato per impostazione predefinita)
	Non si applica ad Amazon FSX per ONTAP	
limitVolumeSize	Fallire il provisioning se la dimensione del volume richiesta è superiore a questo valore.	"" (non applicato per impostazione predefinita)
limitVolumeSize	Fallire il provisioning se la dimensione del volume richiesta è superiore a questo valore.	"" (non applicato per impostazione predefinita)
	Inoltre, limita le dimensioni massime dei volumi gestiti per qtree e LUN, oltre a qtreesPerFlexvol Consente di personalizzare il numero massimo di qtree per FlexVol.	
lunsPerFlexvol	LUN massimi per FlexVol, devono essere compresi nell'intervallo [50, 200]	"100"

Parametro	Descrizione	Predefinito
debugTraceFlags	Flag di debug da utilizzare per la risoluzione dei problemi. Ad esempio, {"api":false,} method":true Non utilizzare debugTraceFlags a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.	nullo
nasType	Configurare la creazione di volumi NFS o SMB. Le opzioni sono nfs, smb o nullo. L'impostazione su Null consente di impostare i volumi NFS come predefiniti.	nfs
nfsMountOptions	Elenco separato da virgole delle opzioni di montaggio NFS. Le opzioni di montaggio per i volumi persistenti di Kubernetes sono normalmente specificate nelle classi di storage, ma se non sono specificate opzioni di montaggio in una classe di storage, Astra Trident tornerà a utilizzare le opzioni di montaggio specificate nel file di configurazione del backend di storage. Se non sono specificate opzioni di montaggio nella classe di storage o nel file di configurazione, Astra Trident non imposta alcuna opzione di montaggio su un volume persistente associato.	
qtreesPerFlexvol	Qtree massimi per FlexVol, devono essere compresi nell'intervallo [50, 300]	"200"

Parametro	Descrizione	Predefinito
smbShare	È possibile specificare una delle seguenti opzioni: Il nome di una condivisione SMB creata utilizzando la console di gestione Microsoft o l'interfaccia utente di ONTAP; un nome per consentire ad Astra Trident di creare la condivisione SMB; oppure è possibile lasciare vuoto il parametro per impedire l'accesso condiviso ai volumi. Questo parametro è facoltativo per ONTAP on-premise. Questo parametro è obbligatorio per i backend Amazon FSX per ONTAP e non può essere vuoto.	smb-share
useREST	Parametro booleano per l'utilizzo delle API REST di ONTAP. Anteprima tecnica useREST viene fornito come anteprima tecnica consigliata per ambienti di test e non per carichi di lavoro di produzione. Quando è impostato su true, Astra Trident utilizzerà le API REST di ONTAP per comunicare con il backend. Questa funzione richiede ONTAP 9.11.1 e versioni successive. Inoltre, il ruolo di accesso ONTAP utilizzato deve avere accesso a. ontap applicazione. Ciò è soddisfatto dal predefinito vsadmin e. cluster-admin ruoli. useREST Non è supportato con MetroCluster.	falso

Opzioni di configurazione back-end per il provisioning dei volumi

È possibile controllare il provisioning predefinito utilizzando queste opzioni in defaults della configurazione. Per un esempio, vedere gli esempi di configurazione riportati di seguito.

Parametro	Descrizione	Predefinito
spaceAllocation	Allocazione dello spazio per LUN	"vero"

Parametro	Descrizione	Predefinito
spaceReserve	Modalità di riserva dello spazio; "nessuno" (sottile) o "volume" (spesso)	"nessuno"
snapshotPolicy	Policy di Snapshot da utilizzare	"nessuno"
qosPolicy	Gruppo di criteri QoS da assegnare per i volumi creati. Scegliere tra qosPolicy o adaptiveQosPolicy per pool di storage/backend	1111
adaptiveQosPolicy	Gruppo di criteri QoS adattivi da assegnare per i volumi creati. Scegliere tra qosPolicy o adaptiveQosPolicy per pool di storage/backend. Non supportato da ontap-nas-Economy.	1111
snapshotReserve	Percentuale di volume riservato agli snapshot "0"	Se snapshotPolicy è "nessuno", altrimenti ""
splitOnClone	Separare un clone dal suo padre al momento della creazione	"falso"
encryption	Abilitare NetApp Volume Encryption (NVE) sul nuovo volume; il valore predefinito è false. NVE deve essere concesso in licenza e abilitato sul cluster per utilizzare questa opzione. Se NAE è attivato sul backend, tutti i volumi forniti in Astra Trident saranno abilitati per NAE. Per ulteriori informazioni, fare	"falso"
	riferimento a: "Come funziona Astra Trident con NVE e NAE".	
tieringPolicy	Policy di tiering per utilizzare "nessuno"	"Solo snapshot" per configurazione SVM-DR precedente a ONTAP 9.5
unixPermissions	Per i nuovi volumi	"777" per volumi NFS; vuoto (non applicabile) per volumi SMB
snapshotDir	Controlla la visibilità di .snapshot directory	"falso"
exportPolicy	Policy di esportazione da utilizzare	"predefinito"

Parametro	Descrizione	Predefinito
securityStyle	Stile di sicurezza per nuovi volumi.	Il valore predefinito di NFS è unix.
	Supporto di NFS mixed e. unix stili di sicurezza.	Il valore predefinito di SMB è ntfs.
	Supporto SMB mixed e. ntfs stili di sicurezza.	

L'utilizzo di gruppi di policy QoS con Astra Trident richiede ONTAP 9.8 o versione successiva. Si consiglia di utilizzare un gruppo di criteri QoS non condiviso e assicurarsi che il gruppo di criteri sia applicato a ciascun componente singolarmente. Un gruppo di policy QoS condiviso applicherà il limite massimo per il throughput totale di tutti i carichi di lavoro.

Esempi di provisioning di volumi

Ecco un esempio con i valori predefiniti definiti:

```
version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
labels:
  k8scluster: dev1
  backend: dev1-nasbackend
svm: trident svm
username: cluster-admin
password: <password>
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
  api: false
 method: true
defaults:
  spaceReserve: volume
  qosPolicy: premium
  exportPolicy: myk8scluster
  snapshotPolicy: default
  snapshotReserve: '10'
```

Per ontap-nas e. ontap-nas-flexgroups, Astra Trident utilizza ora un nuovo calcolo per garantire che il FlexVol sia dimensionato correttamente con la percentuale di snapshotReserve e PVC. Quando l'utente richiede un PVC, Astra Trident crea il FlexVol originale con più spazio utilizzando il nuovo calcolo. Questo calcolo garantisce che l'utente riceva lo spazio scrivibile richiesto nel PVC e non uno spazio inferiore a quello

richiesto. Prima della versione 21.07, quando l'utente richiede un PVC (ad esempio, 5GiB), con SnapshotReserve al 50%, ottiene solo 2,5 GiB di spazio scrivibile. Questo perché ciò che l'utente ha richiesto è l'intero volume e. snapshotReserve è una percentuale. Con Trident 21.07, ciò che l'utente richiede è lo spazio scrivibile e Astra Trident definisce snapshotReserve numero come percentuale dell'intero volume. Questo non si applica a. ontap-nas-economy. Vedere l'esempio seguente per vedere come funziona:

Il calcolo è il seguente:

```
Total volume size = (PVC requested size) / (1 - (snapshotReserve percentage) / 100)
```

Per snapshotReserve = 50% e richiesta PVC = 5GiB, la dimensione totale del volume è 2/0,5 = 10GiB e la dimensione disponibile è 5GiB, che è ciò che l'utente ha richiesto nella richiesta PVC. Il volume show il comando dovrebbe mostrare risultati simili a questo esempio:

```
Vserver
          Volume
                                                             Size
                                                                   Available Used%
                        Aggregate
                                     State
                                                 Type
                  _pvc_89f1c156_3801_4de4_9f9d_034d54c395f4
                                     online
                                                                      5.00GB
                                                                                 0%
                  _pvc_e8372153_9ad9_474a_951a_08ae15e1c0ba
                                                              1GB
                                                                     511.8MB
                                     online
                                                 RW
 entries were displayed.
```

I backend esistenti delle installazioni precedenti eseguiranno il provisioning dei volumi come spiegato in precedenza durante l'aggiornamento di Astra Trident. Per i volumi creati prima dell'aggiornamento, è necessario ridimensionare i volumi per osservare la modifica. Ad esempio, un PVC 2GiB con snapshotReserve=50 In precedenza, si è creato un volume che fornisce 1 GB di spazio scrivibile. Il ridimensionamento del volume su 3GiB, ad esempio, fornisce all'applicazione 3GiB di spazio scrivibile su un volume da 6 GiB.

Esempi di configurazione minimi

Gli esempi seguenti mostrano le configurazioni di base che lasciano la maggior parte dei parametri predefiniti. Questo è il modo più semplice per definire un backend.

Se si utilizza Amazon FSX su NetApp ONTAP con Trident, si consiglia di specificare i nomi DNS per le LIF anziché gli indirizzi IP.

Configurazione minima per <code>ontap-nas-economy</code>

```
version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm_nfs
username: vsadmin
password: password
```

Configurazione minima per <code>ontap-nas-flexgroup</code>

```
version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm_nfs
username: vsadmin
password: password
```

Configurazione minima per volumi SMB

```
version: 1
backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
nasType: smb
securityStyle: ntfs
unixPermissions: ""
dataLIF: 10.0.0.2
svm: svm_nfs
username: vsadmin
password: password
```

Autenticazione basata su certificato

Si tratta di un esempio minimo di configurazione di back-end. clientCertificate, clientPrivateKey, e. trustedCACertificate (Facoltativo, se si utilizza una CA attendibile) sono inseriti in backend.json E prendere rispettivamente i valori codificati base64 del certificato client, della chiave privata e del certificato CA attendibile.

```
version: 1
backendName: DefaultNASBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.15
svm: nfs_svm
clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix_
```

Policy di esportazione automatica

Questo esempio mostra come impostare Astra Trident a utilizzare policy di esportazione dinamiche per creare e gestire automaticamente le policy di esportazione. Questo funziona allo stesso modo per ontap-nas-economy e. ontap-nas-flexgroup driver.

```
version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm_nfs
labels:
    k8scluster: test-cluster-east-la
    backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password
nfsMountOptions: nfsvers=4
```

Utilizzo degli indirizzi IPv6

Questo esempio mostra managementLIF Utilizzando un indirizzo IPv6.

```
version: 1
storageDriverName: ontap-nas
backendName: nas_ipv6_backend
managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"
labels:
    k8scluster: test-cluster-east-la
    backend: test1-ontap-ipv6
svm: nas_ipv6_svm
username: vsadmin
password: password
```

Amazon FSX per ONTAP con volumi SMB

Il smbShare Il parametro è obbligatorio per FSX per ONTAP che utilizza volumi SMB.

```
version: 1
backendName: SMBBackend
storageDriverName: ontap-nas
managementLIF: example.mgmt.fqdn.aws.com
nasType: smb
dataLIF: 10.0.0.15
svm: nfs_svm
smbShare: smb-share
clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix_
```

Esempi di backend con pool virtuali

Nei file di definizione back-end di esempio illustrati di seguito, vengono impostati valori predefiniti specifici per tutti i pool di storage, ad esempio spaceReserve a nessuno, spaceAllocation a false, e. encryption a falso. I pool virtuali sono definiti nella sezione storage.

Astra Trident imposta le etichette di provisioning nel campo "commenti". I commenti sono impostati su FlexVol per ontap-nas O FlexGroup per ontap-nas-flexgroup. Astra Trident copia tutte le etichette presenti su un pool virtuale nel volume di storage al momento del provisioning. Per comodità, gli amministratori dello storage possono definire le etichette per ogni pool virtuale e raggruppare i volumi per etichetta.

In questi esempi, alcuni dei pool di storage sono impostati in modo personalizzato spaceReserve, spaceAllocation, e. encryption e alcuni pool sovrascrivono i valori predefiniti.		

```
version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
svm: svm nfs
username: admin
password: <password>
nfsMountOptions: nfsvers=4
defaults:
 spaceReserve: none
  encryption: 'false'
 qosPolicy: standard
labels:
  store: nas store
  k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
   app: msoffice
    cost: '100'
  zone: us east 1a
  defaults:
    spaceReserve: volume
    encryption: 'true'
    unixPermissions: '0755'
    adaptiveQosPolicy: adaptive-premium
- labels:
   app: slack
    cost: '75'
  zone: us east 1b
  defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0755'
- labels:
    department: legal
    creditpoints: '5000'
  zone: us east 1b
  defaults:
    spaceReserve: none
    encryption: 'true'
   unixPermissions: '0755'
- labels:
    app: wordpress
```

```
cost: '50'
zone: us_east_1c
defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0775'
- labels:
    app: mysqldb
    cost: '25'
zone: us_east_1d
defaults:
    spaceReserve: volume
    encryption: 'false'
    unixPermissions: '0775'
```

```
version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
  spaceReserve: none
  encryption: 'false'
labels:
  store: flexgroup store
  k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
    protection: gold
    creditpoints: '50000'
  zone: us_east_1a
  defaults:
    spaceReserve: volume
    encryption: 'true'
    unixPermissions: '0755'
- labels:
    protection: gold
    creditpoints: '30000'
  zone: us east 1b
  defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0755'
- labels:
    protection: silver
    creditpoints: '20000'
  zone: us east 1c
  defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0775'
- labels:
    protection: bronze
    creditpoints: '10000'
  zone: us east 1d
  defaults:
```

spaceReserve: volume
encryption: 'false'

unixPermissions: '0775'

```
version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
  spaceReserve: none
  encryption: 'false'
labels:
  store: nas_economy_store
region: us east 1
storage:
- labels:
    department: finance
    creditpoints: '6000'
  zone: us east 1a
  defaults:
    spaceReserve: volume
    encryption: 'true'
    unixPermissions: '0755'
- labels:
   protection: bronze
    creditpoints: '5000'
  zone: us east 1b
  defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0755'
- labels:
    department: engineering
    creditpoints: '3000'
  zone: us east 1c
  defaults:
    spaceReserve: none
    encryption: 'true'
    unixPermissions: '0775'
- labels:
    department: humanresource
    creditpoints: '2000'
  zone: us east 1d
  defaults:
    spaceReserve: volume
```

```
encryption: 'false'
unixPermissions: '0775'
```

Mappare i backend in StorageClasses

Le seguenti definizioni di StorageClass fanno riferimento a. Esempi di backend con pool virtuali. Utilizzando il parameters. selector Ciascun StorageClass richiama i pool virtuali che possono essere utilizzati per ospitare un volume. Gli aspetti del volume saranno definiti nel pool virtuale scelto.

• Il protection-gold StorageClass eseguirà il mapping al primo e al secondo pool virtuale in ontapnas-flexgroup back-end. Questi sono gli unici pool che offrono una protezione di livello gold.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-gold
provisioner: netapp.io/trident
parameters:
   selector: "protection=gold"
   fsType: "ext4"
```

• Il protection-not-gold StorageClass eseguirà il mapping al terzo e al quarto pool virtuale in ontapnas-flexgroup back-end. Questi sono gli unici pool che offrono un livello di protezione diverso dall'oro.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-not-gold
provisioner: netapp.io/trident
parameters:
   selector: "protection!=gold"
   fsType: "ext4"
```

• Il app-mysqldb StorageClass eseguirà il mapping al quarto pool virtuale in ontap-nas back-end. Questo è l'unico pool che offre la configurazione del pool di storage per l'applicazione di tipo mysqldb.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: app-mysqldb
provisioner: netapp.io/trident
parameters:
   selector: "app=mysqldb"
   fsType: "ext4"
```

• Til protection-silver-creditpoints-20k StorageClass eseguirà il mapping al terzo pool virtuale in ontap-nas-flexgroup back-end. Questo è l'unico pool che offre una protezione di livello Silver e 20000 punti di credito.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
   selector: "protection=silver; creditpoints=20000"
   fsType: "ext4"
```

• Il creditpoints-5k StorageClass eseguirà il mapping al terzo pool virtuale in ontap-nas il back-end e il secondo pool virtuale in ontap-nas-economy back-end. Queste sono le uniche offerte di pool con 5000 punti di credito.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
   selector: "creditpoints=5000"
   fsType: "ext4"
```

Astra Trident deciderà quale pool virtuale è selezionato e garantirà il rispetto dei requisiti di storage.

Aggiornare dataLIF dopo la configurazione iniziale

È possibile modificare la LIF dei dati dopo la configurazione iniziale eseguendo il seguente comando per fornire al nuovo file JSON di back-end i dati aggiornati LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-filewith-updated-dataLIF>

Se i PVC sono collegati a uno o più pod, è necessario abbassare tutti i pod corrispondenti e riportarli di nuovo in alto per rendere effettiva la nuova LIF dei dati.

Amazon FSX per NetApp ONTAP

Utilizza Astra Trident con Amazon FSX per NetApp ONTAP

"Amazon FSX per NetApp ONTAP" È un servizio AWS completamente gestito che consente ai clienti di lanciare ed eseguire file system basati sul sistema operativo per lo storage NetApp ONTAP. FSX per ONTAP consente di sfruttare le funzionalità, le performance e le funzionalità amministrative di NetApp che conosci, sfruttando al contempo la semplicità, l'agilità, la sicurezza e la scalabilità dell'archiviazione dei dati su AWS. FSX per ONTAP supporta le funzionalità del file system ONTAP e le API di amministrazione.

Panoramica

Un file system è la risorsa principale di Amazon FSX, simile a un cluster ONTAP on-premise. All'interno di ogni SVM è possibile creare uno o più volumi, ovvero contenitori di dati che memorizzano i file e le cartelle nel file system. Con Amazon FSX per NetApp ONTAP, Data ONTAP verrà fornito come file system gestito nel cloud. Il nuovo tipo di file system è denominato **NetApp ONTAP**.

Utilizzando Astra Trident con Amazon FSX per NetApp ONTAP, puoi garantire che i cluster Kubernetes in esecuzione in Amazon Elastic Kubernetes Service (EKS) possano eseguire il provisioning di volumi persistenti di file e blocchi supportati da ONTAP.

Amazon FSX per NetApp ONTAP utilizza "FabricPool" per gestire i tier di storage. Consente di memorizzare i dati in un Tier, in base all'accesso frequente ai dati.

Considerazioni

- Volumi SMB:
 - ° I volumi SMB sono supportati utilizzando ontap-nas solo driver.
 - Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows.
- I volumi creati sui file system Amazon FSX con backup automatici attivati non possono essere cancellati da Trident. Per eliminare i PVC, è necessario eliminare manualmente il volume FV e FSX per ONTAP. Per evitare questo problema:
 - Non utilizzare creazione rapida per creare il file system FSX per ONTAP. Il workflow di creazione rapida consente backup automatici e non offre un'opzione di opt-out.
 - Quando si utilizza creazione standard, disattivare il backup automatico. La disattivazione dei backup automatici consente a Trident di eliminare un volume senza ulteriori interventi manuali.

▼ Backup and maintenance - optional Daily automatic backup Info Amazon FSx can protect your data through daily backups ○ Enabled ○ Disabled

Driver

Puoi integrare Astra Trident con Amazon FSX per NetApp ONTAP utilizzando i seguenti driver:

- ontap-san: Ogni PV fornito è un LUN all'interno del proprio volume Amazon FSX per NetApp ONTAP.
- ontap-san-economy: Ogni PV fornito è un LUN con un numero configurabile di LUN per volume Amazon FSX per NetApp ONTAP.
- ontap-nas: Ogni PV fornito è un volume Amazon FSX completo per NetApp ONTAP.
- ontap-nas-economy: Ogni PV fornito è un qtree, con un numero configurabile di qtree per ogni volume Amazon FSX per NetApp ONTAP.
- ontap-nas-flexgroup: Ogni PV fornito è un volume Amazon FSX completo per NetApp ONTAP FlexGroup.

Per informazioni dettagliate sul driver, vedere "Driver ONTAP".

Autenticazione

Astra Trident offre due modalità di autenticazione.

- Basato su certificato: Astra Trident comunicherà con SVM sul file system FSX utilizzando un certificato installato sulla SVM.
- Basato sulle credenziali: È possibile utilizzare fsxadmin utente per il file system o l' vsadmin Configurato dall'utente per la SVM.

Astra Trident prevede di essere eseguito come a. vsadmin Utente SVM o come utente con un nome diverso che ha lo stesso ruolo. Amazon FSX per NetApp ONTAP ha un fsxadmin Utente che sostituisce in maniera limitata il ONTAP admin utente del cluster. Si consiglia vivamente di utilizzare vsadmin Con Astra Trident.

È possibile aggiornare i back-end per passare da un metodo basato su credenziali a un metodo basato su certificato. Tuttavia, se si tenta di fornire **credenziali e certificati**, la creazione del backend non riesce. Per passare a un metodo di autenticazione diverso, è necessario rimuovere il metodo esistente dalla configurazione di back-end.

Per ulteriori informazioni sull'attivazione dell'autenticazione, fare riferimento all'autenticazione per il tipo di driver in uso:

"Autenticazione NAS ONTAP"

"Autenticazione SAN ONTAP"

Trova ulteriori informazioni

- "Documentazione di Amazon FSX per NetApp ONTAP"
- "Post del blog su Amazon FSX per NetApp ONTAP"

Integra Amazon FSX per NetApp ONTAP

Puoi integrare il file system Amazon FSX per NetApp ONTAP con Astra Trident per garantire che i cluster Kubernetes in esecuzione in Amazon Elastic Kubernetes Service (EKS) possano eseguire il provisioning di volumi persistenti di blocchi e file supportati da ONTAP.

Requisiti

Oltre a "Requisiti di Astra Trident"Per integrare FSX per ONTAP con Astra Trident, sono necessari:

- Un cluster Amazon EKS esistente o un cluster Kubernetes autogestito con kubect1 installato.
- Una macchina virtuale di storage e file system Amazon FSX per NetApp ONTAP esistente raggiungibile dai nodi di lavoro del cluster.
- Nodi di lavoro preparati per "NFS o iSCSI".

Assicurati di seguire la procedura di preparazione del nodo richiesta per Amazon Linux e Ubuntu "Immagini Amazon Machine" (Amis) a seconda del tipo di AMI EKS.

• Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows. Fare riferimento a. Preparatevi al provisioning dei volumi SMB per ulteriori informazioni.

Integrazione dei driver ONTAP SAN e NAS

Se si configurano volumi SMB, è necessario leggere Preparatevi al provisioning dei volumi SMB prima di creare il backend.

Fasi

- 1. Implementare Astra Trident utilizzando uno dei "metodi di implementazione".
- 2. Raccogliere il nome DNS LIF di gestione SVM. Ad esempio, utilizzando l'interfaccia CLI AWS, individuare DNSName voce sotto Endpoints → Management dopo aver eseguito il seguente comando:

aws fsx describe-storage-virtual-machines --region <file system region>

3. Creare e installare certificati per "Autenticazione backend NAS" oppure "Autenticazione back-end SAN".

È possibile accedere al file system (ad esempio per installare i certificati) utilizzando SSH da qualsiasi punto del file system. Utilizzare fsxadmin User (utente), la password configurata al momento della creazione del file system e il nome DNS di gestione da aws fsx describe-file-systems.

4. Creare un file backend utilizzando i certificati e il nome DNS della LIF di gestione, come mostrato nell'esempio seguente:

```
YAML
```

JSON

```
"version": 1,
   "storageDriverName": "ontap-san",
   "backendName": "customBackendName",
   "managementLIF": "svm-XXXXXXXXXXXXXXXX.fs-

XXXXXXXXXXXXXXXXXXX.fsx.us-east-2.aws.internal",
   "svm": "svm01",
   "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",
   "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",
   "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"
}
```

Per informazioni sulla creazione di backend, consulta i seguenti <a href="https://docs.netapp.com/it-it/trident-2304/trident-use/+

strong> xref:./trident-use/ontap-nas.html">"Configurare un backend con i driver NAS ONTAP"

anchor="IDc7645a513783d7167585fc4bac0702d2">"Configurare un backend con i driver SAN ONTAP"

Risultati

Dopo l'implementazione, è possibile creare un "classe di storage, provisioning di un volume e montaggio del volume in un pod".

Preparatevi al provisioning dei volumi SMB

È possibile eseguire il provisioning dei volumi SMB utilizzando ontap-nas driver. Prima di completare Integrazione dei driver ONTAP SAN e NAS completare i seguenti passaggi.

Prima di iniziare

Prima di eseguire il provisioning di volumi SMB utilizzando ontap-nas driver, è necessario disporre di quanto segue.

- Un cluster Kubernetes con un nodo controller Linux e almeno un nodo di lavoro Windows che esegue Windows Server 2019. Astra Trident supporta volumi SMB montati su pod eseguiti solo su nodi Windows.
- Almeno un segreto Astra Trident contenente le credenziali Active Directory. Per generare un segreto smbcreds:

```
kubectl create secret generic smbcreds --from-literal username=user
--from-literal password='password'
```

• Proxy CSI configurato come servizio Windows. Per configurare un csi-proxy, fare riferimento a. "GitHub: Proxy CSI" oppure "GitHub: Proxy CSI per Windows" Per i nodi Kubernetes in esecuzione su Windows.

Fasi

- 1. Creare condivisioni SMB. È possibile creare le condivisioni amministrative SMB in due modi utilizzando "Console di gestione Microsoft" Snap-in cartelle condivise o utilizzo dell'interfaccia CLI di ONTAP. Per creare le condivisioni SMB utilizzando la CLI ONTAP:
 - a. Se necessario, creare la struttura del percorso di directory per la condivisione.

Il vserver cifs share create il comando controlla il percorso specificato nell'opzione -path durante la creazione della condivisione. Se il percorso specificato non esiste, il comando non riesce.

b. Creare una condivisione SMB associata alla SVM specificata:

```
vserver cifs share create -vserver vserver_name -share-name
share_name -path path [-share-properties share_properties,...]
[other_attributes] [-comment text]
```

c. Verificare che la condivisione sia stata creata:

```
vserver cifs share show -share-name share_name
```


Fare riferimento a. "Creare una condivisione SMB" per informazioni dettagliate.

 Quando si crea il backend, è necessario configurare quanto segue per specificare i volumi SMB. Per tutte le opzioni di configurazione backend FSX per ONTAP, fare riferimento a. "FSX per le opzioni di configurazione e gli esempi di ONTAP".

Parametro	Descrizione	Esempio
smbShare	È possibile specificare una delle seguenti opzioni: Il nome di una condivisione SMB creata utilizzando la console di gestione Microsoft o l'interfaccia utente di ONTAP o un nome per consentire ad Astra Trident di creare la condivisione SMB. Questo parametro è obbligatorio per i backend Amazon FSX per ONTAP.	smb-share
nasType	Deve essere impostato su smb. se null, il valore predefinito è nfs.	smb
securityStyle	Stile di sicurezza per nuovi volumi. Deve essere impostato su ntfs oppure mixed Per volumi SMB.	ntfs oppure mixed Per volumi SMB
unixPermissions	Per i nuovi volumi. Deve essere lasciato vuoto per i volumi SMB.	***************************************

FSX per le opzioni di configurazione e gli esempi di ONTAP

Scopri le opzioni di configurazione back-end per Amazon FSX per ONTAP. Questa sezione fornisce esempi di configurazione back-end.

Opzioni di configurazione back-end

Per le opzioni di configurazione del backend, consultare la tabella seguente:

Parametro	Descrizione	Esempio
version		Sempre 1
storageDriverName	Nome del driver di storage	ontap-nas, ontap-nas- economy, ontap-nas- flexgroup, ontap-san, ontap- san-economy
backendName	Nome personalizzato o backend dello storage	Nome del driver + "_" + dataLIF

Parametro	Descrizione	Esempio
managementLIF	Indirizzo IP di un cluster o LIF di gestione SVM Per uno switchover MetroCluster perfetto, è necessario specificare una LIF di gestione SVM. È possibile specificare un nome di dominio completo (FQDN). Può essere impostato per utilizzare gli indirizzi IPv6 se Astra Trident è stato installato utilizzandouse -ipv6 allarme. Gli indirizzi IPv6 devono essere definiti tra parentesi quadre, ad esempio [28e8:d9fb:a825:b7bf:69a8:d02f:9e 7b:3555].	"10.0.0.1", "[2001:1234:abcd::fefe]"
dataLIF	Indirizzo IP del protocollo LIF. Driver NAS ONTAP: Si consiglia di specificare dataLIF. Se non fornito, Astra Trident recupera i dati LIF dalla SVM. È possibile specificare un FQDN (Fully-qualified domain name) da utilizzare per le operazioni di montaggio NFS, consentendo di creare un DNS round-robin per il bilanciamento del carico tra più LIF di dati. Può essere modificato dopo l'impostazione iniziale. Fare riferimento a. Driver SAN ONTAP: Non specificare iSCSI. Astra Trident utilizza la mappa LUN selettiva di ONTAP per rilevare le LIF iSCI necessarie per stabilire una sessione multi-percorso. Viene generato un avviso se dataLIF è esplicitamente definito. Può essere impostato per utilizzare gli indirizzi IPv6 se Astra Trident è stato installato utilizzandouse -ipv6 allarme. Gli indirizzi IPv6 devono essere definiti tra parentesi quadre, ad esempio [28e8:d9fb:a825:b7bf:69a8:d02f:9e 7b:3555].	

Parametro	Descrizione	Esempio
autoExportPolicy	Abilita la creazione e l'aggiornamento automatici dei criteri di esportazione [booleano]. Utilizzando il autoExportPolicy e. autoExportCIDRs Astra Trident è in grado di gestire automaticamente le policy di esportazione.	false
autoExportCIDRs	Elenco di CIDR per filtrare gli IP dei nodi Kubernetes rispetto a quando autoExportPolicy è attivato. Utilizzando il autoExportPolicy e. autoExportCIDRs Astra Trident è in grado di gestire automaticamente le policy di esportazione.	"["0.0.0.0/0", ":/0"]"
labels	Set di etichette arbitrarie formattate con JSON da applicare sui volumi	ш
clientCertificate	Valore del certificato client codificato con base64. Utilizzato per l'autenticazione basata su certificato	****
clientPrivateKey	Valore codificato in base64 della chiave privata del client. Utilizzato per l'autenticazione basata su certificato	1111
trustedCACertificate	Valore codificato in base64 del certificato CA attendibile. Opzionale. Utilizzato per l'autenticazione basata su certificato.	1111
username	Nome utente per la connessione al cluster o alla SVM. Utilizzato per l'autenticazione basata su credenziali. Ad esempio, vsadmin.	
password	Password per la connessione al cluster o alla SVM. Utilizzato per l'autenticazione basata su credenziali.	
svm	Macchina virtuale per lo storage da utilizzare	Derivato se viene specificato un LIF di gestione SVM.

Parametro	Descrizione	Esempio
storagePrefix	Prefisso utilizzato per il provisioning di nuovi volumi nella SVM. Impossibile modificare dopo la creazione. Per aggiornare questo parametro, è necessario creare un nuovo backend.	trident
limitAggregateUsage	Non specificare Amazon FSX per NetApp ONTAP. Il fornito fsxadmin e. vsadmin Non includere le autorizzazioni necessarie per recuperare l'utilizzo aggregato e limitarlo utilizzando Astra Trident.	Non utilizzare.
limitVolumeSize	Fallire il provisioning se la dimensione del volume richiesta è superiore a questo valore. Inoltre, limita le dimensioni massime dei volumi gestiti per qtree e LUN, oltre a qtreesPerFlexvol Consente di personalizzare il numero massimo di qtree per FlexVol.	"" (non applicato per impostazione predefinita)
lunsPerFlexvol	Il numero massimo di LUN per FlexVol deve essere compreso nell'intervallo [50, 200]. Solo SAN.	100
debugTraceFlags	Flag di debug da utilizzare per la risoluzione dei problemi. Ad esempio, {"api":false,} method":true Non utilizzare debugTraceFlags a meno che non si stia eseguendo la risoluzione dei problemi e non si richieda un dump dettagliato del log.	nullo

Parametro	Descrizione	Esempio
nfsMountOptions	Elenco separato da virgole delle opzioni di montaggio NFS. Le opzioni di montaggio per i volumi persistenti di Kubernetes sono normalmente specificate nelle classi di storage, ma se non sono specificate opzioni di montaggio in una classe di storage, Astra Trident tornerà a utilizzare le opzioni di montaggio specificate nel file di configurazione del backend di storage. Se non sono specificate opzioni di montaggio nella classe di storage o nel file di configurazione, Astra Trident non imposta alcuna opzione di montaggio su un volume persistente associato.	1117
nasType	Configurare la creazione di volumi NFS o SMB. Le opzioni sono nfs, smb`o nullo. Deve essere impostato su `smb Per i volumi SMB. l'impostazione su Null imposta come predefinita i volumi NFS.	nfs
qtreesPerFlexvol	Qtree massimi per FlexVol, devono essere compresi nell'intervallo [50, 300]	200
smbShare	È possibile specificare una delle seguenti opzioni: Il nome di una condivisione SMB creata utilizzando la console di gestione Microsoft o l'interfaccia utente di ONTAP o un nome per consentire ad Astra Trident di creare la condivisione SMB. Questo parametro è obbligatorio per i backend Amazon FSX per ONTAP.	smb-share

Parametro	Descrizione	Esempio
useREST	Parametro booleano per l'utilizzo delle API REST di ONTAP. Anteprima tecnica userest viene fornito come anteprima tecnica consigliata per ambienti di test e non per carichi di lavoro di produzione. Quando è impostato su true, Astra Trident utilizzerà le API REST di ONTAP per comunicare con il backend.	false
	Questa funzione richiede ONTAP 9.11.1 e versioni successive. Inoltre, il ruolo di accesso ONTAP utilizzato deve avere accesso a. ontap applicazione. Ciò è soddisfatto dal predefinito vsadmin e. cluster-admin ruoli.	

Aggiornare dataLIF dopo la configurazione iniziale

È possibile modificare la LIF dei dati dopo la configurazione iniziale eseguendo il seguente comando per fornire al nuovo file JSON di back-end i dati aggiornati LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-filewith-updated-dataLIF>

Se i PVC sono collegati a uno o più pod, è necessario abbassare tutti i pod corrispondenti e riportarli di nuovo in alto per rendere effettiva la nuova LIF dei dati.

Opzioni di configurazione back-end per il provisioning dei volumi

È possibile controllare il provisioning predefinito utilizzando queste opzioni in defaults della configurazione. Per un esempio, vedere gli esempi di configurazione riportati di seguito.

Parametro	Descrizione	Predefinito
spaceAllocation	Allocazione dello spazio per LUN	true
spaceReserve	Modalità di riserva dello spazio; "nessuno" (sottile) o "volume" (spesso)	none
snapshotPolicy	Policy di Snapshot da utilizzare	none

Parametro	Descrizione	Predefinito
qosPolicy	Gruppo di criteri QoS da assegnare per i volumi creati. Scegliere una delle opzioni qosPolicy o adaptiveQosPolicy per pool di storage o backend. L'utilizzo di gruppi di policy QoS con Astra Trident richiede ONTAP 9.8 o versione successiva. Si consiglia di utilizzare un gruppo di policy QoS non condiviso e di assicurarsi che il gruppo di policy venga applicato a ciascun componente singolarmente. Un gruppo di policy QoS condiviso applicherà il limite massimo per il throughput totale di tutti i carichi di lavoro.	
adaptiveQosPolicy	Gruppo di criteri QoS adattivi da assegnare per i volumi creati. Scegliere una delle opzioni qosPolicy o adaptiveQosPolicy per pool di storage o backend. Non supportato da ontap-nas-Economy.	1111
snapshotReserve	Percentuale di volume riservato agli snapshot "0"	Se snapshotPolicy è none, else ""
splitOnClone	Separare un clone dal suo padre al momento della creazione	false
encryption	Abilitare NetApp Volume Encryption (NVE) sul nuovo volume; il valore predefinito è false. NVE deve essere concesso in licenza e abilitato sul cluster per utilizzare questa opzione. Se NAE è attivato sul backend, tutti i volumi forniti in Astra Trident saranno abilitati per NAE. Per ulteriori informazioni, fare riferimento a: "Come funziona Astra Trident con NVE e NAE".	false

Parametro	Descrizione	Predefinito
luksEncryption	Attivare la crittografia LUKS. Fare riferimento a. "Utilizzo di Linux Unified Key Setup (LUKS)". Solo SAN.	1111
tieringPolicy	Policy di tiering da utilizzare none	snapshot-only Per la configurazione SVM-DR precedente a ONTAP 9.5
unixPermissions	Per i nuovi volumi. Lasciare vuoto per i volumi SMB.	""
securityStyle	Stile di sicurezza per nuovi volumi. Supporto di NFS mixed e. unix stili di sicurezza. Supporto SMB mixed e. ntfs stili di sicurezza.	Il valore predefinito di NFS è unix. Il valore predefinito di SMB è ntfs.

Esempio

Utilizzo di nasType, node-stage-secret-name, e. node-stage-secret-namespace, È possibile specificare un volume SMB e fornire le credenziali Active Directory richieste. I volumi SMB sono supportati utilizzando ontap-nas solo driver.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: nas-smb-sc
provisioner: csi.trident.netapp.io
parameters:
    backendType: "ontap-nas"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
    csi.storage.k8s.io/node-stage-secret-namespace: "default"
```

Crea backend con kubectl

Un backend definisce la relazione tra Astra Trident e un sistema storage. Spiega ad Astra Trident come comunicare con quel sistema storage e come Astra Trident dovrebbe eseguire il provisioning dei volumi da esso. Dopo aver installato Astra Trident, il passo successivo è quello di creare un backend. Il TridentBackendConfig Custom Resource Definition (CRD) consente di creare e gestire backend Trident direttamente attraverso l'interfaccia Kubernetes. Per eseguire questa operazione, utilizzare kubectl

O il tool CLI equivalente per la distribuzione Kubernetes.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) È un CRD front-end, namespace, che consente di gestire i backend Astra Trident utilizzando kubectl. Kubernetes e gli amministratori dello storage possono ora creare e gestire i backend direttamente attraverso la CLI di Kubernetes senza richiedere un'utility a riga di comando dedicata (tridentctl).

Alla creazione di un TridentBackendConfig oggetto, si verifica quanto seque:

- Astra Trident crea automaticamente un backend in base alla configurazione che fornisci. Questo è rappresentato internamente come a. TridentBackend (tbe, tridentbackend) CR.
- Il TridentBackendConfig è vincolato in modo univoco a un TridentBackend Creato da Astra Trident.

Ciascuno TridentBackendConfig mantiene una mappatura uno a uno con un TridentBackend. Il primo è l'interfaccia fornita all'utente per progettare e configurare i backend; il secondo è il modo in cui Trident rappresenta l'oggetto backend effettivo.

TridentBackend I CRS vengono creati automaticamente da Astra Trident. Non è possibile modificarle. Se si desidera aggiornare i backend, modificare il TridentBackendConfig oggetto.

Vedere l'esempio seguente per il formato di TridentBackendConfig CR:

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
   name: backend-tbc-ontap-san
spec:
   version: 1
   backendName: ontap-san-backend
   storageDriverName: ontap-san
   managementLIF: 10.0.0.1
   dataLIF: 10.0.0.2
   svm: trident_svm
   credentials:
      name: backend-tbc-ontap-san-secret
```

È inoltre possibile esaminare gli esempi in "trident-installer" directory per configurazioni di esempio per la piattaforma/servizio di storage desiderato.

Il spec utilizza parametri di configurazione specifici per il back-end. In questo esempio, il backend utilizza ontap-san storage driver e utilizza i parametri di configurazione riportati in tabella. Per l'elenco delle opzioni di configurazione per il driver di storage desiderato, consultare "informazioni di configurazione back-end per il driver di storage".

Il spec la sezione include anche credentials e. deletionPolicy i campi, che sono stati introdotti di

recente in TridentBackendConfig CR:

- credentials: Questo parametro è un campo obbligatorio e contiene le credenziali utilizzate per l'autenticazione con il sistema/servizio di storage. Questo è impostato su un Kubernetes Secret creato dall'utente. Le credenziali non possono essere passate in testo normale e si verificherà un errore.
- deletionPolicy: Questo campo definisce cosa deve accadere quando TridentBackendConfig viene cancellato. Può assumere uno dei due valori possibili:
 - ° delete: Questo comporta l'eliminazione di entrambi TridentBackendConfig CR e il backend associato. Questo è il valore predefinito.
 - ° retain: Quando un TridentBackendConfig La CR viene eliminata, la definizione di back-end rimane presente e può essere gestita con tridentctl. Impostazione del criterio di eliminazione su retain consente agli utenti di eseguire il downgrade a una release precedente (precedente alla 21.04) e conservare i backend creati. Il valore di questo campo può essere aggiornato dopo un TridentBackendConfig viene creato.

Il nome di un backend viene impostato utilizzando spec.backendName. Se non specificato, il nome del backend viene impostato sul nome di TridentBackendConfig oggetto (metadata.name). Si consiglia di impostare esplicitamente i nomi backend utilizzando spec.backendName.

Backend creati con tridentctl non hanno un associato TridentBackendConfig oggetto. È possibile scegliere di gestire tali backend con kubectl creando un TridentBackendConfig CR. È necessario specificare parametri di configurazione identici (ad esempio spec.backendName, spec.storagePrefix, spec.storageDriverName`e così via). Astra Trident eseguirà automaticamente il binding del nuovo `TridentBackendConfig con il backend preesistente.

Panoramica dei passaggi

Per creare un nuovo backend utilizzando kubect1, eseguire le seguenti operazioni:

- 1. Creare un "Kubernetes Secret". Il segreto contiene le credenziali che Astra Trident deve comunicare con il cluster/servizio di storage.
- 2. Creare un TridentBackendConfig oggetto. Contiene specifiche relative al cluster/servizio di storage e fa riferimento al segreto creato nel passaggio precedente.

Dopo aver creato un backend, è possibile osservarne lo stato utilizzando kubectl get tbc <tbc-name> -n <trident-namespace> e raccogliere ulteriori dettagli.

Fase 1: Creare un Kubernetes Secret

Creare un segreto contenente le credenziali di accesso per il backend. Si tratta di una caratteristica esclusiva di ogni piattaforma/servizio di storage. Ecco un esempio:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

apiVersion: v1
kind: Secret
metadata:

name: backend-tbc-ontap-san-secret

type: Opaque
stringData:

username: cluster-admin
password: t@Ax@7q(>

Questa tabella riassume i campi che devono essere inclusi nel Secret per ciascuna piattaforma di storage:

Descrizione dei campi segreti della piattaforma di storage	Segreto	Descrizione dei campi
Azure NetApp Files	ID cliente	L'ID client dalla registrazione di un'applicazione
Cloud Volumes Service per GCP	id_chiave_privata	ID della chiave privata. Parte della chiave API per l'account di servizio GCP con ruolo di amministratore CVS
Cloud Volumes Service per GCP	private_key	Chiave privata. Parte della chiave API per l'account di servizio GCP con ruolo di amministratore CVS
Elemento (NetApp HCI/SolidFire)	Endpoint	MVIP per il cluster SolidFire con credenziali tenant
ONTAP	nome utente	Nome utente per la connessione al cluster/SVM. Utilizzato per l'autenticazione basata su credenziali
ONTAP	password	Password per la connessione al cluster/SVM. Utilizzato per l'autenticazione basata su credenziali
ONTAP	ClientPrivateKey	Valore codificato in base64 della chiave privata del client. Utilizzato per l'autenticazione basata su certificato

Descrizione dei campi segreti della piattaforma di storage	Segreto	Descrizione dei campi
ONTAP	ChapNomeUtente	Nome utente inbound. Obbligatorio se useCHAP=true. Per ontap-san e. ontap-san-economy
ONTAP	ChapInitialatorSecret	Segreto iniziatore CHAP. Obbligatorio se useCHAP=true. Per ontap-san e. ontap-san- economy
ONTAP	ChapTargetNomeUtente	Nome utente di destinazione. Obbligatorio se useCHAP=true. Per ontap-san e. ontap-san- economy
ONTAP	ChapTargetInitialatorSecret	CHAP target Initiator secret. Obbligatorio se useCHAP=true. Per ontap-san e. ontap-san- economy

Il Segreto creato in questo passaggio verrà indicato in spec.credentials campo di TridentBackendConfig oggetto creato nel passaggio successivo.

Fase 2: Creare TridentBackendConfig CR

A questo punto, è possibile creare il TridentBackendConfig CR. In questo esempio, un backend che utilizza ontap-san il driver viene creato utilizzando TridentBackendConfig oggetto mostrato di seguito:

```
kubectl -n trident create -f backend-tbc-ontap-san.yaml
```

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
   name: backend-tbc-ontap-san
spec:
   version: 1
   backendName: ontap-san-backend
   storageDriverName: ontap-san
   managementLIF: 10.0.0.1
   dataLIF: 10.0.0.2
   svm: trident_svm
   credentials:
      name: backend-tbc-ontap-san-secret
```

Fase 3: Verificare lo stato di TridentBackendConfig CR

Ora che è stato creato il TridentBackendConfig CR, è possibile verificare lo stato. Vedere il seguente esempio:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success

Un backend è stato creato e associato a TridentBackendConfig CR.

La fase può assumere uno dei seguenti valori:

- Bound: Il TridentBackendConfig CR è associato a un backend e contiene tale backend configRef impostare su TridentBackendConfig L'uid di CR.
- Unbound: Rappresentato utilizzando "". Il TridentBackendConfig l'oggetto non è associato a un backend. Tutti creati di recente TridentBackendConfig l CRS sono in questa fase per impostazione predefinita. Una volta modificata la fase, non sarà più possibile tornare a Unbound.
- Deleting: | TridentBackendConfig CR deletionPolicy è stato impostato per l'eliminazione.

 Quando il TridentBackendConfig La CR viene eliminata, passa allo stato di eliminazione.
 - Se non sono presenti richieste di rimborso di volumi persistenti (PVC) sul back-end, eliminare il TridentBackendConfig In questo modo Astra Trident elimina il backend e il TridentBackendConfig CR.
 - Se uno o più PVC sono presenti sul backend, passa a uno stato di eliminazione. Il TridentBackendConfig Successivamente, la CR entra anche nella fase di eliminazione. Il backend e. TridentBackendConfig Vengono eliminati solo dopo l'eliminazione di tutti i PVC.
- Lost: Il backend associato a TridentBackendConfig La CR è stata eliminata accidentalmente o deliberatamente e il TridentBackendConfig CR ha ancora un riferimento al backend cancellato. Il TridentBackendConfig La CR può comunque essere eliminata indipendentemente da deletionPolicy valore.
- Unknown: Astra Trident non è in grado di determinare lo stato o l'esistenza del backend associato a TridentBackendConfig CR. Ad esempio, se il server API non risponde o se tridentbackends.trident.netapp.io CRD mancante. Ciò potrebbe richiedere l'intervento dell'utente.

In questa fase, viene creato un backend. È possibile gestire anche diverse operazioni, ad esempio "aggiornamenti back-end ed eliminazioni back-end".

(Facoltativo) fase 4: Ulteriori informazioni

È possibile eseguire il seguente comando per ottenere ulteriori informazioni sul backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

```
NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success ontap-san delete
```

Inoltre, è possibile ottenere un dump YAML/JSON di TridentBackendConfig.

```
kubectl -n trident get tbc backend-tbc-ontap-san -o yaml
```

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
 creationTimestamp: "2021-04-21T20:45:11Z"
 finalizers:
 - trident.netapp.io
 generation: 1
 name: backend-tbc-ontap-san
 namespace: trident
 resourceVersion: "947143"
 uid: 35b9d777-109f-43d5-8077-c74a4559d09c
 backendName: ontap-san-backend
  credentials:
    name: backend-tbc-ontap-san-secret
 managementLIF: 10.0.0.1
 dataLIF: 10.0.0.2
 storageDriverName: ontap-san
 svm: trident svm
 version: 1
status:
 backendInfo:
   backendName: ontap-san-backend
    backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
 deletionPolicy: delete
 lastOperationStatus: Success
 message: Backend 'ontap-san-backend' created
 phase: Bound
```

backendInfo contiene backendName e a. backendUUID del back-end creato in risposta a TridentBackendConfig CR. Il lastOperationStatus il campo rappresenta lo stato dell'ultima operazione di TridentBackendConfig CR, che può essere attivato dall'utente (ad esempio, l'utente ha modificato qualcosa in spec) O attivato da Astra Trident (ad esempio, durante il riavvio di Astra Trident). Può essere Success (riuscito) o Failed (non riuscito). phase rappresenta lo stato della relazione tra

TridentBackendConfig CR e il back-end. Nell'esempio precedente, phase Ha il valore associato, il che significa che il TridentBackendConfig CR è associato al backend.

È possibile eseguire kubectl -n trident describe tbc <tbc-cr-name> per ottenere i dettagli dei registri degli eventi.

Non è possibile aggiornare o eliminare un backend che contiene un associato TridentBackendConfig utilizzo di oggetti tridentctl. Comprendere le fasi necessarie per passare da un'operazione all'altra tridentctl e. TridentBackendConfig, "vedi qui".

Eseguire la gestione del back-end con kubectl

Scopri come eseguire operazioni di gestione back-end utilizzando kubectl.

Eliminare un backend

Eliminando un TridentBackendConfig, Si richiede ad Astra Trident di eliminare/conservare i backend (in base a. deletionPolicy). Per eliminare un backend, assicurarsi che deletionPolicy è impostato per eliminare. Per eliminare solo il TridentBackendConfig, assicurarsi che deletionPolicy è impostato su retain. In questo modo si garantisce che il backend sia ancora presente e che possa essere gestito tramite tridentctl.

Eseguire il seguente comando:

```
kubectl delete tbc <tbc-name> -n trident
```

Astra Trident non elimina i Kubernetes Secrets utilizzati da TridentBackendConfig. L'utente Kubernetes è responsabile della pulizia dei segreti. Prestare attenzione quando si eliminano i segreti. È necessario eliminare i segreti solo se non vengono utilizzati dai backend.

Visualizzare i backend esistenti

Eseguire il seguente comando:

```
kubectl get tbc -n trident
```

Puoi anche correre tridentctl get backend -n trident oppure tridentctl get backend -o yaml -n trident per ottenere un elenco di tutti i backend esistenti. Questo elenco includerà anche i backend creati con tridentctl.

Aggiornare un backend

Possono esserci diversi motivi per aggiornare un backend:

• Le credenziali del sistema storage sono state modificate. Per aggiornare le credenziali, il Kubernetes Secret utilizzato in TridentBackendConfig l'oggetto deve essere aggiornato. Astra Trident aggiornerà automaticamente il backend con le credenziali più recenti fornite. Eseguire il seguente comando per aggiornare Kubernetes Secret:

```
kubectl apply -f <updated-secret-file.yaml> -n trident
```

• È necessario aggiornare i parametri (ad esempio il nome della SVM ONTAP utilizzata).

In questo caso, TridentBackendConfig Gli oggetti possono essere aggiornati direttamente tramite Kubernetes.

```
kubectl apply -f <updated-backend-file.yaml>
```

In alternativa, apportare modifiche all'esistente TridentBackendConfig CR eseguendo il seguente comando:

```
kubectl edit tbc <tbc-name> -n trident
```

Se un aggiornamento back-end non riesce, il back-end continua a rimanere nella sua ultima configurazione nota. È possibile visualizzare i log per determinare la causa eseguendo kubectl get tbc <tbc-name> -o yaml -n trident oppure kubectl describe tbc <tbc-name> -n trident.

Dopo aver identificato e corretto il problema con il file di configurazione, è possibile eseguire nuovamente il comando update.

Eseguire la gestione back-end con tridentctl

Scopri come eseguire operazioni di gestione back-end utilizzando tridentctl.

Creare un backend

Dopo aver creato un "file di configurazione back-end", eseguire il seguente comando:

```
tridentctl create backend -f <backend-file> -n trident
```

Se la creazione del back-end non riesce, si è verificato un errore nella configurazione del back-end. È possibile visualizzare i log per determinare la causa eseguendo il seguente comando:

```
tridentctl logs -n trident
```

Dopo aver identificato e corretto il problema con il file di configurazione, è possibile eseguire semplicemente create di nuovo comando.

Eliminare un backend

Per eliminare un backend da Astra Trident, procedere come segue:

1. Recuperare il nome del backend:

```
tridentctl get backend -n trident
```

2. Eliminare il backend:

```
tridentctl delete backend <backend-name> -n trident
```


Se Astra Trident ha eseguito il provisioning di volumi e snapshot da questo backend ancora esistenti, l'eliminazione del backend impedisce il provisioning di nuovi volumi da parte dell'IT. Il backend continuerà a esistere in uno stato di eliminazione e Trident continuerà a gestire tali volumi e snapshot fino a quando non verranno eliminati.

Visualizzare i backend esistenti

Per visualizzare i backend di cui Trident è a conoscenza, procedere come segue:

• Per ottenere un riepilogo, eseguire il seguente comando:

```
tridentctl get backend -n trident
```

• Per ottenere tutti i dettagli, eseguire il seguente comando:

```
tridentctl get backend -o json -n trident
```

Aggiornare un backend

Dopo aver creato un nuovo file di configurazione back-end, eseguire il seguente comando:

```
tridentctl update backend <backend-name> -f <backend-file> -n trident
```

Se l'aggiornamento del back-end non riesce, si è verificato un errore nella configurazione del back-end o si è tentato di eseguire un aggiornamento non valido. È possibile visualizzare i log per determinare la causa eseguendo il seguente comando:

```
tridentctl logs -n trident
```

Dopo aver identificato e corretto il problema con il file di configurazione, è possibile eseguire semplicemente update di nuovo comando.

Identificare le classi di storage che utilizzano un backend

Questo è un esempio del tipo di domande a cui puoi rispondere con il JSON che tridentctl output per

oggetti backend. Viene utilizzato il jq che è necessario installare.

```
tridentctl get backend -o json | jq '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses]|unique}]'
```

Questo vale anche per i backend creati con TridentBackendConfig.

Passare da un'opzione di gestione back-end all'altra

Scopri i diversi modi di gestire i backend in Astra Trident.

Opzioni per la gestione dei backend

Con l'introduzione di TridentBackendConfig, gli amministratori dispongono ora di due metodi unici per gestire i back-end. Questo pone le seguenti domande:

- È possibile creare backend utilizzando tridentatl essere gestito con TridentBackendConfig?
- È possibile creare backend utilizzando TridentBackendConfig essere gestito con tridentctl?

Gestire tridentctl backend con TridentBackendConfig

In questa sezione vengono descritte le procedure necessarie per gestire i backend creati con tridentctl Direttamente attraverso l'interfaccia Kubernetes creando TridentBackendConfig oggetti.

Questo si applica ai seguenti scenari:

- Backend preesistenti, che non dispongono di TridentBackendConfig perché sono stati creati con tridentctl.
- Nuovi backend creati con tridentctl, mentre altri TridentBackendConfig esistono oggetti.

In entrambi gli scenari, i backend continueranno a essere presenti, con Astra Trident che pianifica i volumi e li gestisce. Gli amministratori possono scegliere tra due opzioni:

- Continuare a utilizzare tridentctl per gestire i back-end creati utilizzando l'it.
- Collegare i backend creati con tridentctl a un nuovo TridentBackendConfig oggetto. In questo modo, i backend verranno gestiti utilizzando kubectl e non tridentctl.

Per gestire un backend preesistente utilizzando kubectl, sarà necessario creare un TridentBackendConfig che si collega al back-end esistente. Ecco una panoramica sul funzionamento di questo sistema:

- 1. Crea un Kubernetes Secret. Il segreto contiene le credenziali che Astra Trident deve comunicare con il cluster/servizio di storage.
- 2. Creare un TridentBackendConfig oggetto. Contiene specifiche relative al cluster/servizio di storage e fa riferimento al segreto creato nel passaggio precedente. È necessario specificare parametri di configurazione identici (ad esempio spec.backendName, spec.storagePrefix, spec.storageDriverName`e così via). `spec.backendName deve essere impostato sul nome del backend esistente.

Fase 0: Identificare il backend

Per creare un TridentBackendConfig che si collega a un backend esistente, sarà necessario ottenere la configurazione del backend. In questo esempio, supponiamo che sia stato creato un backend utilizzando la seguente definizione JSON:

```
tridentctl get backend ontap-nas-backend -n trident
+----
+----+
       NAME | STORAGE DRIVER |
                                           UUID
| STATE | VOLUMES |
+----
+----+
| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-
96b3be5ab5d7 | online | 25 |
+----
+----+
cat ontap-nas-backend.json
{
   "version": 1,
   "storageDriverName": "ontap-nas",
   "managementLIF": "10.10.10.1",
   "dataLIF": "10.10.10.2",
   "backendName": "ontap-nas-backend",
   "svm": "trident svm",
   "username": "cluster-admin",
   "password": "admin-password",
   "defaults": {
      "spaceReserve": "none",
      "encryption": "false"
   "labels":{"store":"nas store"},
   "region": "us east 1",
   "storage": [
      {
         "labels": { "app": "msoffice", "cost": "100" },
         "zone": "us east 1a",
         "defaults": {
            "spaceReserve": "volume",
            "encryption": "true",
            "unixPermissions": "0755"
      },
```

Fase 1: Creare un Kubernetes Secret

Creare un Segreto contenente le credenziali per il backend, come illustrato in questo esempio:

```
cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1
kind: Secret
metadata:
   name: ontap-nas-backend-secret
type: Opaque
stringData:
   username: cluster-admin
   password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created
```

Fase 2: Creare un TridentBackendConfig CR

Il passaggio successivo consiste nella creazione di un TridentBackendConfig CR che si associerà automaticamente al preesistente ontap-nas-backend (come in questo esempio). Assicurarsi che siano soddisfatti i seguenti requisiti:

- Lo stesso nome backend viene definito in spec.backendName.
- I parametri di configurazione sono identici al backend originale.
- I pool virtuali (se presenti) devono mantenere lo stesso ordine del backend originale.
- Le credenziali vengono fornite attraverso un Kubernetes Secret e non in testo normale.

In questo caso, il TridentBackendConfig avrà un aspetto simile al seguente:

```
cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
 name: tbc-ontap-nas-backend
spec:
 version: 1
 storageDriverName: ontap-nas
 managementLIF: 10.10.10.1
 dataLIF: 10.10.10.2
 backendName: ontap-nas-backend
 svm: trident svm
 credentials:
   name: mysecret
 defaults:
   spaceReserve: none
   encryption: 'false'
 labels:
   store: nas store
 region: us_east 1
 storage:
  - labels:
     app: msoffice
     cost: '100'
    zone: us east 1a
    defaults:
      spaceReserve: volume
      encryption: 'true'
      unixPermissions: '0755'
  - labels:
      app: mysqldb
      cost: '25'
    zone: us east 1d
    defaults:
      spaceReserve: volume
      encryption: 'false'
      unixPermissions: '0775'
kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created
```

Fase 3: Verificare lo stato di TridentBackendConfig CR

Dopo il TridentBackendConfig è stato creato, la sua fase deve essere Bound. Deve inoltre riflettere lo stesso nome e UUID del backend esistente.

```
kubectl get tbc tbc-ontap-nas-backend -n trident
NAME
            BACKEND NAME
                        BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc-
96b3be5ab5d7 Bound Success
#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident
+----
+----+
     NAME | STORAGE DRIVER |
| STATE | VOLUMES |
+----
+----+
96b3be5ab5d7 | online |
               25 I
+----+
+----+
```

Il back-end verrà ora completamente gestito utilizzando tbc-ontap-nas-backend TridentBackendConfig oggetto.

Gestire TridentBackendConfig backend con tridentctl

`tridentctl` può essere utilizzato per elencare i backend creati con `TridentBackendConfig`. Inoltre, gli amministratori possono anche scegliere di gestire completamente tali backend attraverso `tridentctl` eliminando `TridentBackendConfig` e assicurandosi `spec.deletionPolicy` è impostato su `retain`.

Fase 0: Identificare il backend

Ad esempio, supponiamo che il seguente backend sia stato creato utilizzando TridentBackendConfig:

```
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
NAME
               BACKEND NAME
                           BACKEND UUID
PHASE
     STATUS
           STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san
                            delete
tridentctl get backend ontap-san-backend -n trident
+----
+----+
    NAME
           | STORAGE DRIVER |
                                  UIUTD
| STATE | VOLUMES |
+----
+----+
ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |
+----
+----+
```

Dall'output, si vede che TridentBackendConfig È stato creato correttamente ed è associato a un backend [osservare l'UUID del backend].

Fase 1: Confermare deletionPolicy è impostato su retain

Diamo un'occhiata al valore di deletionPolicy. Questo valore deve essere impostato su retain. In questo modo si garantisce che quando si verifica un TridentBackendConfig La CR viene eliminata, la definizione di back-end rimane presente e può essere gestita con tridentctl.

```
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
NAME
                       BACKEND NAME
                                         BACKEND UUID
                 STORAGE DRIVER DELETION POLICY
PHASE
       STATUS
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san
                                                delete
# Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
'{"spec":{"deletionPolicy":"retain"}}' -n trident
tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched
#Confirm the value of deletionPolicy
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
NAME
                      BACKEND NAME
                                         BACKEND UUID
               STORAGE DRIVER DELETION POLICY
PHASE
       STATUS
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san retain
```


Fase 2: Eliminare TridentBackendConfig CR

Il passaggio finale consiste nell'eliminare TridentBackendConfig CR. Dopo la conferma di deletionPolicy è impostato su retain, è possibile procedere con l'eliminazione:

Al momento dell'eliminazione di TridentBackendConfig Astra Trident lo rimuove senza eliminare il backend stesso.

Gestire le classi di storage

È possibile creare una classe di storage, eliminare una classe di storage e visualizzare le classi di storage esistenti.

Progettare una classe di storage

Vedere "qui" per ulteriori informazioni sulle classi di storage e su come configurarle.

Creare una classe di storage

Dopo aver creato un file di classe storage, eseguire il seguente comando:

```
kubectl create -f <storage-class-file>
```

<storage-class-file> deve essere sostituito con il nome del file della classe di storage.

Eliminare una classe di storage

Per eliminare una classe di storage da Kubernetes, eseguire il seguente comando:

kubectl delete storageclass <storage-class>

<storage-class> deve essere sostituito con la classe di storage.

Tutti i volumi persistenti creati attraverso questa classe di storage resteranno inalterati e Astra Trident continuerà a gestirli.

Astra Trident impone un vuoto fsType per i volumi creati. Per i backend iSCSI, si consiglia di applicare parameters.fsType In StorageClass. È necessario eliminare le StorageClasses esistenti e ricrearle con parameters.fsType specificato.

Visualizzare le classi di storage esistenti

• Per visualizzare le classi di storage Kubernetes esistenti, eseguire il seguente comando:

kubectl get storageclass

• Per visualizzare i dettagli della classe storage Kubernetes, eseguire il seguente comando:

kubectl get storageclass <storage-class> -o json

• Per visualizzare le classi di storage sincronizzate di Astra Trident, eseguire il seguente comando:

tridentctl get storageclass

 Per visualizzare i dettagli della classe di storage sincronizzata di Astra Trident, eseguire il seguente comando:

tridentctl get storageclass <storage-class> -o json

Impostare una classe di storage predefinita

Kubernetes 1.6 ha aggiunto la possibilità di impostare una classe di storage predefinita. Si tratta della classe di storage che verrà utilizzata per eseguire il provisioning di un volume persistente se un utente non ne specifica uno in un PVC (Persistent Volume Claim).

- Definire una classe di storage predefinita impostando l'annotazione storageclass.kubernetes.io/is-default-class a true nella definizione della classe di storage. In base alla specifica, qualsiasi altro valore o assenza di annotazione viene interpretato come falso.
- È possibile configurare una classe di storage esistente come classe di storage predefinita utilizzando il seguente comando:

```
kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
```

 Allo stesso modo, è possibile rimuovere l'annotazione predefinita della classe di storage utilizzando il seguente comando:

```
kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}'
```

Nel bundle del programma di installazione di Trident sono presenti anche alcuni esempi che includono questa annotazione.

Nel cluster dovrebbe essere presente una sola classe di storage predefinita per volta. Kubernetes non impedisce tecnicamente di averne più di una, ma si comporta come se non ci fosse alcuna classe di storage predefinita.

Identificare il backend per una classe di storage

Questo è un esempio del tipo di domande a cui puoi rispondere con il JSON che tridentati Output per gli oggetti backend Astra Trident. Viene utilizzato il jq che potrebbe essere necessario installare per prima.

```
tridentctl get storageclass -o json | jq '[.items[] | {storageClass:
   .Config.name, backends: [.storage]|unique}]'
```

Eseguire operazioni sui volumi

Utilizzare la topologia CSI

Astra Trident può creare e collegare in modo selettivo volumi ai nodi presenti in un cluster Kubernetes utilizzando "Funzionalità topologia CSI".

Panoramica

Utilizzando la funzionalità topologia CSI, l'accesso ai volumi può essere limitato a un sottoinsieme di nodi, in base alle aree geografiche e alle zone di disponibilità. I provider di cloud oggi consentono agli amministratori di Kubernetes di generare nodi basati su zone. I nodi possono essere collocati in diverse zone di disponibilità all'interno di una regione o in diverse regioni. Per facilitare il provisioning dei volumi per i carichi di lavoro in un'architettura multi-zona, Astra Trident utilizza la topologia CSI.

Scopri di più sulla funzionalità topologia CSI "qui".

Kubernetes offre due esclusive modalità di binding del volume:

• Con VolumeBindingMode impostare su Immediate, Astra Trident crea il volume senza alcuna consapevolezza della topologia. Il binding dei volumi e il provisioning dinamico vengono gestiti quando

viene creato il PVC. Questa è l'impostazione predefinita VolumeBindingMode ed è adatto per i cluster che non applicano vincoli di topologia. I volumi persistenti vengono creati senza alcuna dipendenza dai requisiti di pianificazione del pod richiedente.

• Con VolumeBindingMode impostare su WaitForFirstConsumer, La creazione e il binding di un volume persistente per un PVC viene ritardata fino a quando un pod che utilizza il PVC viene pianificato e creato. In questo modo, i volumi vengono creati per soddisfare i vincoli di pianificazione imposti dai requisiti di topologia.

Il WaitForFirstConsumer la modalità di binding non richiede etichette di topologia. Questo può essere utilizzato indipendentemente dalla funzionalità topologia CSI.

Di cosa hai bisogno

Per utilizzare la topologia CSI, è necessario disporre di quanto segue:

• Un cluster Kubernetes che esegue un "Versione Kubernetes supportata"

```
kubectl version
Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"lelle4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",
GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"lelle4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",
GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}
```

• I nodi nel cluster devono essere dotati di etichette che introducano la consapevolezza della topologia (topology.kubernetes.io/region e. topology.kubernetes.io/zone). Queste etichette devono essere presenti sui nodi del cluster prima dell'installazione di Astra Trident affinché Astra Trident sia consapevole della topologia.

```
kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},
{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[node1,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-a"}]
[node2,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch": "amd64", "kubernetes.io/hostname": "node2", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-b"}]
[node3,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch": "amd64", "kubernetes.io/hostname": "node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-c"}]
```

Fase 1: Creazione di un backend compatibile con la topologia

I backend di storage Astra Trident possono essere progettati per eseguire il provisioning selettivo dei volumi in base alle zone di disponibilità. Ogni backend può portare un optional supportedTopologies blocco che rappresenta un elenco di zone e regioni che devono essere supportate. Per StorageClasses che utilizzano tale backend, un volume viene creato solo se richiesto da un'applicazione pianificata in una regione/zona supportata.

Ecco un esempio di definizione di backend:

YAML

```
version: 1
storageDriverName: ontap-san
backendName: san-backend-us-east1
managementLIF: 192.168.27.5
svm: iscsi_svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.io/region: us-east1
topology.kubernetes.io/zone: us-east1-a
- topology.kubernetes.io/region: us-east1
topology.kubernetes.io/zone: us-east1
```

JSON

```
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-east1",
"managementLIF": "192.168.27.5",
"svm": "iscsi_svm",
"username": "admin",
"password": "password",
"supportedTopologies": [
{"topology.kubernetes.io/region": "us-east1",
"topology.kubernetes.io/zone": "us-east1-a"},
{"topology.kubernetes.io/region": "us-east1",
"topology.kubernetes.io/zone": "us-east1-b"}]
}
```


supportedTopologies viene utilizzato per fornire un elenco di regioni e zone per backend. Queste regioni e zone rappresentano l'elenco dei valori consentiti che possono essere forniti in una StorageClass. Per StorageClasses che contengono un sottoinsieme delle regioni e delle zone fornite in un backend, Astra Trident creerà un volume sul backend.

È possibile definire supportedTopologies anche per pool di storage. Vedere il seguente esempio:

```
version: 1
storageDriverName: ontap-nas
backendName: nas-backend-us-central1
managementLIF: 172.16.238.5
svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.io/region: us-central1
  topology.kubernetes.io/zone: us-central1-a
- topology.kubernetes.io/region: us-central1
  topology.kubernetes.io/zone: us-central1-b
storage:
- labels:
    workload: production
  region: Iowa-DC
  zone: Iowa-DC-A
  supportedTopologies:
  - topology.kubernetes.io/region: us-central1
    topology.kubernetes.io/zone: us-central1-a
- labels:
    workload: dev
  region: Iowa-DC
  zone: Iowa-DC-B
  supportedTopologies:
  - topology.kubernetes.io/region: us-central1
    topology.kubernetes.io/zone: us-central1-b
```

In questo esempio, il region e. zone le etichette indicano la posizione del pool di storage. topology.kubernetes.io/region e. topology.kubernetes.io/zone stabilire da dove possono essere consumati i pool di storage.

Fase 2: Definire StorageClasses che siano compatibili con la topologia

In base alle etichette della topologia fornite ai nodi del cluster, è possibile definire StorageClasses in modo da contenere informazioni sulla topologia. In questo modo verranno determinati i pool di storage che fungono da candidati per le richieste PVC effettuate e il sottoinsieme di nodi che possono utilizzare i volumi forniti da Trident.

Vedere il seguente esempio:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: netapp-san-us-east1
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
 values:
  - us-east1-a
  - us-east1-b
- key: topology.kubernetes.io/region
 values:
  - us-east1
parameters:
  fsType: "ext4"
```

Nella definizione di StorageClass sopra riportata, volumeBindingMode è impostato su WaitForFirstConsumer. I PVC richiesti con questa classe di storage non verranno utilizzati fino a quando non saranno referenziati in un pod. Inoltre, allowedTopologies fornisce le zone e la regione da utilizzare. Il netapp-san-us-east1 StorageClass crea PVC su san-backend-us-east1 backend definito sopra.

Fase 3: Creare e utilizzare un PVC

Con StorageClass creato e mappato a un backend, è ora possibile creare PVC.

Vedere l'esempio spec sotto:

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-san
spec:
accessModes:
   - ReadWriteOnce
resources:
   requests:
   storage: 300Mi
storageClassName: netapp-san-us-east1
```

La creazione di un PVC utilizzando questo manifesto comporta quanto segue:

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc
Name: pvc-san
Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>
Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem
Mounted By: <none>

Events:

Type Reason Age From Message
---- ---- Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

Affinché Trident crei un volume e lo leghi al PVC, utilizza il PVC in un pod. Vedere il seguente esempio:

```
apiVersion: v1
kind: Pod
metadata:
  name: app-pod-1
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: topology.kubernetes.io/region
            operator: In
            values:
            - us-east1
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: topology.kubernetes.io/zone
            operator: In
            values:
            - us-east1-a
            - us-east1-b
  securityContext:
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  volumes:
  - name: vol1
    persistentVolumeClaim:
      claimName: pvc-san
  containers:
  - name: sec-ctx-demo
    image: busybox
    command: [ "sh", "-c", "sleep 1h" ]
    volumeMounts:
    - name: vol1
      mountPath: /data/demo
    securityContext:
      allowPrivilegeEscalation: false
```

Questo podSpec indica a Kubernetes di pianificare il pod sui nodi presenti in us-east1 e scegliere tra i nodi presenti in us-east1-a oppure us-east1-b zone.

Vedere il seguente output:

kubectl get pods -o wide STATUS NAME READY RESTARTS AGE ΙP NODE NOMINATED NODE READINESS GATES 192.168.25.131 app-pod-1 1/1 Running 0 19s node2 <none> <none> kubectl get pvc -o wide NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE VOLUMEMODE pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi pvc-san Bound RWO netapp-san-us-east1 48s Filesystem

Aggiorna i back-end da includere supportedTopologies

I backend preesistenti possono essere aggiornati per includere un elenco di supportedTopologies utilizzo di tridentati backend update. Ciò non influisce sui volumi già sottoposti a provisioning e verrà utilizzato solo per i PVC successivi.

Trova ulteriori informazioni

- "Gestire le risorse per i container"
- "NodeSelector"
- "Affinità e anti-affinità"
- "Contamini e pedaggi"

Lavorare con le istantanee

È possibile creare Kubernetes VolumeSnapshots (snapshot del volume) di volumi persistenti (PVS) per mantenere le copie point-in-time dei volumi Astra Trident. Inoltre, è possibile creare un nuovo volume, noto anche come *clone*, da uno snapshot di volume esistente. Lo snapshot del volume è supportato da ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-economy, solidfire-san, gcp-cvs, e. azure-netapp-files driver.

Prima di iniziare

È necessario disporre di uno snapshot controller esterno e di Custom Resource Definitions (CRD). Questa è la responsabilità del Kubernetes orchestrator (ad esempio: Kubeadm, GKE, OpenShift).

Se la distribuzione Kubernetes non include il controller di snapshot e i CRD, fare riferimento a. Implementazione di un controller di snapshot di volume.

Non creare un controller di snapshot se si creano snapshot di volumi on-demand in un ambiente GKE. GKE utilizza un controller di snapshot integrato e nascosto.

Fase 1: Creare un VolumeSnapshotClass

In questo esempio viene creata una classe di snapshot del volume.

```
cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
   name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete
```

Il driver Indica il driver Astra Trident CSI. deletionPolicy può essere Delete oppure Retain. Quando è impostato su Retain, lo snapshot fisico sottostante sul cluster di storage viene conservato anche quando VolumeSnapshot oggetto eliminato.

Per ulteriori informazioni, fare riferimento al VolumeSnapshotClass.

Fase 2: Creare un'istantanea di un PVC esistente

Questo esempio crea un'istantanea di un PVC esistente.

```
cat snap.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
   name: pvc1-snap
spec:
   volumeSnapshotClassName: csi-snapclass
   source:
    persistentVolumeClaimName: pvc1
```

In questo esempio, lo snapshot viene creato per un PVC denominato pvc1 e il nome dello snapshot è impostato su pvc1-snap.

Questo ha creato un VolumeSnapshot oggetto. Un'istantanea VolumeSnapshot è analoga a un PVC ed è associata a un VolumeSnapshotContent oggetto che rappresenta lo snapshot effettivo.

È possibile identificare VolumeSnapshotContent oggetto per pvc1-snap VolumeSnapshot descrivendolo.

Il Snapshot Content Name Identifica l'oggetto VolumeSnapshotContent che fornisce questa snapshot. Il Ready To Use Il parametro indica che l'istantanea può essere utilizzata per creare un nuovo PVC.

Fase 3: Creazione di PVC da VolumeSnapshots

In questo esempio viene creato un PVC utilizzando uno snapshot.

```
cat pvc-from-snap.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc-from-snap
spec:
  accessModes:
    - ReadWriteOnce
  storageClassName: golden
  resources:
    requests:
      storage: 3Gi
  dataSource:
    name: pvc1-snap
    kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
```

dataSource Mostra che il PVC deve essere creato utilizzando un VolumeSnapshot denominato pvc1-snap

come origine dei dati. Questo indica ad Astra Trident di creare un PVC dall'istantanea. Una volta creato, il PVC può essere collegato a un pod e utilizzato come qualsiasi altro PVC.

Il PVC deve essere creato nello stesso namespace di ITS dataSource.

Eliminazione di un PV con snapshot

Quando si elimina un volume persistente con snapshot associate, il volume Trident corrispondente viene aggiornato a uno stato di eliminazione. Rimuovere le snapshot del volume per eliminare il volume Astra Trident.

Implementazione di un controller di snapshot di volume

Se la distribuzione Kubernetes non include lo snapshot controller e i CRD, è possibile implementarli come segue.

Fasi

1. Creare CRD snapshot di volume.

```
cat snapshot-setup.sh
#!/bin/bash
# Create volume snapshot CRDs
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam
l
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml
```

2. Creare il controller di snapshot.

```
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml
```


Se necessario, aprire deploy/kubernetes/snapshot-controller/rbac-snapshot-controller.yaml e aggiornare namespace allo spazio dei nomi.

Ripristinare i dati del volume utilizzando le snapshot

La directory Snapshot è nascosta per impostazione predefinita per facilitare la massima compatibilità dei volumi con cui viene eseguito il provisioning mediante ontap-nas e. ontap-nas-economy driver. Attivare il .snapshot directory per ripristinare i dati direttamente dalle snapshot.

Utilizzare la CLI ONTAP per il ripristino dello snapshot del volume per ripristinare uno stato di un volume registrato in uno snapshot precedente.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot
vol3_snap_archive

Quando si ripristina una copia snapshot, la configurazione del volume esistente viene sovrascritta. Le modifiche apportate ai dati del volume dopo la creazione della copia snapshot andranno perse.

Link correlati

- "Snapshot dei volumi"
- "VolumeSnapshotClass"

Espandere i volumi

Astra Trident offre agli utenti Kubernetes la possibilità di espandere i propri volumi dopo la loro creazione. Informazioni sulle configurazioni richieste per espandere i volumi iSCSI e NFS.

Espandere un volume iSCSI

È possibile espandere un volume persistente iSCSI (PV) utilizzando il provisioning CSI.

L'espansione del volume iSCSI è supportata da ontap-san, ontap-san-economy, solidfire-san Driver e richiede Kubernetes 1.16 e versioni successive.

Panoramica

L'espansione di un PV iSCSI include i seguenti passaggi:

- Modifica della definizione di StorageClass per impostare allowVolumeExpansion campo a. true.
- Modifica della definizione PVC e aggiornamento di spec.resources.requests.storage per riflettere le nuove dimensioni desiderate, che devono essere superiori alle dimensioni originali.
- Il collegamento del PV deve essere collegato a un pod per poter essere ridimensionato. Esistono due scenari quando si ridimensiona un PV iSCSI:
 - Se il PV è collegato a un pod, Astra Trident espande il volume sul backend dello storage, esegue di nuovo la scansione del dispositivo e ridimensiona il file system.
 - Quando si tenta di ridimensionare un PV non collegato, Astra Trident espande il volume sul backend dello storage. Dopo aver associato il PVC a un pod, Trident esegue nuovamente la scansione del dispositivo e ridimensiona il file system. Kubernetes aggiorna quindi le dimensioni del PVC dopo il completamento dell'operazione di espansione.

L'esempio seguente mostra come funziona l'espansione del PVS iSCSI.

Fase 1: Configurare StorageClass per supportare l'espansione dei volumi

```
cat storageclass-ontapsan.yaml
---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: ontap-san
provisioner: csi.trident.netapp.io
parameters:
   backendType: "ontap-san"
allowVolumeExpansion: True
```

Per un StorageClass già esistente, modificarlo per includere allowVolumeExpansion parametro.

Fase 2: Creare un PVC con la StorageClass creata

```
cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   name: san-pvc
spec:
   accessModes:
   - ReadWriteOnce
   resources:
     requests:
        storage: 1Gi
   storageClassName: ontap-san
```

Astra Trident crea un volume persistente (PV) e lo associa a questo PVC (Persistent Volume Claim).

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi san-pvc Bound

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

RWO

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

Bound default/san-pvc ontap-san 10s

Fase 3: Definire un pod che colleghi il PVC

In questo esempio, viene creato un pod che utilizza san-pvc.

kubectl get pod

NAME READY STATUS RESTARTS AGE ubuntu-pod 1/1 Running 65s

kubectl describe pvc san-pvc

Name: san-pvc Namespace: default StorageClass: ontap-san Status: Bound

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 Volume:

Labels: <none>

pv.kubernetes.io/bind-completed: yes Annotations:

pv.kubernetes.io/bound-by-controller: yes

volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi Access Modes: RWO

VolumeMode: Filesystem Mounted By: ubuntu-pod

Fase 4: Espandere il PV

Per ridimensionare il PV creato da 1 Gi a 2 Gi, modificare la definizione PVC e aggiornare spec.resources.requests.storage A 2 Gi.

```
kubectl edit pvc san-pvc
# Please edit the object below. Lines beginning with a '#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  annotations:
    pv.kubernetes.io/bind-completed: "yes"
   pv.kubernetes.io/bound-by-controller: "yes"
   volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
  creationTimestamp: "2019-10-10T17:32:29Z"
  finalizers:
  - kubernetes.io/pvc-protection
 name: san-pvc
 namespace: default
  resourceVersion: "16609"
  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc
  uid: 8a814d62-bd58-4253-b0d1-82f2885db671
spec:
 accessModes:
  - ReadWriteOnce
 resources:
   requests:
      storage: 2Gi
```

Fase 5: Convalidare l'espansione

È possibile verificare che l'espansione funzioni correttamente controllando le dimensioni del volume PVC, PV e Astra Trident:

```
kubectl get pvc san-pvc
NAME
     STATUS VOLUME
                                    CAPACITY
ACCESS MODES STORAGECLASS AGE
san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671
                                    2Gi
RWO
        ontap-san
                 11m
kubectl get pv
NAME
                         CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM
                         STORAGECLASS REASON
                                       AGE
pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi
                           RWO
Delete
         Bound default/san-pvc ontap-san
                                       12m
tridentctl get volumes -n trident
+----
+----+
           NAME
                         | SIZE | STORAGE CLASS |
             BACKEND UUID
PROTOCOL |
                            | STATE | MANAGED |
+----+
| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san
block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true
+----
+----+
```

Espandere un volume NFS

Astra Trident supporta l'espansione dei volumi per NFS PVS su cui è stato eseguito il provisioning ontapnas, ontapnas-economy, ontapnas-flexgroup, gcp-cvs, e. azure-netapp-files back-end.

Fase 1: Configurare StorageClass per supportare l'espansione dei volumi

Per ridimensionare un PV NFS, l'amministratore deve prima configurare la classe di storage per consentire l'espansione del volume impostando allowVolumeExpansion campo a. true:

```
cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: ontapnas
provisioner: csi.trident.netapp.io
parameters:
   backendType: ontap-nas
allowVolumeExpansion: true
```

Se è già stata creata una classe di storage senza questa opzione, è possibile modificare semplicemente la classe di storage esistente utilizzando kubectl edit storageclass per consentire l'espansione del volume.

Fase 2: Creare un PVC con la StorageClass creata

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ontapnas20mb
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Mi
storageClassName: ontapnas

Astra Trident deve creare un PV NFS 20MiB per questo PVC:

kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO ontapnas 9s kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO default/ontapnas20mb Delete Bound ontapnas 2m42s

Fase 3: Espandere il PV

Per ridimensionare il PV 20MiB appena creato in 1GiB, modificare il PVC e impostare spec.resources.requests.storage A 1 GB:

```
kubectl edit pvc ontapnas20mb
# Please edit the object below. Lines beginning with a '#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  annotations:
    pv.kubernetes.io/bind-completed: "yes"
   pv.kubernetes.io/bound-by-controller: "yes"
   volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
  creationTimestamp: 2018-08-21T18:26:44Z
  finalizers:
  - kubernetes.io/pvc-protection
 name: ontapnas20mb
 namespace: default
  resourceVersion: "1958015"
  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb
  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab
spec:
 accessModes:
 - ReadWriteOnce
 resources:
   requests:
      storage: 1Gi
```

Fase 4: Convalidare l'espansione

È possibile verificare che il ridimensionamento funzioni correttamente controllando le dimensioni del volume PVC, PV e Astra Trident:

```
kubectl get pvc ontapnas20mb
NAME
         STATUS
              VOLUME
CAPACITY
       ACCESS MODES
                STORAGECLASS
                           AGE
              pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
ontapnas20mb
         Bound
                                           1Gi
RWO
         ontapnas
                    4m44s
kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
                            CAPACITY ACCESS MODES
                               STORAGECLASS
RECLAIM POLICY
          STATUS
                CLAIM
                                          REASON
AGE
pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
                           1Gi
                                   RWO
Delete
          Bound default/ontapnas20mb
                               ontapnas
5m35s
tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident
+----
+----+
            NAME
                            | SIZE | STORAGE CLASS |
PROTOCOL |
              BACKEND UUID
                               | STATE | MANAGED |
+----+
+----+
| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas
file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true
+-----
+----+
```

Importa volumi

È possibile importare volumi di storage esistenti come PV Kubernetes utilizzando tridentetl import.

Panoramica e considerazioni

È possibile importare un volume in Astra Trident per:

- Containerizzare un'applicazione e riutilizzare il set di dati esistente
- Utilizzare un clone di un set di dati per un'applicazione temporanea
- Ricostruire un cluster Kubernetes guasto
- · Migrazione dei dati delle applicazioni durante il disaster recovery

Considerazioni

Prima di importare un volume, esaminare le seguenti considerazioni.

 Astra Trident può importare solo volumi ONTAP di tipo RW (Read-write). I volumi di tipo DP (data Protection) sono volumi di destinazione SnapMirror. Prima di importare il volume in Astra Trident, è necessario interrompere la relazione di mirroring. • Si consiglia di importare volumi senza connessioni attive. Per importare un volume utilizzato attivamente, clonare il volume ed eseguire l'importazione.

Ciò è particolarmente importante per i volumi a blocchi, in quanto Kubernetes non sarebbe a conoscenza della connessione precedente e potrebbe facilmente collegare un volume attivo a un pod. Ciò può causare il danneggiamento dei dati.

- Tuttavia StorageClass Deve essere specificato su PVC, Astra Trident non utilizza questo parametro durante l'importazione. Le classi di storage vengono utilizzate durante la creazione del volume per selezionare i pool disponibili in base alle caratteristiche dello storage. Poiché il volume esiste già, durante l'importazione non è richiesta alcuna selezione del pool. Pertanto, l'importazione non avrà esito negativo anche se il volume esiste in un backend o in un pool che non corrisponde alla classe di storage specificata nel PVC.
- La dimensione del volume esistente viene determinata e impostata nel PVC. Una volta importato il volume dal driver di storage, il PV viene creato con un ClaimRef sul PVC.
 - La policy di recupero viene inizialmente impostata su retain Nel PV. Dopo che Kubernetes ha eseguito il binding con PVC e PV, la policy di recupero viene aggiornata in modo da corrispondere alla policy di recupero della classe di storage.
 - Se il criterio di recupero della classe di storage è delete, Il volume di storage viene cancellato quando il PV viene cancellato.
- Per impostazione predefinita, Astra Trident gestisce il PVC e rinomina il FlexVol e il LUN sul backend. È
 possibile superare il --no-manage contrassegna per importare un volume non gestito. Se si utilizza --no
 -manage, Astra Trident non esegue operazioni aggiuntive sul PVC o sul PV per il ciclo di vita degli oggetti.
 Il volume di storage non viene cancellato quando il PV viene cancellato e vengono ignorate anche altre
 operazioni come il clone del volume e il ridimensionamento del volume.

Questa opzione è utile se si desidera utilizzare Kubernetes per carichi di lavoro containerizzati, ma altrimenti si desidera gestire il ciclo di vita del volume di storage al di fuori di Kubernetes.

• Al PVC e al PV viene aggiunta un'annotazione che serve a doppio scopo per indicare che il volume è stato importato e se il PVC e il PV sono gestiti. Questa annotazione non deve essere modificata o rimossa.

Importare un volume

È possibile utilizzare tridentatl import per importare un volume.

Fasi

1. Creare il file PVC (Persistent Volume Claim) (ad esempio, pvc.yaml) Che verrà utilizzato per creare il PVC. Il file PVC deve includere name, namespace, accessModes, e. storageClassName. In alternativa, è possibile specificare unixPermissions Nella definizione di PVC.

Di seguito viene riportato un esempio di specifica minima:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my_claim
 namespace: my_namespace
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: my_storage_class

Non includere parametri aggiuntivi come il nome PV o le dimensioni del volume. Questo può causare l'errore del comando di importazione.

2. Utilizzare tridentctl import Per specificare il nome del backend Astra Trident contenente il volume e il nome che identifica in modo univoco il volume nello storage (ad esempio: ONTAP FlexVol, volume elemento, percorso Cloud Volumes Service). Il -f Argomento necessario per specificare il percorso del file PVC.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvcfile>

Esempi

Consultare i seguenti esempi di importazione di volumi per i driver supportati.

NAS ONTAP e NAS FlexGroup ONTAP

Astra Trident supporta l'importazione di volumi utilizzando ontap-nas e. ontap-nas-flexgroup driver.

- Il ontap-nas-economy il driver non può importare e gestire qtree.
- Il ontap-nas e. ontap-nas-flexgroup i driver non consentono nomi di volumi duplicati.

Ogni volume creato con ontap-nas Driver è un FlexVol sul cluster ONTAP. Importazione di FlexVol con ontap-nas il driver funziona allo stesso modo. Un FlexVol già presente in un cluster ONTAP può essere importato come ontap-nas PVC. Allo stesso modo, è possibile importare i volumi FlexGroup come ontap-nas-flexgroup PVC.

Esempi di NAS ONTAP

Di seguito viene illustrato un esempio di importazione di un volume gestito e di un volume non gestito.

Volume gestito

Nell'esempio seguente viene importato un volume denominato managed_volume su un backend denominato ontap_nas:

Volume non gestito

Quando si utilizza --no-manage Argomento: Astra Trident non rinomina il volume.

L'esempio seguente importa un managed volume su ontap nas back-end:

ONTAP SAN

Astra Trident supporta l'importazione di volumi utilizzando ontap-san driver.

Astra Trident può importare SAN FlexVol ONTAP che contengono una singola LUN. Ciò è coerente con ontap-san Driver, che crea un FlexVol per ogni PVC e un LUN all'interno di FlexVol. Astra Trident importa il FlexVol e lo associa alla definizione del PVC.

Esempi DI SAN ONTAP

Di seguito viene illustrato un esempio di importazione di un volume gestito e di un volume non gestito.

Volume gestito

Per i volumi gestiti, Astra Trident rinomina FlexVol in pvc-<uuid> E il LUN all'interno di FlexVol a. lun0.

Nell'esempio riportato di seguito viene importato il ontap-san-managed FlexVol presente su ontap_san_default back-end:

Volume non gestito

L'esempio seguente importa un managed example volume su ontap san back-end:

Se si dispone DI LUN mappati a igroups che condividono un IQN con un nodo Kubernetes IQN, come mostrato nell'esempio seguente, viene visualizzato l'errore: LUN already mapped to initiator(s) in this group. Per importare il volume, è necessario rimuovere l'iniziatore o annullare la mappatura del LUN.

Elemento

Astra Trident supporta il software NetApp Element e l'importazione di volumi NetApp HCI utilizzando solidfire-san driver.

Il driver Element supporta nomi di volumi duplicati. Tuttavia, Astra Trident restituisce un errore se sono presenti nomi di volumi duplicati. Come soluzione alternativa, clonare il volume, fornire un nome di volume univoco e importare il volume clonato.

Esempio di elemento

Nell'esempio seguente viene importato un element-managed volume sul back-end element default.

Piattaforma Google Cloud

Astra Trident supporta l'importazione di volumi utilizzando gcp-cvs driver.

Per importare un volume supportato da NetApp Cloud Volumes Service in Google Cloud Platform, identificare il volume in base al relativo percorso. Il percorso del volume è la parte del percorso di esportazione del volume dopo :/. Ad esempio, se il percorso di esportazione è 10.0.0.1:/adroit-jolly-swift, il percorso del volume è adroit-jolly-swift.

Esempio di piattaforma Google Cloud

Nell'esempio seguente viene importato un gcp-cvs volume sul back-end gcpcvs_YEppr con il percorso del volume di adroit-jolly-swift.

Azure NetApp Files

Astra Trident supporta l'importazione di volumi utilizzando azure-netapp-files e. azure-netapp-files-subvolume driver.

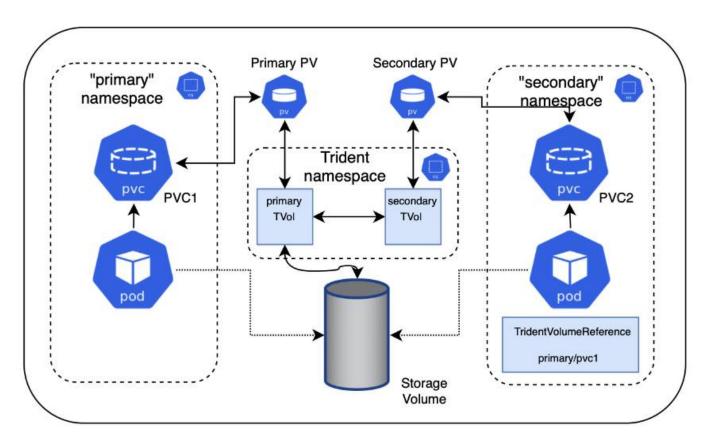
Per importare un volume Azure NetApp Files, identificare il volume in base al relativo percorso. Il percorso del volume è la parte del percorso di esportazione del volume dopo :/. Ad esempio, se il percorso di montaggio è 10.0.0.2:/importvol1, il percorso del volume è importvol1.

Esempio di Azure NetApp Files

Nell'esempio seguente viene importato un azure-netapp-files volume sul back-end azurenetappfiles_40517 con il percorso del volume importvol1.

		· +
	NAME	SIZE STORAGE CLASS
PROTOCOL	BACKEND UUID	STATE MANAGED
		+
		+
pvc-0ee95d60-	fd5c-448d-b505-b72901b3a	4ab 100 GiB anf-storage
file 1c01	274f-d94b-44a3-98a3-04c9	953c9a51e online true

Condividere un volume NFS tra spazi dei nomi


Utilizzando Astra Trident, è possibile creare un volume in uno spazio dei nomi primario e condividerlo in uno o più spazi dei nomi secondari.

Caratteristiche

Astra TridentVolumeReference CR consente di condividere in modo sicuro volumi NFS ReadWriteMany (RWX) in uno o più spazi dei nomi Kubernetes. Questa soluzione nativa di Kubernetes offre i seguenti vantaggi:

- Diversi livelli di controllo degli accessi per garantire la sicurezza
- · Funziona con tutti i driver di volume NFS Trident
- Nessuna dipendenza da tridentctl o da altre funzionalità Kubernetes non native

Questo diagramma illustra la condivisione del volume NFS tra due spazi dei nomi Kubernetes.

Avvio rapido

Puoi configurare la condivisione dei volumi NFS in pochi passaggi.

Configurare il PVC di origine per la condivisione del volume

Il proprietario dello spazio dei nomi di origine concede il permesso di accedere ai dati nel PVC di origine.

Concedere il permesso di creare una CR nello spazio dei nomi di destinazione

L'amministratore del cluster concede l'autorizzazione al proprietario dello spazio dei nomi di destinazione per creare la CR di TridentVolumeReference.

Creare TridentVolumeReference nello spazio dei nomi di destinazione

Il proprietario dello spazio dei nomi di destinazione crea la CR di TridentVolumeReference per fare riferimento al PVC di origine.

Creare il PVC subordinato nello spazio dei nomi di destinazione

Il proprietario dello spazio dei nomi di destinazione crea il PVC subordinato per utilizzare l'origine dati dal PVC di origine.

Configurare gli spazi dei nomi di origine e di destinazione

Per garantire la sicurezza, la condivisione di spazi dei nomi incrociati richiede la collaborazione e l'azione del proprietario dello spazio dei nomi di origine, dell'amministratore del cluster e del proprietario dello spazio dei nomi di destinazione. Il ruolo dell'utente viene designato in ogni fase.

Fasi

1. **Source namespace owner:** Crea il PVC (pvc1) nello spazio dei nomi di origine che concede l'autorizzazione per la condivisione con lo spazio dei nomi di destinazione (namespace2) utilizzando shareToNamespace annotazione.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   name: pvc1
   namespace: namespace1
   annotations:
      trident.netapp.io/shareToNamespace: namespace2
spec:
   accessModes:
      - ReadWriteMany
   storageClassName: trident-csi
   resources:
      requests:
      storage: 100Gi
```

Astra Trident crea il PV e il suo volume di storage NFS back-end.

• È possibile condividere il PVC con più spazi dei nomi utilizzando un elenco delimitato da virgole. Ad esempio, trident.netapp.io/shareToNamespace: namespace2, namespace3, namespace4.

- È possibile condividere con tutti gli spazi dei nomi utilizzando *. Ad esempio,
 trident.netapp.io/shareToNamespace: *
- È possibile aggiornare il PVC per includere shareToNamespace annotazione in qualsiasi momento.
- 2. Cluster admin: creare il ruolo personalizzato e il kubeconfig per concedere l'autorizzazione al proprietario dello spazio dei nomi di destinazione per creare il CR di TridentVolumeReference nello spazio dei nomi di destinazione.
- 3. **Destination namespace owner:** creare una CR di TridentVolumeReference nello spazio dei nomi di destinazione che si riferisce allo spazio dei nomi di origine pvc1.

```
apiVersion: trident.netapp.io/v1
kind: TridentVolumeReference
metadata:
   name: my-first-tvr
   namespace: namespace2
spec:
   pvcName: pvc1
   pvcNamespace: namespace1
```

4. **Proprietario dello spazio dei nomi di destinazione:** Crea un PVC (pvc2) nello spazio dei nomi di destinazione (namespace2) utilizzando shareFromPVC Annotazione per indicare il PVC di origine.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   annotations:
        trident.netapp.io/shareFromPVC: namespace1/pvc1
   name: pvc2
   namespace: namespace2
spec:
   accessModes:
        - ReadWriteMany
   storageClassName: trident-csi
   resources:
        requests:
        storage: 100Gi
```


La dimensione del PVC di destinazione deve essere inferiore o uguale al PVC di origine.

Risultati

Astra Trident legge shareFromPVC Annotazione sul PVC di destinazione e crea il PV di destinazione come volume subordinato senza una propria risorsa di storage che punta al PV di origine e condivide la risorsa di storage PV di origine. Il PVC e il PV di destinazione appaiono associati come normali.

Eliminare un volume condiviso

È possibile eliminare un volume condiviso tra più spazi dei nomi. Astra Trident rimuoverà l'accesso al volume nello spazio dei nomi di origine e manterrà l'accesso ad altri spazi dei nomi che condividono il volume. Una volta rimossi tutti gli spazi dei nomi che fanno riferimento al volume, Astra Trident elimina il volume.

Utilizzare tridentctl get per eseguire query sui volumi subordinati

Utilizzando il[tridentctl è possibile eseguire get comando per ottenere volumi subordinati. Per ulteriori informazioni, fare riferimento al tridentctl comandi e opzioni.

```
Usage:
tridentctl get [option]
```

Allarmi:

- `-h, --help: Guida per i volumi.
- --parentOfSubordinate string: Limita query al volume di origine subordinato.
- --subordinateOf string: Limita la query alle subordinate del volume.

Limitazioni

- Astra Trident non può impedire la scrittura degli spazi dei nomi di destinazione nel volume condiviso. È
 necessario utilizzare il blocco dei file o altri processi per impedire la sovrascrittura dei dati dei volumi
 condivisi.
- Non è possibile revocare l'accesso al PVC di origine rimuovendo shareToNamespace oppure shareFromNamespace annotazioni o eliminazione di TridentVolumeReference CR. Per revocare l'accesso, è necessario eliminare il PVC subordinato.
- Snapshot, cloni e mirroring non sono possibili sui volumi subordinati.

Per ulteriori informazioni

Per ulteriori informazioni sull'accesso ai volumi tra spazi dei nomi:

- Visitare il sito "Condivisione di volumi tra spazi dei nomi: Dai il benvenuto all'accesso a volumi tra spazi dei nomi".
- Guarda la demo su "NetAppTV".

Monitorare Astra Trident

Astra Trident offre un set di endpoint di metriche Prometheus che è possibile utilizzare per monitorare le performance di Astra Trident.

Panoramica

Le metriche fornite da Astra Trident ti consentono di:

- Tieni sotto controllo lo stato di salute e la configurazione di Astra Trident. È possibile esaminare il successo delle operazioni e se è in grado di comunicare con i back-end come previsto.
- Esaminare le informazioni sull'utilizzo del back-end e comprendere il numero di volumi sottoposti a provisioning su un back-end, la quantità di spazio consumato e così via.
- · Mantenere una mappatura della quantità di volumi forniti sui backend disponibili.
- Tenere traccia delle performance. Puoi dare un'occhiata a quanto tempo ci vuole per Astra Trident per comunicare con i back-end ed eseguire le operazioni.

Per impostazione predefinita, le metriche di Trident sono esposte sulla porta di destinazione 8001 su /metrics endpoint. Queste metriche sono **abilitate per impostazione predefinita** quando Trident è installato.

Di cosa hai bisogno

- Un cluster Kubernetes con Astra Trident installato.
- Un'istanza Prometheus. Questo può essere un "Implementazione di Prometheus in container" Oppure puoi scegliere di eseguire Prometheus come a. "applicazione nativa".

Fase 1: Definire un target Prometheus

Devi definire un target Prometheus per raccogliere le metriche e ottenere informazioni sui backend gestiti da Astra Trident, sui volumi creati e così via. Questo "blog" Spiega come utilizzare Prometheus e Grafana con Astra Trident per recuperare le metriche. Il blog spiega come eseguire Prometheus come operatore nel cluster Kubernetes e come creare un ServiceMonitor per ottenere le metriche di Astra Trident.

Fase 2: Creazione di un ServiceMonitor Prometheus

Per utilizzare le metriche Trident, è necessario creare un ServiceMonitor Prometheus che controlli tridentcsi e ascolta su metrics porta. Un esempio di ServiceMonitor è simile al seguente:

```
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: trident-sm
  namespace: monitoring
  labels:
      release: prom-operator
  spec:
    jobLabel: trident
    selector:
      matchLabels:
        app: controller.csi.trident.netapp.io
    namespaceSelector:
      matchNames:
      - trident
    endpoints:
    - port: metrics
      interval: 15s
```

Questa definizione di ServiceMonitor recupera le metriche restituite da trident-csi e in particolare cerca di metrics endpoint del servizio. Di conseguenza, Prometheus è ora configurato per comprendere le caratteristiche di Astra Trident metriche.

Oltre alle metriche disponibili direttamente da Astra Trident, Kubelet ne espone molte kubelet_volume_* metriche tramite il proprio endpoint di metriche. Kubelet può fornire informazioni sui volumi collegati, sui pod e sulle altre operazioni interne gestite. Vedere "qui".

Fase 3: Eseguire una query sulle metriche di Trident con PromQL

PromQL è utile per la creazione di espressioni che restituiscono dati di serie temporali o tabulari.

Di seguito sono riportate alcune query PromQL che è possibile utilizzare:

Ottieni informazioni sulla salute di Trident

• Percentuale di risposte HTTP 2XX da Astra Trident

```
(sum (trident_rest_ops_seconds_total_count{status_code=~"2.."} OR on()
vector(0)) / sum (trident_rest_ops_seconds_total_count)) * 100
```

• Percentuale di risposte REST da Astra Trident tramite codice di stato

```
(sum (trident_rest_ops_seconds_total_count) by (status_code) / scalar
(sum (trident_rest_ops_seconds_total_count))) * 100
```

Durata media in ms delle operazioni eseguite da Astra Trident

```
sum by (operation)
(trident_operation_duration_milliseconds_sum{success="true"}) / sum by
(operation)
(trident_operation_duration_milliseconds_count{success="true"})
```

Ottieni informazioni sull'utilizzo di Astra Trident

· Dimensione media del volume

```
trident_volume_allocated_bytes/trident_volume_count
```

· Spazio totale del volume fornito da ciascun backend

```
sum (trident_volume_allocated_bytes) by (backend_uuid)
```

Ottieni l'utilizzo di singoli volumi

Questa opzione è attivata solo se vengono raccolte anche le metriche del kubelet.

· Percentuale di spazio utilizzato per ciascun volume

```
kubelet_volume_stats_used_bytes / kubelet_volume_stats_capacity_bytes *
100
```

Scopri di più sulla telemetria Astra Trident AutoSupport

Per impostazione predefinita, Astra Trident invia le metriche Prometheus e le informazioni di back-end di base a NetApp ogni giorno.

- Per impedire ad Astra Trident di inviare a NetApp le metriche Prometheus e le informazioni di back-end di base, passare il --silence-autosupport Segnalazione durante l'installazione di Astra Trident.
- Astra Trident può anche inviare i log dei container al NetApp Support on-demand tramite tridentctl send autosupport. Devi attivare Astra Trident per caricare i registri. Prima di inviare i log, è necessario accettare i file NetApp "direttiva sulla privacy".
- Se non specificato, Astra Trident recupera i registri delle ultime 24 ore.
- È possibile specificare il periodo di conservazione dei log con --since allarme. Ad esempio: tridentctl send autosupport --since=1h. Queste informazioni vengono raccolte e inviate tramite un trident-autosupport container Che viene installato insieme ad Astra Trident. È possibile ottenere l'immagine del contenitore in "Trident AutoSupport".

 Trident AutoSupport non raccoglie né trasmette dati personali o di identificazione personale (PII). Viene fornito con un "EULA" Non applicabile all'immagine del contenitore Trident. Scopri di più sull'impegno di NetApp per la sicurezza e la fiducia dei dati "qui".

Un payload di esempio inviato da Astra Trident è simile al seguente:

```
items:
    backendUUID: ff3852e1-18a5-4df4-b2d3-f59f829627ed
    protocol: file
    config:
        version: 1
        storageDriverName: ontap-nas
        debug: false
        debugTraceFlags:
        disableDelete: false
        serialNumbers:
        - nwkvzfanek_SN
        limitVolumeSize: ''
    state: online
    online: true
```

- I messaggi AutoSupport vengono inviati all'endpoint AutoSupport di NetApp. Se si utilizza un registro privato per memorizzare le immagini container, è possibile utilizzare --image-registry allarme.
- È inoltre possibile configurare gli URL proxy generando i file YAML di installazione. Per eseguire questa operazione, utilizzare tridentctl install --generate-custom-yaml Per creare i file YAML e aggiungere --proxy-url argomento per trident-autosupport container in trident-deployment.yaml.

Disattiva le metriche di Astra Trident

Per disattivare il report delle metriche, è necessario generare YAML personalizzati (utilizzando il --generate -custom-yaml e modificarli per rimuovere --metrics il contrassegno di non essere richiamato per trident-main container.

Informazioni sul copyright

Copyright © 2024 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d'America. Nessuna porzione di questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM'È" E SENZA QUALSIVOGLIA TIPO DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE, SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITÀ AZIENDALE) CAUSATO IN QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO) INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN PRESENZA DI UN PREAVVISO CIRCA L'EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l'utilizzo dei prodotti o materiali descritti nel presente documento, con l'eccezione di quanto concordato espressamente e per iscritto da NetApp. L'utilizzo o l'acquisto del presente prodotto non comporta il rilascio di una licenza nell'ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l'utilizzo, la duplicazione o la divulgazione da parte degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile, mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp, Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.