
Confluent Kafka のベストプラクティス
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/ja-jp/netapp-solutions-ai/data-analytics/confluent-
kafka-introduction.html on February 12, 2026. Always check docs.netapp.com for the latest.

目次

Confluent Kafka のベストプラクティス. 1

TR-4912: NetAppを使用した Confluent Kafka 階層型ストレージのベストプラクティスガイドライン 1

Confluent 階層型ストレージを選ぶ理由 . 1

階層型ストレージにNetApp StorageGRID を選ぶ理由 . 1

Confluent階層化ストレージの有効化 . 2

ソリューションアーキテクチャの詳細 . 3

技術概要 . 4

NetAppStorageGRID . 4

Apache Kafka. 6

合流 . 8

合流検証 . 11

Confluent Platform のセットアップ . 11

Confluent階層型ストレージ構成 . 11

NetAppオブジェクトストレージ - StorageGRID. 12

検証テスト . 13

スケーラビリティを考慮したパフォーマンステスト . 14

Confluent S3コネクタ . 16

Instaclustr Kafka Connect コネクタ. 25

合流型自己バランスクラスター . 25

ベストプラクティスガイドライン . 25

サイジング . 27

単純 . 27

まとめ. 30

詳細情報の入手方法. 30

Confluent Kafka のベストプラクティス

TR-4912: NetAppを使用した Confluent Kafka 階層型ストレー
ジのベストプラクティスガイドライン

Karthikeyan Nagalingam、JosephKantilparambil、 NetApp Rankesh Kumar、Confluent

Apache Kafka は、1 日に数兆件のイベントを処理できるコミュニティ分散型のイベント
ストリーミング プラットフォームです。当初はメッセージング キューとして考案された
Kafka は、分散コミット ログの抽象化に基づいています。 Kafka は 2011 年に LinkedIn

によって作成され、オープンソース化されて以来、メッセージ キューから本格的なイベ
ント ストリーミング プラットフォームへと進化してきました。 Confluent

は、Confluent Platform を通じて Apache Kafka のディストリビューションを提供しま
す。 Confluent Platform は、大規模な運用におけるオペレーターと開発者の両方のスト
リーミング エクスペリエンスを強化するように設計された追加のコミュニティ機能と商
用機能を Kafka に補完します。

このドキュメントでは、次の内容を提供して、NetApp のオブジェクト ストレージ サービスで Confluent

Tiered Storage を使用するためのベスト プラクティス ガイドラインについて説明します。

• NetAppオブジェクトストレージによる合流性検証 – NetApp StorageGRID

• 階層型ストレージのパフォーマンステスト

• NetAppストレージ システム上の Confluent に関するベスト プラクティス ガイドライン

Confluent 階層型ストレージを選ぶ理由

Confluent は、特にビッグ データ、分析、ストリーミング ワークロードなど、多くのアプリケーションのデ
フォルトのリアルタイム ストリーミング プラットフォームになっています。階層型ストレージを使用する
と、ユーザーは Confluent プラットフォームでコンピューティングとストレージを分離できます。これによ
り、データの保存にかかるコスト効率が向上し、事実上無制限の量のデータを保存して、オンデマンドでワー
クロードをスケールアップ (またはスケールダウン) できるようになり、データやテナントの再調整などの管
理タスクが容易になります。 S3 互換ストレージ システムは、これらすべての機能を活用して、すべてのイベ
ントを 1 か所に集めてデータを民主化し、複雑なデータ エンジニアリングの必要性を排除できます。 Kafka

に階層型ストレージを使用する理由の詳細については、以下を参照してください。"Confluentによるこの記事"

。

NetApp instaclustr は、3.8.1 から階層型ストレージを備えた Kafka もサポートしています。詳細はこちらをご
覧ください "Kafka 階層型ストレージを使用した Instaclust"

階層型ストレージにNetApp StorageGRID を選ぶ理由

StorageGRIDは、 NetAppによる業界をリードするオブジェクト ストレージ プラットフォームです。
StorageGRID は、Amazon Simple Storage Service (S3) API を含む業界標準のオブジェクト API をサポート
する、ソフトウェア定義のオブジェクトベースのストレージ ソリューションです。 StorageGRID は、大規模
に非構造化データを保存および管理し、安全で耐久性のあるオブジェクト ストレージを提供します。コンテ
ンツは適切な場所、適切な時間、適切なストレージ層に配置され、ワークフローが最適化され、グローバルに
分散されたリッチ メディアのコストが削減されます。

1

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/

StorageGRIDの最大の差別化要因は、ポリシー主導のデータ ライフサイクル管理を可能にする情報ライフサ
イクル管理 (ILM) ポリシー エンジンです。ポリシー エンジンはメタデータを使用して、データの存続期間全
体にわたってデータの保存方法を管理し、最初にパフォーマンスを最適化し、データが古くなるにつれてコス
トと耐久性を自動的に最適化します。

Confluent階層化ストレージの有効化

階層型ストレージの基本的な考え方は、データ保存のタスクとデータ処理のタスクを分離することです。この
分離により、データ ストレージ層とデータ処理層を個別に拡張することがはるかに容易になります。

Confluent の階層型ストレージ ソリューションは、2 つの要素に対処する必要があります。まず、LIST 操作の
不整合や、時々発生するオブジェクトの利用不可など、一般的なオブジェクト ストアの一貫性と可用性の特
性を回避または回避する必要があります。次に、ゾンビ リーダーがオフセット範囲を階層化し続ける可能性
を含め、階層化ストレージと Kafka のレプリケーションおよびフォールト トレランス モデル間のやり取りを
正しく処理する必要があります。 NetAppオブジェクト ストレージは、一貫したオブジェクト可用性と HA モ
デルの両方を提供し、疲れたストレージを階層オフセット範囲で利用できるようにします。 NetAppオブジェ
クト ストレージは、一貫したオブジェクト可用性と HA モデルを提供し、疲れたストレージを階層オフセッ
ト範囲で利用できるようにします。

階層型ストレージを使用すると、ストリーミング データの末尾付近の低レイテンシの読み取りと書き込みに
高性能プラットフォームを使用できるほか、高スループットの履歴読み取りにNetApp StorageGRIDなどの安
価でスケーラブルなオブジェクト ストアを使用することもできます。また、NetApp ストレージ コントロー
ラを使用した Spark 向けの技術ソリューションも用意しており、詳細はこちらをご覧ください。次の図
は、Kafka がリアルタイム分析パイプラインにどのように適合するかを示しています。

次の図は、 NetApp StorageGRID がConfluent Kafka のオブジェクト ストレージ層としてどのように適合する
かを示しています。

2

ソリューションアーキテクチャの詳細

このセクションでは、Confluent 検証に使用されるハードウェアとソフトウェアについて
説明します。この情報は、 NetAppストレージを使用した Confluent Platform の展開に適
用されます。次の表は、テストされたソリューション アーキテクチャと基本コンポーネ
ントを示しています。

ソリューションコンポーネント 詳細

Confluent Kafka バージョン 6.2 • 3人の動物園飼育員

• 5つのブローカーサーバー

• 5つのツールサーバー

• グラファナ1個

• 1つのコントロールセンター

Linux（Ubuntu 18.04） すべてのサーバー

階層型ストレージ向けNetApp StorageGRID • StorageGRIDソフトウェア

• 1 x SG1000（ロードバランサー）

• 4 x SGF6024

• 4 x 24 x 800 SSD

• S3プロトコル

• 4 x 100GbE (ブローカーとStorageGRIDインスタ
ンス間のネットワーク接続)

3

ソリューションコンポーネント 詳細

富士通 PRIMERGY RX2540 サーバ 15 台 それぞれに以下の機能が搭載されています: * 2つ
のCPU、合計16個の物理コア * Intel Xeon * 256GBの
物理メモリ * 100GbEデュアルポート

技術概要

このセクションでは、このソリューションで使用されるテクノロジについて説明しま
す。

NetAppStorageGRID

NetApp StorageGRIDは、高性能でコスト効率に優れたオブジェクト ストレージ プラットフォームです。階
層型ストレージを使用すると、ローカル ストレージまたはブローカーの SAN ストレージに保存されている
Confluent Kafka 上のデータの大部分が、リモート オブジェクト ストアにオフロードされます。この構成によ
り、クラスターの再調整、拡張、縮小、または障害が発生したブローカーの交換にかかる時間とコストが削減
され、運用が大幅に改善されます。オブジェクト ストレージは、オブジェクト ストア層に存在するデータの
管理において重要な役割を果たすため、適切なオブジェクト ストレージを選択することが重要です。

StorageGRID は、分散型のノードベースのグリッド アーキテクチャを使用して、インテリジェントなポリシ
ー主導のグローバル データ管理を提供します。ユビキタスなグローバル オブジェクト名前空間と洗練された
データ管理機能を組み合わせることで、ペタバイト単位の非構造化データと数十億個のオブジェクトの管理を
簡素化します。シングルコールのオブジェクト アクセスはサイト全体に拡張され、高可用性アーキテクチャ
を簡素化するとともに、サイトまたはインフラストラクチャの停止に関係なく継続的なオブジェクト アクセ
スを保証します。

マルチテナンシーにより、複数の非構造化クラウドおよびエンタープライズ データ アプリケーションを同じ
グリッド内で安全に処理できるようになり、 NetApp StorageGRIDの ROI と使用事例が増加します。メタデ
ータ駆動型のオブジェクト ライフサイクル ポリシーを使用して複数のサービス レベルを作成し、複数の地域
にわたって耐久性、保護、パフォーマンス、および局所性を最適化できます。ユーザーは、常に変化する IT

環境で要件が変わったときに、データ管理ポリシーを調整し、トラフィック制限を監視および適用して、中断
なくデータ ランドスケープに再調整することができます。

グリッドマネージャーによるシンプルな管理

StorageGRID Grid Manager は、ブラウザベースのグラフィカル インターフェイスであり、世界中に分散され
た場所にあるStorageGRIDシステムを単一の画面で構成、管理、監視できます。

4

StorageGRID Grid Manager インターフェイスを使用して、次のタスクを実行できます。

• 画像、ビデオ、レコードなどのオブジェクトの、グローバルに分散されたペタバイト規模のリポジトリを
管理します。

• オブジェクトの可用性を確保するためにグリッド ノードとサービスを監視します。

• 情報ライフサイクル管理 (ILM) ルールを使用して、時間の経過に伴うオブジェクト データの配置を管理し
ます。これらのルールは、オブジェクトのデータが取り込まれた後に何が起こるか、どのように損失から
保護されるか、オブジェクト データがどこに保存されるか、どのくらいの期間保存されるかを制御しま
す。

• システム内のトランザクション、パフォーマンス、および操作を監視します。

情報ライフサイクル管理ポリシー

StorageGRIDには、特定のパフォーマンスとデータ保護の要件に応じて、オブジェクトのレプリカ コピーを
保持したり、2+1 や 4+2 などの EC (消去コーディング) スキームを使用してオブジェクトを保存したりする
など、柔軟なデータ管理ポリシーがあります。ワークロードと要件は時間の経過とともに変化するため、ILM

ポリシーも時間の経過とともに変更する必要があるのが一般的です。 ILM ポリシーの変更は中核機能であ
り、これによりStorageGRID のお客様は変化し続ける環境に迅速かつ簡単に適応できます。

パフォーマンス

StorageGRIDは、VM、ベアメタル、または専用アプライアンスなどのストレージノードを追加することでパ
フォーマンスを拡張します。"SG5712、SG5760、SG6060、またはSGF6024" 。当社のテストで
は、SGF6024 アプライアンスを使用した最小サイズの 3 ノード グリッドで Apache Kafka の主要なパフォー
マンス要件を超えました。顧客が追加のブローカーを使用して Kafka クラスターを拡張すると、ストレージ
ノードを追加してパフォーマンスと容量を向上させることができます。

5

https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf
https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf

ロードバランサとエンドポイントの構成

StorageGRIDの管理ノードは、 StorageGRIDシステムを表示、構成、管理するための Grid Manager UI (ユー
ザー インターフェイス) と REST API エンドポイント、およびシステム アクティビティを追跡するための監
査ログを提供します。 Confluent Kafka 階層型ストレージに高可用性の S3 エンドポイントを提供するため
に、管理ノードとゲートウェイ ノードでサービスとして実行されるStorageGRIDロード バランサーを実装し
ました。さらに、ロード バランサはローカル トラフィックも管理し、GSLB (グローバル サーバー負荷分散)

と通信して災害復旧を支援します。

エンドポイント構成をさらに強化するために、 StorageGRID は管理ノードに組み込まれたトラフィック分類
ポリシーを提供し、ワークロード トラフィックを監視し、ワークロードにさまざまなサービス品質 (QoS) 制
限を適用できるようにします。トラフィック分類ポリシーは、ゲートウェイ ノードと管理ノード
のStorageGRIDロード バランサ サービスのエンドポイントに適用されます。これらのポリシーは、トラフィ
ックのシェーピングと監視に役立ちます。

StorageGRIDにおけるトラフィック分類

StorageGRIDには QoS 機能が組み込まれています。トラフィック分類ポリシーは、クライアント アプリケー
ションから送信されるさまざまな種類の S3 トラフィックを監視するのに役立ちます。次に、入力/出力帯域
幅、読み取り/書き込み同時要求の数、または読み取り/書き込み要求レートに基づいてこのトラフィックに制
限を設定するポリシーを作成して適用できます。

Apache Kafka

Apache Kafka は、Java と Scala で記述されたストリーム処理を使用したソフトウェア バスのフレームワー
ク実装です。リアルタイムのデータフィードを処理するための、統合された高スループット、低レイテンシの
プラットフォームを提供することを目的としています。 Kafka は、Kafka Connect を介してデータのエクスポ
ートとインポートのために外部システムに接続でき、Java ストリーム処理ライブラリである Kafka ストリー
ムを提供します。 Kafka は、効率性を重視して最適化されたバイナリ TCP ベースのプロトコルを使用し、メ
ッセージを自然にグループ化してネットワーク ラウンドトリップのオーバーヘッドを削減する「メッセージ
セット」抽象化に依存しています。これにより、大規模な順次ディスク操作、大規模なネットワーク パケッ
ト、連続したメモリ ブロックが可能になり、Kafka はランダム メッセージ書き込みのバースト ストリームを
線形書き込みに変換できるようになります。次の図は、Apache Kafka の基本的なデータ フローを示していま
す。

6

Kafka は、プロデューサーと呼ばれる任意の数のプロセスから送信されるキーと値のメッセージを保存しま
す。データは、異なるトピック内の異なるパーティションに分割できます。パーティション内では、メッセー
ジはオフセット (パーティション内のメッセージの位置) によって厳密に順序付けられ、タイムスタンプとと
もにインデックスが付けられて保存されます。コンシューマーと呼ばれる他のプロセスは、パーティションか
らメッセージを読み取ることができます。ストリーム処理の場合、Kafka は、Kafka からデータを消費し、結
果を Kafka に書き戻す Java アプリケーションを作成できる Streams API を提供します。 Apache Kafka

は、Apache Apex、Apache Flink、Apache Spark、Apache Storm、Apache NiFi などの外部ストリーム処理シ
ステムとも連携します。

Kafka は 1 つ以上のサーバー (ブローカーと呼ばれる) のクラスター上で実行され、すべてのトピックのパー
ティションはクラスター ノード全体に分散されます。さらに、パーティションは複数のブローカーに複製さ
れます。このアーキテクチャにより、Kafka はフォールト トレラントな方法で大量のメッセージ ストリーム
を配信できるようになり、Java Message Service (JMS)、Advanced Message Queuing Protocol (AMQP) など
の従来のメッセージング システムの一部を置き換えることが可能になりました。 0.11.0.0 リリース以
降、Kafka は、Streams API を使用して 1 回だけのストリーム処理を提供するトランザクション書き込みを提
供します。

Kafka は、通常のトピックと圧縮されたトピックの 2 種類のトピックをサポートしています。通常のトピック
は、保持時間またはスペースの制限付きで構成できます。指定された保持期間よりも古いレコードがある場
合、またはパーティションのスペース制限を超えた場合、Kafka は古いデータを削除してストレージスペース
を解放できます。デフォルトでは、トピックの保持期間は 7 日間に設定されていますが、データを無期限に
保存することもできます。圧縮されたトピックの場合、レコードは時間または領域の境界に基づいて期限切れ
になることはありません。代わりに、Kafka は後続のメッセージを同じキーを持つ古いメッセージの更新とし
て扱い、キーごとに最新のメッセージを削除しないことを保証します。ユーザーは、特定のキーに null 値を
設定したいわゆるトゥームストーン メッセージを書き込むことで、メッセージを完全に削除できます。

Kafka には 5 つの主要な API があります。

• *プロデューサー API。*アプリケーションがレコードのストリームを公開することを許可します。

• *コンシューマー API*アプリケーションがトピックをサブスクライブし、レコードのストリームを処理す
ることを許可します。

7

• *コネクタ API。*トピックを既存のアプリケーションにリンクできる再利用可能なプロデューサー API と
コンシューマー API を実行します。

• *ストリーム API。*この API は入力ストリームを出力に変換し、結果を生成します。

• 管理 API。 Kafka トピック、ブローカー、およびその他の Kafka オブジェクトを管理するために使用され
ます。

コンシューマー API とプロデューサー API は、Kafka メッセージング プロトコルの上に構築され、Java での
Kafka コンシューマー クライアントとプロデューサー クライアントのリファレンス実装を提供します。基礎
となるメッセージング プロトコルはバイナリ プロトコルであり、開発者はこれを使用して任意のプログラミ
ング言語で独自のコンシューマー クライアントまたはプロデューサー クライアントを作成できます。これに
より、Kafka は Java 仮想マシン (JVM) エコシステムから解放されます。利用可能な非 Java クライアントの
リストは、Apache Kafka wiki で管理されています。

Apache Kafka のユースケース

Apache Kafka は、メッセージング、Web サイトのアクティビティ追跡、メトリック、ログ集約、ストリーム
処理、イベント ソーシング、コミット ログで最も人気があります。

• Kafka はスループット、組み込みのパーティショニング、レプリケーション、フォールト トレランスが向
上しており、大規模なメッセージ処理アプリケーションに適したソリューションとなっています。

• Kafka は、追跡パイプライン内のユーザーのアクティビティ (ページ ビュー、検索) を、リアルタイムのパ
ブリッシュ/サブスクライブ フィードのセットとして再構築できます。

• Kafka は運用監視データによく使用されます。これには、分散アプリケーションからの統計を集約して、
運用データの集中フィードを生成することが含まれます。

• 多くの人が、ログ集約ソリューションの代わりとして Kafka を使用しています。ログ集約では通常、サー
バーから物理ログ ファイルが収集され、処理のために中央の場所 (ファイル サーバーや HDFS など) に配
置されます。 Kafka はファイルの詳細を抽象化し、ログまたはイベント データをメッセージ ストリーム
としてよりクリーンに抽象化します。これにより、処理のレイテンシが低減され、複数のデータ ソースと
分散データ消費のサポートが容易になります。

• Kafka の多くのユーザーは、複数のステージで構成される処理パイプラインでデータを処理します。この
パイプラインでは、生の入力データが Kafka トピックから消費され、その後、さらなる消費や後続処理の
ために、集約、拡充、またはその他の方法で新しいトピックに変換されます。たとえば、ニュース記事を
推奨するための処理パイプラインでは、RSS フィードから記事のコンテンツをクロールし、「記事」トピ
ックに公開する場合があります。さらに処理を進めると、このコンテンツが正規化または重複排除され、
クリーンアップされた記事コンテンツが新しいトピックに公開され、最終処理段階でこのコンテンツをユ
ーザーに推奨しようとする可能性があります。このような処理パイプラインは、個々のトピックに基づい
てリアルタイムのデータフローのグラフを作成します。

• イベント サウシングは、状態の変化が時間順のレコードのシーケンスとして記録されるアプリケーション
設計のスタイルです。 Kafka は非常に大きなログ データの保存をサポートしているため、このスタイル
で構築されたアプリケーションにとって優れたバックエンドになります。

• Kafka は、分散システムの一種の外部コミット ログとして機能します。ログはノード間でデータを複製す
るのに役立ち、障害が発生したノードがデータを復元するための再同期メカニズムとして機能します。
Kafka のログ圧縮機能は、このユースケースのサポートに役立ちます。

合流

Confluent Platform は、アプリケーション開発と接続の高速化、ストリーム処理による変換の実現、大規模な
エンタープライズ運用の簡素化、厳格なアーキテクチャ要件への対応を支援するように設計された高度な機能
で Kafka を補完する、エンタープライズ対応のプラットフォームです。 Apache Kafka のオリジナル作成者に

8

よって構築された Confluent は、エンタープライズ グレードの機能によって Kafka の利点を拡大するとと
もに、Kafka の管理や監視の負担を軽減します。現在、Fortune 100 企業の 80% 以上がデータ ストリーミン
グ テクノロジーを活用しており、そのほとんどが Confluent を使用しています。

Confluentを選ぶ理由

Confluent は、履歴データとリアルタイム データを単一の信頼できる中央ソースに統合することで、まったく
新しいカテゴリの最新のイベント駆動型アプリケーションを簡単に構築し、ユニバーサル データ パイプライ
ンを実現し、完全なスケーラビリティ、パフォーマンス、信頼性を備えた強力な新しいユースケースを実現し
ます。

Confluent は何に使用されますか?

Confluent Platform を使用すると、異なるシステム間でデータがどのように転送されるか、または統合される
かといった基礎となる仕組みを心配するのではなく、データからビジネス価値を引き出す方法に集中できま
す。具体的には、Confluent Platform は、データ ソースを Kafka に接続し、ストリーミング アプリケーショ
ンを構築するだけでなく、Kafka インフラストラクチャのセキュリティ保護、監視、管理も簡素化します。現
在、Confluent Platform は、金融サービス、オムニチャネル小売、自律走行車から不正検出、マイクロサービ
ス、IoT まで、さまざまな業界の幅広いユースケースに使用されています。

次の図は、Confluent Kafka プラットフォームのコンポーネントを示しています。

Confluentのイベントストリーミングテクノロジーの概要

Confluent Platformの中核は "Apache Kafka"最も人気のあるオープンソースの分散ストリーミング プラットフ
ォームです。 Kafka の主な機能は次のとおりです。

• レコードのストリームを公開およびサブスクライブします。

• フォールト トレラントな方法でレコードのストリームを保存します。

9

https://kafka.apache.org/

• レコードのストリームを処理します。

Confluent Platform には、すぐに使用できる Schema Registry、REST Proxy、合計 100 個以上の構築済み
Kafka コネクタ、ksqlDB も含まれています。

Confluent プラットフォームのエンタープライズ機能の概要

• Confluent コントロール センター Kafka を管理および監視するための GUI ベースのシステム。 Kafka

Connect を簡単に管理し、他のシステムへの接続を作成、編集、管理できるようになります。

• Kubernetes 用の Confluent。 Confluent for Kubernetes は Kubernetes オペレーターです。 Kubernetes

オペレーターは、特定のプラットフォーム アプリケーションに固有の機能と要件を提供すること
で、Kubernetes のオーケストレーション機能を拡張します。 Confluent Platform の場合、これには
Kubernetes 上の Kafka のデプロイメント プロセスを大幅に簡素化し、一般的なインフラストラクチャ ラ
イフサイクル タスクを自動化することが含まれます。

• *Kafka への Confluent コネクタ。*コネクタは Kafka Connect API を使用して、Kafka をデータベース、キ
ー値ストア、検索インデックス、ファイルシステムなどの他のシステムに接続します。 Confluent Hub に
は、最も人気のあるデータ ソースとシンク用のダウンロード可能なコネクタがあり、Confluent Platform

で完全にテストされサポートされているバージョンのコネクタも含まれています。詳細は以下をご覧くだ
さい "ここをクリックしてください。"。

• *自己バランス型クラスター。*自動化された負荷分散、障害検出、自己修復を提供します。手動で調整す
ることなく、必要に応じてブローカーを追加または廃止するためのサポートを提供します。

• *合流クラスターのリンク。*クラスターを直接接続し、リンク ブリッジを介して 1 つのクラスターから別
のクラスターにトピックをミラーリングします。クラスター リンクにより、マルチデータセンター、マル
チクラスター、ハイブリッド クラウドの展開のセットアップが簡素化されます。

• *Confluent 自動データバランサー*クラスター内のブローカーの数、パーティションのサイズ、パーティシ
ョンの数、およびリーダーの数を監視します。これにより、データをシフトしてクラスター全体で均一な
ワークロードを作成しながら、再バランスのトラフィックを調整して、再バランス中の本番ワークロード
への影響を最小限に抑えることができます。

• *合流型複製子。*複数のデータ センターで複数の Kafka クラスターを管理することがこれまで以上に簡単
になります。

• *階層型ストレージ*お気に入りのクラウド プロバイダーを使用して大量の Kafka データを保存するオプシ
ョンを提供し、運用上の負担とコストを削減します。階層型ストレージを使用すると、コスト効率の高い
オブジェクト ストレージにデータを保存し、コンピューティング リソースが必要な場合にのみブローカ
ーを拡張できます。

• Confluent JMS クライアント。 Confluent Platform には、Kafka 用の JMS 互換クライアントが含まれて
います。この Kafka クライアントは、バックエンドとして Kafka ブローカーを使用して、JMS 1.1 標準
API を実装します。これは、JMS を使用するレガシー アプリケーションがあり、既存の JMS メッセージ
ブローカーを Kafka に置き換えたい場合に役立ちます。

• *Confluent MQTT プロキシ。*中間に MQTT ブローカーを必要とせずに、MQTT デバイスおよびゲートウ
ェイから Kafka に直接データを公開する方法を提供します。

• Confluent セキュリティ プラグイン Confluent セキュリティ プラグインは、さまざまな Confluent

Platform ツールおよび製品にセキュリティ機能を追加するために使用されます。現在、Confluent REST

プロキシには、受信リクエストを認証し、認証されたプリンシパルを Kafka へのリクエストに伝播するの
に役立つプラグインが用意されています。これにより、Confluent REST プロキシ クライアントは Kafka

ブローカーのマルチテナント セキュリティ機能を利用できるようになります。

10

https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/home/connect/userguide.html

合流検証

NetApp StorageGRIDの Confluent Platform 6.2 Tiered Storage を使用して検証を実施し
ました。 NetAppチームと Confluent チームが協力してこの検証に取り組み、検証に必要
なテスト ケースを実行しました。

Confluent Platform のセットアップ

検証には次の設定を使用しました。

検証には、3 つの動物園管理人、5 つのブローカー、5 つのテスト スクリプト実行サーバー、256 GB の RAM

と 16 個の CPU を備えた名前付きツール サーバーを使用しました。 NetAppストレージには、4 つの
SGF6024 を搭載した SG1000 ロード バランサーを備えたStorageGRIDを使用しました。ストレージとブロー
カーは 100GbE 接続を介して接続されました。

次の図は、Confluent 検証に使用される構成のネットワーク トポロジを示しています。

ツール サーバーは、Confluent ノードに要求を送信するアプリケーション クライアントとして機能します。

Confluent階層型ストレージ構成

階層化ストレージ構成には、Kafka で次のパラメータが必要です。

11

Confluent.tier.archiver.num.threads=16

confluent.tier.fetcher.num.threads=32

confluent.tier.enable=true

confluent.tier.feature=true

confluent.tier.backend=S3

confluent.tier.s3.bucket=kafkasgdbucket1-2

confluent.tier.s3.region=us-west-2

confluent.tier.s3.cred.file.path=/data/kafka/.ssh/credentials

confluent.tier.s3.aws.endpoint.override=http://kafkasgd.rtpppe.netapp.com:

10444/

confluent.tier.s3.force.path.style.access=true

検証には、HTTP プロトコルを使用したStorageGRIDを使用しましたが、HTTPS も機能します。アクセスキ
ーと秘密鍵は、 `confluent.tier.s3.cred.file.path`パラメータ。

NetAppオブジェクトストレージ - StorageGRID

検証のために、 StorageGRIDで単一サイト構成を構成しました。

12

検証テスト

検証のために以下の 5 つのテストケースを完了しました。これらのテストは Trogdor フレームワークで実行
されます。最初の 2 つは機能テストであり、残りの 3 つはパフォーマンス テストでした。

13

オブジェクトストアの正確性テスト

このテストでは、オブジェクト ストア API のすべての基本操作 (get/put/delete など) が階層化ストレージのニ
ーズに応じて適切に機能するかどうかを判定します。これは、すべてのオブジェクト ストア サービスが次の
テストに先立って合格することが期待される基本テストです。合格か不合格かを判断する断定的なテストで
す。

階層化機能の正確性テスト

このテストでは、合格または不合格のいずれかになるアサーション テストを使用して、エンドツーエンドの
階層型ストレージ機能が適切に動作するかどうかを判断します。このテストでは、デフォルトで階層化が有効
にされ、ホットセット サイズが大幅に削減されたテスト トピックが作成されます。新しく作成されたテスト
トピックにイベント ストリームを生成し、ブローカーがセグメントをオブジェクト ストアにアーカイブする
のを待機し、イベント ストリームを消費して、消費されたストリームが生成されたストリームと一致するこ
とを検証します。イベント ストリームに生成されるメッセージの数は構成可能であり、ユーザーはテストの
ニーズに応じて十分な大きさのワークロードを生成できます。ホットセットのサイズが縮小されたことで、ア
クティブ セグメント外のコンシューマー フェッチがオブジェクト ストアからのみ提供されるようになり、読
み取りに対するオブジェクト ストアの正確性をテストするのに役立ちます。このテストは、オブジェクト ス
トア障害注入ありとなしの状態で実行しました。 StorageGRIDのノードの 1 つでサービス マネージャー サー
ビスを停止し、エンドツーエンドの機能がオブジェクト ストレージで動作することを検証することで、ノー
ド障害をシミュレートしました。

階層フェッチベンチマーク

このテストでは、階層化オブジェクト ストレージの読み取りパフォーマンスを検証し、ベンチマークによっ
て生成されたセグメントからの高負荷状態での範囲フェッチ読み取り要求をチェックしました。このベンチマ
ークでは、Confluent は階層フェッチ要求に対応するカスタム クライアントを開発しました。

生産・消費ワークロードベンチマーク

このテストでは、セグメントのアーカイブを通じてオブジェクト ストアへの書き込みワークロードを間接的
に生成しました。読み取りワークロード (読み取られたセグメント) は、コンシューマー グループがセグメン
トを取得したときにオブジェクト ストレージから生成されました。このワークロードはテスト スクリプトに
よって生成されました。このテストでは、並列スレッドでのオブジェクト ストレージの読み取りと書き込み
のパフォーマンスをチェックしました。階層化機能の正確性テストと同様に、オブジェクト ストア障害注入
の有無でテストを行いました。

保持ワークロードベンチマーク

このテストでは、トピック保持の負荷が高い状態でのオブジェクト ストアの削除パフォーマンスをチェック
しました。保持ワークロードは、テスト トピックに並行して多数のメッセージを生成するテスト スクリプト
を使用して生成されました。テスト トピックでは、サイズ ベースおよび時間ベースの積極的な保持設定が構
成されていたため、イベント ストリームがオブジェクト ストアから継続的に消去されていました。その後、
セグメントはアーカイブされました。これにより、ブローカーによるオブジェクト ストレージ内の大量の削
除と、オブジェクト ストア削除操作のパフォーマンスの収集が行われました。

スケーラビリティを考慮したパフォーマンステスト

NetApp StorageGRIDセットアップを使用して、プロデューサー ワークロードとコンシ
ューマー ワークロード用に 3 ～ 4 ノードの階層型ストレージ テストを実行しました。
当社のテストによると、完了までの時間とパフォーマンス結果は、 StorageGRIDノード
の数に正比例しました。 StorageGRID のセットアップには少なくとも 3 つのノードが

14

必要でした。

• ストレージ ノードの数が増加すると、生成と消費の操作を完了する時間は直線的に減少しました。

• s3 取得操作のパフォーマンスは、 StorageGRIDノードの数に基づいて直線的に増加しました。
StorageGRID は最大 200 個の StorageGRID ノードをサポートします。

15

Confluent S3コネクタ

Amazon S3 Sink コネクタは、Apache Kafka トピックから S3 オブジェクトに Avro

、JSON、または Bytes 形式でデータをエクスポートします。 Amazon S3 シンクコネク
タは、Kafka からデータを定期的にポーリングし、それを S3 にアップロードします。パ
ーティショナーは、すべての Kafka パーティションのデータをチャンクに分割するため
に使用されます。各データ チャンクは S3 オブジェクトとして表されます。キー名は、
トピック、Kafka パーティション、およびこのデータ チャンクの開始オフセットをエン
コードします。

このセットアップでは、Kafka s3 シンク コネクタを使用して、Kafka からオブジェクト ストレージ内のトピ
ックを直接読み書きする方法を示します。このテストではスタンドアロンの Confluent クラスターを使用しま
したが、このセットアップは分散クラスターにも適用できます。

1. Confluent Web サイトから Confluent Kafka をダウンロードします。

2. パッケージをサーバー上のフォルダーに解凍します。

3. 2 つの変数をエクスポートします。

Export CONFLUENT_HOME=/data/confluent/confluent-6.2.0

export PATH=$PATH:/data/confluent/confluent-6.2.0/bin

4. スタンドアロンのConfluent Kafkaセットアップの場合、クラスタは一時的なルートフォルダを作成しま

す。 /tmp`また、Zookeeper、Kafka、スキーマレジストリ、connect、ksql-server、control-

16

centerフォルダを作成し、それぞれの設定ファイルをコピーします。 `$CONFLUENT_HOME 。次の例
を参照してください。

root@stlrx2540m1-108:~# ls -ltr /tmp/confluent.406980/

total 28

drwxr-xr-x 4 root root 4096 Oct 29 19:01 zookeeper

drwxr-xr-x 4 root root 4096 Oct 29 19:37 kafka

drwxr-xr-x 4 root root 4096 Oct 29 19:40 schema-registry

drwxr-xr-x 4 root root 4096 Oct 29 19:45 kafka-rest

drwxr-xr-x 4 root root 4096 Oct 29 19:47 connect

drwxr-xr-x 4 root root 4096 Oct 29 19:48 ksql-server

drwxr-xr-x 4 root root 4096 Oct 29 19:53 control-center

root@stlrx2540m1-108:~#

5. Zookeeper を設定します。デフォルトのパラメータを使用する場合は、何も変更する必要はありません。

root@stlrx2540m1-108:~# cat

/tmp/confluent.406980/zookeeper/zookeeper.properties | grep -iv ^#

dataDir=/tmp/confluent.406980/zookeeper/data

clientPort=2181

maxClientCnxns=0

admin.enableServer=false

tickTime=2000

initLimit=5

syncLimit=2

server.179=controlcenter:2888:3888

root@stlrx2540m1-108:~#

上記の構成では、 `server. xxx`財産。デフォルトでは、Kafka リーダーの選択には 3 つの Zookeeper が必
要です。

6. myidファイルを作成した `/tmp/confluent.406980/zookeeper/data`一意のIDを持つ:

root@stlrx2540m1-108:~# cat /tmp/confluent.406980/zookeeper/data/myid

179

root@stlrx2540m1-108:~#

myid ファイルには、最後の IP アドレス番号を使用しました。 Kafka、connect、control-center、Kafka

、Kafka-rest、ksql-server、および schema-registry 構成にはデフォルト値を使用しました。

7. Kafka サービスを開始します。

17

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services start

The local commands are intended for a single-node development

environment only,

NOT for production usage.

Using CONFLUENT_CURRENT: /tmp/confluent.406980

ZooKeeper is [UP]

Kafka is [UP]

Schema Registry is [UP]

Kafka REST is [UP]

Connect is [UP]

ksqlDB Server is [UP]

Control Center is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

各構成にはログ フォルダーがあり、問題のトラブルシューティングに役立ちます。場合によっては、サー
ビスの起動に時間がかかることがあります。すべてのサービスが稼働していることを確認してください。

8. Kafka connectをインストールするには confluent-hub。

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# ./confluent-

hub install confluentinc/kafka-connect-s3:latest

The component can be installed in any of the following Confluent

Platform installations:

 1. /data/confluent/confluent-6.2.0 (based on $CONFLUENT_HOME)

 2. /data/confluent/confluent-6.2.0 (where this tool is installed)

Choose one of these to continue the installation (1-2): 1

Do you want to install this into /data/confluent/confluent-

6.2.0/share/confluent-hub-components? (yN) y

Component's license:

Confluent Community License

http://www.confluent.io/confluent-community-license

I agree to the software license agreement (yN) y

Downloading component Kafka Connect S3 10.0.3, provided by Confluent,

Inc. from Confluent Hub and installing into /data/confluent/confluent-

6.2.0/share/confluent-hub-components

Do you want to uninstall existing version 10.0.3? (yN) y

Detected Worker's configs:

 1. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

 2. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

 3. Standard: /data/confluent/confluent-6.2.0/etc/schema-

18

registry/connect-avro-distributed.properties

 4. Standard: /data/confluent/confluent-6.2.0/etc/schema-

registry/connect-avro-standalone.properties

 5. Based on CONFLUENT_CURRENT:

/tmp/confluent.406980/connect/connect.properties

 6. Used by Connect process with PID 15904:

/tmp/confluent.406980/connect/connect.properties

Do you want to update all detected configs? (yN) y

Adding installation directory to plugin path in the following files:

 /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

 /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

 /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

distributed.properties

 /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

standalone.properties

 /tmp/confluent.406980/connect/connect.properties

 /tmp/confluent.406980/connect/connect.properties

Completed

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

特定のバージョンをインストールするには、 confluent-hub install confluentinc/kafka-

connect-s3:10.0.3 。

9. デフォルトでは、 confluentinc-kafka-connect-s3`インストールされている

`/data/confluent/confluent-6.2.0/share/confluent-hub-components/confluentinc-

kafka-connect-s3。

10. プラグインのパスを新しいものに更新します confluentinc-kafka-connect-s3。

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/etc/kafka/connect-distributed.properties | grep plugin.path

#

plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/co

nnectors,

plugin.path=/usr/share/java,/data/zookeeper/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3

root@stlrx2540m1-108:~#

11. Confluent サービスを停止して再起動します。

19

confluent local services stop

confluent local services start

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services status

The local commands are intended for a single-node development

environment only,

NOT for production usage.

Using CONFLUENT_CURRENT: /tmp/confluent.406980

Connect is [UP]

Control Center is [UP]

Kafka is [UP]

Kafka REST is [UP]

ksqlDB Server is [UP]

Schema Registry is [UP]

ZooKeeper is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

12. アクセスIDと秘密鍵を `/root/.aws/credentials`ファイル。

root@stlrx2540m1-108:~# cat /root/.aws/credentials

[default]

aws_access_key_id = xxxxxxxxxxxx

aws_secret_access_key = xxxxxxxxxxxxxxxxxxxxxxxxxx

root@stlrx2540m1-108:~#

13. バケットにアクセスできることを確認します。

root@stlrx2540m4-01:~# aws s3 –endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls kafkasgdbucket1-2

2021-10-29 21:04:18 1388 1

2021-10-29 21:04:20 1388 2

2021-10-29 21:04:22 1388 3

root@stlrx2540m4-01:~#

14. s3 およびバケット構成用に s3-sink プロパティ ファイルを構成します。

20

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-

s3/etc/quickstart-s3.properties | grep -v ^#

name=s3-sink

connector.class=io.confluent.connect.s3.S3SinkConnector

tasks.max=1

topics=s3_testtopic

s3.region=us-west-2

s3.bucket.name=kafkasgdbucket1-2

store.url=http://kafkasgd.rtpppe.netapp.com:10444/

s3.part.size=5242880

flush.size=3

storage.class=io.confluent.connect.s3.storage.S3Storage

format.class=io.confluent.connect.s3.format.avro.AvroFormat

partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartit

ioner

schema.compatibility=NONE

root@stlrx2540m1-108:~#

15. いくつかのレコードを s3 バケットにインポートします。

kafka-avro-console-producer --broker-list localhost:9092 --topic

s3_topic \

--property

value.schema='{"type":"record","name":"myrecord","fields":[{"name":"f1",

"type":"string"}]}'

{"f1": "value1"}

{"f1": "value2"}

{"f1": "value3"}

{"f1": "value4"}

{"f1": "value5"}

{"f1": "value6"}

{"f1": "value7"}

{"f1": "value8"}

{"f1": "value9"}

16. s3-sink コネクタをロードします。

21

root@stlrx2540m1-108:~# confluent local services connect connector load

s3-sink --config /data/confluent/confluent-6.2.0/share/confluent-hub-

components/confluentinc-kafka-connect-s3/etc/quickstart-s3.properties

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

 "name": "s3-sink",

 "config": {

 "connector.class": "io.confluent.connect.s3.S3SinkConnector",

 "flush.size": "3",

 "format.class": "io.confluent.connect.s3.format.avro.AvroFormat",

 "partitioner.class":

"io.confluent.connect.storage.partitioner.DefaultPartitioner",

 "s3.bucket.name": "kafkasgdbucket1-2",

 "s3.part.size": "5242880",

 "s3.region": "us-west-2",

 "schema.compatibility": "NONE",

 "storage.class": "io.confluent.connect.s3.storage.S3Storage",

 "store.url": "http://kafkasgd.rtpppe.netapp.com:10444/",

 "tasks.max": "1",

 "topics": "s3_testtopic",

 "name": "s3-sink"

 },

 "tasks": [],

 "type": "sink"

}

root@stlrx2540m1-108:~#

17. s3-sink のステータスを確認します。

22

root@stlrx2540m1-108:~# confluent local services connect connector

status s3-sink

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

 "name": "s3-sink",

 "connector": {

 "state": "RUNNING",

 "worker_id": "10.63.150.185:8083"

 },

 "tasks": [

 {

 "id": 0,

 "state": "RUNNING",

 "worker_id": "10.63.150.185:8083"

 }

],

 "type": "sink"

}

root@stlrx2540m1-108:~#

18. ログをチェックして、s3-sink がトピックを受け入れる準備ができていることを確認します。

root@stlrx2540m1-108:~# confluent local services connect log

19. Kafka のトピックを確認します。

kafka-topics --list --bootstrap-server localhost:9092

…

connect-configs

connect-offsets

connect-statuses

default_ksql_processing_log

s3_testtopic

s3_topic

s3_topic_new

root@stlrx2540m1-108:~#

20. s3 バケット内のオブジェクトを確認します。

23

root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls --recursive kafkasgdbucket1-

2/topics/

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000003.avro

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000006.avro

2021-10-29 21:24:08 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000009.avro

2021-10-29 21:24:08 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000012.avro

2021-10-29 21:24:09 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000015.avro

root@stlrx2540m1-108:~#

21. 内容を確認するには、次のコマンドを実行して、各ファイルを S3 からローカルファイルシステムにコピ
ーします。

root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 cp s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

tes.avro

download: s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro to

./tes.avro

root@stlrx2540m1-108:~#

22. レコードを印刷するには、avro-tools-1.11.0.1.jar（ "Apacheアーカイブ" ）。

root@stlrx2540m1-108:~# java -jar /usr/src/avro-tools-1.11.0.1.jar

tojson tes.avro

21/10/30 00:20:24 WARN util.NativeCodeLoader: Unable to load native-

hadoop library for your platform... using builtin-java classes where

applicable

{"f1":"value1"}

{"f1":"value2"}

{"f1":"value3"}

root@stlrx2540m1-108:~#

24

http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/
http://mirror.metrocast.net/apache/avro/stable/java/

Instaclustr Kafka Connect コネクタ

Instaclustr は Kafka Connect コネクタとその詳細をサポートします - "詳細"。Instaclustrは追加のコネクタを提
供します "詳細"

合流型自己バランスクラスター

これまでに Kafka クラスターを管理したことがある場合は、クラスター全体でワークロ
ードのバランスをとるためにパーティションを別のブローカーに手動で再割り当てする
際の課題をよくご存知でしょう。大規模な Kafka を導入している組織では、特にミッシ
ョンクリティカルなアプリケーションがクラスター上に構築されている場合、大量のデ
ータの再シャッフルは困難で面倒でリスクを伴う可能性があります。ただし、Kafka の
使用例が最小であっても、プロセスには時間がかかり、人為的エラーが発生しやすくな
ります。

私たちのラボでは、クラスター トポロジの変更や負荷の不均一性に基づいて再バランス調整を自動化する
Confluent の自己バランス調整クラスター機能をテストしました。 Confluent の再バランス テストは、ノード
障害が発生したとき、またはスケーリング ノードでブローカー間でデータの再バランス調整が必要になった
ときに、新しいブローカーを追加する時間を測定するのに役立ちます。従来の Kafka 構成では、クラスター
の拡大に伴って再バランス調整するデータの量も増加しますが、階層型ストレージでは再バランス調整は少量
のデータに制限されます。当社の検証によると、階層型ストレージの再バランス調整は、従来の Kafka アー
キテクチャでは数秒または数分かかり、クラスターの拡大に伴って直線的に増加します。

自己バランス型クラスターでは、パーティションの再バランスが完全に自動化され、Kafka のスループットが
最適化され、ブローカーのスケーリングが加速され、大規模なクラスターを実行する際の運用上の負担が軽減
されます。定常状態では、自己バランス型クラスターがブローカー間のデータの偏りを監視し、パーティショ
ンを継続的に再割り当てしてクラスターのパフォーマンスを最適化します。プラットフォームを拡大または縮
小する場合、自己バランス型クラスターは新しいブローカーの存在または古いブローカーの削除を自動的に認
識し、後続のパーティションの再割り当てをトリガーします。これにより、ブローカーを簡単に追加および廃
止できるようになり、Kafka クラスターの弾力性が根本的に向上します。これらの利点は、手動による介入、
複雑な計算、またはパーティションの再割り当てに通常伴う人的エラーのリスクを必要とせずに得られます。
その結果、データの再バランス調整ははるかに短い時間で完了し、クラスターを常に監視する必要がなくな
り、より価値の高いイベント ストリーミング プロジェクトに集中できるようになります。

Instaclustr はセルフリバランス機能もサポートしており、複数の顧客に実装されています。

ベストプラクティスガイドライン

このセクションでは、この認定から得られた教訓を紹介します。

• 当社の検証によると、Confluent がデータを保存するには S3 オブジェクト ストレージが最適です。

• Confluent 階層型ストレージ構成では、ブローカー データ ディレクトリに保持されるデータのサイズは、
データがオブジェクト ストレージに移動されるときのセグメント サイズと保持期間に基づいているた
め、高スループット SAN (具体的には FC) を使用してブローカーのホット データまたはローカル ディス
クを保持できます。

• オブジェクト ストアでは、segment.bytes が大きいほどパフォーマンスが向上します。512 MB でテスト
しました。

• Kafkaでは、トピックに生成される各レコードのキーまたは値の長さ（バイト単位）は、

25

https://github.com/instaclustr/kafka-connect-connectors
https://github.com/instaclustr/kafka-connect-connectors
https://github.com/instaclustr/kafka-connect-connectors
https://github.com/instaclustr/kafka-connect-connectors
https://github.com/instaclustr/kafka-connect-connectors
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/

`length.key.value`パラメータ。 StorageGRIDの場合、S3 オブジェクトの取り込みおよび取得のパフォ
ーマンスがより高い値に向上しました。たとえば、512 バイトでは 5.8 GBps の取得、1024 バイトでは
7.5 GBps の s3 取得、2048 バイトでは 10 GBps に近い取得が実現しました。

次の図は、S3オブジェクトの取り込みと取得を次の表に基づいて示しています。 length.key.value 。

• *Kafka のチューニング。*階層化ストレージのパフォーマンスを向上させるに
は、TierFetcherNumThreads と TierArchiverNumThreads を増やすことができます。一般的なガイドライ
ンとして、TierFetcherNumThreads を物理 CPU コアの数に合わせて増やし、TierArchiverNumThreads を
CPU コアの数の半分まで増やします。たとえば、サーバーのプロパティで、8 つの物理コアを持つマシン
がある場合は、confluent.tier.fetcher.num.threads = 8 および confluent.tier.archiver.num.threads = 4 に設定
します。

• *トピック削除の時間間隔。*トピックが削除されても、オブジェクト ストレージ内のログ セグメント フ
ァイルの削除はすぐには開始されません。むしろ、それらのファイルが削除されるまでの期間が、デフォ
ルト値の 3 時間に設定されています。この間隔の値を変更するには、構成
confluent.tier.topic.delete.check.interval.ms を変更します。トピックまたはクラスターを削除する場合は、
それぞれのバケット内のオブジェクトを手動で削除することもできます。

• *階層化ストレージの内部トピックに関する ACL。*オンプレミス展開で推奨されるベスト プラクティス
は、階層化ストレージに使用される内部トピックで ACL 承認者を有効にすることです。 ACL ルールを設
定して、このデータへのアクセスをブローカー ユーザーのみに制限します。これにより、内部トピックが
保護され、階層化ストレージ データとメタデータへの不正アクセスが防止されます。

kafka-acls --bootstrap-server localhost:9092 --command-config adminclient-

configs.conf \

--add --allow-principal User:<kafka> --operation All --topic "_confluent-

tier-state"

ユーザーを置き換える `<kafka>`デプロイメント内の実際のブローカー プリンシパルを使用し
ます。

例えば、コマンド `confluent-tier-state`階層化ストレージの内部トピックに ACL を設定します。現在、階層化

26

ストレージに関連する内部トピックは 1 つだけです。この例では、内部トピックのすべての操作に対して
プリンシパル Kafka 権限を提供する ACL を作成します。

サイジング

Kafka のサイズ設定は、シンプル、詳細、リバース、パーティションの 4 つの構成モー
ドで実行できます。

単純

シンプル モードは、Apache Kafka を初めて使用するユーザーや初期状態のユース ケースに適しています。こ
のモードでは、スループット MBps、読み取りファンアウト、保持期間、リソース使用率 (デフォルトは 60%)

などの要件を指定します。また、オンプレミス (ベアメタル、VMware、Kubernetes、OpenStack) やクラウド
などの環境も入力します。この情報に基づいて、Kafka クラスターのサイズを決定すると、ブローカ
ー、Zookeeper、Apache Kafka Connect Workers、スキーマ レジストリ、REST プロキシ、ksqlDB、および
Confluent コントロール センターに必要なサーバーの数がわかります。

階層型ストレージの場合、Kafka クラスターのサイズ設定にはきめ細かな構成モードを検討してください。粒
度モードは、経験豊富な Apache Kafka ユーザーや明確に定義されたユースケースに適しています。このセク
ションでは、プロデューサー、ストリーム プロセッサ、およびコンシューマーのサイズ設定について説明し
ます。

プロデューサー

Apache Kafka のプロデューサー (ネイティブ クライアント、REST プロキシ、Kafka コネクタなど) を記述す
るには、次の情報を提供します。

• *名前。*スパーク。

• *プロデューサータイプ。*アプリケーションまたはサービス、プロキシ (REST、MQTT、その他)、既存の
データベース (RDBMS、NOSQL、その他)。 「分からない」を選択することもできます。

• 平均スループット 1 秒あたりのイベント数 (たとえば 1,000,000)。

• ピークスループット 1 秒あたりのイベント数 (たとえば 4,000,000)。

• *平均メッセージサイズ*バイト単位、非圧縮（最大 1 MB、たとえば 1000）。

• *メッセージ形式*オプションには、Avro、JSON、プロトコル バッファー、バイナリ、テキスト、「わか
りません」などがあります。

• *複製係数*オプションは 1、2、3 (Confluent 推奨)、4、5、または 6 です。

• *保持時間*ある日（例えば）。 Apache Kafka にデータをどれくらいの期間保存しますか? 任意の単位で
-1 を入力すると、無限の時間になります。計算機では、無限保持の場合の保持期間を 10 年と想定してい
ます。

• 「階層化ストレージを有効にしてブローカー数を減らし、無制限のストレージを可能にしますか?」のチ
ェックボックスを選択します。

• 階層化ストレージが有効な場合、保持フィールドはブローカーにローカルに保存されるホット データ セ
ットを制御します。アーカイブ保持フィールドは、アーカイブ オブジェクト ストレージにデータが保存
される期間を制御します。

• アーカイブストレージの保持。 1年（例）。データをアーカイブストレージにどれくらいの期間保存しま
すか? 任意の単位で -1 を入力すると、継続時間は無制限になります。計算機では、無制限の保持期間とし

27

て 10 年間を想定しています。

• 成長乗数 1 (例)このパラメータの値が現在のスループットに基づいている場合は、1 に設定します。追加
の成長に基づいてサイズを決定するには、このパラメータを成長乗数に設定します。

• プロデューサーインスタンスの数。 10（例）。いくつのプロデューサーインスタンスが実行されますか?

この入力は、CPU 負荷をサイズ計算に組み込むために必要です。空白の値は、CPU 負荷が計算に組み込
まれていないことを示します。

このサンプル入力に基づくと、サイズ設定はプロデューサーに次のような影響を及ぼします。

• 非圧縮バイトでの平均スループット: 1GBps。非圧縮バイトでのピーク スループット: 4GBps。圧縮バイ
トでの平均スループット: 400MBps。圧縮バイトでのピーク スループット: 1.6GBps。これはデフォルト
の 60% の圧縮率に基づいています (この値は変更できます)。

◦ 必要なブローカー上のホットセット ストレージの合計: レプリケーション、圧縮を含む 31,104 TB。
必要なブローカー外アーカイブ ストレージの合計: 378,432 TB (圧縮済み)。使
用"https://fusion.netapp.com"StorageGRID のサイズ設定用。

ストリーム プロセッサは、Apache Kafka からデータを消費し、Apache Kafka にデータを返すアプリケーシ
ョンまたはサービスを記述する必要があります。ほとんどの場合、これらは ksqlDB または Kafka Streams に
組み込まれています。

• *名前。*スパークストリーマー。

• *処理時間*このプロセッサは 1 つのメッセージを処理するのにどのくらいの時間がかかりますか?

◦ 1 ミリ秒 (単純なステートレス変換) [例]、10 ミリ秒 (ステートフルなメモリ内操作)。

◦ 100 ミリ秒 (ステートフル ネットワークまたはディスク操作)、1000 ミリ秒 (サードパーティの REST

呼び出し)。

◦ 私はこのパラメータをベンチマークし、どれくらいの時間がかかるかを正確に把握しています。

• 出力保持 1日（例）ストリーム プロセッサは、Apache Kafka に出力を返します。この出力データを
Apache Kafka にどれくらいの期間保存しますか? 任意の単位で -1 を入力すると、継続時間は無制限にな
ります。

• 「階層化ストレージを有効にしてブローカー数を減らし、無制限のストレージを可能にしますか?」のチ
ェックボックスを選択します。

• アーカイブストレージの保持。 1年（例）。データをアーカイブストレージにどれくらいの期間保存しま
すか? 任意の単位で -1 を入力すると、継続時間は無制限になります。計算機では、無制限の保持期間とし
て 10 年間を想定しています。

• 出力パススルー率。 100（例）。ストリーム プロセッサは、Apache Kafka に出力を返します。受信スル
ープットの何パーセントが Apache Kafka に出力されますか? たとえば、受信スループットが 20MBps

で、この値が 10 の場合、出力スループットは 2MBps になります。

• これはどのアプリケーションから読み取るのでしょうか? プロデューサー タイプに基づくサイズ設定で使
用される名前「Spark」を選択します。上記の入力に基づいて、ストリーム プロセッサ インスタンスとト
ピック パーティションの推定に対するサイズ設定の次のような影響が予想されます。

• このストリーム プロセッサ アプリケーションには、次の数のインスタンスが必要です。着信トピックに
も、おそらくこれだけのパーティションが必要になります。このパラメータを確認するには、Confluent

にお問い合わせください。

◦ 成長乗数なしの平均スループットは 1,000

◦ 成長乗数なしのピークスループットの場合は 4,000

28

https://fusion.netapp.com

◦ 成長乗数付き平均スループットは1,000

◦ 成長乗数によるピークスループット4,000

消費者

Apache Kafka からデータを消費し、Apache Kafka にデータを返さないアプリケーションまたはサービス (ネ
イティブ クライアントや Kafka コネクタなど) について説明します。

• 名前。 Spark の消費者。

• *処理時間*このコンシューマーが 1 つのメッセージを処理するのにどれくらいの時間がかかりますか?

◦ 1 ミリ秒 (たとえば、ログ記録のような単純でステートレスなタスク)

◦ 10 ミリ秒 (データストアへの高速書き込み)

◦ 100 ミリ秒 (データストアへの書き込みが遅い)

◦ 1000ミリ秒（サードパーティのREST呼び出し）

◦ 期間が既知のその他のベンチマーク プロセス。

• *消費者タイプ。*既存のデータストア (RDBMS、NoSQL、その他) へのアプリケーション、プロキシ、ま
たはシンク。

• これはどのアプリケーションから読み取るのでしょうか? このパラメータを、以前に決定したプロデュー
サーおよびストリームのサイズに接続します。

上記の入力に基づいて、コンシューマー インスタンスのサイズとトピック パーティションの見積りを決定す
る必要があります。コンシューマー アプリケーションには次の数のインスタンスが必要です。

• 平均スループットは2,000、成長乗数なし

• ピーク時のスループットは8,000、成長乗数なし

• 成長乗数を含む平均スループットは2,000

• 成長乗数を含むピークスループットは8,000

着信トピックにもこの数のパーティションが必要になる可能性があります。確認するには Confluent にお問い
合わせください。

プロデューサー、ストリーム プロセッサ、コンシューマーの要件に加えて、次の追加要件も提供する必要が
あります。

• *再建の時間です。*たとえば、4 時間。 Apache Kafka ブローカー ホストに障害が発生し、そのデータが
失われ、障害が発生したホストの代わりに新しいホストがプロビジョニングされた場合、この新しいホス
トはどのくらいの速さで再構築する必要がありますか? 値が不明な場合は、このパラメータを空白のまま
にしておきます。

• *リソース使用率目標（パーセント）*たとえば、60。平均スループット時にホストをどの程度利用したい
ですか? Confluent では、Confluent 自己バランス クラスターを使用している場合を除き、60% の使用率
を推奨しています。その場合、使用率はさらに高くなります。

あなたの環境を説明してください

• クラスターはどのような環境で実行されますか? Amazon Web Services、Microsoft Azure、Google Cloud

Platform、オンプレミスのベアメタル、オンプレミスの VMware、オンプレミスの OpenStack、オンプレ

29

ミスの Kubernates のどれですか?

• *ホストの詳細*コア数: 48 (例)、ネットワーク カードの種類 (10GbE、40GbE、16GbE、1GbE、またはそ
の他の種類)。

• *ストレージボリューム*ホスト: 12 (例)ホストごとにいくつのハードドライブまたは SSD がサポートされ
ますか? Confluent では、ホストごとに 12 台のハード ドライブを推奨しています。

• ストレージ容量/ボリューム（GB単位） 1000（例）。 1 つのボリュームにはギガバイト単位でどれくら
いのストレージを保存できますか? Confluent では 1 TB のディスクを推奨します。

• *ストレージ構成*ストレージ ボリュームはどのように構成されますか? Confluent では、Confluent のすべ
ての機能を活用するために RAID10 を推奨しています。 JBOD、SAN、RAID 1、RAID 0、RAID 5 などの
タイプもサポートされています。

• 単一ボリュームのスループット (MBps)。 125（例）。単一のストレージ ボリュームは、メガバイト/秒単
位でどのくらいの速度で読み取りまたは書き込みできますか? Confluent では、通常 125MBps のスループ
ットを持つ標準ハードドライブを推奨しています。

• メモリ容量(GB) 64（例）。

環境変数を決定したら、「クラスターのサイズを設定」を選択します。上記の例のパラメータに基づい
て、Confluent Kafka のサイズを次のように決定しました。

• *Apache Kafka。*ブローカー数: 22。クラスターはストレージに制限されています。ホスト数を減らし、
無制限のストレージを可能にするために、階層化ストレージを有効にすることを検討してください。

• *Apache ZooKeeper。*数: 5、Apache Kafka Connect Workers: 数: 2、スキーマ レジストリ: 数: 2、REST

プロキシ: 数: 2、ksqlDB: 数: 2、Confluent Control Center: 数: 1。

ユースケースを考慮しないプラットフォーム チームにはリバース モードを使用します。パーティション モー
ドを使用して、1 つのトピックに必要なパーティションの数を計算します。見る https://eventsizer.ioリバース
およびパーティション モードに基づいてサイズを決定します。

まとめ

このドキュメントでは、検証テスト、階層化ストレージのパフォーマンス結果、チュー
ニング、Confluent S3 コネクタ、自己バランス機能など、Confluent 階層化ストレージ
をNetAppストレージと共に使用するためのベスト プラクティス ガイドラインを示しま
す。 ILM ポリシー、検証のための複数のパフォーマンス テストによる Confluent のパフ
ォーマンス、業界標準の S3 API を考慮すると、 NetApp StorageGRIDオブジェクト ス
トレージは Confluent 階層型ストレージに最適な選択肢です。

詳細情報の入手方法

このドキュメントに記載されている情報の詳細については、次のドキュメントや Web サイトを参照してくだ
さい。

• Apache Kafkaとは

"https://www.confluent.io/what-is-apache-kafka/"

• NetApp製品ドキュメント

30

https://eventsizer.io
https://www.confluent.io/what-is-apache-kafka/

"https://www.netapp.com/support-and-training/documentation/"

• S3シンクパラメータの詳細

"https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-

options"

• Apache Kafka

"https://en.wikipedia.org/wiki/Apache_Kafka"

• Confluent Platform の無限ストレージ

"https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/"

• Confluent 階層型ストレージ - ベストプラクティスとサイジング

"https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations"

• Confluent Platform 用 Amazon S3 シンクコネクタ

"https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html"

• Kafka のサイズ設定

"https://eventsizer.io"

• StorageGRIDのサイズ設定

"https://fusion.netapp.com/"

• Kafkaのユースケース

"https://kafka.apache.org/uses"

• Confluent Platform 6.0 における Kafka クラスターの自己バランス

"https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/"

"https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-

to-date/"

• Instaclustr の顧客サンプルとそのユースケースの詳細

https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/、
https://www.instaclustr.com/wp-content/uploads/Insta_Case_Study_Pegasystems_1_21sep25.pdf

https://www.instaclustr.com/resources/customer-case-study-pubnub/

https://www.instaclustr.com/resources/customer-case-study-tesouro/

31

https://www.netapp.com/support-and-training/documentation/
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://en.wikipedia.org/wiki/Apache_Kafka
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations
https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html
https://eventsizer.io
https://fusion.netapp.com/
https://kafka.apache.org/uses
https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/
https://www.instaclustr.com/wp-content/uploads/Insta_Case_Study_Pegasystems_1_21sep25.pdf
https://www.instaclustr.com/resources/customer-case-study-pubnub/
https://www.instaclustr.com/resources/customer-case-study-tesouro/

著作権に関する情報

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

32

http://www.netapp.com/TM

	Confluent Kafka のベストプラクティス : NetApp artificial intelligence solutions
	目次
	Confluent Kafka のベストプラクティス
	TR-4912: NetAppを使用した Confluent Kafka 階層型ストレージのベストプラクティスガイドライン
	Confluent 階層型ストレージを選ぶ理由
	階層型ストレージにNetApp StorageGRID を選ぶ理由
	Confluent階層化ストレージの有効化

	ソリューションアーキテクチャの詳細
	技術概要
	NetAppStorageGRID
	Apache Kafka
	合流

	合流検証
	Confluent Platform のセットアップ
	Confluent階層型ストレージ構成
	NetAppオブジェクトストレージ - StorageGRID
	検証テスト

	スケーラビリティを考慮したパフォーマンステスト
	Confluent S3コネクタ
	Instaclustr Kafka Connect コネクタ

	合流型自己バランスクラスター
	ベストプラクティスガイドライン
	サイジング
	単純

	まとめ
	詳細情報の入手方法

