
MLOps 向け FSx ONTAP
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/ja-jp/netapp-solutions-ai/cloud/ai-mlops-fsxn-
intro.html on February 12, 2026. Always check docs.netapp.com for the latest.

目次

MLOps 向け FSx ONTAP . 1

MLOps 向けAmazon FSx for NetApp ONTAP (FSx ONTAP). 1

パート 1 - Amazon FSx for NetApp ONTAP (FSx ONTAP) をプライベート S3 バケットとして AWS

SageMaker に統合する . 1

はじめに. 1

ユーザーガイド . 1

便利なデバッグチェックリスト. 14

よくある質問（2023年9月27日現在） . 15

パート 2 - SageMaker でのモデルトレーニングのデータソースとして AWS Amazon FSx for NetApp

ONTAP (FSx ONTAP) を活用する . 15

はじめに. 15

FSx ONTAPとは . 15

前提条件. 16

統合の概要 . 16

ステップバイステップの統合 . 17

パート 3 - 簡素化された MLOps パイプラインの構築 (CI/CT/CD) . 24

はじめに. 24

マニフェスト . 24

前提条件. 25

アーキテクチャ . 25

ステップバイステップの設定 . 25

MLOps 向け FSx ONTAP

MLOps 向けAmazon FSx for NetApp ONTAP (FSx ONTAP)

このセクションでは、AI インフラストラクチャ開発の実際のアプリケーションについて
詳しく説明し、FSx ONTAPを使用して MLOps パイプラインを構築するエンドツーエン
ドのチュートリアルを提供します。 3 つの包括的な例で構成されており、この強力なデ
ータ管理プラットフォームを介して MLOps のニーズを満たす方法をガイドします。

これらの記事は以下に焦点を当てています。

1. "パート 1 - Amazon FSx for NetApp ONTAP (FSx ONTAP) をプライベート S3 バケットとして AWS

SageMaker に統合する"

2. "パート 2 - SageMaker でのモデルトレーニング用のデータソースとしてAmazon FSx for NetApp ONTAP

(FSx ONTAP) を活用する"

3. "パート 3 - 簡素化された MLOps パイプラインの構築 (CI/CT/CD)"

このセクションの終わりまでに、FSx ONTAPを使用して MLOps プロセスを効率化する方法についてしっか
りと理解できるようになります。

パート 1 - Amazon FSx for NetApp ONTAP (FSx ONTAP) をプ
ライベート S3 バケットとして AWS SageMaker に統合する

このセクションでは、AWS SageMaker を使用して FSx ONTAP をプライベート S3 バケ
ットとして設定する方法について説明します。

はじめに

このページでは、SageMaker を例に、FSx ONTAP をプライベート S3 バケットとして設定する方法について
説明します。

FSx ONTAPの詳細については、このプレゼンテーションをご覧ください ("ビデオリンク" ）

ユーザーガイド

サーバーの作成

SageMakerノートブックインスタンスを作成する

1. AWS コンソールを開きます。検索パネルで SageMaker を検索し、サービス Amazon SageMaker をクリ
ックします。

1

http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk
http://youtube.com/watch?v=mFN13R6JuUk

2. [ノートブック] タブの [ノートブック インスタンス] を開き、オレンジ色のボタン [ノートブック インスタ
ンスの作成] をクリックします。

3. 作成ページで、ノートブックインスタンス名*を入力します。*ネットワーク*パネルを展開します。他のエ
ントリはデフォルトのままにして、*VPC、サブネット、および*セキュリティグループ*を選択します。 (

この VPC と サブネット は、後で FSx ONTAPファイル システムを作成するために使用されます) 右下に
あるオレンジ色のボタン ノートブック インスタンスの作成 をクリックします。

2

FSx ONTAPファイルシステムを作成する

1. AWS コンソールを開きます。検索パネルで「Fsx」を検索し、サービス FSx をクリックします。

3

2. *ファイルシステムの作成*をクリックします。

3. 最初のカード FSx ONTAP を選択し、次へ をクリックします。

4

4. 詳細設定ページで。

a. *標準作成*オプションを選択します。

b. *ファイルシステム名*と*SSDストレージ容量*を入力します。

5

c. SageMaker Notebook インスタンスと同じ VPC と サブネット を使用するようにしてください。

6

d. ストレージ仮想マシン 名を入力し、SVM (ストレージ仮想マシン) の パスワードを指定 します。

7

e. 他のエントリはデフォルトのままにして、右下にあるオレンジ色のボタン「次へ」をクリックしま
す。

f. レビュー ページの右下にあるオレンジ色のボタン * ファイル システムの作成 * をクリックします。

8

5. FSx ファイル システムの起動には約 20 ～ 40 分 かかる場合があります。

サーバー構成

ONTAP構成

1. 作成された FSx ファイル システムを開きます。ステータスが「利用可能」であることを確認してくださ
い。

2. 管理*タブを選択し、*管理エンドポイント - IP アドレス*と ONTAP管理者ユーザー名*を保持します。

9

3. 作成された*SageMaker Notebookインスタンス*を開き、*JupyterLabを開く*をクリックします。

4. Jupyter Lab ページで、新しい ターミナル を開きます。

10

5. FSx ONTAPファイル システムにログインするには、ssh コマンド ssh <admin user name>@< ONTAP

server IP> を入力します。 (ユーザー名とIPアドレスは手順2で取得します) *ストレージ仮想マシン*作成時
に使用したパスワードを使用してください。

6. 次の順序でコマンドを実行します。 FSx ONTAPプライベート S3 バケット名 の名前として fsxn-ontap

を使用します。 -vserver 引数には ストレージ仮想マシン名 を使用してください。

vserver object-store-server create -vserver fsxn-svm-demo -object-store

-server fsx_s3 -is-http-enabled true -is-https-enabled false

vserver object-store-server user create -vserver fsxn-svm-demo -user

s3user

vserver object-store-server group create -name s3group -users s3user

-policies FullAccess

vserver object-store-server bucket create fsxn-ontap -vserver fsxn-svm-

demo -type nas -nas-path /vol1

11

7. 以下のコマンドを実行して、FSx ONTAPプライベート S3 のエンドポイント IP と資格情報を取得しま
す。

network interface show -vserver fsxn-svm-demo -lif nfs_smb_management_1

set adv

vserver object-store-server user show

8. 将来使用するためにエンドポイントの IP と資格情報を保持します。

12

クライアント構成

1. SageMaker Notebook インスタンスで、新しい Jupyter ノートブックを作成します。

2. 以下のコードを回避策として使用して、FSx ONTAPプライベート S3 バケットにファイルをアップロード
します。包括的なコード例については、このノートブックを参照してください。"fsxn_demo.ipynb"

Setup configurations

-------- Manual configurations --------

seed: int = 77 # Random

seed

bucket_name: str = 'fsxn-ontap' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip: str = '<Your FSx ONTAP IP address>' # Please get

this IP address from FSx ONTAP

-------- Manual configurations --------

Workaround

Permission patch

!mkdir -p vol1

!sudo mount -t nfs $fsx_endpoint_ip:/vol1 /home/ec2-user/SageMaker/vol1

!sudo chmod 777 /home/ec2-user/SageMaker/vol1

Authentication for FSx ONTAP as a Private S3 Bucket

!aws configure set aws_access_key_id $aws_access_key_id

13

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/mlops_fsxn_s3_integration_0.ipynb

!aws configure set aws_secret_access_key $aws_secret_access_key

Upload file to the FSx ONTAP Private S3 Bucket

%%capture

local_file_path: str = <Your local file path>

!aws s3 cp --endpoint-url http://$fsx_endpoint_ip /home/ec2-user

/SageMaker/$local_file_path s3://$bucket_name/$local_file_path

Read data from FSx ONTAP Private S3 bucket

Initialize a s3 resource client

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with

FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

--- End integrating SageMaker with FSXN ---

Read file byte content

bucket = s3_client.Bucket(bucket_name)

binary_data = bucket.Object(data.filename).get()['Body']

これで、FSx ONTAPと SageMaker インスタンスの統合は完了です。

便利なデバッグチェックリスト

• SageMaker Notebook インスタンスと FSx ONTAPファイルシステムが同じ VPC にあることを確認しま
す。

14

• 権限レベルを dev に設定するには、 ONTAPで set dev コマンドを実行することを忘れないでください。

よくある質問（2023年9月27日現在）

Q: FSx ONTAPにファイルをアップロードするときに、「CreateMultipartUpload 操作の呼び出し時にエラー
が発生しました (NotImplemented): 要求した s3 コマンドは実装されていません」というエラーが表示される
のはなぜですか?

A: プライベート S3 バケットとして、FSx ONTAP は最大 100 MB のファイルのアップロードをサポートしま
す。 S3 プロトコルを使用する場合、100 MB を超えるファイルは 100 MB のチャンクに分割さ
れ、「CreateMultipartUpload」関数が呼び出されます。ただし、FSx ONTAPプライベート S3 の現在の実装
では、この機能はサポートされていません。

Q: FSx ONTAPにファイルをアップロードするときに、「PutObject 操作の呼び出し時にエラーが発生しまし
た (AccessDenied)。アクセスが拒否されました」というエラーが表示されるのはなぜですか?

A: SageMaker Notebook インスタンスから FSx ONTAPプライベート S3 バケットにアクセスするには、AWS

認証情報を FSx ONTAP認証情報に切り替えます。ただし、インスタンスに書き込み権限を付与するには、バ
ケットをマウントし、「chmod」シェル コマンドを実行して権限を変更するという回避策が必要です。

Q: FSx ONTAPプライベート S3 バケットを他の SageMaker ML サービスと統合するにはどうすればよいです
か?

A: 残念ながら、SageMaker サービス SDK では、プライベート S3 バケットのエンドポイントを指定する方法
は提供されていません。その結果、FSx ONTAP S3 は、Sagemaker Data Wrangler、Sagemaker Clarify

、Sagemaker Glue、Sagemaker Athena、Sagemaker AutoML などの SageMaker サービスと互換性がありま
せん。

パート 2 - SageMaker でのモデルトレーニングのデータソース
として AWS Amazon FSx for NetApp ONTAP (FSx ONTAP)
を活用する

この記事は、Amazon FSx for NetApp ONTAP (FSx ONTAP) を使用して SageMaker で
PyTorch モデルをトレーニングする方法について、具体的にはタイヤ品質分類プロジェ
クト向けのチュートリアルです。

はじめに

このチュートリアルでは、コンピューター ビジョン分類プロジェクトの実用的な例を示し、SageMaker 環境
内で FSx ONTAP をデータ ソースとして利用する ML モデルの構築に関する実践的な体験を提供します。こ
のプロジェクトは、ディープラーニング フレームワークである PyTorch を使用して、タイヤ画像に基づいて
タイヤの品質を分類することに重点を置いています。 Amazon SageMaker のデータソースとして FSx

ONTAPを使用した機械学習モデルの開発に重点を置いています。

FSx ONTAPとは

Amazon FSx ONTAP は、AWS が提供する完全に管理されたストレージソリューションです。 NetApp

のONTAPファイル システムを活用して、信頼性が高く高性能なストレージを提供します。 NFS、SMB

、iSCSI などのプロトコルをサポートしているため、さまざまなコンピューティング インスタンスやコンテ
ナーからのシームレスなアクセスが可能になります。このサービスは、優れたパフォーマンスを提供し、高速

15

かつ効率的なデータ操作を保証するように設計されています。また、高い可用性と耐久性も提供し、データの
アクセスと保護が維持されます。さらに、 Amazon FSx ONTAPのストレージ容量はスケーラブルなので、ニ
ーズに応じて簡単に調整できます。

前提条件

ネットワーク環境

FSx ONTAP (Amazon FSx ONTAP) は AWS ストレージサービスです。これには、 NetApp ONTAPシステム上
で実行されるファイルシステムと、それに接続する AWS 管理のシステム仮想マシン (SVM) が含まれます。
提供された図では、AWS によって管理されるNetApp ONTAPサーバーは VPC の外部に配置されています。
SVM は SageMaker とNetApp ONTAPシステム間の仲介役として機能し、SageMaker から操作要求を受信し
て、基盤となるストレージに転送します。 FSx ONTAPにアクセスするには、SageMaker を FSx ONTAPデプ
ロイメントと同じ VPC 内に配置する必要があります。この構成により、SageMaker と FSx ONTAP間の通信
とデータ アクセスが保証されます。

データ アクセス

実際のシナリオでは、データ サイエンティストは通常、FSx ONTAPに保存されている既存のデータを活用し
て機械学習モデルを構築します。ただし、デモンストレーションの目的では、FSx ONTAPファイル システム
は作成後最初は空であるため、トレーニング データを手動でアップロードする必要があります。これは、FSx

ONTAP をボリュームとして SageMaker にマウントすることで実現できます。ファイルシステムが正常にマ
ウントされると、マウントされた場所にデータセットをアップロードして、SageMaker 環境内でモデルをト
レーニングするためにアクセスできるようになります。このアプローチにより、モデルの開発とトレーニング
に SageMaker を使用しながら、FSx ONTAPのストレージ容量と機能を活用できます。

データ読み取りプロセスでは、FSx ONTAP をプライベート S3 バケットとして構成する必要があります。詳
細な設定手順については、以下を参照してください。"パート 1 - Amazon FSx for NetApp ONTAP (FSx

ONTAP) をプライベート S3 バケットとして AWS SageMaker に統合する"

統合の概要

16

ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html

FSx ONTAPのトレーニング データを使用して SageMaker でディープ ラーニング モデルを構築するワークフ
ローは、データ ローダーの定義、モデルのトレーニング、およびデプロイメントという 3 つの主なステップ
に要約できます。大まかに言えば、これらのステップは MLOps パイプラインの基盤を形成します。ただし、
包括的な実装のために、各ステップにはいくつかの詳細なサブステップが含まれます。これらのサブステップ
には、データの前処理、データセットの分割、モデルの構成、ハイパーパラメータの調整、モデルの評価、モ
デルの展開などのさまざまなタスクが含まれます。これらの手順により、SageMaker 環境内で FSx ONTAPの
トレーニング データを使用してディープ ラーニング モデルを構築および展開するための徹底的かつ効果的な
プロセスが保証されます。

ステップバイステップの統合

データLoader

PyTorch ディープラーニング ネットワークをデータでトレーニングするために、データのフィードを容易に
するデータ ローダーが作成されます。データ ローダーはバッチ サイズを定義するだけでなく、バッチ内の各
レコードを読み取って前処理する手順も決定します。データ ローダーを構成することで、データの処理をバ
ッチで処理し、ディープ ラーニング ネットワークのトレーニングが可能になります。

データ ローダーは 3 つの部分で構成されます。

前処理関数

from torchvision import transforms

preprocess = transforms.Compose([

 transforms.ToTensor(),

 transforms.Resize((224,224)),

 transforms.Normalize(

 mean=[0.485, 0.456, 0.406],

 std=[0.229, 0.224, 0.225]

)

])

上記のコード スニペットは、torchvision.transforms モジュールを使用した画像前処理変換の定義を示して
います。このチュートリアルでは、一連の変換を適用するための前処理オブジェクトが作成されます。ま
ず、ToTensor() 変換により、画像をテンソル表現に変換します。その後、Resize 224,224 変換により、画
像のサイズが 224x224 ピクセルの固定サイズに変更されます。最後に、Normalize() 変換は、各チャネルに

17

沿って平均を減算し、標準偏差で割ることでテンソル値を正規化します。正規化に使用される平均値と標準偏
差値は、事前トレーニング済みのニューラル ネットワーク モデルでよく使用されます。全体として、このコ
ードは、画像データをテンソルに変換し、サイズを変更し、ピクセル値を正規化することで、画像データをさ
らに処理したり、事前トレーニング済みモデルに入力したりできるように準備します。

PyTorch データセットクラス

import torch

from io import BytesIO

from PIL import Image

class FSxNImageDataset(torch.utils.data.Dataset):

 def __init__(self, bucket, prefix='', preprocess=None):

 self.image_keys = [

 s3_obj.key

 for s3_obj in list(bucket.objects.filter(Prefix=prefix).all())

]

 self.preprocess = preprocess

 def __len__(self):

 return len(self.image_keys)

 def __getitem__(self, index):

 key = self.image_keys[index]

 response = bucket.Object(key)

 label = 1 if key[13:].startswith('defective') else 0

 image_bytes = response.get()['Body'].read()

 image = Image.open(BytesIO(image_bytes))

 if image.mode == 'L':

 image = image.convert('RGB')

 if self.preprocess is not None:

 image = self.preprocess(image)

 return image, label

このクラスは、データセット内のレコードの合計数を取得する機能を提供し、各レコードのデータを読み取る
メソッドを定義します。 getitem 関数内で、コードは boto3 S3 バケット オブジェクトを使用して、FSx

ONTAPからバイナリ データを取得します。 FSx ONTAPからデータにアクセスするためのコード スタイル
は、Amazon S3 からデータを読み取る場合と似ています。以降の説明では、プライベート S3 オブジェクト
bucket の作成プロセスについて詳しく説明します。

プライベートS3リポジトリとしてのFSx ONTAP

18

seed = 77 # Random seed

bucket_name = '<Your ONTAP bucket name>' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip = '<Your FSx ONTAP IP address>' # Please

get this IP address from FSXN

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

s3_client = boto3.resource('s3')

bucket = s3_client.Bucket(bucket_name)

--- End integrating SageMaker with FSXN ---

SageMaker で FSx ONTAPからデータを読み取るために、S3 プロトコルを使用して FSx ONTAPストレージ
を指すハンドラーが作成されます。これにより、FSx ONTAP をプライベート S3 バケットとして扱うことが
できます。ハンドラーの設定には、FSx ONTAP SVM の IP アドレス、バケット名、および必要な資格情報の
指定が含まれます。これらの構成項目の取得に関する詳細な説明については、次の文書を参照してくださ
い。"パート 1 - Amazon FSx for NetApp ONTAP (FSx ONTAP) をプライベート S3 バケットとして AWS

SageMaker に統合する" 。

上記の例では、バケット オブジェクトを使用して PyTorch データセット オブジェクトをインスタンス化して
います。データセット オブジェクトについては、後続のセクションでさらに詳しく説明します。

19

ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html
ai-mlops-fsxn-s3.html

PyTorchデータLoader

from torch.utils.data import DataLoader

torch.manual_seed(seed)

1. Hyperparameters

batch_size = 64

2. Preparing for the dataset

dataset = FSxNImageDataset(bucket, 'dataset/tyre', preprocess=preprocess)

train, test = torch.utils.data.random_split(dataset, [1500, 356])

data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

提供されている例では、バッチ サイズ 64 が指定されており、各バッチに 64 個のレコードが含まれることを
示しています。 PyTorch Dataset クラス、前処理関数、およびトレーニング バッチ サイズを組み合わせるこ
とで、トレーニング用のデータ ローダーを取得します。このデータ ローダーは、トレーニング フェーズ中に
データセットをバッチで反復処理するプロセスを容易にします。

モデルトレーニング

from torch import nn

class TyreQualityClassifier(nn.Module):

 def __init__(self):

 super().__init__()

 self.model = nn.Sequential(

 nn.Conv2d(3,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,64,(3,3)),

 nn.ReLU(),

 nn.Flatten(),

 nn.Linear(64*(224-6)*(224-6),2)

)

 def forward(self, x):

 return self.model(x)

20

import datetime

num_epochs = 2

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = TyreQualityClassifier()

fn_loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

model.to(device)

for epoch in range(num_epochs):

 for idx, (X, y) in enumerate(data_loader):

 X = X.to(device)

 y = y.to(device)

 y_hat = model(X)

 loss = fn_loss(y_hat, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 current_time = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 print(f"Current Time: {current_time} - Epoch [{epoch+1}/

{num_epochs}]- Batch [{idx + 1}] - Loss: {loss}", end='\r')

このコードは標準の PyTorch トレーニング プロセスを実装します。これは、畳み込み層と線形層を使用して
タイヤの品質を分類する TyreQualityClassifier と呼ばれるニューラル ネットワーク モデルを定義します。ト
レーニング ループはデータ バッチを反復処理し、損失を計算し、バックプロパゲーションと最適化を使用し
てモデルのパラメータを更新します。さらに、監視の目的で現在の時刻、エポック、バッチ、損失を出力しま
す。

モデルの展開

導入

21

import io

import os

import tarfile

import sagemaker

1. Save the PyTorch model to memory

buffer_model = io.BytesIO()

traced_model = torch.jit.script(model)

torch.jit.save(traced_model, buffer_model)

2. Upload to AWS S3

sagemaker_session = sagemaker.Session()

bucket_name_default = sagemaker_session.default_bucket()

model_name = f'tyre_quality_classifier.pth'

2.1. Zip PyTorch model into tar.gz file

buffer_zip = io.BytesIO()

with tarfile.open(fileobj=buffer_zip, mode="w:gz") as tar:

 # Add PyTorch pt file

 file_name = os.path.basename(model_name)

 file_name_with_extension = os.path.split(file_name)[-1]

 tarinfo = tarfile.TarInfo(file_name_with_extension)

 tarinfo.size = len(buffer_model.getbuffer())

 buffer_model.seek(0)

 tar.addfile(tarinfo, buffer_model)

2.2. Upload the tar.gz file to S3 bucket

buffer_zip.seek(0)

boto3.resource('s3') \

 .Bucket(bucket_name_default) \

 .Object(f'pytorch/{model_name}.tar.gz') \

 .put(Body=buffer_zip.getvalue())

SageMaker ではモデルをデプロイするために S3 に保存する必要があるため、コードは PyTorch モデルを
Amazon S3 に保存します。モデルを Amazon S3 にアップロードすると、SageMaker からアクセスできるよ
うになり、デプロイされたモデルのデプロイと推論が可能になります。

import time

from sagemaker.pytorch import PyTorchModel

from sagemaker.predictor import Predictor

from sagemaker.serializers import IdentitySerializer

from sagemaker.deserializers import JSONDeserializer

class TyreQualitySerializer(IdentitySerializer):

22

 CONTENT_TYPE = 'application/x-torch'

 def serialize(self, data):

 transformed_image = preprocess(data)

 tensor_image = torch.Tensor(transformed_image)

 serialized_data = io.BytesIO()

 torch.save(tensor_image, serialized_data)

 serialized_data.seek(0)

 serialized_data = serialized_data.read()

 return serialized_data

class TyreQualityPredictor(Predictor):

 def __init__(self, endpoint_name, sagemaker_session):

 super().__init__(

 endpoint_name,

 sagemaker_session=sagemaker_session,

 serializer=TyreQualitySerializer(),

 deserializer=JSONDeserializer(),

)

sagemaker_model = PyTorchModel(

 model_data=f's3://{bucket_name_default}/pytorch/{model_name}.tar.gz',

 role=sagemaker.get_execution_role(),

 framework_version='2.0.1',

 py_version='py310',

 predictor_cls=TyreQualityPredictor,

 entry_point='inference.py',

 source_dir='code',

)

timestamp = int(time.time())

pytorch_endpoint_name = '{}-{}-{}'.format('tyre-quality-classifier', 'pt',

timestamp)

sagemaker_predictor = sagemaker_model.deploy(

 initial_instance_count=1,

 instance_type='ml.p3.2xlarge',

 endpoint_name=pytorch_endpoint_name

)

このコードは、SageMaker への PyTorch モデルのデプロイを容易にします。これは、入力データを PyTorch

テンソルとして前処理してシリアル化するカスタム シリアライザー TyreQualitySerializer を定義します。
TyreQualityPredictor クラスは、定義されたシリアライザーと JSONDeserializer を利用するカスタム予測子
です。このコードは、モデルの S3 の場所、IAM ロール、フレームワークのバージョン、推論のエントリ ポ
イントを指定するための PyTorchModel オブジェクトも作成します。コードはタイムスタンプを生成し、モ

23

デルとタイムスタンプに基づいてエンドポイント名を構築します。最後に、インスタンス数、インスタンスタ
イプ、生成されたエンドポイント名を指定して、deploy メソッドを使用してモデルがデプロイされます。こ
れにより、PyTorch モデルをデプロイし、SageMaker で推論にアクセスできるようになります。

推論

image_object = list(bucket.objects.filter('dataset/tyre'))[0].get()

image_bytes = image_object['Body'].read()

with Image.open(with Image.open(BytesIO(image_bytes)) as image:

 predicted_classes = sagemaker_predictor.predict(image)

 print(predicted_classes)

これは、デプロイされたエンドポイントを使用して推論を行う例です。

パート 3 - 簡素化された MLOps パイプラインの構築
(CI/CT/CD)

この記事では、自動化されたモデルの再トレーニング、デプロイ、コストの最適化に焦
点を当て、AWS サービスを使用して MLOps パイプラインを構築するためのガイドを提
供します。

はじめに

このチュートリアルでは、さまざまな AWS サービスを活用して、継続的インテグレーション (CI)、継続的ト
レーニング (CT)、継続的デプロイメント (CD) を含むシンプルな MLOps パイプラインを構築する方法を学習
します。従来の DevOps パイプラインとは異なり、MLOps では運用サイクルを完了するために追加の考慮が
必要です。このチュートリアルに従うことで、CT を MLOps ループに組み込み、モデルの継続的なトレーニ
ングと推論のシームレスな展開を可能にする方法について理解を深めることができます。このチュートリアル
では、AWS サービスを利用してこのエンドツーエンドの MLOps パイプラインを確立するプロセスについて
説明します。

マニフェスト

機能 Name コメント

データストレージ AWS FSx ONTAP 。 "パート 1 - Amazon FSx for

NetApp ONTAP (FSx ONTAP) をプ
ライベート S3 バケットとして
AWS SageMaker に統合する" 。

データサイエンスIDE AWS セージメーカー このチュートリアルは、"パート 2 -

SageMaker でのモデルトレーニン
グ用のデータソースとしてAmazon

FSx for NetApp ONTAP (FSx

ONTAP) を活用する" 。

24

ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html

機能 Name コメント

MLOpsパイプラインをトリガーす
る関数

AWS Lambda関数 -

Cronジョブトリガー AWS イベントブリッジ -

ディープラーニングフレームワー
ク

パイトーチ -

AWS Python SDK ボト3 -

プログラミング言語 Python バージョン3.10

前提条件

• 事前設定された FSx ONTAPファイル システム。このチュートリアルでは、トレーニング プロセスに FSx

ONTAPに保存されているデータを利用します。

• 上記の FSx ONTAPファイルシステムと同じ VPC を共有するように設定された SageMaker Notebook イ
ンスタンス。

• AWS Lambda 関数 をトリガーする前に、SageMaker Notebook インスタンス が 停止 状態であることを
確認してください。

• ディープ ニューラル ネットワークの計算に必要な GPU アクセラレーションを活用するに
は、ml.g4dn.xlarge インスタンス タイプが必要です。

アーキテクチャ

この MLOps パイプラインは、cron ジョブを利用してサーバーレス関数をトリガーし、ライフサイクルコール
バック関数に登録された AWS サービスを実行する実用的な実装です。 AWS EventBridge は cron ジョブと
して機能します。モデルの再トレーニングと再デプロイを担当する AWS Lambda 関数 を定期的に呼び出し
ます。このプロセスでは、必要なタスクを実行するために AWS SageMaker Notebook インスタンスを起動
する必要があります。

ステップバイステップの設定

ライフサイクル構成

AWS SageMaker Notebook インスタンスのライフサイクルコールバック関数を設定するには、*ライフサイク
ル設定*を利用します。このサービスを使用すると、ノートブック インスタンスを起動するときに実行する必
要なアクションを定義できます。具体的には、*ライフサイクル構成*内にシェル スクリプトを実装して、トレ
ーニングとデプロイメントのプロセスが完了するとノートブック インスタンスを自動的にシャットダウンす

25

ることができます。 MLOps ではコストが主要な考慮事項の 1 つであるため、これは必須の構成です。

*ライフサイクル構成*の構成を事前に設定しておく必要があることに注意することが重要です。したがって、
他の MLOps パイプラインのセットアップに進む前に、この側面の構成を優先することをお勧めします。

1. ライフサイクル構成を設定するには、Sagemaker パネルを開き、管理構成 セクションの ライフサイクル
構成 に移動します。

26

2. *ノートブックインスタンス*タブを選択し、*構成の作成*ボタンをクリックします。

27

3. 以下のコードを入力エリアに貼り付けます。

#!/bin/bash

set -e

sudo -u ec2-user -i <<'EOF'

1. Retraining and redeploying the model

NOTEBOOK_FILE=/home/ec2-

user/SageMaker/tyre_quality_classification_local_training.ipynb

echo "Activating conda env"

source /home/ec2-user/anaconda3/bin/activate pytorch_p310

nohup jupyter nbconvert "$NOTEBOOK_FILE"

--ExecutePreprocessor.kernel_name=python --execute --to notebook &

nbconvert_pid=$!

conda deactivate

2. Scheduling a job to shutdown the notebook to save the cost

PYTHON_DIR='/home/ec2-

user/anaconda3/envs/JupyterSystemEnv/bin/python3.10'

echo "Starting the autostop script in cron"

(crontab -l 2>/dev/null; echo "*/5 * * * * bash -c 'if ps -p

$nbconvert_pid > /dev/null; then echo \"Notebook is still running.\" >>

/var/log/jupyter.log; else echo \"Notebook execution completed.\" >>

/var/log/jupyter.log; $PYTHON_DIR -c \"import boto3;boto3.client(

\'sagemaker\').stop_notebook_instance(NotebookInstanceName=get_notebook_

name())\" >> /var/log/jupyter.log; fi'") | crontab -

EOF

28

4. このスクリプトは、推論用モデルの再トレーニングと再デプロイメントを処理する Jupyter Notebook を
実行します。実行が完了すると、ノートブックは 5 分以内に自動的にシャットダウンします。問題の説明
とコードの実装の詳細については、以下を参照してください。"パート 2 - SageMaker でのモデルトレー
ニング用のデータソースとしてAmazon FSx for NetApp ONTAP (FSx ONTAP) を活用する" 。

5. 作成後、ノートブックインスタンスに移動し、ターゲットインスタンスを選択して、[アクション] ドロッ
プダウンの [設定の更新] をクリックします。

29

ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html
ai-mlops-fsxn-sagemaker.html

6. 作成した*ライフサイクル構成*を選択し、*ノートブックインスタンスの更新*をクリックします。

30

AWS Lambda サーバーレス関数

前述のように、AWS Lambda 関数*は *AWS SageMaker Notebook インスタンス を起動する役割を担ってい
ます。

1. AWS Lambda 関数 を作成するには、該当するパネルに移動し、関数 タブに切り替えて、関数の作成 を
クリックします。

2. ページ上のすべての必須エントリを入力し、ランタイムを Python 3.10 に切り替えることを忘れないでく
ださい。

31

3. 指定されたロールに必要な権限 AmazonSageMakerFullAccess があることを確認し、 関数の作成 ボタ
ンをクリックしてください。

32

4. 作成したLambda関数を選択します。コードタブで、次のコードをコピーしてテキスト領域に貼り付けま
す。このコードは、fsxn-ontap という名前のノートブック インスタンスを起動します。

import boto3

import logging

def lambda_handler(event, context):

 client = boto3.client('sagemaker')

 logging.info('Invoking SageMaker')

 client.start_notebook_instance(NotebookInstanceName='fsxn-ontap')

 return {

 'statusCode': 200,

 'body': f'Starting notebook instance: {notebook_instance_name}'

 }

33

5. このコードの変更を適用するには、[デプロイ] ボタンをクリックします。

6. この AWS Lambda 関数をトリガーする方法を指定するには、「トリガーの追加」ボタンをクリックしま
す。

34

7. ドロップダウン メニューから EventBridge を選択し、「新しいルールの作成」というラジオ ボタンをク
リックします。スケジュール式フィールドに次のように入力します。 `rate(1 day)`をクリックし、[追加]

ボタンをクリックして、この新しい cron ジョブ ルールを作成し、AWS Lambda 関数に適用します。

35

2 段階の設定が完了すると、毎日、AWS Lambda 関数 が SageMaker Notebook を起動し、FSx ONTAP リ
ポジトリのデータを使用してモデルの再トレーニングを実行し、更新されたモデルを本番環境に再デプロイ
し、SageMaker Notebook インスタンス を自動的にシャットダウンしてコストを最適化します。これによ
り、モデルが最新の状態に保たれます。

これで、MLOps パイプラインの開発に関するチュートリアルは終了です。

36

著作権に関する情報

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

37

http://www.netapp.com/TM

	MLOps 向け FSx ONTAP : NetApp artificial intelligence solutions
	目次
	MLOps 向け FSx ONTAP
	MLOps 向けAmazon FSx for NetApp ONTAP (FSx ONTAP)
	パート 1 - Amazon FSx for NetApp ONTAP (FSx ONTAP) をプライベート S3 バケットとして AWS SageMaker に統合する
	はじめに
	ユーザーガイド
	便利なデバッグチェックリスト
	よくある質問（2023年9月27日現在）

	パート 2 - SageMaker でのモデルトレーニングのデータソースとして AWS Amazon FSx for NetApp ONTAP (FSx ONTAP) を活用する
	はじめに
	FSx ONTAPとは
	前提条件
	統合の概要
	ステップバイステップの統合

	パート 3 - 簡素化された MLOps パイプラインの構築 (CI/CT/CD)
	はじめに
	マニフェスト
	前提条件
	アーキテクチャ
	ステップバイステップの設定

