

パフォーマンスイベントを分析しています OnCommand Unified Manager 9.5

NetApp December 20, 2023

This PDF was generated from https://docs.netapp.com/ja-jp/oncommand-unified-manager-95/onlinehelp/task-displaying-information-about-a-performance-event.html on December 20, 2023. Always check docs.netapp.com for the latest.

目次

\mathcal{N}	プォーマンスイベントを分析しています	 1
	パフォーマンスイベントに関する情報を表示する	 1
	ユーザ定義のパフォーマンスしきい値で生成されたイベントを分析します	 2
	システム定義のパフォーマンスしきい値で生成されたイベントを分析します・・・・・・・・・・・・・・・・	 3
	動的なパフォーマンスしきい値で生成されたイベントを分析する	 8

パフォーマンスイベントを分析しています

パフォーマンスイベントを分析して、イベントが検出されたタイミング、アクティブな イベント(新規または確認済みのイベント)か廃止されたイベントか、関連するワーク ロードとクラスタコンポーネント、およびイベントを解決するためのオプションを特定 できます。

パフォーマンスイベントに関する情報を表示する

イベントインベントリページでは、Unified Managerで監視されているクラスタの新規お よび廃止状態のすべてのパフォーマンスイベントのリストを表示できます。この情報を 表示することで、最も重大なイベントを特定し、詳細情報にドリルダウンしてイベント の原因を確認できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規または廃止状態のパフォーマンスイベントがある必要があります。

このタスクについて

イベントのリストは検出時刻でソートされ、最新のイベントが最初に表示されます。列ヘッダーをクリックす ると、その列でイベントをソートできます。たとえば、 Status 列でソートして、重大度別にイベントを表示 できます。特定のイベントまたは特定のタイプのイベントを検索する場合は、フィルタと検索を使用して、リ ストに表示するイベントを絞り込むことができます。

このページにはすべてのソースのイベントが表示されます。

- ・ユーザ定義のパフォーマンスしきい値ポリシー
- ・システム定義のパフォーマンスしきい値ポリシー
- 動的なパフォーマンスしきい値

[イベントタイプ]列には、イベントのソースが一覧表示されます。イベントを選択すると、そのイベントに 関する詳細をイベントの詳細ページで確認できます。

手順

- 1. 左側のナビゲーションペインで、* Events * (イベント*)をクリックします。
- 2. 分析するイベントを特定し、イベント名をクリックします。

イベントの詳細ページが表示されます。

また、パフォーマンスエクスプローラのページでイベント名のリンクをクリックし、アラ ート E メールでイベントの詳細ページを表示することもできます。

ユーザ定義のパフォーマンスしきい値で生成されたイベントを 分析します

ユーザ定義のしきい値で生成されたイベントは、アグリゲートやボリュームなどの特定 のストレージオブジェクトのパフォーマンスカウンタがポリシーで定義されたしきい値 を超えたことを示しています。これは、クラスタオブジェクトでパフォーマンス問題が 発生していることを示しています。

イベントの詳細ページを使用してパフォーマンスイベントを分析し、必要に応じてイベントに対処してパフォ ーマンスを正常な状態に戻します。

ユーザ定義のパフォーマンスしきい値イベントへの対処

Unified Manager を使用して、パフォーマンスカウンタがユーザ定義の警告または重大の しきい値を超えたことに起因するパフォーマンスイベントを調査できます。また、 Unified Manager を使用してクラスタコンポーネントの健常性を確認し、コンポーネント で検出された最近の健常性イベントがパフォーマンスイベントに関与しているかどうか を判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規または廃止状態のパフォーマンスイベントがある必要があります。

手順

- 1. イベントの詳細ページを表示して、イベントに関する情報を確認します。
- 2. イベントの原因となったしきい値違反の説明が記載された*概要*を確認します。

たとえば、「レイテンシ値 456 ms/op has triggered a WARNING event based on threshold setting of 400 ms/op 」というメッセージは、オブジェクトに対してレイテンシ警告イベントが発生したことを示しています。

3. ポリシー名にカーソルを合わせると、イベントをトリガーしたしきい値ポリシーの詳細が表示されます。

これには、ポリシー名、評価されるパフォーマンスカウンタ、超過した場合に重大または警告イベントが 生成されるカウンタ値、およびカウンタが値を超える必要がある期間が含まれます。

- イベントトリガー時間*をメモしておき、このイベントの原因となった可能性のある他のイベントが同時 に発生したかどうかを調べることができます。
- 次のいずれかのオプションを使用してイベントをさらに詳しく調査し、パフォーマンスの問題を解決する ための操作を実行する必要があるかどうかを判断します。

オプション	調查方法
ソースオブジェクト名をクリックすると ' そのオブ ジェクトのエクスプローラページが表示されます	このページでは、オブジェクトの詳細を表示して他 の同様のストレージオブジェクトと比較し、他のス トレージオブジェクトに同じタイミングでパフォー マンス問題が設定されているかどうかを確認できま す。たとえば、同じアグリゲート上の他のボリュー ムにもパフォーマンス問題があるかどうかを確認で きます。
クラスタ名をクリックして、クラスタの概要ページ を表示します。	このページでは、オブジェクトが配置されているク ラスタの詳細を表示して、他のパフォーマンスの問 題が同時に発生していないかどうかを確認できま す。

システム定義のパフォーマンスしきい値で生成されたイベント を分析します

システム定義のパフォーマンスしきい値で生成されたイベントは、特定のストレージオ ブジェクトの1つまたは複数のパフォーマンスカウンタがシステム定義ポリシーのしき い値を超えたことを示しています。これは、アグリゲートやノードなどのストレージオ ブジェクトでパフォーマンス問題が発生していることを示しています。

イベントの詳細ページを使用してパフォーマンスイベントを分析し、必要に応じてイベントに対処してパフォ ーマンスを正常な状態に戻します。

システム定義のしきい値ポリシーは、 Cloud Volumes ONTAP 、 ONTAP Edge 、 ONTAP Select の各システムでは無効です。

システム定義のパフォーマンスしきい値のイベントへの対処

Unified Manager を使用して、パフォーマンスカウンタがシステム定義の警告しきい値を 超えたことに起因するパフォーマンスイベントを調査できます。また、 Unified Manager を使用してクラスタコンポーネントの健常性を確認し、コンポーネントで検出された最 近のイベントがパフォーマンスイベントに関与しているかどうかを判断できます。

作業を開始する前に

- •オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規または廃止状態のパフォーマンスイベントがある必要があります。

手順

1. イベントの詳細ページを表示して、イベントに関する情報を確認します。

2. イベントの原因となったしきい値違反の説明が記載された*概要*を確認します。

たとえば、「Node utilization value of 90 % has triggered a WARNING event based on threshold setting of 85 %」というメッセージは、クラスタオブジェクトに対してノード使用率警告イベントが発生したことを示しています。

- 3. イベントトリガー時間 * をメモしておき、このイベントの原因となった可能性のある他のイベントが同時 に発生したかどうかを調べることができます。
- システム診断*で、クラスタオブジェクトに対してシステム定義のポリシーで実行されている分析タイプの簡易概要を確認します。

ー部のイベントについては、診断の横に、その診断で問題が見つかったかどうかを示す緑または赤のアイ コンが表示されます。システム定義のその他のタイプのイベントのカウンタグラフには、オブジェクトの パフォーマンスが表示されます。

5. [推奨される操作]で、[ヘルプ][この操作を実行する]リンクをクリックして、自分でパフォーマンス イベントを解決するために実行できる推奨される操作を表示します。

QoS ポリシーグループパフォーマンスイベントへの対処

ワークロードのスループット(IOPS 、 IOPS/TB 、または MBps)が定義されている ONTAP QoS ポリシーの設定を超え、ワークロードのレイテンシに影響を及ぼしている 場合、 Unified Manager で QoS ポリシー警告イベントが生成されます。これらのシステ ム定義のイベントにより、多くのワークロードにレイテンシの影響が及ぶ前に潜在的な パフォーマンスの問題を修正することができます。

作業を開始する前に

- •オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止状態のパフォーマンスイベントが存在する必要があります。

このタスクについて

Unified Manager では、定義されている QoS ポリシーの設定を超えるワークロードが過去1時間の各パフォ ーマンス収集期間で見つかった場合に、 QoS ポリシーの違反とみなして警告イベントを生成します。ワーク ロードのスループットが各収集期間に短時間だけ QoS のしきい値を超えることがありますが、 Unified Manager のグラフには収集期間中の「平均」のスループットしか表示されません。そのため、 QoS のイベン トを受け取った場合でも、グラフではワークロードのスループットがポリシーのしきい値を超えていないよう に見えることがあります。

System Manager または ONTAP コマンドを使用してポリシーグループを管理できます。これには次のタスク が含まれます。

- ・ワークロード用の新しいポリシーグループを作成します
- ・ ポリシーグループ内のワークロードの追加または削除
- ・ポリシーグループ間でワークロードを移動する
- ・ポリシーグループのスループット制限を変更する
- ・別のアグリゲートまたはノードにワークロードを移動する

手順

- 1. イベントの詳細ページを表示して、イベントに関する情報を確認します。
- 2. イベントの原因となったしきい値違反の説明が記載された*概要*を確認します。

たとえば、「 vol1_NFS1 の IOPS 値が 1 、 352 IOPS のため、警告イベントがトリガーされました。ワ ークロードに潜在的なパフォーマンスの問題があります」というメッセージは、ボリューム vol1_NFS1 で QoS 最大 IOPS イベントが発生したことを示しています。

 イベントが発生した日時とイベントがアクティブになっている期間の詳細については、「イベント情報」 セクションを参照してください。

また、 QoS ポリシーのスループットを共有しているボリュームまたは LUN については、 IOPS または MBps が高い上位 3 つのワークロードの名前を確認できます。

 システム診断*セクションで、合計平均 IOPS または MBps (イベントに応じて)とレイテンシの2つの グラフを確認します。これらのグラフを見ると、ワークロードが QoS の上限に達したときに、どのクラ スタコンポーネントがレイテンシに最も影響しているかを確認できます。

共有 QoS ポリシーのイベントの場合、スループットグラフに上位 3 つのワークロードが表示されます。3 つ以上のワークロードが QoS ポリシーを共有している場合、「 other workloads 」カテゴリに追加された ワークロードが表示されます。また、レイテンシグラフには、 QoS ポリシーに含まれるすべてのワーク ロードの平均レイテンシが表示されます。

アダプティブ QoS ポリシーのイベントの場合、 IOPS および MBps のグラフには、ボリュームのサイズ に基づいて、 ONTAP が割り当てられた IOPS/TB しきい値ポリシーから変換した IOPS または MBps の 値が表示されます。

 「推奨される対処方法」セクションで、推奨される対処方法を確認し、ワークロードのレイテンシ増加を 回避するために実行する必要がある対処方法を決定します。

必要に応じて、ヘルプ*ボタンをクリックして、パフォーマンスイベントの解決方法に関する推奨される 操作の詳細を確認します。

ブロックサイズの定義を含むアダプティブ QoS ポリシーによるイベントの概要

アダプティブ QoS ポリシーグループでは、ボリュームサイズに基づいてスループットの 上限と下限が自動的に調整され、 TB または GB あたりの IOPS が一定に維持されま す。ONTAP 9.5以降では、QoSポリシーにブロックサイズを指定することでMBpsのしき い値も同時に適用できます。

アダプティブ QoS ポリシーに IOPS のしきい値を割り当てると、各ワークロードで発生する処理数にのみ制 限のみが適用されます。ワークロードを生成するクライアントに設定されているブロックサイズによっては、 一部の IOPS にはるかに多くのデータが含まれ、処理を実行するノードの負荷がはるかに大きくなることがあ ります。

ワークロードのMBpsは次の式を使用して算出されます。

MBps = (IOPS * Block Size) / 1000

平均IOPSが3、000のワークロードについて、クライアントのブロックサイズが32KBに設定されている場合、 このワークロードの実効MBpsは96です。平均IOPSが3、000の同じワークロードについて、クライアントの ブロックサイズが48KBに設定されている場合は、このワークロードの実効MBpsは144になります。この場 合、ブロックサイズが大きい方がノードでの処理データが 50% 多くなることがわかります。

次に、アダプティブ QoS ポリシーにブロックサイズが定義されている場合について、クライアントで設定されているブロックサイズに基づいてどのようにイベントがトリガーされるかを見てみましょう。

ポリシーを作成し、ピークスループットを 2 、 500IOPS/TB 、ブロックサイズを 32KB に設定します。この 場合、使用容量が1TBのボリュームに対するMBpsのしきい値は80MBps((2500 IOPS * 32KB)/ 1000)に 設定されます。Unified Manager では、スループットの値が定義されたしきい値を 10% 下回ると警告イベン トが生成されます。イベントは次の状況で生成されます。

使用済み容量	イベントが生成されるスループットのしきい値
IOPS	MBps
1 TB	2、 250 IOPS
72 Mbps	2TB
4、 500 IOPS	144 Mbps
5 TB	11 、 250 IOPS

ボリュームの使用可能なスペースが2TB、IOPSが4、000、クライアントで設定されているQoSブロックサイ ズが32KBである場合、スループットは128MBps((4、000 IOPS * 32 KB)/ 1000)になります。この場 合、4、000 IOPSと128MBpsのどちらについても、ボリュームで2TBのスペースを使用する場合のしきい値を 超えていないため、イベントは生成されません。

ボリュームの使用可能なスペースが2TB、IOPSが4、000、クライアントで設定されているQoSブロックサイ ズが64KBである場合、スループットは256MBps((4、000 IOPS * 64KB)/ 1000)になります。この場 合、4、000 IOPSについてはイベントは生成されませんが、MBpsの値については256MBpsでしきい値 の144MBpsを超えているためイベントが生成されます。

そのため、アダプティブQoSポリシーにブロックサイズを含むMBpsの違反が原因でイベントがトリガーされ ると、イベントの詳細ページのシステム診断セクションにMBpsのグラフが表示されます。アダプティブ QoS ポリシーに対する IOPS の違反に基づいてイベントがトリガーされると、システム診断セクションに IOPS チ ャートが表示されます。IOPSとMBpsの両方に違反がある場合は、2つのイベントが表示されます。

QoS 設定の調整の詳細については、 ONTAP 9 パフォーマンス管理パワーガイドを参照してください。

"ONTAP9パフォーマンス管理パワーガイド"

ノードリソース過剰使用パフォーマンスイベントへの対処

1 つのノードが運用効率の上限を超えて稼働していて、ワークロードのレイテンシに影響を及ぼしている可能性がある場合、 Unified Manager でノードリソース過剰使用警告 イベントが生成されます。これらのシステム定義のイベントにより、多くのワークロー ドにレイテンシの影響が及ぶ前に潜在的なパフォーマンスの問題を修正することができ ます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規または廃止状態のパフォーマンスイベントがある必要があります。

このタスクについて

Unified Manager では、パフォーマンス容量の使用率が 30 分以上にわたって 100% を超えているノードが見 つかると、ノードリソース過剰使用ポリシーの違反とみなして警告イベントを生成します。

System Manager または ONTAP コマンドを使用して、このタイプのパフォーマンス問題を修正できます。こ れには次の作業が含まれます。

- QoS ポリシーを作成してシステムリソースを過剰に消費しているボリュームや LUN に適用する
- ・ワークロードが適用されているポリシーグループの QoS の最大スループット制限を小さくします
- 別のアグリゲートまたはノードにワークロードを移動する
- ノードにディスクを追加するか、高速 CPU とより多くの RAM を搭載したノードにアップグレードして、容量を増やす

手順

- 1. イベントの詳細ページを表示して、イベントに関する情報を確認します。
- 2. イベントの原因となったしきい値違反の説明が記載された * 概要 * を確認します。

たとえば、「Perf」というメッセージが表示されます。simplicity-02の使用済み容量が 139% のため、警 告イベントがトリガーされました。データ処理装置に潜在的なパフォーマンスの問題があります。」は、 ノード simplicity-02 のパフォーマンス容量の使用率が高く、ノードのパフォーマンスに影響を及ぼしてい ることを示しています。

 システム診断*セクションで、3つのグラフを確認します。1つはノードで使用されているパフォーマン ス容量、1つは上位のワークロードで使用されている平均ストレージ IOPS、もう1つは上位のワークロ ードで使用されているレイテンシです。これらのグラフを参考に、ノード上のレイテンシの原因であるワ ークロードを確認できます。

QoS ポリシーが適用されているワークロードと適用されていないワークロードを表示するには、 IOPS グ ラフにカーソルを合わせます。

 「推奨される対処方法」セクションで、推奨される対処方法を確認し、ワークロードのレイテンシ増加を 回避するために実行する必要がある対処方法を決定します。

必要に応じて、ヘルプ*ボタンをクリックして、パフォーマンスイベントの解決方法に関する推奨される 操作の詳細を確認します。

動的なパフォーマンスしきい値で生成されたイベントを分析す る

動的なしきい値で生成されたイベントは、ワークロードの実際の応答時間(レイテンシ)が想定範囲と比較して高すぎたり低すぎたりしたことを示します。イベントの詳細ペ ージを使用してパフォーマンスイベントを分析し、必要に応じてイベントに対処してパ フォーマンスを正常な状態に戻します。

動的なパフォーマンスしきい値は、 Cloud Volumes ONTAP 、 ONTAP Edge 、 ONTAP Select の各システムでは無効です。

動的なパフォーマンスイベントに関連した Victim ワークロードの特定

Unified Manager では、競合状態のストレージコンポーネントが原因の応答時間(レイテンシ)の偏差が最も高いボリュームワークロードを特定できます。このようなワークロードを特定すると、そのワークロードにアクセスするクライアントアプリケーションのパフォーマンスが通常よりも遅い理由を把握できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止された動的パフォーマンスイベントが存在する必要があります。

このタスクについて

イベントの詳細ページには、コンポーネントのアクティビティまたは使用量の偏差が大きい順、またはイベントの影響が最も大きい順に、ユーザ定義およびシステム定義のワークロードのリストが表示されます。値は、 Unified Manager がイベントを検出および最後に分析した際に特定したピーク値に基づいています。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。
- 2. ワークロードレイテンシ / ワークロードアクティビティのグラフで、「* Victim workloads * 」を選択します。
- グラフにカーソルを合わせると、コンポーネントに影響を与えている上位のユーザ定義ワークロード、および Victim ワークロードの名前が表示されます。

動的なパフォーマンスイベントに関連した Bully ワークロードの特定

Unified Manager では、競合しているクラスタコンポーネントを集中的に使用しているワ ークロードを特定できます。このようなワークロードを特定すると、クラスタ上の特定 のボリュームの応答時間(レイテンシ)が長くなっている理由を把握できます。

作業を開始する前に

・オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。

• 新規、確認済み、または廃止された動的パフォーマンスイベントが存在する必要があります。

このタスクについて

イベントの詳細ページには、コンポーネントの使用量が多い順、またはイベントの影響が最も大きい順に、ユ ーザ定義およびシステム定義のワークロードのリストが表示されます。値は、 Unified Manager がイベントを 検出および最後に分析した際に特定したピーク値に基づいています。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。
- 2. ワークロードレイテンシ/ワークロードアクティビティのグラフで、「* Bully workloads *」を選択します。
- グラフにカーソルを合わせると、コンポーネントに影響を与えている上位のユーザ定義 Bully ワークロードが表示されます。

動的なパフォーマンスイベントに関連した Shark ワークロードの特定

Unified Manager では、競合しているストレージコンポーネントを集中的に使用している ワークロードを特定できます。このようなワークロードを特定すると、利用率が低いク ラスタにこれらのワークロードを移動する必要があるかどうかを判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止されたパフォーマンス動的イベントがあります。

このタスクについて

イベントの詳細ページには、コンポーネントの使用量が多い順、またはイベントの影響が最も大きい順に、ユ ーザ定義およびシステム定義のワークロードのリストが表示されます。値は、 Unified Manager がイベントを 検出および最後に分析した際に特定したピーク値に基づいています。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。
- 2. ワークロードレイテンシ / ワークロードアクティビティグラフで、「* Shark workloads * 」を選択します。
- 3. グラフにカーソルを合わせると、コンポーネントに影響を与えている上位のユーザ定義ワークロードと Shark ワークロードの名前が表示されます。

MetroCluster 構成のパフォーマンスイベント分析

Unified Manager を使用して、 MetroCluster 構成のパフォーマンスイベントを分析でき ます。イベントに関連するワークロードを特定し、推奨される解決方法を確認できま す。

MetroCluster のパフォーマンスイベントは、クラスタ間のインタースイッチリンク(ISL)を過剰に使用して

いる Bully ワークロード、またはリンクの健常性の問題が原因である可能性があります。Unified Manager は、パートナークラスタのパフォーマンスイベントを考慮せずに、 MetroCluster 構成内の各クラスタを個別 に監視します。

MetroCluster 構成の両方のクラスタのパフォーマンスイベントは、Unified Managerのダッシュボード/概要ページにも表示されます。また、Unified Managerの健全性ページで各クラスタの健全性を確認したり、クラスタとの関係を表示したりすることもできます。

MetroCluster 構成のクラスタの動的なパフォーマンスイベントを分析する

Unified Manager を使用して、パフォーマンスイベントが検出された MetroCluster 構成 のクラスタについて分析することができます。クラスタの名前、イベントの検出時間、 および関連する __OBully と __Victim のワークロードを特定できます。

作業を開始する前に

- •オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- MetroCluster 構成に対する新規、確認済み、または廃止状態のパフォーマンスイベントがある必要があり ます。
- MetroCluster 構成の両方のクラスタを Unified Manager の同じインスタンスで監視している必要があります。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。
- 2. イベント概要を参照して、関連するワークロードの名前と数を確認します。

この例では、 MetroCluster リソースのアイコンが赤になっています。これは、 MetroCluster リソースが 競合状態にあることを示しています。アイコンにカーソルを合わせると、アイコンの概要が表示されま す。ページの上部に表示されたイベントIDに含まれているクラスタ名から、イベントが検出されたクラス タの名前を特定できます。

Description:

2 victim volumes are slow due to vol_osv_siteB2_5 causing contention on MetroCluster resources

- 3. クラスタの名前とイベントの検出時刻を書き留めます。この情報は、パートナークラスタのパフォーマン スイベントを分析するときに使用します。
- 4. グラフで、 _Victim ワークロードの応答時間がパフォーマンスしきい値を超えていることを確認します。

この例では、マウスオーバーで表示される情報に Victim ワークロードが表示されています。レイテンシグ ラフには、関連する Victim ワークロードの全体的なレイテンシのパターンは一貫していることが表示され ます。Victim ワークロードの異常なレイテンシによってイベントがトリガーされた場合でも、レイテンシ のパターンが一貫していれば、ワークロードのパフォーマンスは想定範囲内に収まっており、 I/O の一時 的な上昇によってレイテンシが増加したことでイベントがトリガーされた可能性が考えられます。

∧ System Diagnosis (Jul 9, 2018, 11:09 AM - Jul 19, 2018, 7:39 AM) 🕐

これらのボリュームのワークロードにアクセスするアプリケーションをクライアントに最近インストール した場合は、そのアプリケーションから大量の I/O が送信されたことが原因でレイテンシが増加した可能 性があります。ワークロードのレイテンシが想定範囲内に戻ってイベントの状態が廃止に変わり、その状 態が 30 分以上続くようであれば、このイベントは無視しても問題がないと考えられます。イベントがの 状態のまま継続する場合は、イベントの原因となった問題がほかにないかどうかをさらに詳しく調査でき ます。

5. ワークロードスループットグラフで、「* Bully workloads * 」を選択して Bully ワークロードを表示します。

Bully ワークロードがある場合は、ローカルクラスタの 1 つ以上のワークロードが MetroCluster リソース を過剰に消費しているためにイベントが発生した可能性が考えられます。Bullyワークロードの書き込みス ループット(MBps)の偏差が大きくなっています。

このグラフは、ワークロードの全体的な書き込みスループット(MBps)のパターンを示しています。書 き込みMBpsのパターンからスループットの異常が認められるため、ワークロードがMetroCluster リソー スを過剰に使用している可能性があります。

イベントに関連する Bully ワークロードがない場合は、クラスタ間のリンクが付いた健全性問題またはパ ートナークラスタのパフォーマンス問題が原因でイベントが発生した可能性があります。Unified Manager を使用して MetroCluster 構成の両方のクラスタの健常性を確認できます。また、パートナークラスタのパ フォーマンスイベントの確認と分析も Unified Manager で実行できます。

MetroCluster 構成のリモートクラスタの動的なパフォーマンスイベントを分析する

Unified Manager を使用して、 MetroCluster 構成のリモートクラスタの動的なパフォー マンスイベントを分析できます。この分析によって、リモートクラスタのイベントがそ のパートナークラスタのイベントの原因となったかどうかを判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- MetroCluster 構成内のローカルクラスタのパフォーマンスイベントを分析し、イベント検出時刻を確認しておく必要があります。
- パフォーマンスイベントに関連したローカルクラスタとそのパートナークラスタの健常性を確認し、パートナークラスタの名前を確認しておく必要があります。

- 1. パートナークラスタを監視している Unified Manager インスタンスにログインします。
- 2. 左側のナビゲーションペインで、 * Events * をクリックしてイベントリストを表示します。
- 3. * 時間範囲 * セレクタから * 過去 1 時間 * を選択し、 * 範囲の適用 * をクリックします。
- 4. [Filtering*selector] で、左ドロップダウンメニューから [*Cluster] を選択し、テキストフィールドにパートナークラスタの名前を入力して、 [Apply Filter] をクリックします。

選択したクラスタのイベントが過去1時間ない場合は、パートナーでイベントが検出されたときにこのク ラスタではパフォーマンスの問題は発生していません。

5. 選択したクラスタで過去1時間にイベントが検出された場合は、イベントの検出時刻をローカルクラスタのイベントの検出時刻と比較します。

これらのイベントにデータ処理コンポーネントの競合を引き起こしている Bully ワークロードが関係して いる場合は、これらの Bully ワークロードが原因でローカルクラスタのイベントが発生した可能性があり ます。イベントをクリックして分析し、推奨される解決方法をイベントの詳細ページで確認できます。

これらのイベントに Bully ワークロードが関係していない場合、ローカルクラスタのパフォーマンスイベ ントの原因を作成していません。

QoS ポリシーグループの調整が原因の動的なパフォーマンスイベントへの対処

Unified Managerを使用して、ワークロードのスループット(MBps)を調整しているサ ービス品質(QoS)ポリシーグループが原因のパフォーマンスイベントを調査できま す。この調整によって、ポリシーグループ内のボリュームワークロードの応答時間(レ イテンシ)が増加します。イベント情報を使用して、ポリシーグループに新しい制限値 を設定して調整を停止する必要があるかどうかを判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止状態のパフォーマンスイベントが存在する必要があります。

手順

1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。

2. 概要*を確認します。スロットルの影響を受けるワークロードの名前が表示されます。

調整の結果、あるワークロードは自身の Victim になるため、概要には Victim と Bully に同 じワークロードが表示されることがあります。

3. テキストエディタなどのアプリケーションを使用して、ボリュームの名前を記録します。

あとでボリューム名で検索できます。

4. ワークロードレイテンシ / ワークロードアクティビティのグラフで、「 * Bully workloads * 」を選択します。

5. グラフにカーソルを合わせると、ポリシーグループに影響を与えている上位のユーザ定義ワークロードが 表示されます。

偏差が最も大きく、調整の原因となったワークロードがリストの最上位に表示されます。アクティビティ は、ポリシーグループ制限に対して各ワークロードが使用している割合です。

- 6. 上位のワークロードの「パフォーマンス/ボリュームの詳細」ページに移動します。
- 7. [*データを次の単位でブレークダウンする]を選択します。
- 8. * Latency *の横にあるチェックボックスをオンにして、すべてのレイテンシ内訳グラフを選択します。
- 9. [IOPS]で、[***読み取り/書き込み/その他]を選択します。
- 10. [Submit (送信)]をクリックします。

内訳グラフは、レイテンシグラフと IOPS グラフの下に表示されます。

11. 「* Policy Group Impact」グラフと「* Latency *」グラフを比較して、調整の何パーセントがイベント発生時にレイテンシに影響したかを確認します。

ポリシーグループの最大スループットが1秒あたり1、000op/secの場合、ポリシーグループ内のワークロ ードの合計がこの値を超えることはできません。イベント発生時、ポリシーグループ内のワークロードの 合計スループットが1、200op/secを超えたため、ポリシーグループのアクティビティが1、000op/sec に調整されましたPolicy Group Impactグラフは、調整が合計レイテンシの10%を引き起こしたことを示し ており、調整が原因でイベントが発生したことを示しています。

12. クラスタコンポーネント別の合計レイテンシを示す* Cluster Components *チャートを確認します。

レイテンシが最も高いのはポリシーグループで、調整が原因でイベントが発生したことを確認できます。

13. 読み取り/書き込みレイテンシ*のグラフと、読み取り/書き込みレイテンシ/その他*のグラフを比較します。

どちらのグラフでも、レイテンシが高い読み取り要求が多数ある一方で、書き込み要求の数は少なくレイ テンシも低くなっています。これらの値から、レイテンシを増加させた大量のスループットまたは処理の 有無を判断できます。これらの値は、スループットまたは処理数にポリシーグループの制限を設定するか どうかを決定する際に使用できます。

- 14. OnCommand システムマネージャを使用して、ポリシーグループの現在の制限値を1、300op/secに増や します
- 15. 1日後、手順3で記録したワークロードの名前をUnified Managerで検索します。

パフォーマンス/ボリュームの詳細ページが表示されます。

- 16. 「ブレークダウン・データ・バイ>* IOPS*」を選択します。
- 17. [Submit (送信)]をクリックします。

読み取り / 書き込み / その他のグラフが表示されます。

- 18. ページの下部で、変更イベントのアイコン()をクリックします。
- 19. 読み取り / 書き込み / その他 * のグラフを * Latency * のグラフと比較します。

読み取り要求と書き込み要求は同じですが、調整は停止し、レイテンシは低下しています。

ディスク障害が原因の動的なパフォーマンスイベントへの対処

Unified Manager を使用して、アグリゲートを過剰に消費しているワークロードが原因の パフォーマンスイベントを調査できます。また、 Unified Manager を使用してアグリゲ ートの健常性を確認し、アグリゲートで検出された最近の健常性イベントがパフォーマ ンスイベントに関与しているかどうかを判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止状態のパフォーマンスイベントが存在する必要があります。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細*ページを表示します。
- 2. イベントに関連するワークロードおよび競合状態のクラスタコンポーネントを示す * 概要 * を確認しま す。

競合状態のクラスタコンポーネントによってレイテンシが影響を受けた Victim ボリュームが複数ありま す。障害ディスクをスペアディスクと交換するために RAID の再構築を実行中のアグリゲートが、競合状 態のクラスタコンポーネントです。競合状態のコンポーネントの下にあるアグリゲートアイコンが赤で強 調表示され、かっこ内にアグリゲートの名前が表示されます。

- 3. ワークロード利用率グラフで、「* Bully workloads *」を選択します。
- グラフにカーソルを合わせると、コンポーネントに影響を与えている上位の Bully ワークロードが表示されます。

イベントの検出以降、最大利用率が最も高い上位のワークロードがグラフの最上位に表示されます。上位 のワークロードの1つはシステム定義のワークロード「Disk Health」です。これは RAID の再構築を示 しています。再構築は、スペアディスクを使用してアグリゲートを再構築する内部プロセスです。Disk Health ワークロードとアグリゲートの他のワークロードが原因で、アグリゲートの競合および関連するイ ベントが発生した可能性があります。

- Disk Health ワークロードのアクティビティがイベントの原因であることを確認したら、再構築が完了し、Unified Manager がイベントを分析してアグリゲートが引き続き競合状態にあるかどうかを検出するまで約 30 分待ちます。
- 6. Unified Managerで、手順2で記録したイベントIDを検索します。

ディスク障害のイベントがイベントの詳細ページに表示されます。RAID の再構築が完了したら、状態が「廃止」になっていることを確認します。これは、イベントが解決したことを示します。

- 7. ワークロード利用率チャートで「* Bully workloads*」を選択して、アグリゲートのワークロードを最大 利用率で表示します。
- 8. 上位のワークロードの「パフォーマンス/ボリュームの詳細」ページに移動します。
- 9. [*1d]をクリックすると、選択したボリュームの過去24時間(1日)のデータが表示されます。

レイテンシグラフに赤い点(●)ディスク障害イベントが発生したタイミングを示します。

- 10. [*データを次の単位でブレークダウンする]を選択します。
- 11. [Components]で、[ディスク使用率]を選択します。
- 12. [Submit (送信)]をクリックします。

ディスク利用率チャートには、選択したワークロードからターゲットアグリゲートのディスクへのすべて の読み取り要求と書き込み要求のグラフが表示されます。

13. ディスク利用率*グラフのデータを、イベント発生時の*レイテンシ*グラフのデータと比較します。

ディスク利用率には、イベント発生時にRAIDの再構築プロセスが原因の読み取りおよび書き込みアクテ ィビティが大量に表示され、これが選択したボリュームのレイテンシ増加につながりました。イベント発 生の数時間後には、読み取り / 書き込みとレイテンシの両方が減少し、アグリゲートの競合状態は解消し ました。

HA テイクオーバーが原因の動的なパフォーマンスイベントへの対処

Unified Manager を使用して、ハイアベイラビリティ(HA)ペアを構成するクラスタノ ードでの大量のデータ処理が原因のパフォーマンスイベントを調査できます。また、 Unified Manager を使用してノードの健全性を確認し、ノードで検出された最近の健全性 イベントがパフォーマンスイベントに関与しているかどうかを判断できます。

作業を開始する前に

- オペレータ、OnCommand 管理者、またはストレージ管理者のロールが必要です。
- 新規、確認済み、または廃止状態のパフォーマンスイベントが存在する必要があります。

手順

- 1. イベントの詳細情報を表示するには、イベントの詳細 * ページを表示します。
- 2. イベントに関連するワークロードおよび競合状態のクラスタコンポーネントを示す * 概要 * を確認します。

競合状態のクラスタコンポーネントによってレイテンシが影響を受けた Victim ボリュームが 1 つありま す。パートナーノードからすべてのワークロードをテイクオーバーしてデータを処理中のノードが、競合 状態のクラスタコンポーネントです。競合状態のコンポーネントの下にあるデータ処理アイコンが赤で強 調表示され、イベント発生時にデータ処理を行っていたノードの名前がかっこ内に表示されます。

3. 概要 *で、Victimボリュームの名前をクリックします。

パフォーマンス/ボリュームの詳細ページが表示されます。ページ下部のイベントタイムラインで、変更イベントアイコン(
) Unified Manager が HA テイクオーバーの開始を検出した時間。

4. HAテイクオーバーの変更イベントのアイコンにカーソルを合わせます。

HAテイクオーバーの詳細がイベントリストテーブルに表示されます。レイテンシグラフに表示されたイベントから、HAテイクオーバーと同じタイミングで発生した高レイテンシが原因で、選択したボリュームでパフォーマンスしきい値が超えたことがわかります。

- 5. [*データを次の単位でブレークダウンする]を選択します。
- 6. [Latency]で、[クラスタ・コンポーネント]を選択します。
- 7. [Submit (送信)]をクリックします。

クラスタコンポーネントグラフが表示されます。このチャートには合計レイテンシのクラスタコンポーネ ント別の内訳が表示されます。

- 8. ページの下部で、HAテイクオーバーの開始の変更イベントアイコンにマウスカーソルを合わせます。
- 9. クラスタコンポーネント*グラフで、データ処理のレイテンシを*レイテンシ*グラフの合計レイテンシと比較します。

HA テイクオーバーの実行時に、データ処理ノードでワークロード需要が増加したためにデータ処理の急 増が発生しています。CPU 利用率の増加によってレイテンシが増加し、イベントがトリガーされまし た。

- 障害が発生したノードを修正したら、OnCommand System Managerを使用してHAギブバックを実行します。ワークロードはパートナーノードから修復されたノードに移動します。
- ^{11.} HAギブバックが完了したら、Unified Managerで、手順2で記録したイベントIDを検索します。

HAテイクオーバーによってトリガーされたイベントがイベントの詳細ページに表示されます。イベントの状態が「obsolete」になり、これはイベントが解決されたことを示します。

12. 概要 *で、Victimボリュームの名前をクリックします。

パフォーマンス/ボリュームの詳細ページが表示されます。ページ下部のイベントのタイムラインで、変更 イベントのアイコンが表示された場所がUnified ManagerがHAギブバックの完了を検出した時間です。

- 13. [*データを次の単位でブレークダウンする]を選択します。
- 14. [Latency]で、[クラスタ・コンポーネント]を選択します。

クラスタコンポーネントグラフが表示されます。

^{15.} ページの下部で、HAギブバックの変更イベントのアイコンにカーソルを合わせます。

変更イベントがEvents Listテーブルで強調表示され、HAギブバックが正常に完了したことを示します。

クラスタコンポーネント*グラフで、データ処理のレイテンシを*レイテンシ*グラフの合計レイテンシと比較します。

データ処理コンポーネントでのレイテンシが低下し、その結果合計レイテンシも低下しています。選択し たボリュームが現在データ処理に使用しているノードでイベントが解決されました。 Copyright © 2023 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法による複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保 証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示 的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損 失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、 間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為(過失またはそうで ない場合を含む)にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。 ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によって保護されている場合があります。

権利の制限について:政府による使用、複製、開示は、DFARS 252.227-7013(2014年2月)およびFAR 5252.227-19(2007年12月)のRights in Technical Data -Noncommercial Items(技術データ - 非商用品目に関 する諸権利)条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス(FAR 2.101の定義に基づく)に関係し、デー タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対 し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有 し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使 用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開 示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権 については、DFARS 252.227-7015(b)項(2014年2月)で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。その他の会社名と製品名は、それを所有する各社の商標である場合があります。