
PostgreSQL
Enterprise applications
NetApp
January 02, 2026

This PDF was generated from https://docs.netapp.com/ja-jp/ontap-apps-dbs/postgres/postgres-
overview.html on January 02, 2026. Always check docs.netapp.com for the latest.

目次
PostgreSQL . 1

概要 . 1

データベース設定 . 1

アーキテクチャ . 1

初期化パラメータ . 2

設定 . 3

表領域 . 5

ストレージ構成 . 5

NFS . 5

SAN . 7

データ保護 . 9

ネイティブのDdta保護. 9

Snapshot . 9

データ保護ソフトウェア . 10

PostgreSQL

概要

PostgreSQLには、PostgreSQL、PostgreSQL Plus、EDB Postgres Advanced Server

（EPAS）などのバリアントが付属しています。PostgreSQLは通常、多層アプリケーシ
ョンのバックエンドデータベースとして導入されます。一般的なミドルウェアパッケー
ジ(PHP、Java、Python、Tcl/Tk、ODBCなど)でサポートされています。 とJDBC）は、
オープンソースのデータベース管理システムでは、歴史的に人気のある選択肢でし
た。ONTAPは、信頼性、パフォーマンス、効率に優れたデータ管理機能を備え
たPostgreSQLデータベースを実行するための優れた選択肢です。

ONTAPおよびPostgreSQLデータベースに関するこのドキュメントは、以前に公開されてい
た_TR-4770：『PostgreSQL database on ONTAP best practices』に代わるものです。_

データが指数関数的に増加するにつれて、企業にとってデータ管理はより複雑になります。この複雑さによ
り、ライセンス、運用、サポート、メンテナンスのコストが増大します。全体的なTCOを削減するには、信
頼性とパフォーマンスに優れたバックエンドストレージを使用して、商用データベースからオープンソースデ
ータベースに切り替えることを検討してください。

ONTAPは理想的なプラットフォームです。ONTAPは文字通りデータベース向けに設計されているからです。
データベースワークロードのニーズに対応するために、高度なQuality of Service（QoS；サービス品質）機能
や基本的なFlexClone機能に対するランダムI/Oレイテンシの最適化など、多数の機能が特別に開発されまし
た。

無停止アップグレード（ストレージの交換など）などの追加機能により、重要なデータベースの可用性を維持
できます。また、MetroClusterを使用して大規模な環境で瞬時にディザスタリカバリを実行した
り、SnapMirrorアクティブ同期を使用してデータベースを選択したりすることもできます。

最も重要なことは、ONTAPが卓越したパフォーマンスを提供し、お客様固有のニーズに合わせて解決策をサ
イジングできることです。ネットアップのハイエンドシステムは100万超のIOPSをマイクロ秒単位のレイテン
シで提供できますが、必要なIOPSが10万だけの場合は、同じストレージオペレーティングシステムを実行す
る小型のコントローラでストレージ解決策を適切にサイジングできます。

データベース設定

アーキテクチャ

PostgreSQLは、クライアントとサーバのアーキテクチャに基づいたRDBMSで
す。PostgreSQLインスタンスはデータベースクラスタと呼ばれ、サーバの集合ではなく
データベースの集合です。

1

PostgreSQLデータベースには、postmaster、フロントエンド(クライアント)、バックエンドの3つの要素があ
ります。クライアントは、IPプロトコルや接続先データベースなどの情報を含む要求をポストマスターに送信
します。postmasterは接続を認証し、さらに通信するためにバックエンドプロセスに渡します。バックエンド
プロセスはクエリを実行し、結果を直接フロントエンド（クライアント）に送信します。

PostgreSQLインスタンスは、マルチスレッドモデルではなく、マルチプロセスモデルに基づいています。ジ
ョブごとに複数のプロセスが生成され、各プロセスには独自の機能があります。主なプロセスには、クライア
ントプロセス、WALライタプロセス、バックグラウンドライタプロセス、およびcheckpointerプロセスが含ま
れます。

• クライアント（フォアグラウンド）プロセスがPostgreSQLインスタンスに読み取りまたは書き込み要求
を送信しても、データを直接ディスクに読み書きすることはありません。最初に、共有バッファ
とWAL(Write-Ahead Logging)バッファにデータをバッファします。

• WALライタプロセスは、共有バッファとWALバッファの内容を操作してWALログに書き込みます。WAL

ログは通常PostgreSQLのトランザクションログであり、シーケンシャルに書き込まれます。したがっ
て、データベースからの応答時間を短縮するために、PostgreSQLはまずトランザクションログに書き込
み、クライアントに確認応答します。

• データベースを整合性のある状態にするために、バックグラウンドライタープロセスは共有バッファにダ
ーティページがないか定期的にチェックします。次に、NetAppボリュームまたはLUNに格納されているデ
ータファイルにデータをフラッシュします。

• checkpointerプロセスも定期的に（バックグラウンドプロセスよりも少ない頻度で）実行され、バッファ
への変更を防ぎます。WALライタプロセスに、NetAppディスクに保存されているWALログの末尾にチェ
ックポイントレコードを書き込み、フラッシュするように指示します。また、すべてのダーティページを
ディスクに書き込み、フラッシュするようにバックグラウンドライタープロセスに通知します。

初期化パラメータ

新しいデータベースクラスタを作成するには、 initdb プログラム。A initdb スクリ
プトは、クラスタを定義するデータファイル、システムテーブル、およびテンプレート

2

データベース（template0およびtemplate1）を作成します。

テンプレートデータベースはストックデータベースを表します。システムテーブル、標準ビュー、関数、およ

びデータ型の定義が含まれています。 pgdata の引数として機能します。 initdb データベースクラスタの
場所を指定するスクリプト。

PostgreSQLのすべてのデータベースオブジェクトは、それぞれのOIDによって内部的に管理されます。テー
ブルとインデックスは、個 々 のOIDによっても管理されます。データベースオブジェクトとそれぞれのOID

との関係は、オブジェクトのタイプに応じて適切なシステムカタログテーブルに格納されます。たとえば、デ

ータベースとヒープテーブルのOIDは、 pg_database それぞれ`pg_classと`pg_classです。OIDを確認する
には、PostgreSQLクライアントでクエリを発行します。

各データベースには、1GBに制限された個別のテーブルとインデックスファイルがあります。各テーブルに

は、それぞれサフィックス付きの2つのファイルが関連付けられています。 _fsm および _vm。これらは、フ
リースペースマップおよび可視性マップと呼ばれます。これらのファイルには空きスペース容量に関する情報
が格納され、テーブルファイルの各ページに表示されます。インデックスには個 々 の空き領域マップのみが
あり、可視性マップはありません。

。 pg_xlog/pg_wal ディレクトリには、先行書き込みログが格納されます。先行書き込みログは、データベ
ースの信頼性とパフォーマンスを向上させるために使用されます。テーブル内の行を更新するたび
に、PostgreSQLは先読みログに変更内容を書き込み、その後実際のデータページに変更内容をディスクに書

き込みます。。 pg_xlog ディレクトリには通常複数のファイルが含まれていますが、initdbは最初のファイ
ルだけを作成します。必要に応じて追加のファイルが追加されます。各xlogファイルの長さは16MBです。

設定

パフォーマンスを向上させるPostgreSQLのチューニング設定がいくつかあります。

最も一般的に使用されるパラメータは次のとおりです。

• max_connections = <num>:一度に持つデータベース接続の最大数。このパラメータを使用して、ディ
スクへのスワップを制限し、パフォーマンスを強制終了します。アプリケーションの要件に応じて、この
パラメータを接続プールの設定に合わせて調整することもできます。

• shared_buffers = <num>：データベース・サーバのパフォーマンスを向上させる最も簡単な方法最新
のほとんどのハードウェアでは、デフォルトはlowです。導入時に、システム上の使用可能なRAMの
約25%に設定されます。このパラメータ設定は、特定のデータベースインスタンスでの動作によって異な
ります。試行錯誤して値を増減しなければならない場合があります。ただし、この値をHighに設定する
と、パフォーマンスが低下する可能性があります。

• effective_cache_size = <num>:この値は、PostgreSQLのオプティマイザに、PostgreSQLがデータ
をキャッシュするために使用できるメモリ量を伝え、インデックスを使用するかどうかを判断するのに役
立ちます。値を大きくすると、インデックスを使用する可能性が高くなります。このパラメータは、に割

り当てられているメモリの量に設定する必要があります。 shared_buffers さらに、使用可能なOSキ
ャッシュの容量も表示されます。多くの場合、この値はシステムメモリ全体の50%を超えています。

• work_mem = <num>:このパラメータは、ソート操作およびハッシュテーブルで使用するメモリの量を制
御します。アプリケーションで大量のソートを行う場合は、メモリの量を増やす必要があるかもしれませ
んが、注意が必要です。これはシステム全体のパラメータではなく、操作ごとのパラメータです。複雑な
クエリに複数のソート操作が含まれている場合、複数のwork_mem単位のメモリを使用し、複数のバック
エンドが同時にこれを実行する可能性があります。このクエリを実行すると’値が大きすぎると’データベ
ース・サーバがスワップされることがよくありますこのオプションは、以前のバージョンのPostgreSQL

ではsort_memと呼ばれていました。

3

• fsync = <boolean> (on or off):このパラメータは、トランザクションがコミットされる前
にfsync()を使用して、すべてのWALページをディスクに同期するかどうかを決定します。電源をオフにす
ると、書き込みパフォーマンスが向上し、オンにすると、システムクラッシュ時の破損のリスクからの保
護が強化されます。

• checkpoint_timeout:チェックポイント・プロセスは’コミットされたデータをディスクにフラッシュし
ますこれには、ディスク上で多くの読み取り/書き込み処理が含まれます。値は秒単位で設定され、値を小
さくするとクラッシュリカバリ時間が短縮されます。値を大きくすると、チェックポイントコールが削減
されるため、システムリソースの負荷が軽減されます。アプリケーションの重要度、使用状況、データベ
ースの可用性に応じて、checkpoint_timeoutの値を設定します。

• commit_delay = <num> および commit_siblings = <num>:これらのオプションを組み合わせて使
用すると、一度にコミットする複数のトランザクションを書き出すことで、パフォーマンスを向上させる
ことができます。トランザクションがコミットされた瞬間に複数のcommit_siblingsオブジェクトがアクテ
ィブになっている場合、サーバはcommit_delayマイクロ秒を待って、一度に複数のトランザクションをコ
ミットしようとします。

• max_worker_processes / max_parallel_workers:プロセスに最適なワーカー数を設定しま
す。max_parallel_workersは、使用可能なCPUの数に対応します。アプリケーションの設計によっては、
クエリで並列処理に必要なワーカーの数が少なくて済みます。両方のパラメータの値は同じにし、テスト
後に値を調整することをお勧めします。

• random_page_cost = <num>:この値は、PostgreSQLが非シーケンシャルディスク読み取りを表示する
方法を制御します。値を大きくすると、PostgreSQLはインデックススキャンではなくシーケンシャルス
キャンを使用する可能性が高くなります。これは、サーバーに高速ディスクがあることを示します。計画
ベースの最適化、真空化、クエリやスキーマの変更に対するインデックス付けなど、他のオプションを評
価した後で、この設定を変更してください。

• effective_io_concurrency = <num>:このパラメータは、PostgreSQLが同時に実行を試みる同時デ
ィスクI/O処理の数を設定します。この値を大きくすると、個 々 のPostgreSQLセッションが並行して開始
しようとするI/O処理の数が増加します。指定できる範囲は1～1、000です。非同期I/O要求の発行を無効
にする場合は0にします。現在、この設定はビットマップヒープスキャンにのみ影響します。ソリッドス
テートドライブ（SSD）やその他のメモリベースストレージ（NVMe）は、多数の同時要求を処理できる
ことが多いため、数百の数を推奨します。

PostgreSQL設定パラメータの完全なリストについては、PostgreSQLのドキュメントを参照してください。

トースト

TOASTは、特大属性ストレージテクニックを表しています。PostgreSQLは固定のページサイズ（通常は8KB

）を使用しており、タプルを複数のページにまたがることはできません。したがって、大きなフィールド値を
直接保存することはできません。このサイズを超える行を格納しようとすると、トーストは大きな列のデータ
を小さな「ピース」に分割してトーストテーブルに格納します。

トーストされた属性の大きな値は’結果セットがクライアントに送信されるときにのみ(選択されている場合)プ
ルアウトされますテーブル自体は非常に小さく、アウトオブラインストレージ（TOAST）を使用しない場合
よりも多くの行を共有バッファキャッシュに格納できます。

バキューム

通常のPostgreSQL操作では、更新によって削除または廃止されたタプルはテーブルから物理的に削除され
ず、VACUUMが実行されるまで存在したままになります。したがって、特に頻繁に更新されるテーブルで
は、VACUMを定期的に実行する必要があります。ディスクスペースが使用されているスペースは、ディスク
スペースが停止しないように、新しい行で再利用できるように再利用する必要があります。ただし、スペース
はオペレーティングシステムに返されません。

4

ページ内の空き領域は断片化されません。VACUUMはブロック全体を書き換え、残りの行を効率的にパッキ
ングし、1つの連続した空き領域ブロックをページに残します。

一方、VACUUM FULLは、デッドスペースのないまったく新しいバージョンのテーブルファイルを作成するこ
とで、テーブルを積極的に圧縮します。この操作により、テーブルのサイズは最小限に抑えられますが、時間
がかかることがあります。また、処理が完了するまで、テーブルの新しいコピー用に追加のディスクスペース
が必要になります。ルーチンバキュームの目的は、バキュームフルアクティビティを回避することです。この
プロセスでは、テーブルが最小サイズに維持されるだけでなく、ディスクスペースの安定した使用量も維持さ
れます。

表領域

データベース・クラスタが初期化されると、2つの表領域が自動的に作成されます。

。 pg_global 表領域は共有システムカタログに使用されます。。 pg_default tablespaceは、template1お
よびtemplate0データベースのデフォルトのテーブルスペースです。クラスタが初期化されたパーティション
またはボリュームの容量が不足し、拡張できない場合は、別のパーティションに表領域を作成して、システム
を再構成できるようになるまで使用できます。

頻繁に使用されるインデックスは、ソリッドステートデバイスのような高速で可用性の高いディスクに配置で
きます。また、ほとんど使用されない、またはパフォーマンスが重要でないアーカイブデータを格納するテー
ブルは、SASドライブやSATAドライブなどの低コストで低速なディスクシステムに格納できます。

表領域はデータベースクラスタの一部であり、データファイルの自律的なコレクションとして扱うことはでき
ません。これらは、メインデータディレクトリに含まれるメタデータに依存するため、別のデータベースクラ
スタに接続したり、個別にバックアップしたりすることはできません。同様に、（ファイル削除やディスク障
害などによって）テーブルスペースが失われると、データベースクラスタが読み取り不能になったり、起動で
きなくなったりすることがあります。RAMディスクのような一時ファイルシステムに表領域を配置すると、
クラスタ全体の信頼性が低下します。

作成後、要求元ユーザに十分な権限があれば、任意のデータベースから表領域を使用できます。PostgreSQL

は、テーブルスペースの実装を簡素化するためにシンボリックリンクを使用します。PostgreSQLは、

pg_tablespace Table（クラスタ全体のテーブル）を作成し、その行に新しいオブジェクト識別子（OID）
を割り当てます。最後に、サーバはOIDを使用して、クラスタと指定されたディレクトリの間にシンボリック

リンクを作成します。ディレクトリ $PGDATA/pg_tblspc クラスタで定義されている組み込み以外の各表領
域を参照するシンボリックリンクが含まれます。

ストレージ構成

NFS

PostgreSQLデータベースは、NFSv3またはNFSv4ファイルシステムでホストできます。
最適なオプションは、データベース外の要因によって異なります。

たとえば、特定のクラスタ環境ではNFSv4のロック動作が推奨されます。（参照： "こちらをご覧ください"

詳細はこちら）

それ以外の場合は、パフォーマンスも含めて、データベース機能はほぼ同一である必要があります。唯一の要

件は、 hard マウントオプション。これは、ソフトタイムアウトによって回復不能なIOエラーが発生しないよ
うにするために必要です。

5

https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html
https://docs.netapp.com/ja-jp/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html

NFSv4がプロトコルとして選択されている場合、NetAppではNFSv4.1の使用を推奨します。NFSv4.1では、N

FSv4.0よりも耐障害性が向上するように、NFSv4プロトコルの機能がいくつか拡張されています。

一般的なデータベースワークロードには、次のマウントオプションを使用します。

rw,hard,nointr,bg,vers=[3|4],proto=tcp,rsize=65536,wsize=65536

大量のシーケンシャルIOが予想される場合は、次のセクションの説明に従ってNFS転送サイズを増やすことが
できます。

NFSテンソウサイス

ONTAPでは、デフォルトでNFS I/Oサイズが64Kに制限されています。

ほとんどのアプリケーションとデータベースでランダムI/Oを実行すると、ブロックサイズがはるかに小さく
なり、最大64Kよりもはるかに小さくなります。ラージブロックI/Oは通常並列処理されるため、最大64Kも最
大帯域幅の確保に制限されるわけではありません。

一部のワークロードでは、最大64Kに制限があります。特に、バックアップ/リカバリ処理やデータベースのフ
ルテーブルスキャンなどのシングルスレッド処理は、実行回数が少なくても大容量のI/Oを実行できるのであ
れば、より高速かつ効率的に実行できます。ONTAPに最適なI/O処理サイズは256Kです。

特定のONTAP SVMの最大転送サイズは、次のように変更できます。

Cluster01::> set advanced

Warning: These advanced commands are potentially dangerous; use them only

when directed to do so by NetApp personnel.

Do you want to continue? {y|n}: y

Cluster01::*> nfs server modify -vserver vserver1 -tcp-max-xfer-size

262144

Cluster01::*>

ONTAPで許容される最大転送サイズを、現在マウントされているNFSファイルシステム
のrsize/wsizeの値より小さくしないでください。これにより、一部のオペレーティングシステ
ムでハングしたり、データが破損したりする可能性があります。たとえば、NFSクライアント
のrsize / wsizeが65536に設定されている場合は、クライアント自体が制限されているた
め、ONTAPの最大転送サイズを65536~1048576の間で調整しても効果はありません。最大転
送サイズを65536未満に縮小すると、可用性やデータが損傷する可能性があります。

転送サイズをONTAPレベルで拡張すると、次のマウントオプションが使用されます。

rw,hard,nointr,bg,vers=[3|4],proto=tcp,rsize=262144,wsize=262144

NFSv3 TCPスロットテーブル

LinuxでNFSv3を使用する場合は、TCPスロットテーブルを適切に設定することが重要です。

6

TCPスロットテーブルは、NFSv3でホストバスアダプタ（HBA）のキュー深度に相当します。一度に未処理
となることのできるNFS処理の数を制御します。デフォルト値は通常16ですが、最適なパフォーマンスを得
るには小さすぎます。逆に、新しいLinuxカーネルでTCPスロットテーブルの上限をNFSサーバが要求でいっ
ぱいになるレベルに自動的に引き上げることができるため、問題が発生します。

パフォーマンスを最適化し、パフォーマンスの問題を回避するには、TCPスロットテーブルを制御するカーネ
ルパラメータを調整します。

を実行します sysctl -a | grep tcp.*.slot_table コマンドを実行し、次のパラメータを確認しま
す。

sysctl -a | grep tcp.*.slot_table

sunrpc.tcp_max_slot_table_entries = 128

sunrpc.tcp_slot_table_entries = 128

すべてのLinuxシステムに sunrpc.tcp_slot_table_entries`ただし、次のようなものがあります。

`sunrpc.tcp_max_slot_table_entries。どちらも128に設定する必要があります。

これらのパラメータを設定しないと、パフォーマンスに大きく影響する可能性がありま
す。Linux OSが十分なI/Oを発行していないためにパフォーマンスが制限される場合もありま
す。一方では、Linux OSが問題で処理できる以上のI/Oを試行すると、I/Oレイテンシが増加し
ます。

SAN

SANを使用したPostgreSQLデータベースは、通常xfsファイルシステムでホストされま
すが、OSベンダーがサポートしていれば他のデータベースも使用できます。

1つのLUNで最大10万IOPSをサポートできますが、I/O負荷の高いデータベースでは、一般にLVMとストライ
ピングを使用する必要があります。

LVMストライピング

フラッシュドライブが登場する以前は、回転式ドライブのパフォーマンス上の制限を克服するためにストライ
ピングが使用されていました。たとえば、OSが1MBの読み取り操作を実行する必要がある場合、1つのドライ
ブからその1MBのデータを読み取るには、1MBがゆっくり転送されるため、多くのドライブヘッドのシーク
と読み取りが必要になります。この1MBのデータが8つのLUNにストライピングされている場合、OSは8つ
の128K読み取り処理を並行して問題できるため、1MB転送の完了に必要な時間が短縮されます。

回転式ドライブを使用したストライピングは、I/Oパターンを事前に把握しておく必要があったため、より困
難でした。ストライピングが実際のI/Oパターンに合わせて正しく調整されていない場合、ストライピングさ
れた構成ではパフォーマンスが低下する可能性があります。Oracleデータベース、特にオールフラッシュ構成
では、ストライピングは設定がはるかに簡単で、パフォーマンスが劇的に向上することが実証されています。

デフォルトではOracle ASMなどの論理ボリュームマネージャがストライプされますが、ネイティブOS LVMは
ストライプされません。その中には、複数のLUNを連結されたデバイスとして結合するものもあります。その
ため、データファイルは1つのLUNデバイスにしか存在しません。これにより、ホットスポットが発生しま
す。他のLVM実装では、デフォルトで分散エクステントが使用されます。これはストライピングに似ています
が、粗いです。ボリュームグループ内のLUNはエクステントと呼ばれる大きな部分にスライスされ、通常は数
メガバイト単位で測定され、論理ボリュームがそれらのエクステントに分散されます。その結果、ファイルに

7

対するランダムI/OはLUN間で適切に分散されますが、シーケンシャルI/O処理はそれほど効率的ではありませ
ん。

高いパフォーマンスを必要とするアプリケーションI/Oは、ほとんどの場合（a）基本ブロックサイズの単位ま
たは（b）1メガバイトのいずれかです。

ストライピング構成の主な目的は、シングルファイルI/Oを1つのユニットとして実行し、マルチブロックI/O

（サイズは1MB）をストライピングされたボリューム内のすべてのLUNで均等に並列化できるようにすること
です。つまり、ストライプ・サイズはデータベース・ブロック・サイズより小さくすることはできず、ストラ
イプ・サイズにLUN数を掛けたサイズは1MBにする必要があります。

次の図に、ストライプサイズと幅の調整に使用できる3つのオプションを示します。LUNの数は、前述のパフ
ォーマンス要件を満たすように選択されますが、いずれの場合も、1つのストライプ内の総データ量は1MBで
す。

8

データ保護

ネイティブのDdta保護

ストレージ設計の主な側面の1つは、PostgreSQLボリュームの保護を有効にすることで
す。お客様は、ダンプアプローチを使用するか、ファイルシステムバックアップを使用
して、PostgreSQLデータベースを保護できます。このセクションでは、個 々 のデータ
ベースまたはクラスタ全体をバックアップするさまざまな方法について説明します。

PostgreSQLデータをバックアップするには、次の3つの方法があります。

• SQL Serverダンプ

• ファイルシステムレベルのバックアップ

• 継続的アーカイブ

SQL Serverダンプ方式の背後にある考え方は、SQL Serverコマンドを使用してファイルを生成することで
す。このコマンドをサーバに返すと、ダンプ時と同じようにデータベースを再作成できます。PostgreSQLは

ユーティリティプログラムを提供します。 pg_dump および pg_dump_all 個 々 のバックアップとクラスタ
レベルのバックアップの作成に使用します。これらのダンプは論理的であり、WAL再生で使用するのに十分
な情報が含まれていません。

別のバックアップ戦略として、PostgreSQLがデータベースにデータを保存するために使用するファイルを管
理者が直接コピーするファイルシステムレベルのバックアップを使用する方法があります。この方法はオフラ
インモードで実行されます。データベースまたはクラスタをシャットダウンする必要があります。もう1つの

選択肢は、 pg_basebackup PostgreSQLデータベースのホットストリーミングバックアップを実行します。

Snapshot

PostgreSQLを使用したスナップショットベースのバックアップでは、フルリカバリまた
はポイントインタイムリカバリを提供するために、データファイル、WALファイル、お
よびアーカイブされたWALファイルのスナップショットを構成する必要があります。

PostgreSQLデータベースの場合、Snapshotを使用した平均バックアップ時間は数秒~数分です。このバック

アップ速度は、 pg_basebackup その他のファイル・システム・ベースのバックアップ・アプローチ

NetAppストレージ上のSnapshotは、crash-consistentとアプリケーション整合性の両方が可能です。crash-

consistent Snapshotはデータベースを休止せずにストレージ上に作成されますが、アプリケーション整合
性Snapshotはデータベースがバックアップモードの間に作成されます。NetAppでは、後続のスナップショッ
トが永久増分バックアップとなるため、ストレージの節約とネットワークの効率化が促進されます。

スナップショットは高速で、システムのパフォーマンスに影響を与えないため、他のストリーミングバックア
ップテクノロジのように1日1回のバックアップを作成するのではなく、1日に複数のスナップショットをスケ
ジュールできます。リストアとリカバリの処理が必要な場合は、次の2つの主な機能によってシステムのダウ
ンタイムが短縮されます。

• NetApp SnapRestoreのデータリカバリテクノロジにより、リストア処理が数秒で実行されます。

• Recovery Point Objective（RPO；目標復旧時点）が頻繁に発生するため、適用するデータベースログの
数が減り、フォワードリカバリも高速化されます。

9

PostgreSQLをバックアップするには、データボリュームが（コンシステンシグループ）WALとアーカイブロ
グと同時に保護されていることを確認する必要があります。Snapshotテクノロジを使用してWALファイルを

コピーする場合は、次のコマンドを実行してください： pg_stop アーカイブする必要があるすべてのWALエ
ントリをフラッシュします。リストア中にWALエントリをフラッシュする場合は、データベースを停止する
か、既存のデータディレクトリをアンマウントまたは削除し、ストレージでSnapRestore操作を実行するだけ
で済みます。リストアが完了したら、システムをマウントして現在の状態に戻すことができます。ポイントイ
ンタイムリカバリの場合は、WALとアーカイブログをリストアすることもできます。次に、PostgreSQLは最
も整合性のあるポイントを決定し、自動的にリカバリします。

整合グループはONTAPの機能であり、1つのインスタンスまたは複数の表領域を含むデータベースに複数のボ
リュームがマウントされている場合に推奨されます。整合性グループSnapshotを使用すると、すべてのボリ
ュームがグループ化されて保護されます。整合グループはONTAP System Managerから効率的に管理できま
す。また、整合グループをクローニングして、テストや開発用にデータベースのインスタンスコピーを作成す
ることもできます。

データ保護ソフトウェア

PostgreSQLデータベース用のNetApp SnapCenterプラグインをSnapshotおよびNetApp

FlexCloneテクノロジと組み合わせると、次のようなメリットがあります。

• 高速なバックアップとリストア：

• スペース効率に優れたクローン：

• 迅速で効果的なディザスタリカバリシステムを構築する能力。

次のような状況では、Veeam SoftwareやCommvaultなど、ネットアップのプレミアムバックア
ップパートナーを選択することもできます。

• 異機種混在環境全体でのワークロードの管理

• バックアップをクラウドまたはテープに保存して長期保持

• さまざまなバージョンと種類のOSをサポート

PostgreSQL用のSnapCenterプラグインはコミュニティでサポートされているプラグインであり、セットアッ
プとドキュメントはNetAppオートメーションストアで入手できます。SnapCenterを使用すると、データベー
スのバックアップ、データのクローニング、リストアをリモートで実行できます。

10

著作権に関する情報

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

11

http://www.netapp.com/TM

	PostgreSQL : Enterprise applications
	目次
	PostgreSQL
	概要
	データベース設定
	アーキテクチャ
	初期化パラメータ
	設定
	表領域

	ストレージ構成
	NFS
	SAN

	データ保護
	ネイティブのDdta保護
	Snapshot
	データ保護ソフトウェア

