
データベース設定
Enterprise applications
NetApp
February 10, 2026

This PDF was generated from https://docs.netapp.com/ja-jp/ontap-apps-dbs/postgres/postgres-
architecture.html on February 10, 2026. Always check docs.netapp.com for the latest.

目次

データベース設定. 1

アーキテクチャ . 1

初期化パラメータ . 2

設定 . 2

トースト. 3

バキューム . 4

表領域. 4

データベース設定

アーキテクチャ

PostgreSQLは、クライアントとサーバのアーキテクチャに基づいたRDBMSで
す。PostgreSQLインスタンスはデータベースクラスタと呼ばれ、サーバの集合ではなく
データベースの集合です。

PostgreSQLデータベースには、postmaster、フロントエンド(クライアント)、バックエンドの3つの要素があ
ります。クライアントは、IPプロトコルや接続先データベースなどの情報を含む要求をポストマスターに送信
します。postmasterは接続を認証し、さらに通信するためにバックエンドプロセスに渡します。バックエンド
プロセスはクエリを実行し、結果を直接フロントエンド（クライアント）に送信します。

PostgreSQLインスタンスは、マルチスレッドモデルではなく、マルチプロセスモデルに基づいています。ジ
ョブごとに複数のプロセスが生成され、各プロセスには独自の機能があります。主なプロセスには、クライア
ントプロセス、WALライタプロセス、バックグラウンドライタプロセス、およびcheckpointerプロセスが含ま
れます。

• クライアント（フォアグラウンド）プロセスがPostgreSQLインスタンスに読み取りまたは書き込み要求
を送信しても、データを直接ディスクに読み書きすることはありません。最初に、共有バッファ
とWAL(Write-Ahead Logging)バッファにデータをバッファします。

• WALライタプロセスは、共有バッファとWALバッファの内容を操作してWALログに書き込みます。WAL

ログは通常PostgreSQLのトランザクションログであり、シーケンシャルに書き込まれます。したがっ
て、データベースからの応答時間を短縮するために、PostgreSQLはまずトランザクションログに書き込
み、クライアントに確認応答します。

• データベースを整合性のある状態にするために、バックグラウンドライタープロセスは共有バッファにダ
ーティページがないか定期的にチェックします。次に、NetAppボリュームまたはLUNに格納されているデ
ータファイルにデータをフラッシュします。

1

• checkpointerプロセスも定期的に（バックグラウンドプロセスよりも少ない頻度で）実行され、バッファ
への変更を防ぎます。WALライタプロセスに、NetAppディスクに保存されているWALログの末尾にチェ
ックポイントレコードを書き込み、フラッシュするように指示します。また、すべてのダーティページを
ディスクに書き込み、フラッシュするようにバックグラウンドライタープロセスに通知します。

初期化パラメータ

新しいデータベースクラスタを作成するには、 initdb プログラム。A initdb スクリ
プトは、クラスタを定義するデータファイル、システムテーブル、およびテンプレート
データベース（template0およびtemplate1）を作成します。

テンプレートデータベースはストックデータベースを表します。システムテーブル、標準ビュー、関数、およ

びデータ型の定義が含まれています。 pgdata の引数として機能します。 initdb データベースクラスタの
場所を指定するスクリプト。

PostgreSQLのすべてのデータベースオブジェクトは、それぞれのOIDによって内部的に管理されます。テー
ブルとインデックスは、個 々 のOIDによっても管理されます。データベースオブジェクトとそれぞれのOID

との関係は、オブジェクトのタイプに応じて適切なシステムカタログテーブルに格納されます。たとえば、デ

ータベースとヒープテーブルのOIDは、 pg_database それぞれ`pg_classと`pg_classです。OIDを確認する
には、PostgreSQLクライアントでクエリを発行します。

各データベースには、1GBに制限された個別のテーブルとインデックスファイルがあります。各テーブルに

は、それぞれサフィックス付きの2つのファイルが関連付けられています。 _fsm および _vm。これらは、フ
リースペースマップおよび可視性マップと呼ばれます。これらのファイルには空きスペース容量に関する情報
が格納され、テーブルファイルの各ページに表示されます。インデックスには個 々 の空き領域マップのみが
あり、可視性マップはありません。

。 pg_xlog/pg_wal ディレクトリには、先行書き込みログが格納されます。先行書き込みログは、データベ
ースの信頼性とパフォーマンスを向上させるために使用されます。テーブル内の行を更新するたび
に、PostgreSQLは先読みログに変更内容を書き込み、その後実際のデータページに変更内容をディスクに書

き込みます。。 pg_xlog ディレクトリには通常複数のファイルが含まれていますが、initdbは最初のファイ
ルだけを作成します。必要に応じて追加のファイルが追加されます。各xlogファイルの長さは16MBです。

設定

パフォーマンスを向上させるPostgreSQLのチューニング設定がいくつかあります。

最も一般的に使用されるパラメータは次のとおりです。

• max_connections = <num>:一度に持つデータベース接続の最大数。このパラメータを使用して、ディ
スクへのスワップを制限し、パフォーマンスを強制終了します。アプリケーションの要件に応じて、この
パラメータを接続プールの設定に合わせて調整することもできます。

• shared_buffers = <num>：データベース・サーバのパフォーマンスを向上させる最も簡単な方法最新
のほとんどのハードウェアでは、デフォルトはlowです。導入時に、システム上の使用可能なRAMの
約25%に設定されます。このパラメータ設定は、特定のデータベースインスタンスでの動作によって異な
ります。試行錯誤して値を増減しなければならない場合があります。ただし、この値をHighに設定する
と、パフォーマンスが低下する可能性があります。

• effective_cache_size = <num>:この値は、PostgreSQLのオプティマイザに、PostgreSQLがデータ
をキャッシュするために使用できるメモリ量を伝え、インデックスを使用するかどうかを判断するのに役
立ちます。値を大きくすると、インデックスを使用する可能性が高くなります。このパラメータは、に割

2

り当てられているメモリの量に設定する必要があります。 shared_buffers さらに、使用可能なOS

キャッシュの容量も表示されます。多くの場合、この値はシステムメモリ全体の50%を超えています。

• work_mem = <num>:このパラメータは、ソート操作およびハッシュテーブルで使用するメモリの量を制
御します。アプリケーションで大量のソートを行う場合は、メモリの量を増やす必要があるかもしれませ
んが、注意が必要です。これはシステム全体のパラメータではなく、操作ごとのパラメータです。複雑な
クエリに複数のソート操作が含まれている場合、複数のwork_mem単位のメモリを使用し、複数のバック
エンドが同時にこれを実行する可能性があります。このクエリを実行すると’値が大きすぎると’データベ
ース・サーバがスワップされることがよくありますこのオプションは、以前のバージョンのPostgreSQL

ではsort_memと呼ばれていました。

• fsync = <boolean> (on or off):このパラメータは、トランザクションがコミットされる前
にfsync()を使用して、すべてのWALページをディスクに同期するかどうかを決定します。電源をオフにす
ると、書き込みパフォーマンスが向上し、オンにすると、システムクラッシュ時の破損のリスクからの保
護が強化されます。

• checkpoint_timeout:チェックポイント・プロセスは’コミットされたデータをディスクにフラッシュし
ますこれには、ディスク上で多くの読み取り/書き込み処理が含まれます。値は秒単位で設定され、値を小
さくするとクラッシュリカバリ時間が短縮されます。値を大きくすると、チェックポイントコールが削減
されるため、システムリソースの負荷が軽減されます。アプリケーションの重要度、使用状況、データベ
ースの可用性に応じて、checkpoint_timeoutの値を設定します。

• commit_delay = <num> および commit_siblings = <num>:これらのオプションを組み合わせて使
用すると、一度にコミットする複数のトランザクションを書き出すことで、パフォーマンスを向上させる
ことができます。トランザクションがコミットされた瞬間に複数のcommit_siblingsオブジェクトがアクテ
ィブになっている場合、サーバはcommit_delayマイクロ秒を待って、一度に複数のトランザクションをコ
ミットしようとします。

• max_worker_processes / max_parallel_workers:プロセスに最適なワーカー数を設定しま
す。max_parallel_workersは、使用可能なCPUの数に対応します。アプリケーションの設計によっては、
クエリで並列処理に必要なワーカーの数が少なくて済みます。両方のパラメータの値は同じにし、テスト
後に値を調整することをお勧めします。

• random_page_cost = <num>:この値は、PostgreSQLが非シーケンシャルディスク読み取りを表示する
方法を制御します。値を大きくすると、PostgreSQLはインデックススキャンではなくシーケンシャルス
キャンを使用する可能性が高くなります。これは、サーバーに高速ディスクがあることを示します。計画
ベースの最適化、真空化、クエリやスキーマの変更に対するインデックス付けなど、他のオプションを評
価した後で、この設定を変更してください。

• effective_io_concurrency = <num>:このパラメータは、PostgreSQLが同時に実行を試みる同時デ
ィスクI/O処理の数を設定します。この値を大きくすると、個 々 のPostgreSQLセッションが並行して開始
しようとするI/O処理の数が増加します。指定できる範囲は1～1、000です。非同期I/O要求の発行を無効
にする場合は0にします。現在、この設定はビットマップヒープスキャンにのみ影響します。ソリッドス
テートドライブ（SSD）やその他のメモリベースストレージ（NVMe）は、多数の同時要求を処理できる
ことが多いため、数百の数を推奨します。

PostgreSQL設定パラメータの完全なリストについては、PostgreSQLのドキュメントを参照してください。

トースト

TOASTは、特大属性ストレージテクニックを表しています。PostgreSQLは固定のページサイズ（通常は8KB

）を使用しており、タプルを複数のページにまたがることはできません。したがって、大きなフィールド値を
直接保存することはできません。このサイズを超える行を格納しようとすると、トーストは大きな列のデータ
を小さな「ピース」に分割してトーストテーブルに格納します。

トーストされた属性の大きな値は’結果セットがクライアントに送信されるときにのみ(選択されている場合)プ
ルアウトされますテーブル自体は非常に小さく、アウトオブラインストレージ（TOAST）を使用しない場合

3

よりも多くの行を共有バッファキャッシュに格納できます。

バキューム

通常のPostgreSQL操作では、更新によって削除または廃止されたタプルはテーブルから物理的に削除され
ず、VACUUMが実行されるまで存在したままになります。したがって、特に頻繁に更新されるテーブルで
は、VACUMを定期的に実行する必要があります。ディスクスペースが使用されているスペースは、ディスク
スペースが停止しないように、新しい行で再利用できるように再利用する必要があります。ただし、スペース
はオペレーティングシステムに返されません。

ページ内の空き領域は断片化されません。VACUUMはブロック全体を書き換え、残りの行を効率的にパッキ
ングし、1つの連続した空き領域ブロックをページに残します。

一方、VACUUM FULLは、デッドスペースのないまったく新しいバージョンのテーブルファイルを作成するこ
とで、テーブルを積極的に圧縮します。この操作により、テーブルのサイズは最小限に抑えられますが、時間
がかかることがあります。また、処理が完了するまで、テーブルの新しいコピー用に追加のディスクスペース
が必要になります。ルーチンバキュームの目的は、バキュームフルアクティビティを回避することです。この
プロセスでは、テーブルが最小サイズに維持されるだけでなく、ディスクスペースの安定した使用量も維持さ
れます。

表領域

データベース・クラスタが初期化されると、2つの表領域が自動的に作成されます。

。 pg_global 表領域は共有システムカタログに使用されます。。 pg_default tablespaceは、template1お
よびtemplate0データベースのデフォルトのテーブルスペースです。クラスタが初期化されたパーティション
またはボリュームの容量が不足し、拡張できない場合は、別のパーティションに表領域を作成して、システム
を再構成できるようになるまで使用できます。

頻繁に使用されるインデックスは、ソリッドステートデバイスのような高速で可用性の高いディスクに配置で
きます。また、ほとんど使用されない、またはパフォーマンスが重要でないアーカイブデータを格納するテー
ブルは、SASドライブやSATAドライブなどの低コストで低速なディスクシステムに格納できます。

表領域はデータベースクラスタの一部であり、データファイルの自律的なコレクションとして扱うことはでき
ません。これらは、メインデータディレクトリに含まれるメタデータに依存するため、別のデータベースクラ
スタに接続したり、個別にバックアップしたりすることはできません。同様に、（ファイル削除やディスク障
害などによって）テーブルスペースが失われると、データベースクラスタが読み取り不能になったり、起動で
きなくなったりすることがあります。RAMディスクのような一時ファイルシステムに表領域を配置すると、
クラスタ全体の信頼性が低下します。

作成後、要求元ユーザに十分な権限があれば、任意のデータベースから表領域を使用できます。PostgreSQL

は、テーブルスペースの実装を簡素化するためにシンボリックリンクを使用します。PostgreSQLは、

pg_tablespace Table（クラスタ全体のテーブル）を作成し、その行に新しいオブジェクト識別子（OID）
を割り当てます。最後に、サーバはOIDを使用して、クラスタと指定されたディレクトリの間にシンボリック

リンクを作成します。ディレクトリ $PGDATA/pg_tblspc クラスタで定義されている組み込み以外の各表領
域を参照するシンボリックリンクが含まれます。

4

著作権に関する情報

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

5

http://www.netapp.com/TM

	データベース設定 : Enterprise applications
	目次
	データベース設定
	アーキテクチャ
	初期化パラメータ
	設定
	トースト
	バキューム

	表領域

