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ボリューム操作を実行する

CSI トポロジを使用します

Astra Trident では、を使用して、 Kubernetes クラスタ内にあるノードにボリュームを選
択的に作成して接続できます "CSI トポロジ機能"。

概要

CSI トポロジ機能を使用すると、領域およびアベイラビリティゾーンに基づいて、ボリュームへのアクセスを
ノードのサブセットに制限できます。現在、クラウドプロバイダは、 Kubernetes 管理者がゾーンベースのノ
ードを生成できるようになっています。ノードは、リージョンによって異なるアベイラビリティゾーンに配置
することも、リージョンによって配置することもできます。マルチゾーンアーキテクチャでワークロード用の
ボリュームをプロビジョニングするために、 Astra Trident は CSI トポロジを使用します。

CSI トポロジ機能の詳細については、を参照してください "こちらをご覧ください"。

Kubernetes には、 2 つの固有のボリュームバインドモードがあります。

• を使用 VolumeBindingMode をに設定します Immediate`トポロジを認識することなくボリュームを作

成できます。ボリュームバインディングと動的プロビジョニングは、 PVC が作成されるときに処理され

ます。これがデフォルトです `VolumeBindingMode また、トポロジの制約を適用しないクラスタにも
適しています。永続ボリュームは、要求側ポッドのスケジュール要件に依存せずに作成されます。

• を使用 VolumeBindingMode をに設定します `WaitForFirstConsumer`PVCの永続的ボリュームの作成と
バインディングは、PVCを使用するポッドがスケジュールされて作成されるまで遅延されます。これによ
り、トポロジの要件に応じたスケジュールの制約を満たすようにボリュームが作成されます。

。 WaitForFirstConsumer バインディングモードでは、トポロジラベルは必要ありません。
これは CSI トポロジ機能とは無関係に使用できます。

必要なもの

CSI トポロジを使用するには、次のものが必要です。

• を実行するKubernetesクラスタ "サポートされるKubernetesバージョン"
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kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• クラスタ内のノードには、トポロジを認識するためのラベルが必要です

(topology.kubernetes.io/region および topology.kubernetes.io/zone）。このラベル *

は、 Astra Trident をトポロジ対応としてインストールする前に、クラスタ内のノードに存在する必要があ
ります。

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

手順 1 ：トポロジ対応バックエンドを作成する

Astra Trident ストレージバックエンドは、アベイラビリティゾーンに基づいてボリュームを選択的にプロビジ

ョニングするように設計できます。各バックエンドはオプションで伝送できます supportedTopologies サ
ポートする必要があるゾーンおよび領域のリストを表すブロック。ストレージクラスがそのようなバックエン
ドを使用する場合、ボリュームは、サポートされているリージョン / ゾーンでスケジュールされているアプリ
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ケーションから要求された場合にのみ作成されます。

バックエンド定義の例を次に示します。

YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies は、バックエンドごとのリージョンとゾーンのリストを提供するた
めに使用されます。これらのリージョンとゾーンは、 StorageClass で指定できる許容値のリス
トを表します。バックエンドで提供されるリージョンとゾーンのサブセットを含む
StorageClasses の場合、 Astra Trident がバックエンドにボリュームを作成します。

を定義できます supportedTopologies ストレージプールごとに作成することもできます。次の例を参照し
てください。
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---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

    workload: production

  region: Iowa-DC

  zone: Iowa-DC-A

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

- labels:

    workload: dev

  region: Iowa-DC

  zone: Iowa-DC-B

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

この例では、を使用しています region および zone ラベルはストレージプールの場所を表します。

topology.kubernetes.io/region および topology.kubernetes.io/zone ストレージプールの使用
場所を指定します。

手順 2 ：トポロジを認識するストレージクラスを定義する

クラスタ内のノードに提供されるトポロジラベルに基づいて、トポロジ情報を含めるように StorageClasses

を定義できます。これにより、作成された PVC 要求の候補となるストレージプール、および Trident によっ
てプロビジョニングされたボリュームを使用できるノードのサブセットが決まります。

次の例を参照してください。
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apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

  values:

  - us-east1-a

  - us-east1-b

- key: topology.kubernetes.io/region

  values:

  - us-east1

parameters:

  fsType: "ext4"

上記のStorageClass定義で、 volumeBindingMode がに設定されます WaitForFirstConsumer。この
StorageClass で要求された PVC は、ポッドで参照されるまで処理されません。および、

allowedTopologies 使用するゾーンとリージョンを提供します。。 netapp-san-us-east1

StorageClassがにPVCを作成します san-backend-us-east1 上で定義したバックエンド。

ステップ 3 ： PVC を作成して使用する

StorageClass を作成してバックエンドにマッピングすると、 PVC を作成できるようになりました。

例を参照 spec 下記：

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

このマニフェストを使用して PVC を作成すると、次のような結果になります。

5



kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

Trident でボリュームを作成して PVC にバインドするには、ポッド内の PVC を使用します。次の例を参照し
てください。
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apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

このpodSpecにより、Kubernetesは、にあるノードにPODをスケジュールするように指示されます us-

east1 リージョンを選択し、にある任意のノードから選択します us-east1-a または us-east1-b ゾー
ン。

次の出力を参照してください。
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kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

バックエンドを更新して追加 supportedTopologies

既存のバックエンドを更新して、のリストを追加することができます supportedTopologies を使用します

tridentctl backend update。これは、すでにプロビジョニングされているボリュームには影響せず、以
降の PVC にのみ使用されます。

詳細については、こちらをご覧ください

• "コンテナのリソースを管理"

• "ノードセレクタ"

• "アフィニティと非アフィニティ"

• "塗料および耐性"

スナップショットを操作します

永続ボリューム（PVS）のKubernetesボリュームSnapshot（ボリュームSnapshot）を作
成して、Astra Tridentボリュームのポイントインタイムコピーを保持できます。また、
既存のボリュームSnapshotから、_ clone__という名前の新しいボリュームを作成するこ

ともできます。ボリュームSnapshotは、でサポートされます ontap-nas、 ontap-

nas-flexgroup、 ontap-san、 ontap-san-economy、 solidfire-san、 gcp-

cvs`および `azure-netapp-files ドライバ。

作業を開始する前に

外部スナップショットコントローラとカスタムリソース定義（CRD）が必要です。Kubernetesオーケストレ
ーションツール（例：Kubeadm、GKE、OpenShift）の役割を担っています。

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、を参
照してください ボリュームSnapshotコントローラを導入する。

GKE環境でオンデマンドボリュームスナップショットを作成する場合は、スナップショットコ
ントローラを作成しないでください。GKEでは、内蔵の非表示のスナップショットコントロー
ラを使用します。
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ステップ1： VolumeSnapshotClass

次の例は、ボリュームSnapshotクラスを作成します。

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

。 driver Astra Trident CSIドライバを指します。 deletionPolicy は、です Delete または Retain。に

設定すると Retain`を使用すると、ストレージクラスタの基盤となる物理Snapshotが、の場合でも保持さ

れます `VolumeSnapshot オブジェクトが削除された。

詳細については、link：./trident-reference/objects.html#Kubernetes -volumesnapshotclass-objectsを参照して

ください[VolumeSnapshotClass]。

手順 2 ：既存の PVC のスナップショットを作成します

次に、既存のPVCのスナップショットを作成する例を示します。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

この例では、という名前のPVCに対してスナップショットが作成されます pvc1 Snapshotの名前はに設定さ

れます pvc1-snap。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

これでが作成されました VolumeSnapshot オブジェクト。ボリュームSnapshotはPVCに似ており、に関連
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付けられています VolumeSnapshotContent 実際のスナップショットを表すオブジェクト。

を識別できます VolumeSnapshotContent のオブジェクト pvc1-snap ボリュームSnapshot。ボリュー
ムSnapshotの詳細を定義します。

kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

.

.

.

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

.

.

。 Snapshot Content Name このSnapshotを提供するVolumeSnapshotContentオブジェクトを特定しま

す。。 Ready To Use パラメータは、Snapshotを使用して新しいPVCを作成できることを示します。

手順 3 ：ボリューム Snapshot から PVC を作成します

この例では、スナップショットを使用してPVCを作成します。
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cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

dataSource に、という名前のボリュームSnapshotを使用してPVCを作成する必要があることを示します

pvc1-snap データのソースとして。このコマンドを実行すると、 Astra Trident が Snapshot から PVC を作
成するように指示します。作成された PVC は、ポッドに接続して、他の PVC と同様に使用できます。

PVCは、と同じネームスペースに作成する必要があります dataSource。

Snapshotを含むPVを削除しています

スナップショットが関連付けられている永続ボリュームを削除すると、対応する Trident ボリュームが「削除
状態」に更新されます。ボリュームSnapshotを削除してAstra Tridentボリュームを削除します。

ボリュームSnapshotコントローラを導入する

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、次の
ように導入できます。

手順

1. ボリュームのSnapshot作成
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cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. スナップショットコントローラを作成します。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

必要に応じて、を開きます deploy/kubernetes/snapshot-controller/rbac-

snapshot-controller.yaml およびを更新します namespace に移動します。

Snapshotを使用したボリュームデータのリカバリ

Snapshotディレクトリは、を使用してプロビジョニングされるボリュームの互換性を最大限に高めるため、

デフォルトでは非表示になっています。 ontap-nas および ontap-nas-economy ドライバ。を有効にしま

す .snapshot スナップショットからデータを直接リカバリするディレクトリ。

ボリュームを以前のSnapshotに記録されている状態にリストアするには、ボリュームSnapshotリスト
アONTAP CLIを使用します。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Snapshotコピーをリストアすると、既存のボリューム設定が上書きされます。Snapshotコピー
の作成後にボリュームデータに加えた変更は失われます。
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関連リンク

• "ボリューム Snapshot"

• "ボリュームSnapshotクラス"

ボリュームを展開します

Astra Trident により、 Kubernetes ユーザは作成後にボリュームを拡張できます。ここで
は、 iSCSI ボリュームと NFS ボリュームの拡張に必要な設定について説明します。

iSCSI ボリュームを展開します

CSI プロビジョニングを使用して、 iSCSI Persistent Volume （ PV ）を拡張できます。

iSCSIボリューム拡張は、でサポートされます ontap-san、 ontap-san-economy、

solidfire-san ドライバとにはKubernetes 1.16以降が必要です。

概要

iSCSI PV の拡張には、次の手順が含まれます。

• StorageClass定義を編集してを設定します allowVolumeExpansion フィールドからに移動します

true。

• PVC定義を編集してを更新します spec.resources.requests.storage 新たに必要となったサイズを
反映するには、元のサイズよりも大きくする必要があります。

• サイズを変更するには、 PV をポッドに接続する必要があります。iSCSI PV のサイズ変更には、次の 2

つのシナリオがあります。

◦ PV がポッドに接続されている場合、 Astra Trident はストレージバックエンドのボリュームを拡張
し、デバイスを再スキャンし、ファイルシステムのサイズを変更します。

◦ 未接続の PV のサイズを変更しようとすると、 Astra Trident がストレージバックエンドのボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシ
ステムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新しま
す。

次の例は、 iSCSI PVS の仕組みを示しています。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する
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cat storageclass-ontapsan.yaml

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

既存のストレージクラスの場合は、編集してを追加します allowVolumeExpansion パラメータ

手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Astra Trident が、永続的ボリューム（ PV ）を作成し、この永続的ボリューム要求（ PVC ）に関連付けま
す。

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s
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手順 3 ： PVC を接続するポッドを定義します

この例では、を使用するポッドが作成されます san-pvc。

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

ステップ 4 ： PV を展開します

1Giから2Giに作成されたPVのサイズを変更するには、PVCの定義を編集してを更新します

spec.resources.requests.storage 2Giへ。
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kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 ...

手順 5 ：拡張を検証する

PVC 、 PV 、 Astra Trident のボリュームのサイズを確認することで、拡張が正しく機能しているかどうかを
検証できます。
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

NFS ボリュームを拡張します

Astra Tridentは、でプロビジョニングしたNFS PVSのボリューム拡張をサポートしています ontap-nas、

ontap-nas-economy、 ontap-nas-flexgroup、 gcp-cvs`および `azure-netapp-files バックエ
ンド

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

NFS PVのサイズを変更するには、管理者はまず、を設定してボリュームを拡張できるようにストレージクラ

スを構成する必要があります allowVolumeExpansion フィールドからに移動します true：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

このオプションを指定せずにストレージクラスを作成済みの場合は、を使用して既存のストレージクラスを編

集するだけです kubectl edit storageclass ボリュームを拡張できるようにするため。
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手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Astra Trident が、この PVC に対して 20MiB の NFS PV を作成する必要があります。

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

ステップ3：PVを拡張する

新しく作成した20MiBのPVのサイズを1GiBに変更するには、そのPVCを編集してを設定します

spec.resources.requests.storage 1 GBに設定する場合：
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kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

...

手順4：拡張を検証する

PVC 、 PV 、 Astra Trident のボリュームのサイズを確認することで、サイズ変更が正しく機能しているかど
うかを検証できます。
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kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ボリュームをインポート

を使用して、既存のストレージボリュームをKubernetes PVとしてインポートできます

tridentctl import。

概要と考慮事項

Astra Tridentにボリュームをインポートすると、次のことが可能になります。

• アプリケーションをコンテナ化し、既存のデータセットを再利用する

• 一時的なアプリケーションにはデータセットのクローンを使用

• 障害が発生したKubernetesクラスタを再構築します

• ディザスタリカバリ時にアプリケーションデータを移行

考慮事項

ボリュームをインポートする前に、次の考慮事項を確認してください。

• Astra TridentでインポートできるのはRW（読み取り/書き込み）タイプのONTAPボリュームのみです。DP
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（データ保護）タイプのボリュームはSnapMirrorデスティネーションボリュームです。ボリュームをAstra

Tridentにインポートする前に、ミラー関係を解除する必要があります。

• アクティブな接続がないボリュームをインポートすることを推奨します。アクティブに使用されているボ
リュームをインポートするには、ボリュームのクローンを作成してからインポートを実行します。

Kubernetesは以前の接続を認識せず、アクティブなボリュームをポッドに簡単に接続でき
るため、これはブロックボリュームで特に重要です。その結果、データが破損する可能性
があります。

• でもね StorageClass PVCに対して指定する必要があります。Astra Tridentはインポート時にこのパラ
メータを使用しません。ストレージクラスは、ボリュームの作成時に、ストレージ特性に基づいて使用可
能なプールから選択するために使用されます。ボリュームはすでに存在するため、インポート時にプール
を選択する必要はありません。そのため、PVCで指定されたストレージクラスと一致しないバックエンド
またはプールにボリュームが存在してもインポートは失敗しません。

• 既存のボリュームサイズはPVCで決定され、設定されます。ストレージドライバによってボリュームがイ
ンポートされると、 PV は ClaimRef を使用して PVC に作成されます。

◦ 再利用ポリシーは、最初にににに設定されています retain PVにあります。Kubernetes が PVC と
PV を正常にバインドすると、再利用ポリシーがストレージクラスの再利用ポリシーに合わせて更新さ
れます。

◦ ストレージクラスの再利用ポリシーがの場合 `delete`にすると、PVが削除されるとストレージボリュ
ームが削除されます。

• デフォルトでは、Astra TridentがPVCを管理し、バックエンドでFlexVolとLUNの名前を変更します。を渡

すことができます --no-manage 管理対象外のボリュームをインポートするフラグ。を使用する場合 `--

no-manage`Astra Tridentは、オブジェクトのライフサイクルを通じてPVCやPVに対して追加の処理を実
行することはありません。PVが削除されてもストレージボリュームは削除されず、ボリュームのクローン
やボリュームのサイズ変更などのその他の処理も無視されます。

このオプションは、コンテナ化されたワークロードに Kubernetes を使用するが、
Kubernetes 以外でストレージボリュームのライフサイクルを管理する場合に便利です。

• PVC と PV にアノテーションが追加されます。このアノテーションは、ボリュームがインポートされたこ
と、および PVC と PV が管理されていることを示す二重の目的を果たします。このアノテーションは変
更または削除しないでください。

ボリュームをインポートします

を使用できます tridentctl import をクリックしてボリュームをインポートします。

手順

1. Persistent Volume Claim（PVC；永続的ボリューム要求）ファイルを作成します（例： pvc.yaml）をク

リックします。PVCファイルには、が含まれている必要があります name、 namespace、

accessModes`および `storageClassName。必要に応じて、を指定できます unixPermissions 定
義されています。

最小仕様の例を次に示します。
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kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

PV名やボリュームサイズなどの追加のパラメータは指定しないでください。これにより原
因、インポートコマンドが失敗する可能性があります。

2. を使用します tridentctl import コマンドを使用して、ボリュームを含むAstra Tridentバックエンド
の名前と、ストレージ上のボリュームを一意に識別する名前（ONTAP FlexVol、Elementボリュー

ム、Cloud Volumes Serviceパスなど）を指定します。。 -f PVCファイルへのパスを指定するには、引数
が必要です。

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

例

サポートされているドライバについて、次のボリュームインポートの例を確認してください。

ONTAP NASおよびONTAP NAS FlexGroup

Astra Tridentでは、を使用したボリュームインポートがサポートされます ontap-nas および ontap-nas-

flexgroup ドライバ。

• 。 ontap-nas-economy ドライバでqtreeをインポートおよび管理できない。

• 。 ontap-nas および ontap-nas-flexgroup ドライバでボリューム名の重複が許可さ
れていません。

を使用して作成した各ボリューム ontap-nas driverはONTAP クラスタ上のFlexVol です。を使用してFlexVol

をインポートする ontap-nas ドライバも同じように動作します。ONTAP クラスタにすでに存在するFlexVol

は、としてインポートできます ontap-nas PVC。同様に、FlexGroup ボリュームはとしてインポートできま

す ontap-nas-flexgroup PVC

ONTAP NASの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。
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管理対象ボリューム

次の例は、という名前のボリュームをインポートします managed_volume という名前のバックエンド

で ontap_nas：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

を使用する場合 --no-manage 引数に指定します。Astra Tridentはボリュームの名前を変更しません。

次に、をインポートする例を示します unmanaged_volume をクリックします ontap_nas バックエン
ド：

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra Tridentでは、を使用したボリュームインポートがサポートされます ontap-san ドライバ。

Astra Tridentでは、単一のLUNを含むONTAP SAN FlexVolをインポートできます。これはと同じです ontap-

san ドライバ。FlexVol 内の各PVCおよびLUNにFlexVol を作成します。Astra TridentがFlexVolをインポート
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し、PVCの定義に関連付けます。

ONTAP SANの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

管理対象ボリューム

管理対象ボリュームの場合、Astra TridentはFlexVolの名前をに変更します pvc-<uuid> およびFlexVol

内のLUNをからにフォーマットします lun0。

次の例は、をインポートします ontap-san-managed にあるFlexVol ontap_san_default バックエン
ド：

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

次に、をインポートする例を示します unmanaged_example_volume をクリックします ontap_san

バックエンド：

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+
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次の例に示すように、KubernetesノードのIQNとIQNを共有するigroupにLUNをマッピングすると、エラーが

表示されます。 LUN already mapped to initiator(s) in this group。ボリュームをインポートす
るには、イニシエータを削除するか、LUNのマッピングを解除する必要があります。

要素（ Element ）

Astra Tridentでは、を使用したNetApp ElementソフトウェアとNetApp HCIボリュームのインポートがサポー

トされます solidfire-san ドライバ。

Element ドライバではボリューム名の重複がサポートされます。ただし、ボリューム名が重複
している場合はAstra Tridentからエラーが返されます。回避策としてボリュームをクローニン
グし、一意のボリューム名を指定して、クローンボリュームをインポートします。

要素の例

次に、をインポートする例を示します element-managed バックエンドのボリューム element_default。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform の 1 つです

Astra Tridentでは、を使用したボリュームインポートがサポートされます gcp-cvs ドライバ。
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NetApp Cloud Volumes Serviceから作成されたボリュームをGoogle Cloud Platformにインポー
トするには、ボリュームパスでボリュームを特定します。ボリュームパスは、ボリュームのエ

クスポートパスののに続く部分です :/。たとえば、エクスポートパスがの場合などです

10.0.0.1:/adroit-jolly-swift、ボリュームのパスはです adroit-jolly-swift。

Google Cloud Platformの例

次に、をインポートする例を示します gcp-cvs バックエンドのボリューム gcpcvs_YEppr を指定します

adroit-jolly-swift。

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files の特長

Astra Tridentでは、を使用したボリュームインポートがサポートされます azure-netapp-files および

azure-netapp-files-subvolume ドライバ。

Azure NetApp Filesボリュームをインポートするには、ボリュームパスでボリュームを特定しま

す。ボリュームパスは、ボリュームのエクスポートパスののに続く部分です :/。たとえば、マ

ウントパスがの場合などです 10.0.0.2:/importvol1、ボリュームのパスはです

importvol1。

Azure NetApp Filesの例

次に、をインポートする例を示します azure-netapp-files バックエンドのボリューム

azurenetappfiles_40517 を指定します importvol1。
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tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+
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