
ボリューム操作を実行する
Astra Trident
NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/ja-jp/trident-2304/trident-use/csi-topology.html on
November 14, 2025. Always check docs.netapp.com for the latest.

目次

ボリューム操作を実行する . 1

CSI トポロジを使用します . 1

概要 . 1

手順 1 ：トポロジ対応バックエンドを作成する . 2

手順 2 ：トポロジを認識するストレージクラスを定義する . 4

ステップ 3 ： PVC を作成して使用する . 5

バックエンドを更新して追加 supportedTopologies . 8

詳細については、こちらをご覧ください . 8

スナップショットを操作します . 8

ステップ1： VolumeSnapshotClass . 9

手順 2 ：既存の PVC のスナップショットを作成します . 9

手順 3 ：ボリューム Snapshot から PVC を作成します. 10

Snapshotを含むPVを削除しています . 11

ボリュームSnapshotコントローラを導入する . 11

Snapshotを使用したボリュームデータのリカバリ . 12

関連リンク . 13

ボリュームを展開します . 13

iSCSI ボリュームを展開します . 13

NFS ボリュームを拡張します . 17

ボリュームをインポート . 20

概要と考慮事項 . 20

ボリュームをインポートします. 21

例 . 22

ボリューム操作を実行する

CSI トポロジを使用します

Astra Trident では、を使用して、 Kubernetes クラスタ内にあるノードにボリュームを選
択的に作成して接続できます "CSI トポロジ機能"。

概要

CSI トポロジ機能を使用すると、領域およびアベイラビリティゾーンに基づいて、ボリュームへのアクセスを
ノードのサブセットに制限できます。現在、クラウドプロバイダは、 Kubernetes 管理者がゾーンベースのノ
ードを生成できるようになっています。ノードは、リージョンによって異なるアベイラビリティゾーンに配置
することも、リージョンによって配置することもできます。マルチゾーンアーキテクチャでワークロード用の
ボリュームをプロビジョニングするために、 Astra Trident は CSI トポロジを使用します。

CSI トポロジ機能の詳細については、を参照してください "こちらをご覧ください"。

Kubernetes には、 2 つの固有のボリュームバインドモードがあります。

• を使用 VolumeBindingMode をに設定します Immediate`トポロジを認識することなくボリュームを作

成できます。ボリュームバインディングと動的プロビジョニングは、 PVC が作成されるときに処理され

ます。これがデフォルトです `VolumeBindingMode また、トポロジの制約を適用しないクラスタにも
適しています。永続ボリュームは、要求側ポッドのスケジュール要件に依存せずに作成されます。

• を使用 VolumeBindingMode をに設定します `WaitForFirstConsumer`PVCの永続的ボリュームの作成と
バインディングは、PVCを使用するポッドがスケジュールされて作成されるまで遅延されます。これによ
り、トポロジの要件に応じたスケジュールの制約を満たすようにボリュームが作成されます。

。 WaitForFirstConsumer バインディングモードでは、トポロジラベルは必要ありません。
これは CSI トポロジ機能とは無関係に使用できます。

必要なもの

CSI トポロジを使用するには、次のものが必要です。

• を実行するKubernetesクラスタ "サポートされるKubernetesバージョン"

1

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/ja-jp/trident-2304/trident-get-started/requirements.html

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• クラスタ内のノードには、トポロジを認識するためのラベルが必要です

(topology.kubernetes.io/region および topology.kubernetes.io/zone）。このラベル *

は、 Astra Trident をトポロジ対応としてインストールする前に、クラスタ内のノードに存在する必要があ
ります。

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

手順 1 ：トポロジ対応バックエンドを作成する

Astra Trident ストレージバックエンドは、アベイラビリティゾーンに基づいてボリュームを選択的にプロビジ

ョニングするように設計できます。各バックエンドはオプションで伝送できます supportedTopologies サ
ポートする必要があるゾーンおよび領域のリストを表すブロック。ストレージクラスがそのようなバックエン
ドを使用する場合、ボリュームは、サポートされているリージョン / ゾーンでスケジュールされているアプリ

2

ケーションから要求された場合にのみ作成されます。

バックエンド定義の例を次に示します。

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies は、バックエンドごとのリージョンとゾーンのリストを提供するた
めに使用されます。これらのリージョンとゾーンは、 StorageClass で指定できる許容値のリス
トを表します。バックエンドで提供されるリージョンとゾーンのサブセットを含む
StorageClasses の場合、 Astra Trident がバックエンドにボリュームを作成します。

を定義できます supportedTopologies ストレージプールごとに作成することもできます。次の例を参照し
てください。

3

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

 workload: production

 region: Iowa-DC

 zone: Iowa-DC-A

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- labels:

 workload: dev

 region: Iowa-DC

 zone: Iowa-DC-B

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

この例では、を使用しています region および zone ラベルはストレージプールの場所を表します。

topology.kubernetes.io/region および topology.kubernetes.io/zone ストレージプールの使用
場所を指定します。

手順 2 ：トポロジを認識するストレージクラスを定義する

クラスタ内のノードに提供されるトポロジラベルに基づいて、トポロジ情報を含めるように StorageClasses

を定義できます。これにより、作成された PVC 要求の候補となるストレージプール、および Trident によっ
てプロビジョニングされたボリュームを使用できるノードのサブセットが決まります。

次の例を参照してください。

4

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

上記のStorageClass定義で、 volumeBindingMode がに設定されます WaitForFirstConsumer。この
StorageClass で要求された PVC は、ポッドで参照されるまで処理されません。および、

allowedTopologies 使用するゾーンとリージョンを提供します。。 netapp-san-us-east1

StorageClassがにPVCを作成します san-backend-us-east1 上で定義したバックエンド。

ステップ 3 ： PVC を作成して使用する

StorageClass を作成してバックエンドにマッピングすると、 PVC を作成できるようになりました。

例を参照 spec 下記：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

このマニフェストを使用して PVC を作成すると、次のような結果になります。

5

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

Trident でボリュームを作成して PVC にバインドするには、ポッド内の PVC を使用します。次の例を参照し
てください。

6

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

このpodSpecにより、Kubernetesは、にあるノードにPODをスケジュールするように指示されます us-

east1 リージョンを選択し、にある任意のノードから選択します us-east1-a または us-east1-b ゾー
ン。

次の出力を参照してください。

7

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

バックエンドを更新して追加 supportedTopologies

既存のバックエンドを更新して、のリストを追加することができます supportedTopologies を使用します

tridentctl backend update。これは、すでにプロビジョニングされているボリュームには影響せず、以
降の PVC にのみ使用されます。

詳細については、こちらをご覧ください

• "コンテナのリソースを管理"

• "ノードセレクタ"

• "アフィニティと非アフィニティ"

• "塗料および耐性"

スナップショットを操作します

永続ボリューム（PVS）のKubernetesボリュームSnapshot（ボリュームSnapshot）を作
成して、Astra Tridentボリュームのポイントインタイムコピーを保持できます。また、
既存のボリュームSnapshotから、_ clone__という名前の新しいボリュームを作成するこ

ともできます。ボリュームSnapshotは、でサポートされます ontap-nas、 ontap-

nas-flexgroup、 ontap-san、 ontap-san-economy、 solidfire-san、 gcp-

cvs`および `azure-netapp-files ドライバ。

作業を開始する前に

外部スナップショットコントローラとカスタムリソース定義（CRD）が必要です。Kubernetesオーケストレ
ーションツール（例：Kubeadm、GKE、OpenShift）の役割を担っています。

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、を参
照してください ボリュームSnapshotコントローラを導入する。

GKE環境でオンデマンドボリュームスナップショットを作成する場合は、スナップショットコ
ントローラを作成しないでください。GKEでは、内蔵の非表示のスナップショットコントロー
ラを使用します。

8

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

ステップ1： VolumeSnapshotClass

次の例は、ボリュームSnapshotクラスを作成します。

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

。 driver Astra Trident CSIドライバを指します。 deletionPolicy は、です Delete または Retain。に

設定すると Retain`を使用すると、ストレージクラスタの基盤となる物理Snapshotが、の場合でも保持さ

れます `VolumeSnapshot オブジェクトが削除された。

詳細については、link：./trident-reference/objects.html#Kubernetes -volumesnapshotclass-objectsを参照して

ください[VolumeSnapshotClass]。

手順 2 ：既存の PVC のスナップショットを作成します

次に、既存のPVCのスナップショットを作成する例を示します。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

この例では、という名前のPVCに対してスナップショットが作成されます pvc1 Snapshotの名前はに設定さ

れます pvc1-snap。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

これでが作成されました VolumeSnapshot オブジェクト。ボリュームSnapshotはPVCに似ており、に関連

9

付けられています VolumeSnapshotContent 実際のスナップショットを表すオブジェクト。

を識別できます VolumeSnapshotContent のオブジェクト pvc1-snap ボリュームSnapshot。ボリュー
ムSnapshotの詳細を定義します。

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

。 Snapshot Content Name このSnapshotを提供するVolumeSnapshotContentオブジェクトを特定しま

す。。 Ready To Use パラメータは、Snapshotを使用して新しいPVCを作成できることを示します。

手順 3 ：ボリューム Snapshot から PVC を作成します

この例では、スナップショットを使用してPVCを作成します。

10

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

dataSource に、という名前のボリュームSnapshotを使用してPVCを作成する必要があることを示します

pvc1-snap データのソースとして。このコマンドを実行すると、 Astra Trident が Snapshot から PVC を作
成するように指示します。作成された PVC は、ポッドに接続して、他の PVC と同様に使用できます。

PVCは、と同じネームスペースに作成する必要があります dataSource。

Snapshotを含むPVを削除しています

スナップショットが関連付けられている永続ボリュームを削除すると、対応する Trident ボリュームが「削除
状態」に更新されます。ボリュームSnapshotを削除してAstra Tridentボリュームを削除します。

ボリュームSnapshotコントローラを導入する

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、次の
ように導入できます。

手順

1. ボリュームのSnapshot作成

11

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. スナップショットコントローラを作成します。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

必要に応じて、を開きます deploy/kubernetes/snapshot-controller/rbac-

snapshot-controller.yaml およびを更新します namespace に移動します。

Snapshotを使用したボリュームデータのリカバリ

Snapshotディレクトリは、を使用してプロビジョニングされるボリュームの互換性を最大限に高めるため、

デフォルトでは非表示になっています。 ontap-nas および ontap-nas-economy ドライバ。を有効にしま

す .snapshot スナップショットからデータを直接リカバリするディレクトリ。

ボリュームを以前のSnapshotに記録されている状態にリストアするには、ボリュームSnapshotリスト
アONTAP CLIを使用します。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Snapshotコピーをリストアすると、既存のボリューム設定が上書きされます。Snapshotコピー
の作成後にボリュームデータに加えた変更は失われます。

12

関連リンク

• "ボリューム Snapshot"

• "ボリュームSnapshotクラス"

ボリュームを展開します

Astra Trident により、 Kubernetes ユーザは作成後にボリュームを拡張できます。ここで
は、 iSCSI ボリュームと NFS ボリュームの拡張に必要な設定について説明します。

iSCSI ボリュームを展開します

CSI プロビジョニングを使用して、 iSCSI Persistent Volume （ PV ）を拡張できます。

iSCSIボリューム拡張は、でサポートされます ontap-san、 ontap-san-economy、

solidfire-san ドライバとにはKubernetes 1.16以降が必要です。

概要

iSCSI PV の拡張には、次の手順が含まれます。

• StorageClass定義を編集してを設定します allowVolumeExpansion フィールドからに移動します

true。

• PVC定義を編集してを更新します spec.resources.requests.storage 新たに必要となったサイズを
反映するには、元のサイズよりも大きくする必要があります。

• サイズを変更するには、 PV をポッドに接続する必要があります。iSCSI PV のサイズ変更には、次の 2

つのシナリオがあります。

◦ PV がポッドに接続されている場合、 Astra Trident はストレージバックエンドのボリュームを拡張
し、デバイスを再スキャンし、ファイルシステムのサイズを変更します。

◦ 未接続の PV のサイズを変更しようとすると、 Astra Trident がストレージバックエンドのボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシ
ステムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新しま
す。

次の例は、 iSCSI PVS の仕組みを示しています。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

13

https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2304/trident-reference/objects.html

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

既存のストレージクラスの場合は、編集してを追加します allowVolumeExpansion パラメータ

手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Astra Trident が、永続的ボリューム（ PV ）を作成し、この永続的ボリューム要求（ PVC ）に関連付けま
す。

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

14

手順 3 ： PVC を接続するポッドを定義します

この例では、を使用するポッドが作成されます san-pvc。

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

ステップ 4 ： PV を展開します

1Giから2Giに作成されたPVのサイズを変更するには、PVCの定義を編集してを更新します

spec.resources.requests.storage 2Giへ。

15

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

手順 5 ：拡張を検証する

PVC 、 PV 、 Astra Trident のボリュームのサイズを確認することで、拡張が正しく機能しているかどうかを
検証できます。

16

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

NFS ボリュームを拡張します

Astra Tridentは、でプロビジョニングしたNFS PVSのボリューム拡張をサポートしています ontap-nas、

ontap-nas-economy、 ontap-nas-flexgroup、 gcp-cvs`および `azure-netapp-files バックエ
ンド

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

NFS PVのサイズを変更するには、管理者はまず、を設定してボリュームを拡張できるようにストレージクラ

スを構成する必要があります allowVolumeExpansion フィールドからに移動します true：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

このオプションを指定せずにストレージクラスを作成済みの場合は、を使用して既存のストレージクラスを編

集するだけです kubectl edit storageclass ボリュームを拡張できるようにするため。

17

手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Astra Trident が、この PVC に対して 20MiB の NFS PV を作成する必要があります。

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

ステップ3：PVを拡張する

新しく作成した20MiBのPVのサイズを1GiBに変更するには、そのPVCを編集してを設定します

spec.resources.requests.storage 1 GBに設定する場合：

18

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

手順4：拡張を検証する

PVC 、 PV 、 Astra Trident のボリュームのサイズを確認することで、サイズ変更が正しく機能しているかど
うかを検証できます。

19

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ボリュームをインポート

を使用して、既存のストレージボリュームをKubernetes PVとしてインポートできます

tridentctl import。

概要と考慮事項

Astra Tridentにボリュームをインポートすると、次のことが可能になります。

• アプリケーションをコンテナ化し、既存のデータセットを再利用する

• 一時的なアプリケーションにはデータセットのクローンを使用

• 障害が発生したKubernetesクラスタを再構築します

• ディザスタリカバリ時にアプリケーションデータを移行

考慮事項

ボリュームをインポートする前に、次の考慮事項を確認してください。

• Astra TridentでインポートできるのはRW（読み取り/書き込み）タイプのONTAPボリュームのみです。DP

20

（データ保護）タイプのボリュームはSnapMirrorデスティネーションボリュームです。ボリュームをAstra

Tridentにインポートする前に、ミラー関係を解除する必要があります。

• アクティブな接続がないボリュームをインポートすることを推奨します。アクティブに使用されているボ
リュームをインポートするには、ボリュームのクローンを作成してからインポートを実行します。

Kubernetesは以前の接続を認識せず、アクティブなボリュームをポッドに簡単に接続でき
るため、これはブロックボリュームで特に重要です。その結果、データが破損する可能性
があります。

• でもね StorageClass PVCに対して指定する必要があります。Astra Tridentはインポート時にこのパラ
メータを使用しません。ストレージクラスは、ボリュームの作成時に、ストレージ特性に基づいて使用可
能なプールから選択するために使用されます。ボリュームはすでに存在するため、インポート時にプール
を選択する必要はありません。そのため、PVCで指定されたストレージクラスと一致しないバックエンド
またはプールにボリュームが存在してもインポートは失敗しません。

• 既存のボリュームサイズはPVCで決定され、設定されます。ストレージドライバによってボリュームがイ
ンポートされると、 PV は ClaimRef を使用して PVC に作成されます。

◦ 再利用ポリシーは、最初にににに設定されています retain PVにあります。Kubernetes が PVC と
PV を正常にバインドすると、再利用ポリシーがストレージクラスの再利用ポリシーに合わせて更新さ
れます。

◦ ストレージクラスの再利用ポリシーがの場合 `delete`にすると、PVが削除されるとストレージボリュ
ームが削除されます。

• デフォルトでは、Astra TridentがPVCを管理し、バックエンドでFlexVolとLUNの名前を変更します。を渡

すことができます --no-manage 管理対象外のボリュームをインポートするフラグ。を使用する場合 `--

no-manage`Astra Tridentは、オブジェクトのライフサイクルを通じてPVCやPVに対して追加の処理を実
行することはありません。PVが削除されてもストレージボリュームは削除されず、ボリュームのクローン
やボリュームのサイズ変更などのその他の処理も無視されます。

このオプションは、コンテナ化されたワークロードに Kubernetes を使用するが、
Kubernetes 以外でストレージボリュームのライフサイクルを管理する場合に便利です。

• PVC と PV にアノテーションが追加されます。このアノテーションは、ボリュームがインポートされたこ
と、および PVC と PV が管理されていることを示す二重の目的を果たします。このアノテーションは変
更または削除しないでください。

ボリュームをインポートします

を使用できます tridentctl import をクリックしてボリュームをインポートします。

手順

1. Persistent Volume Claim（PVC；永続的ボリューム要求）ファイルを作成します（例： pvc.yaml）をク

リックします。PVCファイルには、が含まれている必要があります name、 namespace、

accessModes`および `storageClassName。必要に応じて、を指定できます unixPermissions 定
義されています。

最小仕様の例を次に示します。

21

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

PV名やボリュームサイズなどの追加のパラメータは指定しないでください。これにより原
因、インポートコマンドが失敗する可能性があります。

2. を使用します tridentctl import コマンドを使用して、ボリュームを含むAstra Tridentバックエンド
の名前と、ストレージ上のボリュームを一意に識別する名前（ONTAP FlexVol、Elementボリュー

ム、Cloud Volumes Serviceパスなど）を指定します。。 -f PVCファイルへのパスを指定するには、引数
が必要です。

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

例

サポートされているドライバについて、次のボリュームインポートの例を確認してください。

ONTAP NASおよびONTAP NAS FlexGroup

Astra Tridentでは、を使用したボリュームインポートがサポートされます ontap-nas および ontap-nas-

flexgroup ドライバ。

• 。 ontap-nas-economy ドライバでqtreeをインポートおよび管理できない。

• 。 ontap-nas および ontap-nas-flexgroup ドライバでボリューム名の重複が許可さ
れていません。

を使用して作成した各ボリューム ontap-nas driverはONTAP クラスタ上のFlexVol です。を使用してFlexVol

をインポートする ontap-nas ドライバも同じように動作します。ONTAP クラスタにすでに存在するFlexVol

は、としてインポートできます ontap-nas PVC。同様に、FlexGroup ボリュームはとしてインポートできま

す ontap-nas-flexgroup PVC

ONTAP NASの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

22

管理対象ボリューム

次の例は、という名前のボリュームをインポートします managed_volume という名前のバックエンド

で ontap_nas：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

を使用する場合 --no-manage 引数に指定します。Astra Tridentはボリュームの名前を変更しません。

次に、をインポートする例を示します unmanaged_volume をクリックします ontap_nas バックエン
ド：

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra Tridentでは、を使用したボリュームインポートがサポートされます ontap-san ドライバ。

Astra Tridentでは、単一のLUNを含むONTAP SAN FlexVolをインポートできます。これはと同じです ontap-

san ドライバ。FlexVol 内の各PVCおよびLUNにFlexVol を作成します。Astra TridentがFlexVolをインポート

23

し、PVCの定義に関連付けます。

ONTAP SANの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

管理対象ボリューム

管理対象ボリュームの場合、Astra TridentはFlexVolの名前をに変更します pvc-<uuid> およびFlexVol

内のLUNをからにフォーマットします lun0。

次の例は、をインポートします ontap-san-managed にあるFlexVol ontap_san_default バックエン
ド：

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

次に、をインポートする例を示します unmanaged_example_volume をクリックします ontap_san

バックエンド：

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |

block | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

24

次の例に示すように、KubernetesノードのIQNとIQNを共有するigroupにLUNをマッピングすると、エラーが

表示されます。 LUN already mapped to initiator(s) in this group。ボリュームをインポートす
るには、イニシエータを削除するか、LUNのマッピングを解除する必要があります。

要素（ Element ）

Astra Tridentでは、を使用したNetApp ElementソフトウェアとNetApp HCIボリュームのインポートがサポー

トされます solidfire-san ドライバ。

Element ドライバではボリューム名の重複がサポートされます。ただし、ボリューム名が重複
している場合はAstra Tridentからエラーが返されます。回避策としてボリュームをクローニン
グし、一意のボリューム名を指定して、クローンボリュームをインポートします。

要素の例

次に、をインポートする例を示します element-managed バックエンドのボリューム element_default。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform の 1 つです

Astra Tridentでは、を使用したボリュームインポートがサポートされます gcp-cvs ドライバ。

25

NetApp Cloud Volumes Serviceから作成されたボリュームをGoogle Cloud Platformにインポー
トするには、ボリュームパスでボリュームを特定します。ボリュームパスは、ボリュームのエ

クスポートパスののに続く部分です :/。たとえば、エクスポートパスがの場合などです

10.0.0.1:/adroit-jolly-swift、ボリュームのパスはです adroit-jolly-swift。

Google Cloud Platformの例

次に、をインポートする例を示します gcp-cvs バックエンドのボリューム gcpcvs_YEppr を指定します

adroit-jolly-swift。

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files の特長

Astra Tridentでは、を使用したボリュームインポートがサポートされます azure-netapp-files および

azure-netapp-files-subvolume ドライバ。

Azure NetApp Filesボリュームをインポートするには、ボリュームパスでボリュームを特定しま

す。ボリュームパスは、ボリュームのエクスポートパスののに続く部分です :/。たとえば、マ

ウントパスがの場合などです 10.0.0.2:/importvol1、ボリュームのパスはです

importvol1。

Azure NetApp Filesの例

次に、をインポートする例を示します azure-netapp-files バックエンドのボリューム

azurenetappfiles_40517 を指定します importvol1。

26

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

27

著作権に関する情報

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

28

http://www.netapp.com/TM

	ボリューム操作を実行する : Astra Trident
	目次
	ボリューム操作を実行する
	CSI トポロジを使用します
	概要
	手順 1 ：トポロジ対応バックエンドを作成する
	手順 2 ：トポロジを認識するストレージクラスを定義する
	ステップ 3 ： PVC を作成して使用する
	バックエンドを更新して追加 supportedTopologies
	詳細については、こちらをご覧ください

	スナップショットを操作します
	ステップ1： VolumeSnapshotClass
	手順 2 ：既存の PVC のスナップショットを作成します
	手順 3 ：ボリューム Snapshot から PVC を作成します
	Snapshotを含むPVを削除しています
	ボリュームSnapshotコントローラを導入する
	Snapshotを使用したボリュームデータのリカバリ
	関連リンク

	ボリュームを展開します
	iSCSI ボリュームを展開します
	NFS ボリュームを拡張します

	ボリュームをインポート
	概要と考慮事項
	ボリュームをインポートします
	例

