
ボリュームのプロビジョニングと管理
Trident
NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/ja-jp/trident-2502/trident-use/vol-provision.html on
January 14, 2026. Always check docs.netapp.com for the latest.

目次

ボリュームのプロビジョニングと管理 . 1

ボリュームをプロビジョニングする . 1

概要 . 1

PVCの作成 . 1

ボリュームを展開します . 5

iSCSI ボリュームを展開します . 5

FC ボリュームを拡張します . 9

NFS ボリュームを拡張します . 13

ボリュームをインポート . 16

概要と考慮事項 . 16

ボリュームをインポートします. 17

例 . 18

ボリュームの名前とラベルをカスタマイズする . 24

開始する前に . 24

制限事項. 24

カスタマイズ可能なボリューム名の主な動作 . 24

名前テンプレートとラベルを使用したバックエンド構成の例 . 25

名前テンプレートの例 . 26

考慮すべきポイント. 27

ネームスペース間でNFSボリュームを共有します . 27

特徴 . 27

クイックスタート . 28

ソースネームスペースとデスティネーションネームスペースを設定します . 29

共有ボリュームを削除 . 30

下位ボリュームのクエリに使用 tridentctl get . 30

制限事項. 31

詳細情報. 31

ネームスペース全体でボリュームをクローニング . 31

前提条件. 31

クイックスタート . 31

ソースネームスペースとデスティネーションネームスペースを設定します . 32

制限事項. 34

SnapMirrorによるボリュームのレプリケート . 34

レプリケーションの前提条件 . 34

ミラーPVCの作成 . 34

ボリュームレプリケーションの状態 . 38

計画外フェールオーバー時にセカンダリPVCを昇格する. 38

計画的フェイルオーバー中にセカンダリPVCを昇格 . 38

フェイルオーバー後にミラー関係をリストアする . 39

その他の処理 . 39

ONTAPがオンラインのときにミラー関係を更新 . 40

ONTAPがオフラインの場合にミラー関係を更新 . 40

CSI トポロジを使用します . 40

概要 . 40

手順 1 ：トポロジ対応バックエンドを作成する . 42

手順 2 ：トポロジを認識するストレージクラスを定義する . 44

ステップ 3 ： PVC を作成して使用する . 45

バックエンドを更新して含める supportedTopologies. 48

詳細情報. 48

スナップショットを操作します . 48

概要 . 48

ボリューム Snapshot を作成します . 49

ボリュームSnapshotからPVCを作成 . 50

ボリュームSnapshotのインポート . 51

Snapshotを使用したボリュームデータのリカバリ . 53

Snapshotからのインプレースボリュームのリストア . 53

Snapshotが関連付けられているPVを削除する . 55

ボリュームSnapshotコントローラの導入 . 55

関連リンク . 56

ボリュームのプロビジョニングと管理

ボリュームをプロビジョニングする

設定したKubernetes StorageClassを使用してPVへのアクセスを要求す
るPersistentVolumeClaim（PVC）を作成します。その後、PVをポッドにマウントでき
ます。

概要

https://kubernetes.io/docs/concepts/storage/persistent-

volumes["PersistentVolumeClaim_"^]（PVC）は、クラスタ上のPersistentVolumeへのア
クセス要求です。

PVCは、特定のサイズまたはアクセスモードのストレージを要求するように設定できます。クラスタ管理者
は、関連付けられているStorageClassを使用して、PersistentVolumeのサイズとアクセスモード（パフォーマ
ンスやサービスレベルなど）以上を制御できます。

PVCを作成したら、ボリュームをポッドにマウントできます。

PVCの作成

手順

1. PVCを作成

kubectl create -f pvc.yaml

2. PVCステータスを確認します。

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 1Gi RWO 5m

1. ボリュームをポッドにマウントします。

kubectl create -f pv-pod.yaml

進捗状況はを使用して監視でき `kubectl get pod --watch`ます。

1

2. ボリュームがにマウントされていることを確認します /my/mount/path。

kubectl exec -it task-pv-pod -- df -h /my/mount/path

3. ポッドを削除できるようになりました。Podアプリケーションは存在しなくなりますが、ボリュームは残
ります。

kubectl delete pod pv-pod

マニフェストの例

2

PersistentVolumeClaimサンプルマニフェスト

次に、基本的なPVC設定オプションの例を示します。

RWOアクセスを備えたPVC

この例は、という名前のStorageClassに関連付けられたRWOアクセスを持つ基本的なPVCを示していま

す basic-csi。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-storage

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

NVMe / TCP対応PVC

この例は、という名前のStorageClassに関連付けられたNVMe/TCPの基本的なPVCとRWOアクセスを示

しています protection-gold。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: protection-gold

3

PODマニフェストのサンプル

次の例は、PVCをポッドに接続するための基本的な設定を示しています。

基本構成

kind: Pod

apiVersion: v1

metadata:

 name: pv-pod

spec:

 volumes:

 - name: storage

 persistentVolumeClaim:

 claimName: pvc-storage

 containers:

 - name: pv-container

 image: nginx

 ports:

 - containerPort: 80

 name: "http-server"

 volumeMounts:

 - mountPath: "/my/mount/path"

 name: storage

NVMe/TCPの基本構成

apiVersion: v1

kind: Pod

metadata:

 name: pod-nginx

spec:

 volumes:

 - name: basic-pvc

 persistentVolumeClaim:

 claimName: pvc-san-nvme

 containers:

 - name: task-pv-container

 image: nginx

 volumeMounts:

 - mountPath: "/my/mount/path"

 name: basic-pvc

ストレージクラスとパラメータおよびパラメータとの連携によるTridentによるボリュームのプロビジョニング

方法の詳細については PersistentVolumeClaim、を参照してください"Kubernetes オブジェクトと Trident

4

../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html

オブジェクト"。

ボリュームを展開します

Tridentを使用すると、Kubernetesユーザは作成後にボリュームを拡張できます。ここで
は、iSCSI、NFS、およびFCのボリュームを拡張するために必要な設定について説明し
ます。

iSCSI ボリュームを展開します

CSI プロビジョニングを使用して、 iSCSI Persistent Volume （ PV ）を拡張できます。

iSCSIボリュームの拡張は、、 ontap-san-economy `solidfire-san`ドライバでサポートされ
`ontap-san`ており、Kubernetes 1.16以降が必要です。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

StorageClass定義を編集して、フィールドをに `true`設定し `allowVolumeExpansion`ます。

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

既存のStorageClassの場合は、パラメータを含めるように編集します allowVolumeExpansion。

手順 2 ：作成した StorageClass を使用して PVC を作成します

PVC定義を編集し、を更新して、 `spec.resources.requests.storage`新しく希望するサイズ（元のサイズより
も大きくなければなりません）を反映させます。

cat pvc-ontapsan.yaml

5

../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html
../trident-reference/objects.html

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Tridentは永続的ボリューム（PV）を作成し、この永続的ボリューム要求（PVC）に関連付けます。

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

手順 3 ： PVC を接続するポッドを定義します

サイズを変更するポッドにPVを接続します。iSCSI PV のサイズ変更には、次の 2 つのシナリオがあります。

• PVがポッドに接続されている場合、Tridentはストレージバックエンド上のボリュームを拡張し、デバイ
スを再スキャンして、ファイルシステムのサイズを変更します。

• 接続されていないPVのサイズを変更しようとすると、Tridentはストレージバックエンド上のボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシステ
ムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新します。

この例では、を使用するポッドが作成されて `san-pvc`います。

6

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

ステップ4：PVを拡張する

作成されたPVのサイズを1Giから2Giに変更するには、PVC定義を編集してを2Giに更新します

spec.resources.requests.storage。

kubectl edit pvc san-pvc

7

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 # ...

手順5：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、拡張が正常に機能したことを検証できま
す。

8

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

FC ボリュームを拡張します

CSIプロビジョニングツールを使用して、FC永続ボリューム（PV）を拡張できます。

FCボリュームの拡張はドライバでサポートされ `ontap-san`ており、Kubernetes 1.16以降が必
要です。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

StorageClass定義を編集して、フィールドをに `true`設定し `allowVolumeExpansion`ます。

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

9

既存のStorageClassの場合は、パラメータを含めるように編集します allowVolumeExpansion。

手順 2 ：作成した StorageClass を使用して PVC を作成します

PVC定義を編集し、を更新して、 `spec.resources.requests.storage`新しく希望するサイズ（元のサイズより
も大きくなければなりません）を反映させます。

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Tridentは永続的ボリューム（PV）を作成し、この永続的ボリューム要求（PVC）に関連付けます。

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

手順 3 ： PVC を接続するポッドを定義します

サイズを変更するポッドにPVを接続します。FC PVのサイズを変更する場合は、次の2つのシナリオが考えら
れます。

• PVがポッドに接続されている場合、Tridentはストレージバックエンド上のボリュームを拡張し、デバイ
スを再スキャンして、ファイルシステムのサイズを変更します。

• 接続されていないPVのサイズを変更しようとすると、Tridentはストレージバックエンド上のボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシステ

10

ムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新します。

この例では、を使用するポッドが作成されて `san-pvc`います。

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

ステップ4：PVを拡張する

作成されたPVのサイズを1Giから2Giに変更するには、PVC定義を編集してを2Giに更新します

spec.resources.requests.storage。

kubectl edit pvc san-pvc

11

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 # ...

手順5：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、拡張が正常に機能したことを検証できま
す。

12

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

NFS ボリュームを拡張します

Tridentでは、、 ontap-nas-economy ontap-nas-flexgroup、、、 gcp-cvs azure-netapp-files`

およびバックエンドでプロビジョニングされるNFS PVSのボリューム拡張がサポートされます `ontap-

nas。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

NFS PVのサイズを変更するには、管理者はまず、フィールドをに true`設定してボリュームの拡張を許可す

るようにストレージクラスを設定する必要があります。 `allowVolumeExpansion

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

13

このオプションを指定せずにストレージクラスを作成済みの場合は、を使用して既存のストレージクラスを編

集するだけでボリュームを拡張できます kubectl edit storageclass。

手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

TridentはこのPVC用に20MiBのNFS PVを作成する必要があります。

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

ステップ3：PVを拡張する

新しく作成した20MiB PVのサイズを1GiBに変更するには、PVCを編集して1GiBに設定し
`spec.resources.requests.storage`ます。

kubectl edit pvc ontapnas20mb

14

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

手順4：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、サイズ変更が正しく機能したかどうかを検
証できます。

15

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ボリュームをインポート

を使用して、既存のストレージボリュームをKubernetes PVとしてインポートできます

tridentctl import。

概要と考慮事項

Tridentにボリュームをインポートする目的は次のとおりです。

• アプリケーションをコンテナ化し、既存のデータセットを再利用する

• 一時的なアプリケーションにはデータセットのクローンを使用

• 障害が発生したKubernetesクラスタを再構築します

• ディザスタリカバリ時にアプリケーションデータを移行

考慮事項

ボリュームをインポートする前に、次の考慮事項を確認してください。

• Tridentでインポートできるのは、RW（読み取り/書き込み）タイプのONTAPボリュームのみです。DP（

16

データ保護）タイプのボリュームはSnapMirrorデスティネーションボリュームです。ボリュームをTrident

にインポートする前に、ミラー関係を解除する必要があります。

• アクティブな接続がないボリュームをインポートすることを推奨します。アクティブに使用されているボ
リュームをインポートするには、ボリュームのクローンを作成してからインポートを実行します。

Kubernetesは以前の接続を認識せず、アクティブなボリュームをポッドに簡単に接続でき
るため、これはブロックボリュームで特に重要です。その結果、データが破損する可能性
があります。

• PVCで指定する必要がありますが、 `StorageClass`Tridentはインポート時にこのパラメータを使用しませ
ん。ストレージクラスは、ボリュームの作成時に、ストレージ特性に基づいて使用可能なプールから選択
するために使用されます。ボリュームはすでに存在するため、インポート時にプールを選択する必要はあ
りません。そのため、PVCで指定されたストレージクラスと一致しないバックエンドまたはプールにボリ
ュームが存在してもインポートは失敗しません。

• 既存のボリュームサイズはPVCで決定され、設定されます。ストレージドライバによってボリュームがイ
ンポートされると、 PV は ClaimRef を使用して PVC に作成されます。

◦ 再利用ポリシーは、PVでは最初ににに設定されてい `retain`ます。Kubernetes が PVC と PV を正常に
バインドすると、再利用ポリシーがストレージクラスの再利用ポリシーに合わせて更新されます。

◦ ストレージクラスの再利用ポリシーがの場合、 `delete`PVが削除されるとストレージボリュームが削
除されます。

• デフォルトでは、TridentはPVCを管理し、バックエンドでFlexVol volumeとLUNの名前を変更します。フ

ラグを渡して管理対象外のボリュームをインポートできます --no-manage。を使用する場合 --no

-manage、Tridentはオブジェクトのライフサイクル中、PVCまたはPVに対して追加の操作を実行しませ
ん。PVが削除されてもストレージボリュームは削除されず、ボリュームのクローンやボリュームのサイズ
変更などのその他の処理も無視されます。

このオプションは、コンテナ化されたワークロードに Kubernetes を使用するが、
Kubernetes 以外でストレージボリュームのライフサイクルを管理する場合に便利です。

• PVC と PV にアノテーションが追加されます。このアノテーションは、ボリュームがインポートされたこ
と、および PVC と PV が管理されていることを示す二重の目的を果たします。このアノテーションは変
更または削除しないでください。

ボリュームをインポートします

を使用してボリュームをインポートできます tridentctl import。

手順

1. PVCの作成に使用するPersistent Volume Claim（PVC；永続的ボリューム要求）ファイル（など）を作成

します pvc.yaml。PVCファイルには、、 namespace、 accessModes`および

`storageClassName`が含まれている必要があります `name。必要に応じて、PVC定義でを指定でき

ます unixPermissions。

最小仕様の例を次に示します。

17

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

PV名やボリュームサイズなどの追加のパラメータは指定しないでください。これにより原
因、インポートコマンドが失敗する可能性があります。

2. コマンドを使用して tridentctl import、ボリュームを含むTridentバックエンドの名前と、ストレー
ジ上のボリュームを一意に識別する名前（ONTAP FlexVol、Element Volume、Cloud Volumes Serviceパ
スなど）を指定します。 `-f`PVCファイルへのパスを指定するには、引数が必要です。

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

例

サポートされているドライバについて、次のボリュームインポートの例を確認してください。

ONTAP NASおよびONTAP NAS FlexGroup

Tridentは、ドライバと `ontap-nas-flexgroup`ドライバを使用したボリュームインポートをサポートしてい
`ontap-nas`ます

• `ontap-nas-economy`ドライバはqtreeをインポートおよび管理できません。

• `ontap-nas`ドライバと `ontap-nas-flexgroup`ドライバでは、ボリューム名の重複は許可さ
れていません。

ドライバを使用して作成される各ボリューム ontap-nas`は、ONTAPクラスタ上のFlexVol volumeになり

ます。ドライバを使用したFlexVolボリュームのインポート `ontap-nas`も同様に機能します。ONTAPク

ラスタにすでに存在するFlexVolボリュームは、PVCとしてインポートできます `ontap-nas。同様

に、FlexGroupボリュームはPVCとしてインポートできます ontap-nas-flexgroup。

ONTAP NASの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

18

管理対象ボリューム

次の例は、という名前のバックエンドにある `ontap_nas`という名前のボリュームをインポートし
`managed_volume`ます。

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

引数を使用した場合 --no-manage、Tridentはボリュームの名前を変更しません。

次に、バックエンドで `ontap_nas`をインポートする例を示し `unmanaged_volume`ます。

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Tridentは、ドライバと `ontap-san-economy`ドライバを使用したボリュームインポートをサポートしてい
`ontap-san`ます

Tridentでは、単一のLUNを含むONTAP SAN FlexVolボリュームをインポートできます。これは、ドライバと
一致してい `ontap-san`ます。ドライバは、PVCごとにFlexVol volumeを作成し、FlexVol volume内にLUNを作
成します。TridentはFlexVol volumeをインポートし、PVC定義に関連付けます。

19

ONTAP SANの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

管理対象ボリューム

管理対象ボリュームの場合、TridentはFlexVol volumeの名前を形式に、FlexVol volume内のLUNの名前を
に `lun0`変更 `pvc-<uuid>`します。

次に、バックエンドにあるFlexVol volume `ontap_san_default`をインポートする例を示し `ontap-san-

managed`ます。

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

次に、バックエンドで `ontap_san`をインポートする例を示し `unmanaged_example_volume`ます。

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |

block | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

次の例に示すように、KubernetesノードのIQNとIQNを共有するigroupにLUNをマッピングすると、というエ
ラーが表示されます。 `LUN already mapped to initiator(s) in this group`ボリュームをインポートするには、イ
ニシエータを削除するか、LUNのマッピングを解除する必要があります。

20

要素

Tridentは、NetApp Elementソフトウェアとドライバを使用したNetApp HCIボリュームインポートをサポート

しています solidfire-san。

Element ドライバではボリューム名の重複がサポートされます。ただし、ボリューム名が重複
している場合、Tridentはエラーを返します。回避策としてボリュームをクローニングし、一意
のボリューム名を指定して、クローンボリュームをインポートします。

要素の例

次の例は、バックエンドにボリュームを `element_default`インポートし `element-managed`ます。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Tridentはドライバを使用したボリュームインポートをサポートしてい `gcp-cvs`ます。

NetApp Cloud Volumes Serviceから作成されたボリュームをGoogle Cloud Platformにインポー
トするには、ボリュームパスでボリュームを特定します。ボリュームパスは、ボリュームのエ

クスポートパスののに続く部分です :/。たとえば、エクスポートパスがの場合、
`10.0.0.1:/adroit-jolly-swift`ボリュームパスはになり `adroit-jolly-swift`ます。

21

Google Cloud Platformの例

次の例は、ボリュームパスがの `adroit-jolly-swift`バックエンドにボリュームを `gcpcvs_YEppr`インポートし
`gcp-cvs`ます。

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Tridentはドライバを使用したボリュームインポートをサポートしてい `azure-netapp-files`ます。

Azure NetApp Filesボリュームをインポートするには、ボリュームパスでボリュームを特定しま

す。ボリュームパスは、ボリュームのエクスポートパスののに続く部分です :/。たとえば、マ
ウントパスがの場合、 `10.0.0.2:/importvol1`ボリュームパスはになり `importvol1`ます。

Azure NetApp Filesの例

次の例は、ボリュームパスを持つ `importvol1`バックエンドのボリューム `azurenetappfiles_40517`をインポ
ートし `azure-netapp-files`ます。

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

22

Google Cloud NetAppボリューム

Tridentはドライバを使用したボリュームインポートをサポートしてい `google-cloud-netapp-volumes`ます。

Google Cloud NetApp Volumeの例

次の例は、ボリュームと一緒に `testvoleasiaeast1`バックエンドにボリュームを `backend-tbc-gcnv1`インポー
トし `google-cloud-netapp-volumes`ます。

tridentctl import volume backend-tbc-gcnv1 "testvoleasiaeast1" -f < path-

to-pvc> -n trident

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 | 10 GiB | gcnv-nfs-sc-

identity | file | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

次の例は、同じリージョンに2つのボリュームがある場合にボリュームをインポートし `google-cloud-netapp-

volumes`ます。

23

tridentctl import volume backend-tbc-gcnv1

"projects/123456789100/locations/asia-east1-a/volumes/testvoleasiaeast1"

-f <path-to-pvc> -n trident

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 | 10 GiB | gcnv-nfs-sc-

identity | file | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+--+---------

+----------------------+----------+--------------------------------------

+--------+---------+

ボリュームの名前とラベルをカスタマイズする

Tridentでは、作成したボリュームにわかりやすい名前とラベルを割り当てることができ
ます。これにより、ボリュームを特定し、それぞれのKubernetesリソース（PVC）に簡
単にマッピングできます。また、バックエンドレベルでテンプレートを定義してカスタ
ムボリューム名とカスタムラベルを作成することもできます。作成、インポート、また
はクローンを作成するボリュームは、テンプレートに準拠します。

開始する前に

カスタマイズ可能なボリューム名とラベルのサポート：

1. ボリュームの作成、インポート、クローニングの各処理。

2. ontap-nas-economyドライバの場合、qtreeボリュームの名前だけがテンプレート名に準拠します。

3. ontap-san-economyドライバの場合、名前テンプレートに準拠するのはLUN名のみです。

制限事項

1. カスタマイズ可能なボリューム名は、ONTAPオンプレミスドライバとのみ互換性があります。

2. カスタマイズ可能なボリューム名は、既存のボリュームには適用されません。

カスタマイズ可能なボリューム名の主な動作

1. 名前テンプレートの無効な構文が原因でエラーが発生した場合、バックエンドの作成は失敗します。ただ
し、テンプレートアプリケーションが失敗した場合は、既存の命名規則に従ってボリュームに名前が付け

24

られます。

2. バックエンド構成の名前テンプレートを使用してボリュームの名前が指定されている場合、ストレージプ
レフィックスは適用されません。任意のプレフィックス値をテンプレートに直接追加できます。

名前テンプレートとラベルを使用したバックエンド構成の例

カスタム名テンプレートは、ルートレベルまたはプールレベルで定義できます。

ルートレベルの例

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-nfs-backend",

 "managementLIF": "<ip address>",

 "svm": "svm0",

 "username": "<admin>",

 "password": "<password>",

 "defaults": {

 "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.Requ

estName}}"

 },

 "labels": {

 "cluster": "ClusterA",

 "PVC": "{{.volume.Namespace}}_{{.volume.RequestName}}"

 }

}

25

プールレベルの例

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-nfs-backend",

 "managementLIF": "<ip address>",

 "svm": "svm0",

 "username": "<admin>",

 "password": "<password>",

 "useREST": true,

 "storage": [

 {

 "labels": {

 "labelname": "label1",

 "name": "{{ .volume.Name }}"

 },

 "defaults": {

 "nameTemplate": "pool01_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

 }

 },

 {

 "labels": {

 "cluster": "label2",

 "name": "{{ .volume.Name }}"

 },

 "defaults": {

 "nameTemplate": "pool02_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

 }

 }

]

}

名前テンプレートの例

*例1 *：

"nameTemplate": "{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

.config.BackendName }}"

*例2 *：

26

"nameTemplate": "pool_{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

slice .volume.RequestName 1 5 }}""

考慮すべきポイント

1. ボリュームインポートの場合、既存のボリュームに特定の形式のラベルがある場合にのみラベルが更新さ

れます。例： {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}。

2. 管理対象ボリュームのインポートの場合、ボリューム名はバックエンド定義のルートレベルで定義された
名前テンプレートの後に続きます。

3. Tridentでは、storageプレフィックスを指定したスライス演算子の使用はサポートされていません。

4. テンプレートによってボリューム名が一意にならない場合、Tridentではいくつかのランダムな文字が追加
されて一意のボリューム名が作成されます。

5. NASエコノミーボリュームのカスタム名の長さが64文字を超える場合、Tridentは既存の命名規則に従って
ボリュームに名前を付けます。他のすべてのONTAPドライバでは、ボリューム名が名前の上限を超える
と、ボリュームの作成プロセスが失敗します。

ネームスペース間でNFSボリュームを共有します

Tridentを使用すると、プライマリネームスペースにボリュームを作成し、1つ以上のセカ
ンダリネームスペースで共有できます。

特徴

TridentVolumeReference CRを使用すると、1つ以上のKubernetesネームスペース間でReadWriteMany（RWX

）NFSボリュームを安全に共有できます。このKubernetesネイティブ解決策 には、次のようなメリットがあ
ります。

• セキュリティを確保するために、複数のレベルのアクセス制御が可能です

• すべてのTrident NFSボリュームドライバで動作

• tridentctlやその他の非ネイティブのKubernetes機能に依存しません

この図は、2つのKubernetesネームスペース間でのNFSボリュームの共有を示しています。

27

クイックスタート

NFSボリューム共有はいくつかの手順で設定できます。

ボリュームを共有するように送信元PVCを設定する

ソースネームスペースの所有者は、ソースPVCのデータにアクセスする権限を付与します。

宛先名前空間にCRを作成する権限を付与する

クラスタ管理者が、デスティネーションネームスペースの所有者にTridentVolumeReference CRを作成する権
限を付与します。

デスティネーションネームスペースにTridentVolumeReferenceを作成

宛先名前空間の所有者は、送信元PVCを参照するためにTridentVolumeReference CRを作成します。

宛先ネームスペースに下位PVCを作成します。

宛先名前空間の所有者は、送信元PVCからのデータソースを使用する下位PVCを作成します。

28

ソースネームスペースとデスティネーションネームスペースを設定します

セキュリティを確保するために、ネームスペース間共有では、ソースネームスペースの所有者、クラスタ管理
者、および宛先ネームスペースの所有者によるコラボレーションとアクションが必要です。ユーザロールは各
手順で指定します。

手順

1. ソースネームスペースの所有者： pvc(pvc1`を作成します）(`namespace2。注釈を使用して、デスティ

ネーションネームスペースとの共有権限を付与します。 shareToNamespace

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc1

 namespace: namespace1

 annotations:

 trident.netapp.io/shareToNamespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

Tridentは、PVとそのバックエンドNFSストレージボリュームを作成します。

◦ カンマ区切りリストを使用して、複数の名前空間にPVCを共有できます。たとえば、
`trident.netapp.io/shareToNamespace: namespace2,namespace3,namespace4`です。

◦ を使用して、すべてのネームスペースと共有できます *。例えば、

trident.netapp.io/shareToNamespace: *

◦ PVCはいつでも更新してアノテーションを含めることができます

shareToNamespace。

2. *クラスタ管理者：*カスタムロールとkubeconfigを作成して、デスティネーションネームスペースの所有
者にTridentVolumeReference CRを作成する権限を付与します。

3. *デスティネーションネームスペースの所有者：*ソースネームスペースを参照す

るTridentVolumeReference CRをデスティネーションネームスペースに作成します pvc1。

29

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

 name: my-first-tvr

 namespace: namespace2

spec:

 pvcName: pvc1

 pvcNamespace: namespace1

4. 宛先ネームスペース所有者：(pvc2`宛先ネームスペースにPVCを作成(`namespace2）。注釈を使用して

送信元PVCを指定します。 shareFromPVC

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 annotations:

 trident.netapp.io/shareFromPVC: namespace1/pvc1

 name: pvc2

 namespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

宛先PVCのサイズは、送信元PVCのサイズ以下である必要があります。

結果

TridentはデスティネーションPVCのアノテーションを読み取り shareFromPVC、ソースPVストレージリソー
スを共有する独自のストレージリソースのない下位ボリュームとしてデスティネーションPVを作成します。
宛先PVCとPVは、通常どおりバインドされているように見えます。

共有ボリュームを削除

複数のネームスペースで共有されているボリュームは削除できます。Tridentは、ソースネームスペース上のボ
リュームへのアクセスを削除し、そのボリュームを共有する他のネームスペースへのアクセスを維持します。
このボリュームを参照しているネームスペースをすべて削除すると、Tridentによってボリュームが削除されま
す。

下位ボリュームのクエリに使用 tridentctl get

ユーティリティを使用する[tridentctl`と、コマンドを実行して従属ボリュームを取得できます `get。詳

30

細については、リンク:../ Trident -reference/tridentctl.htmlコマンドとオプション]を参照して[`tridentctl`くだ
さい。

Usage:

 tridentctl get [option]

フラグ：

• `-h, --help：ボリュームのヘルプ。

• --parentOfSubordinate string：クエリを下位のソースボリュームに制限します。

• --subordinateOf string:クエリをボリュームの下位に限定します。

制限事項

• Tridentでは、デスティネーションネームスペースが共有ボリュームに書き込まれないようにすることはで
きません。共有ボリュームのデータの上書きを防止するには、ファイルロックなどのプロセスを使用する
必要があります。

• または shareFromNamespace`注釈を削除したり、CRを削除したりし `TridentVolumeReference`

て、送信元PVCへのアクセスを取り消すことはできません `shareToNamespace。アクセスを取り消す
には、下位PVCを削除する必要があります。

• Snapshot、クローン、およびミラーリングは下位のボリュームでは実行できません。

詳細情報

ネームスペース間のボリュームアクセスの詳細については、次の資料を参照してください。

• にアクセスします"ネームスペース間でのボリュームの共有：ネームスペース間のボリュームアクセスを許
可する場合は「Hello」と入力します"。

• のデモをご覧ください "ネットアップTV"。

ネームスペース全体でボリュームをクローニング

Tridentを使用すると、同じKubernetesクラスタ内の別のネームスペースから既存のボリ
ュームまたはボリュームSnapshotを使用して新しいボリュームを作成できます。

前提条件

ボリュームをクローニングする前に、ソースとデスティネーションのバックエンドのタイプとストレージクラ
スが同じであることを確認してください。

クイックスタート

ボリュームクローニングはわずか数ステップでセットアップできます。

31

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products

ボリュームのクローンを作成するためのソースPVCの設定

ソースネームスペースの所有者は、ソースPVCのデータにアクセスする権限を付与します。

宛先名前空間にCRを作成する権限を付与する

クラスタ管理者が、デスティネーションネームスペースの所有者にTridentVolumeReference CRを作成する権
限を付与します。

デスティネーションネームスペースにTridentVolumeReferenceを作成

宛先名前空間の所有者は、送信元PVCを参照するためにTridentVolumeReference CRを作成します。

デスティネーションネームスペースにクローンPVCを作成します。

宛先ネームスペースの所有者は、PVCを作成して、送信元ネームスペースからPVCを複製します。

ソースネームスペースとデスティネーションネームスペースを設定します

セキュリティを確保するために、ネームスペース間でボリュームをクローニングするには、ソースネームスペ
ースの所有者、クラスタ管理者、およびデスティネーションネームスペースの所有者が協力して対処する必要
があります。ユーザロールは各手順で指定します。

手順

1. ソースネームスペース所有者：(pvc1`ソースネームスペースにPVCを作成(`namespace1）。注釈

(namespace2`を使用して、デスティネーションネームスペースと共有する権限を付与します。

`cloneToNamespace

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc1

 namespace: namespace1

 annotations:

 trident.netapp.io/cloneToNamespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

Tridentは、PVとそのバックエンドストレージボリュームを作成します。

32

◦ カンマ区切りリストを使用して、複数の名前空間にPVCを共有できます。たとえば、
`trident.netapp.io/cloneToNamespace: namespace2,namespace3,namespace4`です。

◦ を使用して、すべてのネームスペースと共有できます *。例えば、

trident.netapp.io/cloneToNamespace: *

◦ PVCはいつでも更新してアノテーションを含めることができます

cloneToNamespace。

2. *クラスタ管理者：*カスタムロールとkubeconfigを作成して、デスティネーションネームスペースの所有
者にTridentVolumeReference CRをデスティネーションネームスペースに作成する権限を付与
し(`namespace2`ます）。

3. *デスティネーションネームスペースの所有者：*ソースネームスペースを参照す

るTridentVolumeReference CRをデスティネーションネームスペースに作成します pvc1。

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

 name: my-first-tvr

 namespace: namespace2

spec:

 pvcName: pvc1

 pvcNamespace: namespace1

4. 宛先ネームスペースの所有者：(pvc2`宛先ネームスペースに `cloneFromNamespace`PVCを作

成(`namespace2）。または cloneFromSnapshot`アノテーションを使用して、送信元PVCを指定しま

す `cloneFromPVC。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 annotations:

 trident.netapp.io/cloneFromPVC: pvc1

 trident.netapp.io/cloneFromNamespace: namespace1

 name: pvc2

 namespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

33

制限事項

• ONTAP NASエコノミードライバを使用してプロビジョニングされたPVCでは、読み取り専用クローンは
サポートされません。

SnapMirrorによるボリュームのレプリケート

Tridentでは、ディザスタリカバリ用にデータをレプリケートするために、ピア関係にあ
るクラスタのソースボリュームとデスティネーションボリュームの間のミラー関係をサ
ポートしています。名前空間カスタムリソース定義（CRD）を使用して、次の操作を実
行できます。

• ボリューム（PVC）間のミラー関係を作成する

• ボリューム間のミラー関係の削除

• ミラー関係を解除する

• 災害時（フェイルオーバー）にセカンダリボリュームを昇格する

• クラスタからクラスタへのアプリケーションのロスレス移行の実行（計画的なフェイルオーバーまたは移
行時）

レプリケーションの前提条件

作業を開始する前に、次の前提条件を満たしていることを確認してください。

ONTAP クラスタ

• * Trident *：Tridentバージョン22.10以降が、バックエンドとしてONTAPを利用するソースとデスティネー
ションの両方のKubernetesクラスタに存在している必要があります。

• ライセンス：Data Protection Bundleを使用するONTAP SnapMirror非同期ライセンスが、ソースとデステ
ィネーションの両方のONTAPクラスタで有効になっている必要があります。詳細については、を参照して
ください "ONTAP のSnapMirrorライセンスの概要" 。

ピアリング

• *クラスタとSVM *：ONTAPストレージバックエンドにピア関係が設定されている必要があります。詳細
については、を参照してください "クラスタと SVM のピアリングの概要" 。

2つのONTAPクラスタ間のレプリケーション関係で使用されるSVM名が一意であることを
確認してください。

• * TridentとSVM *：ピア関係にあるリモートSVMをデスティネーションクラスタのTridentで使用できる必
要があります。

サポートされるドライバ

• ボリュームレプリケーションは、ONTAP-NASドライバとONTAP-SANドライバでサポートされます。

ミラーPVCの作成

以下の手順に従って、CRDの例を使用してプライマリボリュームとセカンダリボリュームの間にミラー関係

34

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html

を作成します。

手順

1. プライマリKubernetesクラスタで次の手順を実行します。

a. パラメータを指定してStorageClassオブジェクトを作成し trident.netapp.io/replication:

true ます。

例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 fsType: "nfs"

 trident.netapp.io/replication: "true"

b. 以前に作成したStorageClassを使用してPVCを作成します。

例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: csi-nas

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: csi-nas

c. ローカル情報を含むMirrorRelationship CRを作成します。

35

例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

 name: csi-nas

spec:

 state: promoted

 volumeMappings:

 - localPVCName: csi-nas

Tridentは、ボリュームの内部情報とボリュームの現在のデータ保護（DP）状態をフェッチ
し、MirrorRelationshipのstatusフィールドに値を入力します。

d. TridentMirrorRelationship CRを取得して、PVCの内部名とSVMを取得します。

kubectl get tmr csi-nas

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

 name: csi-nas

 generation: 1

spec:

 state: promoted

 volumeMappings:

 - localPVCName: csi-nas

status:

 conditions:

 - state: promoted

 localVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

 localPVCName: csi-nas

 observedGeneration: 1

2. セカンダリKubernetesクラスタで次の手順を実行します。

a. trident.netapp.io/replication: trueパラメータを使用してStorageClassを作成します。

36

例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

 trident.netapp.io/replication: true

b. デスティネーションとソースの情報を含むMirrorRelationship CRを作成します。

例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

 name: csi-nas

spec:

 state: established

 volumeMappings:

 - localPVCName: csi-nas

 remoteVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

Tridentは、設定した関係ポリシー名（ONTAPの場合はデフォルト）を使用してSnapMirror関係を作成
して初期化します。

c. セカンダリ（SnapMirrorデスティネーション）として機能するStorageClassを作成してPVCを作成し
ます。

例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: csi-nas

 annotations:

 trident.netapp.io/mirrorRelationship: csi-nas

spec:

 accessModes:

 - ReadWriteMany

resources:

 requests:

 storage: 1Gi

storageClassName: csi-nas

37

TridentはTridentMirrorRelationship CRDをチェックし、関係が存在しない場合はボリュームの作成に
失敗します。関係が存在する場合、Tridentは新しいFlexVol volumeを、MirrorRelationshipで定義され
ているリモートSVMとピア関係にあるSVMに配置します。

ボリュームレプリケーションの状態

Trident Mirror Relationship（TMR）は、PVC間のレプリケーション関係の一端を表すCRDです。宛先TMRに
は、目的の状態をTridentに通知する状態があります。宛先TMRの状態は次のとおりです。

• 確立済み：ローカルPVCはミラー関係のデスティネーションボリュームであり、これは新しい関係です。

• 昇格：ローカルPVCはReadWriteでマウント可能であり、ミラー関係は現在有効ではありません。

• * reestablished *：ローカルPVCはミラー関係のデスティネーションボリュームであり、以前はそのミラー
関係に含まれていました。

◦ デスティネーションボリュームはデスティネーションボリュームの内容を上書きするため、ソースボ
リュームとの関係が確立されたことがある場合は、reestablished状態を使用する必要があります。

◦ ボリュームが以前にソースとの関係になかった場合、再確立状態は失敗します。

計画外フェールオーバー時にセカンダリPVCを昇格する

セカンダリKubernetesクラスタで次の手順を実行します。

• TridentMirrorRelationshipの_spec.state_フィールド をに更新します promoted。

計画的フェイルオーバー中にセカンダリPVCを昇格

計画的フェイルオーバー（移行）中に、次の手順を実行してセカンダリPVCをプロモートします。

手順

1. プライマリKubernetesクラスタでPVCのSnapshotを作成し、Snapshotが作成されるまで待ちます。

2. プライマリKubernetesクラスタで、SnapshotInfo CRを作成して内部の詳細を取得します。

例

kind: SnapshotInfo

apiVersion: trident.netapp.io/v1

metadata:

 name: csi-nas

spec:

 snapshot-name: csi-nas-snapshot

3. セカンダリKubernetesクラスタで、_TridentMirrorRelationship_CRの_spec.state_フィールド
を_promoted_に更新し、_spec.promotedSnapshotHandle_をSnapshotのinternalNameにします。

4. セカンダリKubernetesクラスタで、TridentMirrorRelationshipのステータス（status.stateフィールド）
がPromotedになっていることを確認します。

38

フェイルオーバー後にミラー関係をリストアする

ミラー関係をリストアする前に、新しいプライマリとして作成する側を選択します。

手順

1. セカンダリKubernetesクラスタで、TridentMirrorRelationshipの_spec.remoteVolumeHandle_fieldの値が更
新されていることを確認します。

2. セカンダリKubernetesクラスタで、TridentMirrorRelationshipの_spec.mirror_fieldをに更新します

reestablished。

その他の処理

Tridentでは、プライマリボリュームとセカンダリボリュームで次の処理がサポートされます。

新しいセカンダリPVCへのプライマリPVCの複製

プライマリPVCとセカンダリPVCがすでに存在していることを確認します。

手順

1. PersistentVolumeClaim CRDとTridentMirrorRelationship CRDを、確立されたセカンダリ（デスティネー
ション）クラスタから削除します。

2. プライマリ（ソース）クラスタからTridentMirrorRelationship CRDを削除します。

3. 確立する新しいセカンダリ（デスティネーション）PVC用に、プライマリ（ソース）クラスタに新し
いTridentMirrorRelationship CRDを作成します。

ミラー、プライマリ、またはセカンダリPVCのサイズ変更

PVCは通常どおりサイズ変更できます。データ量が現在のサイズを超えると、ONTAPは自動的に宛先フレ
フxolを拡張します。

PVCからのレプリケーションの削除

レプリケーションを削除するには、現在のセカンダリボリュームで次のいずれかの操作を実行します。

• セカンダリPVCのMirrorRelationshipを削除します。これにより、レプリケーション関係が解除されます。

• または、spec.stateフィールドを_promoted_に更新します。

（以前にミラーリングされていた）PVCの削除

Tridentは、レプリケートされたPVCがないかどうかを確認し、レプリケーション関係を解放してからボリュ
ームの削除を試行します。

TMRの削除

ミラー関係の片側のTMRを削除すると、Tridentが削除を完了する前に、残りのTMRが_PROMOTED_STATE

に移行します。削除対象として選択されたTMRがすでに_promoted_stateにある場合、既存のミラー関係は存
在せず、TMRは削除され、TridentはローカルPVCを_ReadWrite_にプロモートします。この削除によ
り、ONTAP内のローカルボリュームのSnapMirrorメタデータが解放されます。このボリュームを今後ミラー
関係で使用する場合は、新しいミラー関係を作成するときに、レプリケーション状態が_established_volume

39

である新しいTMRを使用する必要があります。

ONTAPがオンラインのときにミラー関係を更新

ミラー関係は、確立後にいつでも更新できます。フィールドまたはフィールドを使用して関係を更新できます

state: promoted state: reestablished 。デスティネーションボリュームを通常のReadWriteボリュ
ームに昇格する場合は、_promotedSnapshotHandle_を使用して、現在のボリュームのリストア先となる特定
のSnapshotを指定できます。

ONTAPがオフラインの場合にミラー関係を更新

CRDを使用すると、TridentがONTAPクラスタに直接接続されていなくてもSnapMirror更新を実行できます。
次のTridentActionMirrorUpdateの形式例を参照してください。

例

apiVersion: trident.netapp.io/v1

kind: TridentActionMirrorUpdate

metadata:

 name: update-mirror-b

spec:

 snapshotHandle: "pvc-1234/snapshot-1234"

 tridentMirrorRelationshipName: mirror-b

status.state TridentActionMirrorUpdate CRDの状態を反映します。Succeeded、In Progress、_Failed_の
いずれかの値を指定できます。

CSI トポロジを使用します

Tridentでは、を使用して、Kubernetesクラスタ内のノードを選択的に作成して接続でき
ます "CSI トポロジ機能"。

概要

CSI トポロジ機能を使用すると、領域およびアベイラビリティゾーンに基づいて、ボリュームへのアクセスを
ノードのサブセットに制限できます。現在、クラウドプロバイダは、 Kubernetes 管理者がゾーンベースのノ
ードを生成できるようになっています。ノードは、リージョンによって異なるアベイラビリティゾーンに配置
することも、リージョンによって配置することもできます。マルチゾーンアーキテクチャでワークロード用の
ボリュームのプロビジョニングを容易にするために、TridentではCSIトポロジを使用しています。

CSIトポロジ機能の詳細については、こちらを参照して "ここをクリック"ください。

Kubernetes には、 2 つの固有のボリュームバインドモードがあります。

• `VolumeBindingMode`をに設定する `Immediate`と、Tridentはトポロジを認識せずにボリュームを作成し
ます。ボリュームバインディングと動的プロビジョニングは、 PVC が作成されるときに処理されます。
これはデフォルト `VolumeBindingMode`であり、トポロジの制約を適用しないクラスタに適しています。
永続ボリュームは、要求元ポッドのスケジュール要件に依存することなく作成されます。

40

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

• `VolumeBindingMode`をに設定する `WaitForFirstConsumer`と、PVCの永続ボリュームの作成とバインド
は、PVCを使用するポッドがスケジュールされて作成されるまで遅延されます。これにより、トポロジの
要件に応じたスケジュールの制約を満たすようにボリュームが作成されます。

`WaitForFirstConsumer`バインディングモードではトポロジラベルは必要ありません。これは
CSI トポロジ機能とは無関係に使用できます。

必要なもの

CSI トポロジを使用するには、次のものが必要です。

• を実行するKubernetesクラスタ"サポートされるKubernetesバージョン"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• クラスタ内のノードには、トポロジ対応と `topology.kubernetes.io/zone`を示すラベルを付ける必要があ
り(`topology.kubernetes.io/region`ます。これらのラベル*は、Tridentをトポロジ対応にするためにTrident

をインストールする前に、クラスタ内のノード*に設定しておく必要があります。

41

../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html
../trident-get-started/requirements.html

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

手順 1 ：トポロジ対応バックエンドを作成する

Tridentストレージバックエンドは、アベイラビリティゾーンに基づいて選択的にボリュームをプロビジョニン
グするように設計できます。各バックエンドは、サポートされているゾーンとリージョンのリストを表すオプ

ションのブロックを運ぶことができます supportedTopologies 。ストレージクラスがそのようなバックエ
ンドを使用する場合、ボリュームは、サポートされているリージョン / ゾーンでスケジュールされているアプ
リケーションから要求された場合にのみ作成されます。

バックエンド定義の例を次に示します。

42

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

 - topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

 - topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

 {

 "topology.kubernetes.io/region": "us-east1",

 "topology.kubernetes.io/zone": "us-east1-a"

 },

 {

 "topology.kubernetes.io/region": "us-east1",

 "topology.kubernetes.io/zone": "us-east1-b"

 }

]

}

`supportedTopologies`は、バックエンドごとにリージョンとゾーンのリストを提供するために
使用されます。これらのリージョンとゾーンは、 StorageClass で指定できる許容値のリストを
表します。バックエンドで提供されるリージョンとゾーンのサブセットを含むストレージクラ
スの場合、Tridentはバックエンドにボリュームを作成します。

ストレージプールごとにも定義できます supportedTopologies。次の例を参照してください。

43

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

 - labels:

 workload: production

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

 - labels:

 workload: dev

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

この例では region、ラベルと zone`ラベルはストレージプールの場所を表しています。

`topology.kubernetes.io/region `topology.kubernetes.io/zone`ストレージプールの消費元を指定しま
す。

手順 2 ：トポロジを認識するストレージクラスを定義する

クラスタ内のノードに提供されるトポロジラベルに基づいて、トポロジ情報を含めるように StorageClasses

を定義できます。これにより、作成された PVC 要求の候補となるストレージプール、および Trident によっ
てプロビジョニングされたボリュームを使用できるノードのサブセットが決まります。

次の例を参照してください。

44

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata: null

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

 - matchLabelExpressions: null

 - key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

 - key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: ext4

前述のStorageClass定義では、 volumeBindingMode`がに設定されて `WaitForFirstConsumer`いま

す。この StorageClass で要求された PVC は、ポッドで参照されるまで処理されません。およびに、

`allowedTopologies`使用するゾーンとリージョンを示します。StorageClassは `netapp-san-us-

east1、上記で定義したバックエンドにPVCを作成し `san-backend-us-east1`ます。

ステップ 3 ： PVC を作成して使用する

StorageClass を作成してバックエンドにマッピングすると、 PVC を作成できるようになりました。

次の例を参照して `spec`ください。

kind: PersistentVolumeClaim

apiVersion: v1

metadata: null

name: pvc-san

spec: null

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

このマニフェストを使用して PVC を作成すると、次のような結果になります。

45

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

Trident でボリュームを作成して PVC にバインドするには、ポッド内の PVC を使用します。次の例を参照し
てください。

46

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

このpodSpecは、リージョンに存在するノードでポッドをスケジュールし、ゾーンまたは `us-east1-b`ゾーン
に存在する任意のノードから選択する `us-east1-a`ようにKubernetesに指示し `us-east1`ます。

次の出力を参照してください。

47

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

バックエンドを更新して含める supportedTopologies

既存のバックエンドを更新して、使用の tridentctl backend update`リストを含めることができます

`supportedTopologies。これは、すでにプロビジョニングされているボリュームには影響せず、以降の
PVC にのみ使用されます。

詳細情報

• "コンテナのリソースを管理"

• "ノードセレクタ"

• "アフィニティと非アフィニティ"

• "塗料および耐性"

スナップショットを操作します

永続ボリューム（PV）のKubernetesボリュームSnapshotを使用すると、ボリュームの
ポイントインタイムコピーを作成できます。Tridentを使用して作成したボリューム
のSnapshotの作成、Tridentの外部で作成したSnapshotのインポート、既存のSnapshot

からの新しいボリュームの作成、Snapshotからのボリュームデータのリカバリを実行で
きます。

概要

ボリュームスナップショットは以下でサポートされています ontap-nas 、 ontap-nas-flexgroup 、

ontap-san 、 ontap-san-economy 、 solidfire-san 、 gcp-cvs 、 azure-netapp-files 、 そし
て `google-cloud-netapp-volumes`ドライバー。

開始する前に

スナップショットを操作するには、外部スナップショットコントローラとカスタムリソース定義（CRD）が
必要です。Kubernetesオーケストレーションツール（例：Kubeadm、GKE、OpenShift）の役割を担っていま
す。

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、を参
照してくださいボリュームSnapshotコントローラの導入。

48

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

GKE環境でオンデマンドボリュームスナップショットを作成する場合は、スナップショットコ
ントローラを作成しないでください。GKEでは、内蔵の非表示のスナップショットコントロー
ラを使用します。

ボリューム Snapshot を作成します

手順

1. を作成し `VolumeSnapshotClass`ます。詳細については、を参照してください"ボリュームSnapshotクラ
ス"。

◦ は `driver`Trident CSIドライバを示しています。

◦ deletionPolicy`には、または `Retain`を指定できます `Delete。に設定する `Retain`と、オ
ブジェクトが削除されても、ストレージクラスタの基盤となる物理Snapshotが保持され
`VolumeSnapshot`ます。

例

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. 既存のPVCのスナップショットを作成します。

例

◦ 次に、既存のPVCのスナップショットを作成する例を示します。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

◦ この例では、というPVCのボリュームSnapshotオブジェクトを作成し pvc1、Snapshotの名前をに設
定して `pvc1-snap`います。VolumeSnapshotはPVCに似ており、実際のSnapshotを表すオブジェクト

49

../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects
../trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

に関連付けられて `VolumeSnapshotContent`います。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

◦ VolumeSnapshotのオブジェクト pvc1-snap`を説明することで特定できます

`VolumeSnapshotContent。は Snapshot Content Name、このSnapshotを提供す
るVolumeSnapshotContentオブジェクトを識別します。パラメータは、 `Ready To Use`スナップショ
ットを使用して新しいPVCを作成できることを示します。

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

...

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

...

ボリュームSnapshotからPVCを作成

を使用して、という名前のVolumeSnapshotをデータのソースとして使用してPVCを作成 <pvc-name>`でき

ます `dataSource。作成された PVC は、ポッドに接続して、他の PVC と同様に使用できます。

PVCはソースボリュームと同じバックエンドに作成されます。を参照してください "KB

：Trident PVCスナップショットからPVCを作成することは代替バックエンドではできない"。

次に、をデータソースとして使用してPVCを作成する例を示し `pvc1-snap`ます。

cat pvc-from-snap.yaml

50

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

ボリュームSnapshotのインポート

Tridentでは、クラスタ管理者がを"Kubernetesの事前プロビジョニングされたSnapshotプロセス"使用して、
オブジェクトを作成したり、Tridentの外部で作成されたSnapshotをインポートしたりできます

VolumeSnapshotContent。

開始する前に

TridentでSnapshotの親ボリュームが作成またはインポートされている必要があります。

手順

1. *クラスタ管理者：*バックエンドSnapshotを参照するオブジェクトを作成します

VolumeSnapshotContent。これにより、TridentでSnapshotワークフローが開始されます。

◦ にバックエンドスナップショットの名前を trident.netapp.io/internalSnapshotName:

<"backend-snapshot-name">`指定します `annotations。

◦ で指定します <name-of-parent-volume-in-trident>/<volume-snapshot-content-name>

snapshotHandle。この情報は、呼び出しで外部スナップショットによってTridentに提供される唯一

の情報です ListSnapshots。

CRの名前の制約により、は `<volumeSnapshotContentName>`バックエンドスナップシ
ョット名と常に一致しません。

例

次の例では、バックエンドスナップショットを参照するオブジェクトを `snap-01`作成し
`VolumeSnapshotContent`ます。

51

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

 name: import-snap-content

 annotations:

 trident.netapp.io/internalSnapshotName: "snap-01" # This is the

name of the snapshot on the backend

spec:

 deletionPolicy: Retain

 driver: csi.trident.netapp.io

 source:

 snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

 volumeSnapshotRef:

 name: import-snap

 namespace: default

2. *クラスタ管理者：*オブジェクトを参照するCR VolumeSnapshotContent`を作成します

`VolumeSnapshot。これにより、指定された名前空間でを使用するためのアクセスが要求され
`VolumeSnapshot`ます。

例

次の例では、という名前 import-snap-content`を参照する `VolumeSnapshotContent`という名

前のCRを `import-snap`作成します `VolumeSnapshot。

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: import-snap

spec:

 # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

 source:

 volumeSnapshotContentName: import-snap-content

3. *内部処理（アクション不要）：*外部スナップショットは、新しく作成されたを認識して

VolumeSnapshotContent`呼び出しを実行します `ListSnapshots。Tridentによってが作成され
`TridentSnapshot`ます。

◦ 外部スナップショットは、をに `readyToUse`設定し、 `VolumeSnapshot`をに `true`設定し
`VolumeSnapshotContent`ます。

◦ Tridentが戻ります readyToUse=true。

4. *任意のユーザー：*を作成し PersistentVolumeClaim`て、新しいを参照します

`VolumeSnapshot。 spec.dataSource（または spec.dataSourceRef）の名前は名前です

52

VolumeSnapshot。

例

次に、という名前の `import-snap`を参照するPVCを作成する例を示し `VolumeSnapshot`ます。

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: simple-sc

 resources:

 requests:

 storage: 1Gi

 dataSource:

 name: import-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

Snapshotを使用したボリュームデータのリカバリ

デフォルトでは、ドライバと `ontap-nas-economy`ドライバを使用してプロビジョニングされたボリュームの
互換性を最大限に高めるため、snapshotディレクトリは非表示になってい `ontap-nas`ます。ディレクトリが
スナップショットからデータを直接リカバリできるようにし `.snapshot`ます。

ボリュームを以前のSnapshotに記録されている状態にリストアするには、ボリュームSnapshotリスト
アONTAP CLIを使用します。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Snapshotコピーをリストアすると、既存のボリューム設定が上書きされます。Snapshotコピー
の作成後にボリュームデータに加えた変更は失われます。

Snapshotからのインプレースボリュームのリストア

Tridentでは、（TASR）CRを使用してSnapshotからボリュームをインプレースで迅速にリストアできます

TridentActionSnapshotRestore。このCRはKubernetesの必須アクションとして機能し、処理の完了後
も維持されません。

Tridentは、、 ontap-san-economy ontap-nas、、 ontap-nas-flexgroup azure-netapp-files、、

で gcp-cvs`のSnapshotリストアをサポートしています。 `ontap-san、 google-cloud-netapp-

volumes、および `solidfire-san`ドライバ。

53

開始する前に

バインドされたPVCと使用可能なボリュームSnapshotが必要です。

• PVCステータスがバインドされていることを確認します。

kubectl get pvc

• ボリュームSnapshotを使用する準備が完了していることを確認します。

kubectl get vs

手順

1. TASR CRを作成します。この例では、PVCおよびボリュームスナップショット用のCRを作成し pvc1

`pvc1-snapshot`ます。

TASR CRは、PVCおよびVSが存在する名前空間に存在する必要があります。

cat tasr-pvc1-snapshot.yaml

apiVersion: trident.netapp.io/v1

kind: TridentActionSnapshotRestore

metadata:

 name: trident-snap

 namespace: trident

spec:

 pvcName: pvc1

 volumeSnapshotName: pvc1-snapshot

2. スナップショットからリストアするにはCRを適用します。この例では、Snapshotからリストアし `pvc1`

ます。

kubectl create -f tasr-pvc1-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

結果

Tridentはスナップショットからデータをリストアします。Snapshotリストアのステータスを確認できます。

54

kubectl get tasr -o yaml

apiVersion: trident.netapp.io/v1

items:

- apiVersion: trident.netapp.io/v1

 kind: TridentActionSnapshotRestore

 metadata:

 creationTimestamp: "2023-04-14T00:20:33Z"

 generation: 3

 name: trident-snap

 namespace: trident

 resourceVersion: "3453847"

 uid: <uid>

 spec:

 pvcName: pvc1

 volumeSnapshotName: pvc1-snapshot

 status:

 startTime: "2023-04-14T00:20:34Z"

 completionTime: "2023-04-14T00:20:37Z"

 state: Succeeded

kind: List

metadata:

 resourceVersion: ""

• ほとんどの場合、障害が発生したときにTridentで処理が自動的に再試行されることはあり
ません。この操作を再度実行する必要があります。

• 管理者アクセス権を持たないKubernetesユーザは、アプリケーションネームスペース
にTASR CRを作成するために、管理者から権限を付与されなければならない場合がありま
す。

Snapshotが関連付けられているPVを削除する

Snapshotが関連付けられている永続ボリュームを削除すると、対応するTridentボリュームが「削除中」に更
新されます。ボリュームSnapshotを削除してTridentボリュームを削除します。

ボリュームSnapshotコントローラの導入

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、次の
ように導入できます。

手順

1. ボリュームのSnapshot作成

55

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. スナップショットコントローラを作成します。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

必要に応じて、名前空間を開い `deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml`て更新し `namespace`ます。

関連リンク

• "ボリューム Snapshot"

• "ボリュームSnapshotクラス"

56

https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-concepts/snapshots.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html
https://docs.netapp.com/ja-jp/trident-2502/trident-reference/objects.html

著作権に関する情報

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S.このドキュメントは著作権によって保
護されています。著作権所有者の書面による事前承諾がある場合を除き、画像媒体、電子媒体、および写真複
写、記録媒体、テープ媒体、電子検索システムへの組み込みを含む機械媒体など、いかなる形式および方法に
よる複製も禁止します。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となりま
す。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的な保
証、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示
的な保証も行いません。ネットアップは、代替品または代替サービスの調達、使用不能、データ損失、利益損
失、業務中断を含み、かつこれに限定されない、このソフトウェアの使用により生じたすべての直接的損害、
間接的損害、偶発的損害、特別損害、懲罰的損害、必然的損害の発生に対して、損失の発生の可能性が通知さ
れていたとしても、その発生理由、根拠とする責任論、契約の有無、厳格責任、不法行為（過失またはそうで
ない場合を含む）にかかわらず、一切の責任を負いません。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。
ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ
る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ
の特許権、商標権、または他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ
って保護されている場合があります。

権利の制限について：政府による使用、複製、開示は、DFARS 252.227-7013（2014年2月）およびFAR

5252.227-19（2007年12月）のRights in Technical Data -Noncommercial Items（技術データ - 非商用品目に関
する諸権利）条項の(b)(3)項、に規定された制限が適用されます。

本書に含まれるデータは商用製品および / または商用サービス（FAR 2.101の定義に基づく）に関係し、デー
タの所有権はNetApp, Inc.にあります。本契約に基づき提供されるすべてのネットアップの技術データおよび
コンピュータ ソフトウェアは、商用目的であり、私費のみで開発されたものです。米国政府は本データに対
し、非独占的かつ移転およびサブライセンス不可で、全世界を対象とする取り消し不能の制限付き使用権を有
し、本データの提供の根拠となった米国政府契約に関連し、当該契約の裏付けとする場合にのみ本データを使
用できます。前述の場合を除き、NetApp, Inc.の書面による許可を事前に得ることなく、本データを使用、開
示、転載、改変するほか、上演または展示することはできません。国防総省にかかる米国政府のデータ使用権
については、DFARS 252.227-7015(b)項（2014年2月）で定められた権利のみが認められます。

商標に関する情報

NetApp、NetAppのロゴ、http://www.netapp.com/TMに記載されているマークは、NetApp, Inc.の商標です。そ
の他の会社名と製品名は、それを所有する各社の商標である場合があります。

57

http://www.netapp.com/TM

	ボリュームのプロビジョニングと管理 : Trident
	目次
	ボリュームのプロビジョニングと管理
	ボリュームをプロビジョニングする
	概要
	PVCの作成

	ボリュームを展開します
	iSCSI ボリュームを展開します
	FC ボリュームを拡張します
	NFS ボリュームを拡張します

	ボリュームをインポート
	概要と考慮事項
	ボリュームをインポートします
	例

	ボリュームの名前とラベルをカスタマイズする
	開始する前に
	制限事項
	カスタマイズ可能なボリューム名の主な動作
	名前テンプレートとラベルを使用したバックエンド構成の例
	名前テンプレートの例
	考慮すべきポイント

	ネームスペース間でNFSボリュームを共有します
	特徴
	クイックスタート
	ソースネームスペースとデスティネーションネームスペースを設定します
	共有ボリュームを削除
	下位ボリュームのクエリに使用 tridentctl get
	制限事項
	詳細情報

	ネームスペース全体でボリュームをクローニング
	前提条件
	クイックスタート
	ソースネームスペースとデスティネーションネームスペースを設定します
	制限事項

	SnapMirrorによるボリュームのレプリケート
	レプリケーションの前提条件
	ミラーPVCの作成
	ボリュームレプリケーションの状態
	計画外フェールオーバー時にセカンダリPVCを昇格する
	計画的フェイルオーバー中にセカンダリPVCを昇格
	フェイルオーバー後にミラー関係をリストアする
	その他の処理
	ONTAPがオンラインのときにミラー関係を更新
	ONTAPがオフラインの場合にミラー関係を更新

	CSI トポロジを使用します
	概要
	手順 1 ：トポロジ対応バックエンドを作成する
	手順 2 ：トポロジを認識するストレージクラスを定義する
	ステップ 3 ： PVC を作成して使用する
	バックエンドを更新して含める supportedTopologies
	詳細情報

	スナップショットを操作します
	概要
	ボリューム Snapshot を作成します
	ボリュームSnapshotからPVCを作成
	ボリュームSnapshotのインポート
	Snapshotを使用したボリュームデータのリカバリ
	Snapshotからのインプレースボリュームのリストア
	Snapshotが関連付けられているPVを削除する
	ボリュームSnapshotコントローラの導入
	関連リンク

