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ボリュームのプロビジョニングと管理

ボリュームをプロビジョニングする

設定したKubernetes StorageClassを使用してPVへのアクセスを要求す
るPersistentVolumeClaim（PVC）を作成します。その後、PVをポッドにマウントでき
ます。

概要

https://kubernetes.io/docs/concepts/storage/persistent-

volumes["PersistentVolumeClaim_"^]（PVC）は、クラスタ上のPersistentVolumeへのア
クセス要求です。

PVCは、特定のサイズまたはアクセスモードのストレージを要求するように設定できます。クラスタ管理者
は、関連付けられているStorageClassを使用して、PersistentVolumeのサイズとアクセスモード（パフォーマ
ンスやサービスレベルなど）以上を制御できます。

PVCを作成したら、ボリュームをポッドにマウントできます。

PVCの作成

手順

1. PVCを作成

kubectl create -f pvc.yaml

2. PVCステータスを確認します。

kubectl get pvc

NAME        STATUS  VOLUME     CAPACITY   ACCESS MODES  STORAGECLASS AGE

pvc-storage Bound   pv-name    1Gi        RWO                  5m

1. ボリュームをポッドにマウントします。

kubectl create -f pv-pod.yaml

進捗状況はを使用して監視でき `kubectl get pod --watch`ます。
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2. ボリュームがにマウントされていることを確認します /my/mount/path。

kubectl exec -it task-pv-pod -- df -h /my/mount/path

3. ポッドを削除できるようになりました。Podアプリケーションは存在しなくなりますが、ボリュームは残
ります。

kubectl delete pod pv-pod

マニフェストの例
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PersistentVolumeClaimサンプルマニフェスト

次に、基本的なPVC設定オプションの例を示します。

RWOアクセスを備えたPVC

この例は、という名前のStorageClassに関連付けられたRWOアクセスを持つ基本的なPVCを示していま

す basic-csi。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc-storage

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: basic-csi

NVMe / TCP対応PVC

この例は、という名前のStorageClassに関連付けられたNVMe/TCPの基本的なPVCとRWOアクセスを示

しています protection-gold。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: protection-gold
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PODマニフェストのサンプル

次の例は、PVCをポッドに接続するための基本的な設定を示しています。

基本構成

kind: Pod

apiVersion: v1

metadata:

  name: pv-pod

spec:

  volumes:

    - name: storage

      persistentVolumeClaim:

       claimName: pvc-storage

  containers:

    - name: pv-container

      image: nginx

      ports:

        - containerPort: 80

          name: "http-server"

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: storage

NVMe/TCPの基本構成

apiVersion: v1

kind: Pod

metadata:

  name: pod-nginx

spec:

  volumes:

    - name: basic-pvc

      persistentVolumeClaim:

        claimName: pvc-san-nvme

  containers:

    - name: task-pv-container

      image: nginx

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: basic-pvc

ストレージクラスとパラメータおよびパラメータとの連携によるTridentによるボリュームのプロビジョニング

方法の詳細については PersistentVolumeClaim、を参照してください"Kubernetes オブジェクトと Trident
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オブジェクト"。

ボリュームを展開します

Tridentを使用すると、Kubernetesユーザは作成後にボリュームを拡張できます。ここで
は、iSCSI、NFS、およびFCのボリュームを拡張するために必要な設定について説明し
ます。

iSCSI ボリュームを展開します

CSI プロビジョニングを使用して、 iSCSI Persistent Volume （ PV ）を拡張できます。

iSCSIボリュームの拡張は、、 ontap-san-economy `solidfire-san`ドライバでサポートされ
`ontap-san`ており、Kubernetes 1.16以降が必要です。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

StorageClass定義を編集して、フィールドをに `true`設定し `allowVolumeExpansion`ます。

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

既存のStorageClassの場合は、パラメータを含めるように編集します allowVolumeExpansion。

手順 2 ：作成した StorageClass を使用して PVC を作成します

PVC定義を編集し、を更新して、 `spec.resources.requests.storage`新しく希望するサイズ（元のサイズより
も大きくなければなりません）を反映させます。

cat pvc-ontapsan.yaml
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kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Tridentは永続的ボリューム（PV）を作成し、この永続的ボリューム要求（PVC）に関連付けます。

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

手順 3 ： PVC を接続するポッドを定義します

サイズを変更するポッドにPVを接続します。iSCSI PV のサイズ変更には、次の 2 つのシナリオがあります。

• PVがポッドに接続されている場合、Tridentはストレージバックエンド上のボリュームを拡張し、デバイ
スを再スキャンして、ファイルシステムのサイズを変更します。

• 接続されていないPVのサイズを変更しようとすると、Tridentはストレージバックエンド上のボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシステ
ムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新します。

この例では、を使用するポッドが作成されて `san-pvc`います。
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 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

ステップ4：PVを拡張する

作成されたPVのサイズを1Giから2Giに変更するには、PVC定義を編集してを2Giに更新します

spec.resources.requests.storage。

kubectl edit pvc san-pvc
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# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 # ...

手順5：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、拡張が正常に機能したことを検証できま
す。
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

FC ボリュームを拡張します

CSIプロビジョニングツールを使用して、FC永続ボリューム（PV）を拡張できます。

FCボリュームの拡張はドライバでサポートされ `ontap-san`ており、Kubernetes 1.16以降が必
要です。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

StorageClass定義を編集して、フィールドをに `true`設定し `allowVolumeExpansion`ます。

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True
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既存のStorageClassの場合は、パラメータを含めるように編集します allowVolumeExpansion。

手順 2 ：作成した StorageClass を使用して PVC を作成します

PVC定義を編集し、を更新して、 `spec.resources.requests.storage`新しく希望するサイズ（元のサイズより
も大きくなければなりません）を反映させます。

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Tridentは永続的ボリューム（PV）を作成し、この永続的ボリューム要求（PVC）に関連付けます。

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

手順 3 ： PVC を接続するポッドを定義します

サイズを変更するポッドにPVを接続します。FC PVのサイズを変更する場合は、次の2つのシナリオが考えら
れます。

• PVがポッドに接続されている場合、Tridentはストレージバックエンド上のボリュームを拡張し、デバイ
スを再スキャンして、ファイルシステムのサイズを変更します。

• 接続されていないPVのサイズを変更しようとすると、Tridentはストレージバックエンド上のボリューム
を拡張します。PVC がポッドにバインドされると、 Trident はデバイスを再スキャンし、ファイルシステ
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ムのサイズを変更します。展開操作が正常に完了すると、 Kubernetes は PVC サイズを更新します。

この例では、を使用するポッドが作成されて `san-pvc`います。

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

ステップ4：PVを拡張する

作成されたPVのサイズを1Giから2Giに変更するには、PVC定義を編集してを2Giに更新します

spec.resources.requests.storage。

kubectl edit pvc san-pvc
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# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 # ...

手順5：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、拡張が正常に機能したことを検証できま
す。
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

NFS ボリュームを拡張します

Tridentでは、、 ontap-nas-economy ontap-nas-flexgroup、、、 gcp-cvs azure-netapp-files`

およびバックエンドでプロビジョニングされるNFS PVSのボリューム拡張がサポートされます `ontap-

nas。

手順 1 ：ボリュームの拡張をサポートするようにストレージクラスを設定する

NFS PVのサイズを変更するには、管理者はまず、フィールドをに true`設定してボリュームの拡張を許可す

るようにストレージクラスを設定する必要があります。 `allowVolumeExpansion

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true
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このオプションを指定せずにストレージクラスを作成済みの場合は、を使用して既存のストレージクラスを編

集するだけでボリュームを拡張できます kubectl edit storageclass。

手順 2 ：作成した StorageClass を使用して PVC を作成します

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

TridentはこのPVC用に20MiBのNFS PVを作成する必要があります。

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

ステップ3：PVを拡張する

新しく作成した20MiB PVのサイズを1GiBに変更するには、PVCを編集して1GiBに設定し
`spec.resources.requests.storage`ます。

kubectl edit pvc ontapnas20mb
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# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

# ...

手順4：拡張を検証する

PVC、PV、およびTridentボリュームのサイズを確認することで、サイズ変更が正しく機能したかどうかを検
証できます。
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kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ボリュームをインポート

を使用して、既存のストレージボリュームをKubernetes PVとしてインポートできます

tridentctl import。

概要と考慮事項

Tridentにボリュームをインポートする目的は次のとおりです。

• アプリケーションをコンテナ化し、既存のデータセットを再利用する

• 一時的なアプリケーションにはデータセットのクローンを使用

• 障害が発生したKubernetesクラスタを再構築します

• ディザスタリカバリ時にアプリケーションデータを移行

考慮事項

ボリュームをインポートする前に、次の考慮事項を確認してください。

• Tridentでインポートできるのは、RW（読み取り/書き込み）タイプのONTAPボリュームのみです。DP（
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データ保護）タイプのボリュームはSnapMirrorデスティネーションボリュームです。ボリュームをTrident

にインポートする前に、ミラー関係を解除する必要があります。

• アクティブな接続がないボリュームをインポートすることを推奨します。アクティブに使用されているボ
リュームをインポートするには、ボリュームのクローンを作成してからインポートを実行します。

Kubernetesは以前の接続を認識せず、アクティブなボリュームをポッドに簡単に接続でき
るため、これはブロックボリュームで特に重要です。その結果、データが破損する可能性
があります。

• PVCで指定する必要がありますが、 `StorageClass`Tridentはインポート時にこのパラメータを使用しませ
ん。ストレージクラスは、ボリュームの作成時に、ストレージ特性に基づいて使用可能なプールから選択
するために使用されます。ボリュームはすでに存在するため、インポート時にプールを選択する必要はあ
りません。そのため、PVCで指定されたストレージクラスと一致しないバックエンドまたはプールにボリ
ュームが存在してもインポートは失敗しません。

• 既存のボリュームサイズはPVCで決定され、設定されます。ストレージドライバによってボリュームがイ
ンポートされると、 PV は ClaimRef を使用して PVC に作成されます。

◦ 再利用ポリシーは、PVでは最初ににに設定されてい `retain`ます。Kubernetes が PVC と PV を正常に
バインドすると、再利用ポリシーがストレージクラスの再利用ポリシーに合わせて更新されます。

◦ ストレージクラスの再利用ポリシーがの場合、 `delete`PVが削除されるとストレージボリュームが削
除されます。

• デフォルトでは、TridentはPVCを管理し、バックエンドでFlexVol volumeとLUNの名前を変更します。フ

ラグを渡して管理対象外のボリュームをインポートできます --no-manage。を使用する場合 --no

-manage、Tridentはオブジェクトのライフサイクル中、PVCまたはPVに対して追加の操作を実行しませ
ん。PVが削除されてもストレージボリュームは削除されず、ボリュームのクローンやボリュームのサイズ
変更などのその他の処理も無視されます。

このオプションは、コンテナ化されたワークロードに Kubernetes を使用するが、
Kubernetes 以外でストレージボリュームのライフサイクルを管理する場合に便利です。

• PVC と PV にアノテーションが追加されます。このアノテーションは、ボリュームがインポートされたこ
と、および PVC と PV が管理されていることを示す二重の目的を果たします。このアノテーションは変
更または削除しないでください。

ボリュームをインポートします

を使用してボリュームをインポートできます tridentctl import。

手順

1. PVCの作成に使用するPersistent Volume Claim（PVC；永続的ボリューム要求）ファイル（など）を作成

します pvc.yaml。PVCファイルには、、 namespace、 accessModes`および

`storageClassName`が含まれている必要があります `name。必要に応じて、PVC定義でを指定でき

ます unixPermissions。

最小仕様の例を次に示します。
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kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

PV名やボリュームサイズなどの追加のパラメータは指定しないでください。これにより原
因、インポートコマンドが失敗する可能性があります。

2. コマンドを使用して tridentctl import、ボリュームを含むTridentバックエンドの名前と、ストレー
ジ上のボリュームを一意に識別する名前（ONTAP FlexVol、Element Volume、Cloud Volumes Serviceパ
スなど）を指定します。 `-f`PVCファイルへのパスを指定するには、引数が必要です。

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

例

サポートされているドライバについて、次のボリュームインポートの例を確認してください。

ONTAP NASおよびONTAP NAS FlexGroup

Tridentは、ドライバと `ontap-nas-flexgroup`ドライバを使用したボリュームインポートをサポートしてい
`ontap-nas`ます

• `ontap-nas-economy`ドライバはqtreeをインポートおよび管理できません。

• `ontap-nas`ドライバと `ontap-nas-flexgroup`ドライバでは、ボリューム名の重複は許可さ
れていません。

ドライバを使用して作成される各ボリューム ontap-nas`は、ONTAPクラスタ上のFlexVol volumeになり

ます。ドライバを使用したFlexVolボリュームのインポート `ontap-nas`も同様に機能します。ONTAPク

ラスタにすでに存在するFlexVolボリュームは、PVCとしてインポートできます `ontap-nas。同様

に、FlexGroupボリュームはPVCとしてインポートできます ontap-nas-flexgroup。

ONTAP NASの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。
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管理対象ボリューム

次の例は、という名前のバックエンドにある `ontap_nas`という名前のボリュームをインポートし
`managed_volume`ます。

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

引数を使用した場合 --no-manage、Tridentはボリュームの名前を変更しません。

次に、バックエンドで `ontap_nas`をインポートする例を示し `unmanaged_volume`ます。

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Tridentは、ドライバと `ontap-san-economy`ドライバを使用したボリュームインポートをサポートしてい
`ontap-san`ます

Tridentでは、単一のLUNを含むONTAP SAN FlexVolボリュームをインポートできます。これは、ドライバと
一致してい `ontap-san`ます。ドライバは、PVCごとにFlexVol volumeを作成し、FlexVol volume内にLUNを作
成します。TridentはFlexVol volumeをインポートし、PVC定義に関連付けます。
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ONTAP SANの例

次の例は、管理対象ボリュームと管理対象外ボリュームのインポートを示しています。

管理対象ボリューム

管理対象ボリュームの場合、TridentはFlexVol volumeの名前を形式に、FlexVol volume内のLUNの名前を
に `lun0`変更 `pvc-<uuid>`します。

次に、バックエンドにあるFlexVol volume `ontap_san_default`をインポートする例を示し `ontap-san-

managed`ます。

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

管理対象外のボリューム

次に、バックエンドで `ontap_san`をインポートする例を示し `unmanaged_example_volume`ます。

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

次の例に示すように、KubernetesノードのIQNとIQNを共有するigroupにLUNをマッピングすると、というエ
ラーが表示されます。 `LUN already mapped to initiator(s) in this group`ボリュームをインポートするには、イ
ニシエータを削除するか、LUNのマッピングを解除する必要があります。
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要素

Tridentは、NetApp Elementソフトウェアとドライバを使用したNetApp HCIボリュームインポートをサポート

しています solidfire-san。

Element ドライバではボリューム名の重複がサポートされます。ただし、ボリューム名が重複
している場合、Tridentはエラーを返します。回避策としてボリュームをクローニングし、一意
のボリューム名を指定して、クローンボリュームをインポートします。

要素の例

次の例は、バックエンドにボリュームを `element_default`インポートし `element-managed`ます。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Tridentはドライバを使用したボリュームインポートをサポートしてい `gcp-cvs`ます。

NetApp Cloud Volumes Serviceから作成されたボリュームをGoogle Cloud Platformにインポー
トするには、ボリュームパスでボリュームを特定します。ボリュームパスは、ボリュームのエ

クスポートパスののに続く部分です :/。たとえば、エクスポートパスがの場合、
`10.0.0.1:/adroit-jolly-swift`ボリュームパスはになり `adroit-jolly-swift`ます。
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Google Cloud Platformの例

次の例は、ボリュームパスがの `adroit-jolly-swift`バックエンドにボリュームを `gcpcvs_YEppr`インポートし
`gcp-cvs`ます。

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Tridentはドライバを使用したボリュームインポートをサポートしてい `azure-netapp-files`ます。

Azure NetApp Filesボリュームをインポートするには、ボリュームパスでボリュームを特定しま

す。ボリュームパスは、ボリュームのエクスポートパスののに続く部分です :/。たとえば、マ
ウントパスがの場合、 `10.0.0.2:/importvol1`ボリュームパスはになり `importvol1`ます。

Azure NetApp Filesの例

次の例は、ボリュームパスを持つ `importvol1`バックエンドのボリューム `azurenetappfiles_40517`をインポ
ートし `azure-netapp-files`ます。

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+
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Google Cloud NetAppボリューム

Tridentはドライバを使用したボリュームインポートをサポートしてい `google-cloud-netapp-volumes`ます。

Google Cloud NetApp Volumeの例

次の例は、ボリュームと一緒に `testvoleasiaeast1`バックエンドにボリュームを `backend-tbc-gcnv1`インポー
トし `google-cloud-netapp-volumes`ます。

tridentctl import volume backend-tbc-gcnv1 "testvoleasiaeast1" -f < path-

to-pvc> -n trident

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS

| PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 |  10 GiB | gcnv-nfs-sc-

identity | file     | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

次の例は、同じリージョンに2つのボリュームがある場合にボリュームをインポートし `google-cloud-netapp-

volumes`ます。
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tridentctl import volume backend-tbc-gcnv1

"projects/123456789100/locations/asia-east1-a/volumes/testvoleasiaeast1"

-f <path-to-pvc> -n trident

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS

| PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 |  10 GiB | gcnv-nfs-sc-

identity | file     | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

ボリュームの名前とラベルをカスタマイズする

Tridentでは、作成したボリュームにわかりやすい名前とラベルを割り当てることができ
ます。これにより、ボリュームを特定し、それぞれのKubernetesリソース（PVC）に簡
単にマッピングできます。また、バックエンドレベルでテンプレートを定義してカスタ
ムボリューム名とカスタムラベルを作成することもできます。作成、インポート、また
はクローンを作成するボリュームは、テンプレートに準拠します。

開始する前に

カスタマイズ可能なボリューム名とラベルのサポート：

1. ボリュームの作成、インポート、クローニングの各処理。

2. ontap-nas-economyドライバの場合、qtreeボリュームの名前だけがテンプレート名に準拠します。

3. ontap-san-economyドライバの場合、名前テンプレートに準拠するのはLUN名のみです。

制限事項

1. カスタマイズ可能なボリューム名は、ONTAPオンプレミスドライバとのみ互換性があります。

2. カスタマイズ可能なボリューム名は、既存のボリュームには適用されません。

カスタマイズ可能なボリューム名の主な動作

1. 名前テンプレートの無効な構文が原因でエラーが発生した場合、バックエンドの作成は失敗します。ただ
し、テンプレートアプリケーションが失敗した場合は、既存の命名規則に従ってボリュームに名前が付け
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られます。

2. バックエンド構成の名前テンプレートを使用してボリュームの名前が指定されている場合、ストレージプ
レフィックスは適用されません。任意のプレフィックス値をテンプレートに直接追加できます。

名前テンプレートとラベルを使用したバックエンド構成の例

カスタム名テンプレートは、ルートレベルまたはプールレベルで定義できます。

ルートレベルの例

{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "ontap-nfs-backend",

  "managementLIF": "<ip address>",

  "svm": "svm0",

  "username": "<admin>",

  "password": "<password>",

  "defaults": {

    "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.Requ

estName}}"

  },

  "labels": {

    "cluster": "ClusterA",

    "PVC": "{{.volume.Namespace}}_{{.volume.RequestName}}"

  }

}
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プールレベルの例

{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "ontap-nfs-backend",

  "managementLIF": "<ip address>",

  "svm": "svm0",

  "username": "<admin>",

  "password": "<password>",

  "useREST": true,

  "storage": [

    {

      "labels": {

        "labelname": "label1",

        "name": "{{ .volume.Name }}"

      },

      "defaults": {

        "nameTemplate": "pool01_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

    },

    {

      "labels": {

        "cluster": "label2",

        "name": "{{ .volume.Name }}"

      },

      "defaults": {

        "nameTemplate": "pool02_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

    }

  ]

}

名前テンプレートの例

*例1 *：

"nameTemplate": "{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

.config.BackendName }}"

*例2 *：
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"nameTemplate": "pool_{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

slice .volume.RequestName 1 5 }}""

考慮すべきポイント

1. ボリュームインポートの場合、既存のボリュームに特定の形式のラベルがある場合にのみラベルが更新さ

れます。例： {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}。

2. 管理対象ボリュームのインポートの場合、ボリューム名はバックエンド定義のルートレベルで定義された
名前テンプレートの後に続きます。

3. Tridentでは、storageプレフィックスを指定したスライス演算子の使用はサポートされていません。

4. テンプレートによってボリューム名が一意にならない場合、Tridentではいくつかのランダムな文字が追加
されて一意のボリューム名が作成されます。

5. NASエコノミーボリュームのカスタム名の長さが64文字を超える場合、Tridentは既存の命名規則に従って
ボリュームに名前を付けます。他のすべてのONTAPドライバでは、ボリューム名が名前の上限を超える
と、ボリュームの作成プロセスが失敗します。

ネームスペース間でNFSボリュームを共有します

Tridentを使用すると、プライマリネームスペースにボリュームを作成し、1つ以上のセカ
ンダリネームスペースで共有できます。

特徴

TridentVolumeReference CRを使用すると、1つ以上のKubernetesネームスペース間でReadWriteMany（RWX

）NFSボリュームを安全に共有できます。このKubernetesネイティブ解決策 には、次のようなメリットがあ
ります。

• セキュリティを確保するために、複数のレベルのアクセス制御が可能です

• すべてのTrident NFSボリュームドライバで動作

• tridentctlやその他の非ネイティブのKubernetes機能に依存しません

この図は、2つのKubernetesネームスペース間でのNFSボリュームの共有を示しています。
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クイックスタート

NFSボリューム共有はいくつかの手順で設定できます。

ボリュームを共有するように送信元PVCを設定する

ソースネームスペースの所有者は、ソースPVCのデータにアクセスする権限を付与します。

宛先名前空間にCRを作成する権限を付与する

クラスタ管理者が、デスティネーションネームスペースの所有者にTridentVolumeReference CRを作成する権
限を付与します。

デスティネーションネームスペースにTridentVolumeReferenceを作成

宛先名前空間の所有者は、送信元PVCを参照するためにTridentVolumeReference CRを作成します。

宛先ネームスペースに下位PVCを作成します。

宛先名前空間の所有者は、送信元PVCからのデータソースを使用する下位PVCを作成します。
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ソースネームスペースとデスティネーションネームスペースを設定します

セキュリティを確保するために、ネームスペース間共有では、ソースネームスペースの所有者、クラスタ管理
者、および宛先ネームスペースの所有者によるコラボレーションとアクションが必要です。ユーザロールは各
手順で指定します。

手順

1. ソースネームスペースの所有者： pvc(pvc1`を作成します）(`namespace2。注釈を使用して、デスティ

ネーションネームスペースとの共有権限を付与します。 shareToNamespace

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/shareToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Tridentは、PVとそのバックエンドNFSストレージボリュームを作成します。

◦ カンマ区切りリストを使用して、複数の名前空間にPVCを共有できます。たとえば、
`trident.netapp.io/shareToNamespace: namespace2,namespace3,namespace4`です。

◦ を使用して、すべてのネームスペースと共有できます *。例えば、

trident.netapp.io/shareToNamespace: *

◦ PVCはいつでも更新してアノテーションを含めることができます

shareToNamespace。

2. *クラスタ管理者：*カスタムロールとkubeconfigを作成して、デスティネーションネームスペースの所有
者にTridentVolumeReference CRを作成する権限を付与します。

3. *デスティネーションネームスペースの所有者：*ソースネームスペースを参照す

るTridentVolumeReference CRをデスティネーションネームスペースに作成します pvc1。
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apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. 宛先ネームスペース所有者：(pvc2`宛先ネームスペースにPVCを作成(`namespace2）。注釈を使用して

送信元PVCを指定します。 shareFromPVC

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/shareFromPVC: namespace1/pvc1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

宛先PVCのサイズは、送信元PVCのサイズ以下である必要があります。

結果

TridentはデスティネーションPVCのアノテーションを読み取り shareFromPVC、ソースPVストレージリソー
スを共有する独自のストレージリソースのない下位ボリュームとしてデスティネーションPVを作成します。
宛先PVCとPVは、通常どおりバインドされているように見えます。

共有ボリュームを削除

複数のネームスペースで共有されているボリュームは削除できます。Tridentは、ソースネームスペース上のボ
リュームへのアクセスを削除し、そのボリュームを共有する他のネームスペースへのアクセスを維持します。
このボリュームを参照しているネームスペースをすべて削除すると、Tridentによってボリュームが削除されま
す。

下位ボリュームのクエリに使用 tridentctl get

ユーティリティを使用する[tridentctl`と、コマンドを実行して従属ボリュームを取得できます `get。詳
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細については、リンク:../ Trident -reference/tridentctl.htmlコマンドとオプション]を参照して[`tridentctl`くだ
さい。

Usage:

  tridentctl get [option]

フラグ：

• `-h, --help：ボリュームのヘルプ。

• --parentOfSubordinate string：クエリを下位のソースボリュームに制限します。

• --subordinateOf string:クエリをボリュームの下位に限定します。

制限事項

• Tridentでは、デスティネーションネームスペースが共有ボリュームに書き込まれないようにすることはで
きません。共有ボリュームのデータの上書きを防止するには、ファイルロックなどのプロセスを使用する
必要があります。

• または shareFromNamespace`注釈を削除したり、CRを削除したりし `TridentVolumeReference`

て、送信元PVCへのアクセスを取り消すことはできません `shareToNamespace。アクセスを取り消す
には、下位PVCを削除する必要があります。

• Snapshot、クローン、およびミラーリングは下位のボリュームでは実行できません。

詳細情報

ネームスペース間のボリュームアクセスの詳細については、次の資料を参照してください。

• にアクセスします"ネームスペース間でのボリュームの共有：ネームスペース間のボリュームアクセスを許
可する場合は「Hello」と入力します"。

• のデモをご覧ください "ネットアップTV"。

ネームスペース全体でボリュームをクローニング

Tridentを使用すると、同じKubernetesクラスタ内の別のネームスペースから既存のボリ
ュームまたはボリュームSnapshotを使用して新しいボリュームを作成できます。

前提条件

ボリュームをクローニングする前に、ソースとデスティネーションのバックエンドのタイプとストレージクラ
スが同じであることを確認してください。

クイックスタート

ボリュームクローニングはわずか数ステップでセットアップできます。
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ボリュームのクローンを作成するためのソースPVCの設定

ソースネームスペースの所有者は、ソースPVCのデータにアクセスする権限を付与します。

宛先名前空間にCRを作成する権限を付与する

クラスタ管理者が、デスティネーションネームスペースの所有者にTridentVolumeReference CRを作成する権
限を付与します。

デスティネーションネームスペースにTridentVolumeReferenceを作成

宛先名前空間の所有者は、送信元PVCを参照するためにTridentVolumeReference CRを作成します。

デスティネーションネームスペースにクローンPVCを作成します。

宛先ネームスペースの所有者は、PVCを作成して、送信元ネームスペースからPVCを複製します。

ソースネームスペースとデスティネーションネームスペースを設定します

セキュリティを確保するために、ネームスペース間でボリュームをクローニングするには、ソースネームスペ
ースの所有者、クラスタ管理者、およびデスティネーションネームスペースの所有者が協力して対処する必要
があります。ユーザロールは各手順で指定します。

手順

1. ソースネームスペース所有者：(pvc1`ソースネームスペースにPVCを作成(`namespace1）。注釈

(namespace2`を使用して、デスティネーションネームスペースと共有する権限を付与します。

`cloneToNamespace

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/cloneToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Tridentは、PVとそのバックエンドストレージボリュームを作成します。
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◦ カンマ区切りリストを使用して、複数の名前空間にPVCを共有できます。たとえば、
`trident.netapp.io/cloneToNamespace: namespace2,namespace3,namespace4`です。

◦ を使用して、すべてのネームスペースと共有できます *。例えば、

trident.netapp.io/cloneToNamespace: *

◦ PVCはいつでも更新してアノテーションを含めることができます

cloneToNamespace。

2. *クラスタ管理者：*カスタムロールとkubeconfigを作成して、デスティネーションネームスペースの所有
者にTridentVolumeReference CRをデスティネーションネームスペースに作成する権限を付与
し(`namespace2`ます）。

3. *デスティネーションネームスペースの所有者：*ソースネームスペースを参照す

るTridentVolumeReference CRをデスティネーションネームスペースに作成します pvc1。

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. 宛先ネームスペースの所有者：(pvc2`宛先ネームスペースに `cloneFromNamespace`PVCを作

成(`namespace2）。または cloneFromSnapshot`アノテーションを使用して、送信元PVCを指定しま

す `cloneFromPVC。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/cloneFromPVC: pvc1

    trident.netapp.io/cloneFromNamespace: namespace1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi
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制限事項

• ONTAP NASエコノミードライバを使用してプロビジョニングされたPVCでは、読み取り専用クローンは
サポートされません。

SnapMirrorによるボリュームのレプリケート

Tridentでは、ディザスタリカバリ用にデータをレプリケートするために、ピア関係にあ
るクラスタのソースボリュームとデスティネーションボリュームの間のミラー関係をサ
ポートしています。名前空間カスタムリソース定義（CRD）を使用して、次の操作を実
行できます。

• ボリューム（PVC）間のミラー関係を作成する

• ボリューム間のミラー関係の削除

• ミラー関係を解除する

• 災害時（フェイルオーバー）にセカンダリボリュームを昇格する

• クラスタからクラスタへのアプリケーションのロスレス移行の実行（計画的なフェイルオーバーまたは移
行時）

レプリケーションの前提条件

作業を開始する前に、次の前提条件を満たしていることを確認してください。

ONTAP クラスタ

• * Trident *：Tridentバージョン22.10以降が、バックエンドとしてONTAPを利用するソースとデスティネー
ションの両方のKubernetesクラスタに存在している必要があります。

• ライセンス：Data Protection Bundleを使用するONTAP SnapMirror非同期ライセンスが、ソースとデステ
ィネーションの両方のONTAPクラスタで有効になっている必要があります。詳細については、を参照して
ください "ONTAP のSnapMirrorライセンスの概要" 。

ピアリング

• *クラスタとSVM *：ONTAPストレージバックエンドにピア関係が設定されている必要があります。詳細
については、を参照してください "クラスタと SVM のピアリングの概要" 。

2つのONTAPクラスタ間のレプリケーション関係で使用されるSVM名が一意であることを
確認してください。

• * TridentとSVM *：ピア関係にあるリモートSVMをデスティネーションクラスタのTridentで使用できる必
要があります。

サポートされるドライバ

• ボリュームレプリケーションは、ONTAP-NASドライバとONTAP-SANドライバでサポートされます。

ミラーPVCの作成

以下の手順に従って、CRDの例を使用してプライマリボリュームとセカンダリボリュームの間にミラー関係
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を作成します。

手順

1. プライマリKubernetesクラスタで次の手順を実行します。

a. パラメータを指定してStorageClassオブジェクトを作成し trident.netapp.io/replication:

true ます。

例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  fsType: "nfs"

  trident.netapp.io/replication: "true"

b. 以前に作成したStorageClassを使用してPVCを作成します。

例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

spec:

  accessModes:

  - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: csi-nas

c. ローカル情報を含むMirrorRelationship CRを作成します。
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例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

Tridentは、ボリュームの内部情報とボリュームの現在のデータ保護（DP）状態をフェッチ
し、MirrorRelationshipのstatusフィールドに値を入力します。

d. TridentMirrorRelationship CRを取得して、PVCの内部名とSVMを取得します。

kubectl get tmr csi-nas

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

  generation: 1

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

status:

  conditions:

  - state: promoted

    localVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

    localPVCName: csi-nas

    observedGeneration: 1

2. セカンダリKubernetesクラスタで次の手順を実行します。

a. trident.netapp.io/replication: trueパラメータを使用してStorageClassを作成します。
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例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  trident.netapp.io/replication: true

b. デスティネーションとソースの情報を含むMirrorRelationship CRを作成します。

例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: established

  volumeMappings:

  - localPVCName: csi-nas

    remoteVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

Tridentは、設定した関係ポリシー名（ONTAPの場合はデフォルト）を使用してSnapMirror関係を作成
して初期化します。

c. セカンダリ（SnapMirrorデスティネーション）として機能するStorageClassを作成してPVCを作成し
ます。

例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

  annotations:

    trident.netapp.io/mirrorRelationship: csi-nas

spec:

  accessModes:

  - ReadWriteMany

resources:

  requests:

    storage: 1Gi

storageClassName: csi-nas
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TridentはTridentMirrorRelationship CRDをチェックし、関係が存在しない場合はボリュームの作成に
失敗します。関係が存在する場合、Tridentは新しいFlexVol volumeを、MirrorRelationshipで定義され
ているリモートSVMとピア関係にあるSVMに配置します。

ボリュームレプリケーションの状態

Trident Mirror Relationship（TMR）は、PVC間のレプリケーション関係の一端を表すCRDです。宛先TMRに
は、目的の状態をTridentに通知する状態があります。宛先TMRの状態は次のとおりです。

• 確立済み：ローカルPVCはミラー関係のデスティネーションボリュームであり、これは新しい関係です。

• 昇格：ローカルPVCはReadWriteでマウント可能であり、ミラー関係は現在有効ではありません。

• * reestablished *：ローカルPVCはミラー関係のデスティネーションボリュームであり、以前はそのミラー
関係に含まれていました。

◦ デスティネーションボリュームはデスティネーションボリュームの内容を上書きするため、ソースボ
リュームとの関係が確立されたことがある場合は、reestablished状態を使用する必要があります。

◦ ボリュームが以前にソースとの関係になかった場合、再確立状態は失敗します。

計画外フェールオーバー時にセカンダリPVCを昇格する

セカンダリKubernetesクラスタで次の手順を実行します。

• TridentMirrorRelationshipの_spec.state_フィールド をに更新します promoted。

計画的フェイルオーバー中にセカンダリPVCを昇格

計画的フェイルオーバー（移行）中に、次の手順を実行してセカンダリPVCをプロモートします。

手順

1. プライマリKubernetesクラスタでPVCのSnapshotを作成し、Snapshotが作成されるまで待ちます。

2. プライマリKubernetesクラスタで、SnapshotInfo CRを作成して内部の詳細を取得します。

例

kind: SnapshotInfo

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  snapshot-name: csi-nas-snapshot

3. セカンダリKubernetesクラスタで、_TridentMirrorRelationship_CRの_spec.state_フィールド
を_promoted_に更新し、_spec.promotedSnapshotHandle_をSnapshotのinternalNameにします。

4. セカンダリKubernetesクラスタで、TridentMirrorRelationshipのステータス（status.stateフィールド）
がPromotedになっていることを確認します。
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フェイルオーバー後にミラー関係をリストアする

ミラー関係をリストアする前に、新しいプライマリとして作成する側を選択します。

手順

1. セカンダリKubernetesクラスタで、TridentMirrorRelationshipの_spec.remoteVolumeHandle_fieldの値が更
新されていることを確認します。

2. セカンダリKubernetesクラスタで、TridentMirrorRelationshipの_spec.mirror_fieldをに更新します

reestablished。

その他の処理

Tridentでは、プライマリボリュームとセカンダリボリュームで次の処理がサポートされます。

新しいセカンダリPVCへのプライマリPVCの複製

プライマリPVCとセカンダリPVCがすでに存在していることを確認します。

手順

1. PersistentVolumeClaim CRDとTridentMirrorRelationship CRDを、確立されたセカンダリ（デスティネー
ション）クラスタから削除します。

2. プライマリ（ソース）クラスタからTridentMirrorRelationship CRDを削除します。

3. 確立する新しいセカンダリ（デスティネーション）PVC用に、プライマリ（ソース）クラスタに新し
いTridentMirrorRelationship CRDを作成します。

ミラー、プライマリ、またはセカンダリPVCのサイズ変更

PVCは通常どおりサイズ変更できます。データ量が現在のサイズを超えると、ONTAPは自動的に宛先フレ
フxolを拡張します。

PVCからのレプリケーションの削除

レプリケーションを削除するには、現在のセカンダリボリュームで次のいずれかの操作を実行します。

• セカンダリPVCのMirrorRelationshipを削除します。これにより、レプリケーション関係が解除されます。

• または、spec.stateフィールドを_promoted_に更新します。

（以前にミラーリングされていた）PVCの削除

Tridentは、レプリケートされたPVCがないかどうかを確認し、レプリケーション関係を解放してからボリュ
ームの削除を試行します。

TMRの削除

ミラー関係の片側のTMRを削除すると、Tridentが削除を完了する前に、残りのTMRが_PROMOTED_STATE

に移行します。削除対象として選択されたTMRがすでに_promoted_stateにある場合、既存のミラー関係は存
在せず、TMRは削除され、TridentはローカルPVCを_ReadWrite_にプロモートします。この削除によ
り、ONTAP内のローカルボリュームのSnapMirrorメタデータが解放されます。このボリュームを今後ミラー
関係で使用する場合は、新しいミラー関係を作成するときに、レプリケーション状態が_established_volume
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である新しいTMRを使用する必要があります。

ONTAPがオンラインのときにミラー関係を更新

ミラー関係は、確立後にいつでも更新できます。フィールドまたはフィールドを使用して関係を更新できます

state: promoted state: reestablished 。デスティネーションボリュームを通常のReadWriteボリュ
ームに昇格する場合は、_promotedSnapshotHandle_を使用して、現在のボリュームのリストア先となる特定
のSnapshotを指定できます。

ONTAPがオフラインの場合にミラー関係を更新

CRDを使用すると、TridentがONTAPクラスタに直接接続されていなくてもSnapMirror更新を実行できます。
次のTridentActionMirrorUpdateの形式例を参照してください。

例

apiVersion: trident.netapp.io/v1

kind: TridentActionMirrorUpdate

metadata:

  name: update-mirror-b

spec:

  snapshotHandle: "pvc-1234/snapshot-1234"

  tridentMirrorRelationshipName: mirror-b

status.state TridentActionMirrorUpdate CRDの状態を反映します。Succeeded、In Progress、_Failed_の
いずれかの値を指定できます。

CSI トポロジを使用します

Tridentでは、を使用して、Kubernetesクラスタ内のノードを選択的に作成して接続でき
ます "CSI トポロジ機能"。

概要

CSI トポロジ機能を使用すると、領域およびアベイラビリティゾーンに基づいて、ボリュームへのアクセスを
ノードのサブセットに制限できます。現在、クラウドプロバイダは、 Kubernetes 管理者がゾーンベースのノ
ードを生成できるようになっています。ノードは、リージョンによって異なるアベイラビリティゾーンに配置
することも、リージョンによって配置することもできます。マルチゾーンアーキテクチャでワークロード用の
ボリュームのプロビジョニングを容易にするために、TridentではCSIトポロジを使用しています。

CSIトポロジ機能の詳細については、こちらを参照して "ここをクリック"ください。

Kubernetes には、 2 つの固有のボリュームバインドモードがあります。

• `VolumeBindingMode`をに設定する `Immediate`と、Tridentはトポロジを認識せずにボリュームを作成し
ます。ボリュームバインディングと動的プロビジョニングは、 PVC が作成されるときに処理されます。
これはデフォルト `VolumeBindingMode`であり、トポロジの制約を適用しないクラスタに適しています。
永続ボリュームは、要求元ポッドのスケジュール要件に依存することなく作成されます。
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• `VolumeBindingMode`をに設定する `WaitForFirstConsumer`と、PVCの永続ボリュームの作成とバインド
は、PVCを使用するポッドがスケジュールされて作成されるまで遅延されます。これにより、トポロジの
要件に応じたスケジュールの制約を満たすようにボリュームが作成されます。

`WaitForFirstConsumer`バインディングモードではトポロジラベルは必要ありません。これは
CSI トポロジ機能とは無関係に使用できます。

必要なもの

CSI トポロジを使用するには、次のものが必要です。

• を実行するKubernetesクラスタ"サポートされるKubernetesバージョン"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• クラスタ内のノードには、トポロジ対応と `topology.kubernetes.io/zone`を示すラベルを付ける必要があ
り(`topology.kubernetes.io/region`ます。これらのラベル*は、Tridentをトポロジ対応にするためにTrident

をインストールする前に、クラスタ内のノード*に設定しておく必要があります。
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kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

手順 1 ：トポロジ対応バックエンドを作成する

Tridentストレージバックエンドは、アベイラビリティゾーンに基づいて選択的にボリュームをプロビジョニン
グするように設計できます。各バックエンドは、サポートされているゾーンとリージョンのリストを表すオプ

ションのブロックを運ぶことができます supportedTopologies 。ストレージクラスがそのようなバックエ
ンドを使用する場合、ボリュームは、サポートされているリージョン / ゾーンでスケジュールされているアプ
リケーションから要求された場合にのみ作成されます。

バックエンド定義の例を次に示します。
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YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

  - topology.kubernetes.io/region: us-east1

    topology.kubernetes.io/zone: us-east1-a

  - topology.kubernetes.io/region: us-east1

    topology.kubernetes.io/zone: us-east1-b

JSON

{

  "version": 1,

  "storageDriverName": "ontap-san",

  "backendName": "san-backend-us-east1",

  "managementLIF": "192.168.27.5",

  "svm": "iscsi_svm",

  "username": "admin",

  "password": "password",

  "supportedTopologies": [

    {

      "topology.kubernetes.io/region": "us-east1",

      "topology.kubernetes.io/zone": "us-east1-a"

    },

    {

      "topology.kubernetes.io/region": "us-east1",

      "topology.kubernetes.io/zone": "us-east1-b"

    }

  ]

}

`supportedTopologies`は、バックエンドごとにリージョンとゾーンのリストを提供するために
使用されます。これらのリージョンとゾーンは、 StorageClass で指定できる許容値のリストを
表します。バックエンドで提供されるリージョンとゾーンのサブセットを含むストレージクラ
スの場合、Tridentはバックエンドにボリュームを作成します。

ストレージプールごとにも定義できます supportedTopologies。次の例を参照してください。
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---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

storage:

  - labels:

      workload: production

    supportedTopologies:

      - topology.kubernetes.io/region: us-central1

        topology.kubernetes.io/zone: us-central1-a

  - labels:

      workload: dev

    supportedTopologies:

      - topology.kubernetes.io/region: us-central1

        topology.kubernetes.io/zone: us-central1-b

この例では region、ラベルと zone`ラベルはストレージプールの場所を表しています。

`topology.kubernetes.io/region `topology.kubernetes.io/zone`ストレージプールの消費元を指定しま
す。

手順 2 ：トポロジを認識するストレージクラスを定義する

クラスタ内のノードに提供されるトポロジラベルに基づいて、トポロジ情報を含めるように StorageClasses

を定義できます。これにより、作成された PVC 要求の候補となるストレージプール、および Trident によっ
てプロビジョニングされたボリュームを使用できるノードのサブセットが決まります。

次の例を参照してください。
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apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata: null

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

  - matchLabelExpressions: null

  - key: topology.kubernetes.io/zone

    values:

      - us-east1-a

      - us-east1-b

  - key: topology.kubernetes.io/region

    values:

      - us-east1

parameters:

  fsType: ext4

前述のStorageClass定義では、 volumeBindingMode`がに設定されて `WaitForFirstConsumer`いま

す。この StorageClass で要求された PVC は、ポッドで参照されるまで処理されません。およびに、

`allowedTopologies`使用するゾーンとリージョンを示します。StorageClassは `netapp-san-us-

east1、上記で定義したバックエンドにPVCを作成し `san-backend-us-east1`ます。

ステップ 3 ： PVC を作成して使用する

StorageClass を作成してバックエンドにマッピングすると、 PVC を作成できるようになりました。

次の例を参照して `spec`ください。

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata: null

name: pvc-san

spec: null

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

このマニフェストを使用して PVC を作成すると、次のような結果になります。
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kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

Trident でボリュームを作成して PVC にバインドするには、ポッド内の PVC を使用します。次の例を参照し
てください。
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apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

このpodSpecは、リージョンに存在するノードでポッドをスケジュールし、ゾーンまたは `us-east1-b`ゾーン
に存在する任意のノードから選択する `us-east1-a`ようにKubernetesに指示し `us-east1`ます。

次の出力を参照してください。
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kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

バックエンドを更新して含める supportedTopologies

既存のバックエンドを更新して、使用の tridentctl backend update`リストを含めることができます

`supportedTopologies。これは、すでにプロビジョニングされているボリュームには影響せず、以降の
PVC にのみ使用されます。

詳細情報

• "コンテナのリソースを管理"

• "ノードセレクタ"

• "アフィニティと非アフィニティ"

• "塗料および耐性"

スナップショットを操作します

永続ボリューム（PV）のKubernetesボリュームSnapshotを使用すると、ボリュームの
ポイントインタイムコピーを作成できます。Tridentを使用して作成したボリューム
のSnapshotの作成、Tridentの外部で作成したSnapshotのインポート、既存のSnapshot

からの新しいボリュームの作成、Snapshotからのボリュームデータのリカバリを実行で
きます。

概要

ボリュームスナップショットは以下でサポートされています ontap-nas 、 ontap-nas-flexgroup 、

ontap-san 、 ontap-san-economy 、 solidfire-san 、 gcp-cvs 、 azure-netapp-files 、 そし
て `google-cloud-netapp-volumes`ドライバー。

開始する前に

スナップショットを操作するには、外部スナップショットコントローラとカスタムリソース定義（CRD）が
必要です。Kubernetesオーケストレーションツール（例：Kubeadm、GKE、OpenShift）の役割を担っていま
す。

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、を参
照してくださいボリュームSnapshotコントローラの導入。
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GKE環境でオンデマンドボリュームスナップショットを作成する場合は、スナップショットコ
ントローラを作成しないでください。GKEでは、内蔵の非表示のスナップショットコントロー
ラを使用します。

ボリューム Snapshot を作成します

手順

1. を作成し `VolumeSnapshotClass`ます。詳細については、を参照してください"ボリュームSnapshotクラ
ス"。

◦ は `driver`Trident CSIドライバを示しています。

◦ deletionPolicy`には、または `Retain`を指定できます `Delete。に設定する `Retain`と、オ
ブジェクトが削除されても、ストレージクラスタの基盤となる物理Snapshotが保持され
`VolumeSnapshot`ます。

例

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. 既存のPVCのスナップショットを作成します。

例

◦ 次に、既存のPVCのスナップショットを作成する例を示します。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

◦ この例では、というPVCのボリュームSnapshotオブジェクトを作成し pvc1、Snapshotの名前をに設
定して `pvc1-snap`います。VolumeSnapshotはPVCに似ており、実際のSnapshotを表すオブジェクト
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に関連付けられて `VolumeSnapshotContent`います。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

◦ VolumeSnapshotのオブジェクト pvc1-snap`を説明することで特定できます

`VolumeSnapshotContent。は Snapshot Content Name、このSnapshotを提供す
るVolumeSnapshotContentオブジェクトを識別します。パラメータは、 `Ready To Use`スナップショ
ットを使用して新しいPVCを作成できることを示します。

kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

...

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

...

ボリュームSnapshotからPVCを作成

を使用して、という名前のVolumeSnapshotをデータのソースとして使用してPVCを作成 <pvc-name>`でき

ます `dataSource。作成された PVC は、ポッドに接続して、他の PVC と同様に使用できます。

PVCはソースボリュームと同じバックエンドに作成されます。を参照してください "KB

：Trident PVCスナップショットからPVCを作成することは代替バックエンドではできない"。

次に、をデータソースとして使用してPVCを作成する例を示し `pvc1-snap`ます。

cat pvc-from-snap.yaml
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apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

ボリュームSnapshotのインポート

Tridentでは、クラスタ管理者がを"Kubernetesの事前プロビジョニングされたSnapshotプロセス"使用して、
オブジェクトを作成したり、Tridentの外部で作成されたSnapshotをインポートしたりできます

VolumeSnapshotContent。

開始する前に

TridentでSnapshotの親ボリュームが作成またはインポートされている必要があります。

手順

1. *クラスタ管理者：*バックエンドSnapshotを参照するオブジェクトを作成します

VolumeSnapshotContent。これにより、TridentでSnapshotワークフローが開始されます。

◦ にバックエンドスナップショットの名前を trident.netapp.io/internalSnapshotName:

<"backend-snapshot-name">`指定します `annotations。

◦ で指定します <name-of-parent-volume-in-trident>/<volume-snapshot-content-name>

snapshotHandle。この情報は、呼び出しで外部スナップショットによってTridentに提供される唯一

の情報です ListSnapshots。

CRの名前の制約により、は `<volumeSnapshotContentName>`バックエンドスナップシ
ョット名と常に一致しません。

例

次の例では、バックエンドスナップショットを参照するオブジェクトを `snap-01`作成し
`VolumeSnapshotContent`ます。
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apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

  name: import-snap-content

  annotations:

    trident.netapp.io/internalSnapshotName: "snap-01"  # This is the

name of the snapshot on the backend

spec:

  deletionPolicy: Retain

  driver: csi.trident.netapp.io

  source:

    snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

  volumeSnapshotRef:

    name: import-snap

    namespace: default

2. *クラスタ管理者：*オブジェクトを参照するCR VolumeSnapshotContent`を作成します

`VolumeSnapshot。これにより、指定された名前空間でを使用するためのアクセスが要求され
`VolumeSnapshot`ます。

例

次の例では、という名前 import-snap-content`を参照する `VolumeSnapshotContent`という名

前のCRを `import-snap`作成します `VolumeSnapshot。

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: import-snap

spec:

  # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

  source:

    volumeSnapshotContentName: import-snap-content

3. *内部処理（アクション不要）：*外部スナップショットは、新しく作成されたを認識して

VolumeSnapshotContent`呼び出しを実行します `ListSnapshots。Tridentによってが作成され
`TridentSnapshot`ます。

◦ 外部スナップショットは、をに `readyToUse`設定し、 `VolumeSnapshot`をに `true`設定し
`VolumeSnapshotContent`ます。

◦ Tridentが戻ります readyToUse=true。

4. *任意のユーザー：*を作成し PersistentVolumeClaim`て、新しいを参照します

`VolumeSnapshot。 spec.dataSource（または spec.dataSourceRef）の名前は名前です
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VolumeSnapshot。

例

次に、という名前の `import-snap`を参照するPVCを作成する例を示し `VolumeSnapshot`ます。

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: simple-sc

  resources:

    requests:

      storage: 1Gi

  dataSource:

    name: import-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

Snapshotを使用したボリュームデータのリカバリ

デフォルトでは、ドライバと `ontap-nas-economy`ドライバを使用してプロビジョニングされたボリュームの
互換性を最大限に高めるため、snapshotディレクトリは非表示になってい `ontap-nas`ます。ディレクトリが
スナップショットからデータを直接リカバリできるようにし `.snapshot`ます。

ボリュームを以前のSnapshotに記録されている状態にリストアするには、ボリュームSnapshotリスト
アONTAP CLIを使用します。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Snapshotコピーをリストアすると、既存のボリューム設定が上書きされます。Snapshotコピー
の作成後にボリュームデータに加えた変更は失われます。

Snapshotからのインプレースボリュームのリストア

Tridentでは、（TASR）CRを使用してSnapshotからボリュームをインプレースで迅速にリストアできます

TridentActionSnapshotRestore。このCRはKubernetesの必須アクションとして機能し、処理の完了後
も維持されません。

Tridentは、、 ontap-san-economy ontap-nas、、 ontap-nas-flexgroup azure-netapp-files、、

で gcp-cvs`のSnapshotリストアをサポートしています。 `ontap-san、 google-cloud-netapp-

volumes、および `solidfire-san`ドライバ。
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開始する前に

バインドされたPVCと使用可能なボリュームSnapshotが必要です。

• PVCステータスがバインドされていることを確認します。

kubectl get pvc

• ボリュームSnapshotを使用する準備が完了していることを確認します。

kubectl get vs

手順

1. TASR CRを作成します。この例では、PVCおよびボリュームスナップショット用のCRを作成し pvc1

`pvc1-snapshot`ます。

TASR CRは、PVCおよびVSが存在する名前空間に存在する必要があります。

cat tasr-pvc1-snapshot.yaml

apiVersion: trident.netapp.io/v1

kind: TridentActionSnapshotRestore

metadata:

  name: trident-snap

  namespace: trident

spec:

  pvcName: pvc1

  volumeSnapshotName: pvc1-snapshot

2. スナップショットからリストアするにはCRを適用します。この例では、Snapshotからリストアし `pvc1`

ます。

kubectl create -f tasr-pvc1-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

結果

Tridentはスナップショットからデータをリストアします。Snapshotリストアのステータスを確認できます。
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kubectl get tasr -o yaml

apiVersion: trident.netapp.io/v1

items:

- apiVersion: trident.netapp.io/v1

  kind: TridentActionSnapshotRestore

  metadata:

    creationTimestamp: "2023-04-14T00:20:33Z"

    generation: 3

    name: trident-snap

    namespace: trident

    resourceVersion: "3453847"

    uid: <uid>

  spec:

    pvcName: pvc1

    volumeSnapshotName: pvc1-snapshot

  status:

    startTime: "2023-04-14T00:20:34Z"

    completionTime: "2023-04-14T00:20:37Z"

    state: Succeeded

kind: List

metadata:

  resourceVersion: ""

• ほとんどの場合、障害が発生したときにTridentで処理が自動的に再試行されることはあり
ません。この操作を再度実行する必要があります。

• 管理者アクセス権を持たないKubernetesユーザは、アプリケーションネームスペース
にTASR CRを作成するために、管理者から権限を付与されなければならない場合がありま
す。

Snapshotが関連付けられているPVを削除する

Snapshotが関連付けられている永続ボリュームを削除すると、対応するTridentボリュームが「削除中」に更
新されます。ボリュームSnapshotを削除してTridentボリュームを削除します。

ボリュームSnapshotコントローラの導入

KubernetesディストリビューションにスナップショットコントローラとCRDが含まれていない場合は、次の
ように導入できます。

手順

1. ボリュームのSnapshot作成
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cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. スナップショットコントローラを作成します。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

必要に応じて、名前空間を開い `deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml`て更新し `namespace`ます。

関連リンク

• "ボリューム Snapshot"

• "ボリュームSnapshotクラス"
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