■ NetApp

성능 이벤트 및 경고 이해 Active IQ Unified Manager 9.14

NetApp March 13, 2025

This PDF was generated from https://docs.netapp.com/ko-kr/active-iq-unified-manager-914/performance-checker/concept_sources_of_performance_events.html on March 13, 2025. Always check docs.netapp.com for the latest.

목차

성능 이	벤트 및 경고 이해	1
성능	이벤트의 소스	1
성능	이벤트 심각도 유형	1
Unifi	ied Manager에서 구성 변경이 감지되었습니다 · · · · · · · · · · · · · · · · · · ·	2
시스	템 정의 성능 임계값 정책의 유형입니다	3
클	러스터 임계값 정책	3
노	.드 임계값 정책	3
임	계값 정책을 집계합니다	4
워	크로드 지연 임계값 정책	5
Q	oS 임계값 정책 · · · · · · · · · · · · · · · · · ·	5
성능	이벤트 분석 및 알림	5
0	벤트 분석	6
0	벤트 상태입니다	6
0	벤트 알림	7
0	벤트 상호 작용	7
Unifi	ied Manager에서 이벤트에 대한 성능 영향을 확인하는 방법	7
클러:	스터 구성 요소 및 구성 요소의 경합이 발생할 수 있는 이유	7
성능	이벤트와 관련된 워크로드의 역할	9

성능 이벤트 및 경고 이해

성능 이벤트는 클러스터의 워크로드 성능과 관련된 이벤트입니다. 응답 시간이 느린 워크로드를 식별하는 데 도움이 됩니다. 동시에 발생한 상태 이벤트와 함께 응답 시간 저하의 원인이 될 수 있거나 원인이 될 수 있는 문제를 파악할 수 있습니다.

Unified Manager에서 동일한 클러스터 구성 요소에 대해 같은 이벤트가 여러 번 감지되면 모든 이벤트가 별도의 이벤트가 아닌 단일 이벤트로 처리됩니다.

특정 심각도 유형의 성능 이벤트가 발생할 때 자동으로 e-메일 알림을 보내도록 알림을 구성할 수 있습니다.

성능 이벤트의 소스

성능 이벤트는 클러스터의 워크로드 성능과 관련된 문제입니다. 응답 시간이 느려 스토리지 객체를 식별하는 데 도움이 되며, 이를 지연 시간이라고도 합니다. 동시에 발생한 다른 상태이벤트와 함께 응답 시간을 지연시켰거나 이로 인해 발생한 문제를 파악할 수 있습니다.

Unified Manager는 다음 소스에서 성능 이벤트를 수신합니다.

• * 사용자 정의 성능 임계값 정책 이벤트 *

설정한 사용자 지정 임계값을 기반으로 성능 문제가 발생합니다. 성능 카운터의 임계값이 위반되었을 때 이벤트가 생성되도록 애그리게이트 및 볼륨 등의 스토리지 개체에 대한 성능 임계값 정책을 구성합니다.

이러한 이벤트를 수신하려면 성능 임계값 정책을 정의하고 스토리지 개체에 할당해야 합니다.

• * 시스템 정의 성능 임계값 정책 이벤트 *

시스템 정의된 임계값을 기반으로 하는 성능 문제입니다. 이러한 임계값 정책은 일반적인 성능 문제를 해결하기 위해 Unified Manager 설치에 포함됩니다.

이러한 임계값 정책은 기본적으로 활성화되어 있으며 클러스터를 추가한 직후에 이벤트를 볼 수 있습니다.

• * 동적 성능 임계값 이벤트 *

성능 문제는 IT 인프라에서 발생하는 장애 또는 오류 또는 클러스터 리소스를 과도하게 활용하는 워크로드의 결과입니다. 이러한 이벤트의 원인은 일정 기간 동안 자체적으로 해결되거나 수리 또는 구성 변경으로 해결될 수 있는 간단한 문제일 수 있습니다. 동적 임계값 이벤트는 공유 클러스터 구성 요소를 많이 사용하는 다른 워크로드로 인해 ONTAP 시스템의 워크로드가 느려졌음을 나타냅니다.

이러한 임계값은 기본적으로 설정되어 있으며 새 클러스터에서 데이터를 수집한 후 3일이 지나면 이벤트가 표시될 수 있습니다.

성능 이벤트 심각도 유형

각 성능 이벤트는 심각도 유형과 관련되어 있으므로 즉각적인 수정 조치가 필요한 이벤트의 우선 순위를 지정하는 데 도움이 됩니다.

• * 심각 *

수정 조치를 즉시 취하지 않을 경우 서비스 중단으로 이어질 수 있는 성능 이벤트가 발생했습니다.

중요 이벤트는 사용자 정의 임계값에서만 전송됩니다.

• * 경고 *

클러스터 개체의 성능 카운터가 정상 범위를 벗어났고 모니터링하여 심각도에 도달하지 않도록 해야 합니다. 이러한 심각도 때문에 서비스가 중단되지 않으며 즉각적인 수정 조치가 필요하지 않을 수 있습니다.

경고 이벤트는 사용자 정의, 시스템 정의 또는 동적 임계값에서 전송됩니다.

• * 정보 *

이 이벤트는 새 개체가 검색되거나 사용자 작업이 수행될 때 발생합니다. 예를 들어, 스토리지 객체가 삭제되거나 구성이 변경된 경우 심각도 유형 정보가 있는 이벤트가 생성됩니다.

정보 이벤트는 구성 변경을 감지하면 ONTAP에서 직접 전송됩니다.

자세한 내용은 다음 링크를 참조하십시오.

- "이벤트 수신 시 발생하는 현상"
- "경고 이메일에 포함된 정보"
- "알림 추가"
- "성능 이벤트에 대한 알림 추가"

Unified Manager에서 구성 변경이 감지되었습니다

Unified Manager는 클러스터의 구성 변경 사항을 모니터링하여 변경이 성능 이벤트의 원인인지 또는 기여 원인인지 여부를 결정합니다. 성능 탐색기 페이지에는 변경 이벤트 아이콘(●)이 표시되어 변경이 감지된 날짜와 시간을 나타냅니다.

성능 탐색기 페이지와 워크로드 분석 페이지에서 성능 차트를 검토하여 변경 이벤트가 선택한 클러스터 개체의 성능에 영향을 미치는지 여부를 확인할 수 있습니다. 성능 이벤트와 거의 동시에 변경이 감지된 경우, 변경으로 인해 이벤트 알림이 트리거되었을 수 있습니다.

Unified Manager는 정보 이벤트로 분류되는 다음 변경 이벤트를 감지할 수 있습니다.

• 볼륨이 애그리게이트 간에 이동합니다.

Unified Manager는 이동이 진행 중이거나 완료 또는 실패했는지 감지할 수 있습니다. 볼륨 이동 중에 Unified Manager가 다운된 경우, 볼륨이 백업될 때 볼륨 이동을 감지하고 해당 볼륨 이동을 위한 변경 이벤트를 표시합니다.

• 모니터링되는 하나 이상의 워크로드 변경이 포함된 QoS 정책 그룹의 처리량(MB/s 또는 IOPS) 제한

정책 그룹 제한을 변경하면 지연 시간(응답 시간)이 간헐적으로 급증할 수 있으며, 이 경우 정책 그룹에 대한 이벤트도 트리거될 수 있습니다. 지연 시간이 점차 정상으로 돌아오며 급증으로 인한 이벤트는 더 이상 사용되지 않습니다. • HA 쌍의 노드는 파트너 노드의 스토리지를 이어받거나 해당 노드를 다시 제공합니다.

Unified Manager는 테이크오버, 부분 인수 또는 반환 작업이 완료된 시기를 감지할 수 있습니다. 패닉이 발생한 노드가 테이크오버로 인해 Unified Manager에서 이벤트를 감지하지 못하는 경우

• ONTAP 업그레이드 또는 되돌리기 작업이 성공적으로 완료되었습니다.

이전 버전과 새 버전이 표시됩니다.

시스템 정의 성능 임계값 정책의 유형입니다

Unified Manager는 클러스터 성능을 모니터링하고 이벤트를 자동으로 생성하는 몇 가지 표준 임계값 정책을 제공합니다. 이러한 정책은 기본적으로 사용하도록 설정되어 있으며 모니터링되는 성능 임계값이 위반될 때 경고 또는 정보 이벤트를 생성합니다.

Cloud Volumes ONTAP, ONTAP Edge 또는 ONTAP Select 시스템에서는 시스템 정의 성능 임계값 정책이 사용되지 않습니다.

시스템 정의 성능 임계값 정책에서 불필요한 이벤트를 수신하는 경우 이벤트 설정 페이지에서 개별 정책에 대한 이벤트를 비활성화할 수 있습니다.

클러스터 임계값 정책

기본적으로 시스템 정의 클러스터 성능 임계값 정책은 Unified Manager가 모니터링하는 모든 클러스터에 할당됩니다.

• * 클러스터 로드 불균형 *

한 노드가 클러스터의 다른 노드보다 훨씬 더 높은 부하에서 작동 중이고 따라서 워크로드 지연 시간에 영향을 줄 수 있는 상황을 식별합니다.

이는 클러스터의 모든 노드에 사용된 성능 용량 값을 비교하여 어떤 노드도 24시간 이상 30% 임계값을 초과하는지 여부를 확인하는 방식으로 실행됩니다. 이것은 경고 이벤트입니다.

• * 클러스터 용량 불균형 *

하나의 애그리게이트에서 클러스터의 다른 애그리게이트보다 훨씬 더 많은 용량이 사용되고 있으므로 작업에 필요한 공간에 영향을 줄 수 있는 상황을 식별합니다.

이는 클러스터 내의 모든 애그리게이트에서 사용된 용량 값을 비교하여 애그리게이트 간에 70%의 차이가 있는지 여부를 확인하는 방식으로 실행됩니다. 이것은 경고 이벤트입니다.

노드 임계값 정책

기본적으로 시스템 정의 노드 성능 임계값 정책은 Unified Manager가 모니터링하는 클러스터의 모든 노드에 할당됩니다.

• * 사용된 성능 용량 임계값 위반 *

단일 노드가 운영 효율성 한계를 초과하여 작동하고 따라서 워크로드 지연 시간에 영향을 미칠 수 있는 상황을

식별합니다.

이는 성능 용량의 100% 이상을 12시간 이상 사용하는 노드를 찾는 것입니다. 이것은 경고 이벤트입니다.

• * 노드 HA Pair 초과 활용 *

HA 쌍 노드가 HA 쌍 운영 효율성 한계를 초과하여 작동하는 상황을 식별합니다.

이 작업을 위해 HA 쌍의 두 노드에 사용된 성능 용량을 확인합니다. 두 노드에서 사용하는 결합된 성능 용량이 12시간 이상 200%를 초과하면 컨트롤러 페일오버가 워크로드 지연 시간에 영향을 미칩니다. 이것은 정보이벤트입니다.

• * 노드 디스크 조각화 *

Aggregate의 디스크 또는 디스크가 조각화되어 주요 시스템 서비스가 느려지고 노드의 워크로드 지연 시간에 영향을 줄 수 있는 상황을 식별합니다.

노드의 모든 애그리게이트에서 특정 읽기 및 쓰기 작업 비율을 살펴보면 이 작업이 수행됩니다. 이 정책은 SyncMirror 재동기화 중에 또는 디스크 스크럽 작업 중에 오류가 발견된 경우에도 트리거될 수 있습니다. 이것은 경고 이벤트입니다.

"'노드 디스크 조각화' 정책은 HDD 전용 애그리게이트를 분석하지만, Flash Pool, SSD, FabricPool 애그리게이트는 분석되지 않습니다.

임계값 정책을 집계합니다

시스템 정의 애그리게이트의 성능 임계값 정책은 기본적으로 Unified Manager가 모니터링하는 클러스터의 모든 애그리게이트로 할당됩니다.

• * 과도하게 사용된 디스크 집계 *

애그리게이트는 운영 효율성 한계를 초과하여 작동하는 상황을 식별하여 워크로드 지연 시간에 영향을 줄 수 있습니다. 이 방법을 통해 aggregate에서 디스크가 30분 이상 95% 이상 활용되는 애그리게이트를 찾을 수 있습니다. 이 다중 조건 정책은 다음 분석을 수행하여 문제의 원인을 파악합니다.

◦ 현재 백그라운드 유지 관리 작업을 진행 중인 aggregate의 디스크가 있습니까?

디스크 재구성, 디스크 스크럽, SyncMirror 재동기화 및 재패리티가 디스크에 실행될 수 있는 일부 백그라운드 유지 관리 작업입니다.

- ° 디스크 쉘프 파이버 채널 인터커넥트에 통신 병목 현상이 있습니까?
- Aggregate에 사용 가능한 용량이 너무 적습니까? 세 하위 정책 중 하나 이상의 정책이 위반된 것으로 간주되는 경우에만 이 정책에 대해 경고 이벤트가 발생합니다. Aggregate의 디스크가 95% 이상 사용된 경우 성능 이벤트가 트리거되지 않습니다.

"'Aggregate disks over-활용되는' 정책은 HDD 전용 애그리게이트 및 Flash Pool(하이브리드) 애그리게이트를 분석하며, SSD와 FabricPool 애그리게이트는 분석되지 않습니다.

워크로드 지연 임계값 정책

시스템 정의 워크로드 지연 임계값 정책은 ""예상 지연 시간" 값이 정의된 성능 서비스 수준 정책이 구성된 모든 워크로드에 할당됩니다.

• * 워크로드 볼륨/LUN 지연 임계값 성능 서비스 수준 * 에서 정의한 대로 위반됩니다

"예상 지연 시간" 제한을 초과했으며 워크로드 성능에 영향을 주는 볼륨(파일 공유) 및 LUN을 식별합니다. 이것은 경고 이벤트입니다.

이는 이전 시간 동안 예상 지연 시간 값을 30% 초과한 워크로드를 찾는 것입니다.

QoS 임계값 정책

시스템 정의 QoS 성능 임계값 정책은 ONTAP QoS 최대 처리량 정책(IOPS, IOPS/TB 또는 MB/s)이 구성된 모든 워크로드에 할당됩니다. Unified Manager가 워크로드 처리량 값이 구성된 QoS 값보다 15% 작은 경우 이벤트를 트리거합니다.

• * QoS 최대 IOPS 또는 MB/s 임계값 *

QoS 최대 IOPS 또는 MB/s 처리량 한도를 초과했으며 워크로드 지연 시간에 영향을 주는 볼륨 및 LUN을 식별합니다. 이것은 경고 이벤트입니다.

단일 워크로드가 정책 그룹에 할당되면 이전 시간의 각 수집 기간 동안 할당된 QoS 정책 그룹에 정의된 최대 처리량임계값을 초과한 워크로드를 찾습니다.

여러 워크로드가 단일 QoS 정책을 공유하는 경우 정책에 있는 모든 워크로드의 IOPS 또는 MB/s를 추가하고 이임계값을 확인하여 해당 작업을 수행합니다.

• * QoS 최대 IOPS/TB 또는 IOPS/TB. 블록 크기 임계값 *

적응형 QoS 최대 IOPS/TB 처리량 한도(또는 블록 크기 제한이 있는 IOPS/TB)를 초과했으며 워크로드 지연시간에 영향을 주는 볼륨을 식별합니다. 이것은 경고 이벤트입니다.

이렇게 하려면 적응형 QoS 정책에 정의된 최대 IOPS/TB 임계값을 각 볼륨의 크기를 기준으로 QoS 최대 IOPS 값으로 변환한 다음, 이전 시간의 각 성능 수집 기간 동안 QoS 최대 IOPS를 초과한 볼륨을 찾습니다.

이 정책은 클러스터가 ONTAP 9.3 이상 소프트웨어와 함께 설치된 경우에만 볼륨에 적용됩니다.

적응형 QoS 정책에 ""블록 크기"" 요소가 정의되면 각 볼륨의 크기에 따라 임계값이 QoS 최대 MB/s 값으로 변환됩니다. 그런 다음 이전 시간 동안 각 성능 수집 기간 동안 QoS 최대 MB/s를 초과한 볼륨을 찾습니다.

이 정책은 클러스터가 ONTAP 9.5 이상 소프트웨어와 함께 설치된 경우에만 볼륨에 적용됩니다.

성능 이벤트 분석 및 알림

성능 이벤트는 클러스터 구성 요소의 경합으로 인해 발생하는 워크로드의 I/O 성능 문제를 알려줍니다. Unified Manager에서 이벤트를 분석하여 관련 워크로드, 경합 중인 구성 요소 및 문제가 여전히 해결해야 할 문제인지 여부를 파악합니다. Unified Manager는 클러스터의 볼륨에 대한 I/O 지연 시간(응답 시간) 및 IOPS(작업)를 모니터링합니다. 예를 들어, 다른 워크로드가 클러스터 구성 요소를 과도하게 사용하면 구성 요소의 경합이 발생할 수 있으며, 워크로드 수요를 충족하기 위해 최적의 레벨에서 성능을 발휘할 수 없습니다. 동일한 구성요소를 사용하는 다른 워크로드의 성능이 영향을 받을 수 있어 지연 시간이 증가할 수 있습니다. 지연 시간이 동적 성능 임계값을 초과하는 경우 Unified Manager가 성능 이벤트를 트리거하여 사용자에게 알립니다.

이벤트 분석

Unified Manager는 이전 15일간의 성능 통계를 사용하여 피해자 워크로드, 불특정 워크로드 및 이벤트와 관련된 클러스터 구성 요소를 파악합니다.

- 지연 시간이 동적 성능 임계값을 초과한 피해자 워크로드 파악, 즉 지연 시간 예측의 상한값
 - ° HDD 또는 Flash Pool 하이브리드 애그리게이트(로컬 계층)의 볼륨의 경우, 지연 시간이 5밀리초(ms)보다 크고 IOPS가 초당 10개 이상의 작업(ops/sec)인 경우에만 이벤트가 트리거됩니다.
 - ° All-SSD 애그리게이트 또는 FabricPool 애그리게이트(클라우드 계층)의 볼륨의 경우, 지연 시간이 1ms 미만이고 IOPS가 100 ops/sec를 초과할 경우에만 이벤트가 트리거됩니다
- 경합하는 클러스터 구성 요소를 식별합니다.

클러스터 인터커넥트의 피해자 워크로드 지연 시간이 1ms 이상이면 Unified Manager는 이를 중요한 것으로 간주하고 클러스터 인터커넥트에 대한 이벤트를 트리거합니다.

- 클러스터 구성 요소를 과도하게 사용하여 경합을 일으키는 대규모 워크로드를 식별합니다.
- 클러스터 구성 요소의 활용도 또는 활동 편차에 따라 관련 워크로드의 순위를 매기하여 클러스터 구성 요소의 사용 빈도가 가장 높고 가장 큰 영향을 받는 피해자를 결정합니다.

이벤트는 잠시 동안 발생할 수 있으며, 사용 중인 구성 요소가 더 이상 충돌하지 않으면 이벤트가 자동으로 보정됩니다. 연속 이벤트는 5분 간격 내에 동일한 클러스터 구성 요소에 대해 다시 발생하고 활성 상태로 유지되는 이벤트입니다. 지속적인 이벤트의 경우, Unified Manager는 두 번의 연속 분석 간격 동안 동일한 이벤트를 감지한 후 알림을 트리거합니다.

이벤트가 해결되면 Unified Manager에서 볼륨에 대한 이전 성능 문제 레코드의 일부로 계속 사용할 수 있습니다. 각이벤트에는 이벤트 유형과 관련된 볼륨, 클러스터 및 클러스터 구성 요소를 식별하는 고유한 ID가 있습니다.

단일 볼륨은 동시에 여러 이벤트에 참여할 수 있습니다.

이벤트 상태입니다

이벤트는 다음 상태 중 하나일 수 있습니다.

• * 활성 *

성능 이벤트가 현재 활성 상태(새 이벤트 또는 확인된 이벤트)임을 나타냅니다. 이벤트를 발생시키는 문제가 자체적으로 해결되지 않았거나 해결되지 않았습니다. 스토리지 개체의 성능 카운터는 성능 임계값보다 높게 유지됩니다.

• * 사용되지 않음 *

이벤트가 더 이상 활성 상태가 아님을 나타냅니다. 이벤트를 발생시키는 문제가 자체적으로 해결되었거나 해결되었습니다. 스토리지 개체의 성능 카운터가 더 이상 성능 임계값을 초과하지 않습니다.

이벤트 알림

이벤트는 대시보드 페이지와 사용자 인터페이스의 다른 여러 페이지에 표시되며, 이러한 이벤트에 대한 알림은 지정된 이메일 주소로 전송됩니다. 이벤트에 대한 자세한 분석 정보를 보고 이벤트 세부 정보 페이지 및 워크로드 분석 페이지에서 해결 방법을 확인할 수 있습니다.

이벤트 상호 작용

이벤트 세부 정보 페이지와 워크로드 분석 페이지에서 다음과 같은 방법으로 이벤트와 상호 작용할 수 있습니다.

- 이벤트 위로 마우스를 이동하면 이벤트가 감지된 날짜와 시간을 표시하는 메시지가 표시됩니다.
 - 동일한 기간에 여러 이벤트가 있는 경우 메시지에 이벤트 수가 표시됩니다.
- 단일 이벤트를 클릭하면 관련된 클러스터 구성 요소를 비롯하여 이벤트에 대한 자세한 정보를 보여 주는 대화 상자가 표시됩니다.

경합이 발생한 구성 요소에 동그라미가 표시되며 빨간색으로 강조 표시됩니다. 전체 분석 보기 * 를 클릭하여 이벤트 세부 정보 페이지에서 전체 분석을 볼 수 있습니다. 같은 기간에 여러 이벤트가 있는 경우 대화 상자에 가장 최근의 세 이벤트에 대한 세부 정보가 표시됩니다. 이벤트를 클릭하여 이벤트 세부 정보 페이지에서 이벤트 분석을 볼 수 있습니다.

Unified Manager에서 이벤트에 대한 성능 영향을 확인하는 방법

Unified Manager에서는 작업 부하에 대한 활동, 활용률, 쓰기 처리량, 클러스터 구성요소 사용량, I/O 지연 시간(응답 시간)의 편차를 사용하여 워크로드 성능에 미치는 영향 수준을 결정합니다. 이 정보는 이벤트 세부 정보 페이지에서 각 워크로드의 역할 및 순위를 결정합니다.

Unified Manager는 워크로드에서 마지막으로 분석된 값을 예상 범위(지연 시간 예측)와 비교합니다. 마지막으로 분석한 값과 예상 값 범위 간의 차이는 이벤트의 성능에 가장 큰 영향을 준 워크로드를 식별합니다.

예를 들어, 클러스터에 워크로드 A와 워크로드 B의 두 워크로드가 포함되어 있다고 가정합니다. 워크로드 A에 대한 지연시간은 작업당 5~10밀리초(ms/op)이며 실제 지연 시간은 일반적으로 약 7ms/op입니다. 워크로드 B에 대한 대기시간은 10-20ms/op이고 실제 대기 시간은 대개 약 15ms/opp입니다. 두 워크로드 모두 예상 지연 시간 내에 처리되었습니다. 클러스터의 경합으로 인해 두 워크로드의 지연 시간이 40ms/op로 증가하여 지연 시간 예측 상한인동적 성능 임계값을 초과하고 이벤트를 트리거합니다. 워크로드 A의 경우 예상 값에서 성능 임계값보다 높은 값으로지연 시간의 편차는 약 33ms/op이고 워크로드 B의 편차는 약 25ms/opp입니다. 두 워크로드의 지연 시간이 40ms/op로급증하지만, 워크로드 A의 지연 시간이 33ms/opp에서 지연 시간의 편차가 더 높으므로 성능에 더 큰 영향을 미쳤습니다.

이벤트 세부 정보 페이지의 시스템 진단 섹션에서 클러스터 구성 요소의 활동, 활용률 또는 처리량의 편차를 기준으로 워크로드를 정렬할 수 있습니다. 지연 시간별로 워크로드를 정렬할 수도 있습니다. 정렬 옵션을 선택하면 Unified Manager에서 이벤트가 예상 값에서 감지되어 워크로드 정렬 순서를 결정하기 때문에 활동, 활용률, 처리량, 지연 시간의 편차를 분석합니다. 지연 시간의 경우 빨간색 점(●)은 대상 워크로드에 의해 성능 임계값이 초과되고 지연 시간에 대한 후속 영향을 나타냅니다. 각 빨간색 점은 지연 시간의 편차가 더 높음을 나타냅니다. 이를 통해 이벤트의 지연 시간이 가장 큰 영향을 받은 피해자의 워크로드를 파악할 수 있습니다.

클러스터 구성 요소 및 구성 요소의 경합이 발생할 수 있는 이유

클러스터 구성 요소의 경합이 발생할 때 클러스터 성능 문제를 식별할 수 있습니다. 구성 요소를

사용하는 워크로드의 성능이 느려지고 클라이언트 요청에 대한 응답 시간(지연 시간)이 증가하여 Unified Manager에서 이벤트가 트리거됩니다.

경합이 발생한 구성 요소는 최적 수준에서 수행할 수 없습니다. 성능이 저하되었으며, _ 피해자라고 하는 다른 클러스터 구성 요소와 워크로드의 성능이 지연 시간을 증가했을 수 있습니다. 구성 요소의 경합을 줄이려면 작업 부하를 줄이거나 작업 처리 능력을 높여 성능이 정상 수준으로 돌아가도록 해야 합니다. Unified Manager는 5분 간격으로 워크로드 성능을 수집 및 분석하므로, 클러스터 구성 요소가 지속적으로 초과 사용되는 경우에만 감지합니다. 5분 간격 동안 짧은 시간 동안만 지속되는 일시적인 과사용량 급증은 감지되지 않습니다.

예를 들어, 스토리지 aggregate에서 발생하는 경합이 발생할 수 있습니다. 그 이유는 하나 이상의 워크로드가 I/O 요청을 이행하기 위해 경합하기 때문입니다. Aggregate의 다른 워크로드에 영향을 줄 수 있으므로 성능이 저하될 수 있습니다. 애그리게이트에서 수행하는 작업의 양을 줄이기 위해 하나 이상의 워크로드를 사용량이 적은 애그리게이트 또는 노드로 이동하여 현재 애그리게이트의 전체 워크로드 요구사항을 줄이는 것과 같은 다양한 단계를 수행할 수 있습니다. QoS 정책 그룹의 경우 처리량 제한을 조정하거나 워크로드를 다른 정책 그룹으로 이동하여 워크로드가 더 이상 제한되지 않도록 할 수 있습니다.

Unified Manager에서 다음 클러스터 구성 요소를 모니터링하여 경합 상태를 경고합니다.

• 네트워크 *

클러스터의 외부 네트워킹 프로토콜에 의한 I/O 요청 대기 시간을 나타냅니다. 대기 시간은 클러스터가 입출력 요청에 응답하기 전에 ""전송 준비"" 트랜잭션이 완료될 때까지 기다리는 데 걸리는 시간입니다. 네트워크 구성 요소의 경합이 발생한 경우, 프로토콜 계층에서 대기 시간이 길면 하나 이상의 워크로드 지연 시간에 영향을 미치게 됩니다.

• * 네트워크 처리 *

프로토콜 계층과 클러스터 간의 I/O 처리와 관련된 클러스터의 소프트웨어 구성요소를 나타냅니다. 이벤트가 감지된 이후 네트워크 처리를 처리하는 노드가 변경되었을 수 있습니다. 네트워크 처리 구성 요소의 경합이 발생한 경우, 네트워크 처리 노드의 높은 사용률이 하나 이상의 워크로드 지연 시간에 영향을 미치고 있음을 의미합니다.

액티브-액티브 구성에서 모든 SAN 어레이 클러스터를 사용할 경우 두 노드에 대해 네트워크 처리 지연 시간 값이 표시되므로 노드가 로드를 균등하게 공유하고 있는지 확인할 수 있습니다.

• * QoS 제한 최대 *

워크로드에 할당된 스토리지 QoS(Quality of Service) 정책 그룹의 최대 처리량(최대) 설정을 나타냅니다. 정책 그룹 구성 요소의 경합이 발생한 경우 정책 그룹의 모든 워크로드가 설정된 처리량 제한에 따라 조절되고, 이로 인해하나 이상의 워크로드 지연 시간이 영향을 받습니다.

• * QoS 제한 최소 *

다른 워크로드에 할당된 QoS 처리량 최소(예상) 설정으로 인해 워크로드의 지연 시간을 나타냅니다. 특정 워크로드에 설정된 QoS 최소값이 대부분의 대역폭을 사용하여 보장된 처리량을 보장하는 경우, 다른 워크로드의 임계치가 조절되고 더 많은 지연 시간이 표시됩니다.

• 클러스터 인터커넥트 *

클러스터된 노드가 물리적으로 연결된 케이블과 어댑터를 나타냅니다. 클러스터 인터커넥트 구성 요소의 경합이 발생한 경우, 클러스터 인터커넥트에서 I/O 요청이 있을 때까지 대기 시간이 길어 하나 이상의 워크로드 지연 시간에 영향을 미치게 됩니다.

• * 데이터 처리 *

는 클러스터와 워크로드를 포함하는 스토리지 애그리게이트 간의 I/O 처리와 관련된 클러스터의 소프트웨어 구성요소를 나타냅니다. 이벤트가 감지된 이후 데이터 처리를 처리하는 노드가 변경될 수 있습니다. 데이터 처리 구성 요소의 경합이 발생한 경우, 데이터 처리 노드의 높은 활용률이 하나 이상의 워크로드 지연 시간에 영향을 미치고 있음을 의미합니다.

• * 볼륨 활성화 *

모든 활성 볼륨의 사용량을 추적하는 프로세스를 나타냅니다. 1,000개 이상의 볼륨이 활성 상태인 대규모 환경에서는 이 프로세스에서 노드를 통해 동시에 리소스에 액세스해야 하는 중요 볼륨의 수를 추적합니다. 동시 활성 볼륨 수가 권장되는 최대 임계값을 초과하면 중요하지 않은 볼륨 중 일부에서 여기에 나와 있는 지연 시간이 발생합니다.

• * MetroCluster 리소스 *

MetroCluster 구성에서 클러스터 간 데이터를 미러링하는 데 사용되는 NVRAM 및 ISL(Interswitch Link)을 비롯한 MetroCluster 리소스를 나타냅니다. MetroCluster 구성 요소의 경합이 발생한 경우, 로컬 클러스터의 워크로드로부터 높은 쓰기 처리량을 의미하거나 링크 상태 문제가 로컬 클러스터에 있는 하나 이상의 워크로드 지연 시간에 영향을 줍니다. 클러스터가 MetroCluster 구성에 없으면 이 아이콘이 표시되지 않습니다.

• * 애그리게이트 또는 SSD 애그리게이트 운영 *

워크로드가 실행되는 스토리지 애그리게이트를 나타냅니다. 애그리게이트 구성 요소의 경합이 발생할 경우, 애그리게이트의 활용률이 높아지면 하나 이상의 워크로드 지연 시간에 영향을 미치게 됩니다. Aggregate는 모든 HDD 또는 HDD와 SSD(Flash Pool 애그리게이트)의 혼합 또는 HDD와 클라우드 계층(FabricPool 애그리게이트)의 혼합 요소로 이루어집니다. 'SSD Aggregate'는 모든 SSD(All-Flash 애그리게이트) 또는 SSD와 클라우드 계층(FabricPool 애그리게이트)의 혼합으로 구성됩니다.

• * 클라우드 지연 시간 *

클러스터 및 사용자 데이터가 저장되는 클라우드 계층 간의 I/O 처리와 관련된 클러스터의 소프트웨어 구성요소를 나타냅니다. 클라우드 지연 시간 구성 요소의 경합이 발생할 경우, 클라우드 계층에서 호스팅되는 볼륨의 대량 읽기가 하나 이상의 워크로드 지연 시간에 영향을 미치고 있음을 의미합니다.

• SnapMirror * 를 동기화합니다

SnapMirror Synchronous 관계의 기본 볼륨에서 보조 볼륨으로 사용자 데이터를 복제하는 것과 관련된 클러스터의 소프트웨어 구성요소를 나타냅니다. 동기식 SnapMirror 구성 요소의 경합이 발생한 경우, SnapMirror Synchronous 작업의 활동이 하나 이상의 워크로드 지연 시간에 영향을 미치고 있음을 의미합니다.

성능 이벤트와 관련된 워크로드의 역할

Unified Manager에서는 역할을 사용하여 성능 이벤트에서 워크로드가 어떻게 관여하는지 파악합니다. 희생자, 폭리, 상어 등의 역할을 합니다. 사용자 정의 워크로드는 동시에 피해자이고 괴롭히는 상어가 될 수 있습니다.

역할	설명
피해자	클러스터 구성 요소를 과도하게 사용하는 bullies라는 다른 워크로드로 인해 성능이 저하된 사용자 정의 워크로드 사용자 정의 워크로드만 피해자로 식별됩니다. Unified Manager에서는 지연 시간 편차가 있는 워크로드를 식별하는데, 이 경우 이벤트 중에 실제 지연 시간이 지연 시간 예측(예상 범위)에서 크게 증가했습니다.
괴롭습니다	클러스터 구성 요소를 과도하게 사용하여 피해자라고 하는 다른 워크로드의 성능을 저하시킨 사용자 정의 또는 시스템 정의 워크로드입니다. Unified Manager에서는 클러스터 구성 요소의 사용 편차에 따라 대규모 워크로드를 식별하며, 이벤트 중에는 예상 사용 범위에서 실제 사용량이 크게 증가했습니다.
상어	이벤트에 관여하는 모든 워크로드에 비해 클러스터 구성 요소를 가장 많이 사용하는 사용자 정의 워크로드입니다. Unified Manager에서는 이벤트 중에 클러스터 구성 요소를 사용하여 shark 워크로드를 식별합니다.

클러스터의 워크로드는 네트워크 및 데이터 처리를 위한 애그리게이트 및 CPU와 같은 여러 클러스터 구성 요소를 공유할 수 있습니다. 볼륨과 같은 워크로드가 클러스터 구성 요소의 사용량을 구성 요소가 워크로드 수요를 효율적으로 충족할 수 없는 시점으로 증가하면 구성 요소의 경합이 발생합니다. 클러스터 구성 요소를 과도하게 사용하는 워크로드는 부담스러운 워크로드와 이러한 구성 요소를 공유하며 성능에 큰 영향을 미치는 다른 워크로드는 이 피해자들입니다. 중복 제거 또는 Snapshot 복사본과 같은 시스템 정의 워크로드의 작업도 ""불링""으로 에스컬레이션될수 있습니다.

Unified Manager에서 이벤트를 감지하면 해당 이벤트를 발생시킨 대규모 워크로드, 경합하는 클러스터 구성 요소, 워크로드가 폭증하여 성능이 저하된 워크로드를 비롯하여 관련된 모든 워크로드와 클러스터 구성 요소를 파악합니다.

Unified Manager에서 대규모 워크로드를 식별할 수 없는 경우 피해자 워크로드와 관련된 클러스터 구성 요소에 대한 알림만 제공됩니다.

Unified Manager를 사용하면 워크로드가 불룩한 경우 이를 식별하고 동일한 워크로드가 불룩한 워크로드가 되는 시기를 파악할 수 있습니다. 워크로드는 그 자체로 부담스러운 것이 될 수 있습니다. 예를 들어, 정책 그룹 제한으로 인해 성능이 높은 워크로드의 임계치가 조절되면 정책 그룹의 모든 워크로드가 그 자체를 포함하여 제한됩니다. 지속적인 성과 이벤트의 피해자 또는 괴롭히는 워크로드는 역할을 변경하거나 더 이상 이벤트에 참가하지 않을 수 있습니다.

저작권 정보

Copyright © 2025 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽, 전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적 보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는 모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의 발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items) 조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점 자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인 비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에 대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로 가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정, 수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에 명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.