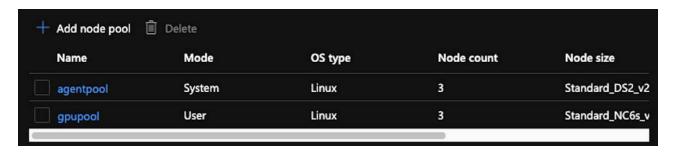
■ NetApp

설정 NetApp Solutions

NetApp October 18, 2024

This PDF was generated from https://docs.netapp.com/ko-kr/netapp-solutions/ai/aks-anf_install_and_set_up_the_aks_cluster.html on October 18, 2024. Always check docs.netapp.com for the latest.

목차


<u>-</u>	결정	1
	AKS 클러스터를 설치하고 설정합니다	1
	Azure NetApp Files에 대해 위임된 서브넷을 생성합니다	2
	피어 AKS VNET 및 Azure NetApp Files VNET	4
	Trident를 설치합니다	4
	Helm을 사용하여 AKS에서 RAPIDS를 사용하여 Dask를 설정합니다	7
	Azure NetApp Files 성능 계층	٤

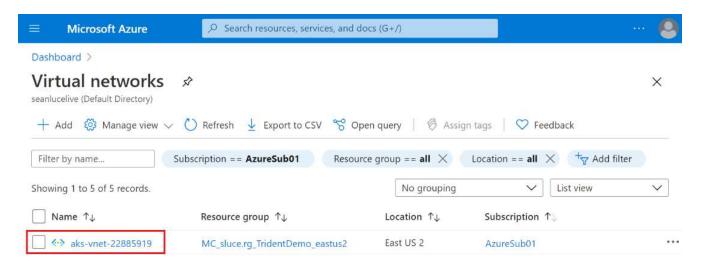
설정

AKS 클러스터를 설치하고 설정합니다

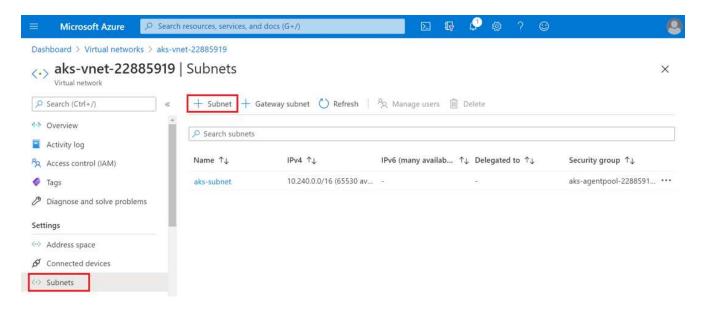
AKS 클러스터를 설치 및 설정하려면 웹 페이지를 참조하십시오 "AKS 클러스터를 생성합니다" 그런 다음 다음 다음 단계를 완료합니다.

- 1. 노드 유형(시스템 [CPU] 또는 작업자 [GPU] 노드)을 선택할 때 다음을 선택합니다.
 - a. 기본 시스템 노드는 표준 DS2v2('agentpool' 기본 3개 노드)여야 합니다.
 - b. 그런 다음 이름이 "gpupool"인 사용자 그룹(GPU 노드의 경우)에 대해 작업자 노드 Standard_NC6s_v3 풀 (최소 3개 노드)을 추가합니다.

- 2. 배포에는 5~10분이 소요됩니다. 완료되면 Connect to Cluster를 클릭합니다.
- 3. 새로 생성된 AKS 클러스터에 연결하려면 로컬 환경(랩톱/PC)에서 다음을 설치합니다.
 - a. 를 사용하는 Kubernetes 명령줄 툴입니다 "특정 OS에 대한 지침이 제공됩니다"
 - b. 문서에 설명된 대로 Azure CLI를 사용할 수 있습니다. "Azure CLI를 설치합니다"
- 4. 터미널에서 AKS 클러스터에 액세스하려면 'az login'을 입력하고 자격 증명을 입력합니다.
- 5. 다음 두 명령을 실행합니다.

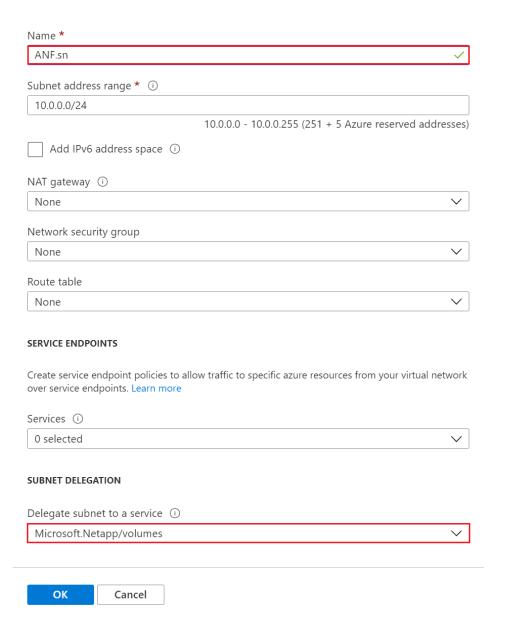

- 6. Azure CLI:kubeck get nodes를 입력합니다.
- 7. 다음 예와 같이 6개 노드가 모두 가동되어 실행 중인 경우 AKS 클러스터가 로컬 환경에 준비 및 연결됩니다

```
verronmartina@verron-mac-0 ~ % kubectl get nodes
                                      STATUS
                                               ROLES
                                                        AGE
                                                              VERSION
aks-agentpool-34613062-vmss000000
                                      Ready
                                                              v1.18.14
                                               agent
                                                        22m
aks-agentpool-34613062-vmss000001
                                                              v1.18.14
                                      Ready
                                               agent
                                                        22m
aks-agentpool-34613062-vmss000002
                                      Ready
                                               agent
                                                        22m
                                                              v1.18.14
aks-gpupool-34613062-vmss000000
                                                              v1.18.14
                                      Ready
                                               agent
                                                        20m
aks-gpupool-34613062-vmss000001
                                                        20m
                                                              v1.18.14
                                      Ready
                                               agent
aks-gpupool-34613062-vmss000002
                                      Ready
                                                        20m
                                                              v1.18.14
                                               agent
verronmartina@verron-mac-0 ~ %
```


Azure NetApp Files에 대해 위임된 서브넷을 생성합니다

Azure NetApp Files에 대해 위임된 서브넷을 만들려면 다음 단계를 수행하십시오.

- 1. Azure 포털에서 가상 네트워크로 이동합니다. 새로 생성한 가상 네트워크를 찾습니다. AKS-VNET와 같은 접두사가 있어야 합니다.
- 2. VNET의 이름을 클릭합니다.



3. 서브넷 을 클릭하고 상단 도구 모음에서 + 서브넷 을 클릭합니다.

4. 서브넷에는 ANF.SN과 같은 이름을 입력하고 Subnet Delegation 제목 아래에서 microsoft.Netapp/volumes`을 선택합니다. 다른 어떤 것도 변경하지 마십시오. 확인 을 클릭합니다.

Add subnet

 \times

Azure NetApp Files 볼륨은 애플리케이션 클러스터에 할당되며 Kubernetes에서 영구 볼륨 청구(PVC)로 사용됩니다. 또한 이 프로세스를 통해 Jupyter 노트북, 서버리스 기능 등과 같은 다양한 서비스에 유연하게 매핑할 수 있습니다.

서비스 사용자는 다양한 방법으로 플랫폼의 스토리지를 사용할 수 있습니다. 이 기술 보고서에서 NFS에 대해 설명함에 따라 Azure NetApp Files의 주요 이점은 다음과 같습니다.

- 사용자에게 스냅샷 복사본 사용 기능 제공
- 사용자가 Azure NetApp Files 볼륨에 대량의 데이터를 저장할 수 있도록 지원
- 대규모 파일 세트에서 모델을 실행할 때 Azure NetApp Files 볼륨의 성능 이점을 사용합니다.

피어 AKS VNET 및 Azure NetApp Files VNET

AKS VNET를 Azure NetApp Files VNET와 상호 운용하려면 다음 단계를 수행하십시오.

- 1. 검색 필드에 가상 네트워크를 입력합니다.
- 2. VNET AKS-VNET-NAME을 선택합니다 이 버튼을 클릭하고 검색 필드에 '북경'을 입력합니다.
- 3. 추가 를 클릭합니다.
- 4. 다음 설명을 입력합니다.
 - a. 피어링 링크명은 AKS-VNET-NAME to anf입니다.
 - b. VNET 피어링 파트너로 구독하는 Azure NetApp Files VNET와 가입자 ID입니다.
 - c. 별표가 아닌 모든 섹션은 기본값을 사용하여 남겨 둡니다.
- 5. 추가 를 클릭합니다.

자세한 내용은 을 참조하십시오 "가상 네트워크 피어링을 생성, 변경 또는 삭제합니다".

Trident를 설치합니다

Hrom을 사용하여 Trident를 설치하려면 다음 단계를 완료하십시오.

- 1. Helm을 설치합니다(설치 지침은 를 참조하십시오 "출처")를 클릭합니다.
- 2. Trident 20.01.1 설치 프로그램을 다운로드하고 압축을 풉니다.

```
$wget
$tar -xf trident-installer-21.01.1.tar.gz
```

3. 디렉터리를 '트리덴트 - 설치자'로 변경합니다.

```
$cd trident-installer
```

4. 시스템 '\$path'의 디렉토리에 tridentctl을 복사합니다.

```
$sudo cp ./tridentctl /usr/local/bin
```

- 5. Kubernetes(K8s) 클러스터에 Trident를 설치하고 H제어("출처"):
 - a. 디렉터리를 'helm' 디렉토리로 변경합니다.

```
$cd helm
```

b. Trident를 설치합니다.

```
$helm install trident trident-operator-21.01.1.tgz --namespace
trident --create-namespace
```

C. Trident Pod의 상태를 확인합니다.

```
$kubectl -n trident get pods
```

모든 Pod가 가동되어 실행 중이면 Trident가 설치되어 앞으로 이동할 수 있습니다.

- 6. AKS에 대한 Azure NetApp Files 백엔드 및 스토리지 클래스를 설정합니다.
 - a. Azure 서비스 원칙을 만듭니다.

서비스 보안 주체는 Trident가 Azure와 통신하여 Azure NetApp Files 리소스를 조작하는 방법입니다.

```
$az ad sp create-for-rbac --name ""
```

출력은 다음 예와 같이 표시되어야 합니다.

- 7. Trident 백엔드 json 파일(예: "anf-backend.json")을 생성합니다.
- 8. 원하는 텍스트 편집기를 사용하여 'anf-backend.json' 파일 안에 다음 필드를 입력합니다.

```
"version": 1,
    "storageDriverName": "azure-netapp-files",
    "subscriptionID": "fakec765-4774-fake-ae98-a721add4fake",
    "tenantID": "fakef836-edc1-fake-bff9-b2d865eefake",
    "clientID": "fake0f63-bf8e-fake-8076-8de91e57fake",
    "clientSecret": "SECRET",
    "location": "westeurope",
    "serviceLevel": "Standard",
    "virtualNetwork": "anf-vnet",
    "subnet": "default",
    "nfsMountOptions": "vers=3, proto=tcp",
    "limitVolumeSize": "500Gi",
    "defaults": {
    "exportRule": "0.0.0.0/0",
    "size": "200Gi"
}
```

- 9. 다음 필드로 대체합니다.
 - ∘ '스크립트 ID'입니다. Azure 구독 ID입니다.
 - 텐antID. 이전 단계에서 'az ad sp'의 출력에서 Azure 테넌트 ID입니다.
 - '클라이언트 ID'. 이전 단계에서 'az ad sp'의 출력에서 귀하의 appID.
 - ° 'clientSecret' 이전 단계에서 사용한 'az ad sp' 출력의 암호입니다.
- 10. 구성 파일로 anf-backend.json을 사용하여 trident 네임스페이스에 Azure NetApp Files 백엔드를 생성하도록 Trident에 지시합니다.

\$tridentctl create backend -f anf-backend.json -n trident

+	+			·+
NAME	STORAGE DRIVER	UUID	STATE	VOLUMES
azurenetappfiles_86181	azure-netapp-files	2ca85462-59ac-4946-be05-c03f5575a2ad	online	0

- 11. 스토리지 클래스를 생성합니다. Kubernetes 사용자는 이름으로 스토리지 클래스를 지정하는 PVC를 사용하여 볼륨을 프로비저닝합니다. K8s에게 이전 단계에서 만든 Trident 백엔드를 참조하는 스토리지 클래스 "azurenetappfiles"를 생성하도록 지시합니다.
- 12. 스토리지 클래스 및 복사본을 위한 YAML('anf-storage-class.yAML') 파일을 생성합니다.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: azurenetappfiles

provisioner: netapp.io/trident

parameters:

backendType: "azure-netapp-files"

\$kubectl create -f anf-storage-class.yaml

13. 스토리지 클래스가 생성되었는지 확인합니다.

kubectl get sc azurenetappfiles

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE azurenetappfiles csi.trident.netapp.io Delete Immediate false 98s

Helm을 사용하여 AKS에서 RAPIDS를 사용하여 Dask를 설정합니다

Hrom을 사용하여 AKS에서 RAPIDS를 사용하여 Dask를 설정하려면 다음 단계를 수행하십시오.

1. RAPIDS를 사용하여 Dask를 설치하기 위한 네임스페이스를 생성합니다.

kubectl create namespace rapids-dask

- 2. PVC를 생성하여 클릭률 데이터 세트를 저장합니다.
 - a. 다음 YAML 콘텐츠를 파일에 저장하여 PVC를 생성합니다.

kind: PersistentVolumeClaim
apiVersion: v1

metadata:

name: pvc-criteo-data

spec:

accessModes:

- ReadWriteMany

resources: requests:

storage: 1000Gi

storageClassName: azurenetappfiles

b. Kubernetes 클러스터에 YAML 파일을 적용하십시오.

```
kubectl -n rapids-dask apply -f <your yaml file>
```

3. "rapidsai git" 리포지토리 복제("https://github.com/rapidsai/helm-chart")를 클릭합니다.

```
git clone https://github.com/rapidsai/helm-chart helm-chart
```

- 4. "Values.YAML"을 수정하고, 작업자와 Jupyter 작업공간을 위해 앞서 만든 PVC를 포함합니다.
 - a. 리포지토리의 "rapidsai" 디렉토리로 이동합니다.

```
cd helm-chart/rapidsai
```

b. Values.YAML 파일을 업데이트하고 PVC를 사용해 볼륨을 마운트합니다.

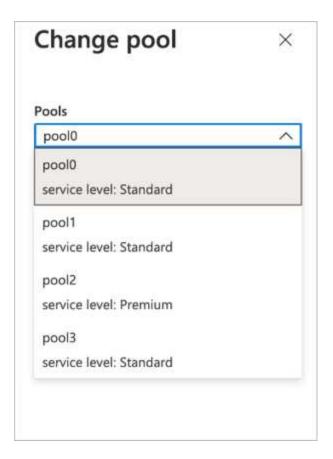
```
dask:
  worker:
    name: worker
    mounts:
      volumes:
        - name: data
          persistentVolumeClaim:
            claimName: pvc-criteo-data
      volumeMounts:
        - name: data
          mountPath: /data
  jupyter:
    name: jupyter
    mounts:
      volumes:
        - name: data
          persistentVolumeClaim:
            claimName: pvc-criteo-data
      volumeMounts:
        - name: data
          mountPath: /data
```

5. 리포지토리의 홈 디렉토리로 이동하여 H제어 를 사용하여 AKS에 작업자 노드 3개가 있는 Dask를 배포합니다.

```
cd ..
helm dep update rapidsai
helm install rapids-dask --namespace rapids-dask rapidsai
```

Azure NetApp Files 성능 계층

볼륨에 대해 원하는 서비스 수준을 사용하는 다른 용량 풀로 볼륨을 이동하여 기존 볼륨의 서비스 수준을 변경할 수 있습니다. 이 솔루션을 통해 고객은 작은 데이터 세트와 Standard Tier의 적은 수의 GPU로 시작한 후 데이터 및 GPU가 증가함에 따라 프리미엄 계층으로 스케일아웃 또는 스케일업할 수 있습니다. Premium Tier는 Standard Tier보다 테라바이트당 처리량이 4배 더 향상되었으며, 볼륨의 서비스 수준을 변경하기 위해 데이터를 이동할 필요 없이 스케일업이 가능합니다.


볼륨의 서비스 수준을 동적으로 변경합니다

볼륨의 서비스 수준을 동적으로 변경하려면 다음 단계를 수행하십시오.

1. 볼륨 페이지에서 서비스 수준을 변경할 볼륨을 마우스 오른쪽 단추로 클릭합니다. 풀 변경 을 선택합니다.

2. Change Pool 창에서 볼륨을 이동할 용량 풀을 선택합니다.

3. 확인 을 클릭합니다.

성능 계층 변경을 자동화합니다

다음 옵션을 사용하여 성능 계층 변경을 자동화할 수 있습니다.

- 동적 서비스 수준 변경은 현재 Public Preview에 있으며 기본적으로 활성화되어 있지 않습니다. Azure 구독에서 이 기능을 활성화하려면 이 설명서에서 방법을 참조하십시오 "볼륨의 서비스 수준을 동적으로 변경합니다".
- Azure CLI 볼륨 풀 변경 명령은 에 나와 있습니다 "볼륨 풀 변경 설명서" 및 의 예는 다음과 같습니다.

az netappfiles volume pool-change -g mygroup --account-name myaccname --pool-name mypoolname --name myvolname --new-pool-resource-id mynewresourceid

 PowerShell "Set-AzNetAppFilesVolumePool cmdlet" Azure NetApp Files 볼륨의 풀을 변경하며 다음 예에 표시됩니다.

```
Set-AzNetAppFilesVolumePool
-ResourceGroupName "MyRG"
-AccountName "MyAnfAccount"
-PoolName "MyAnfPool"
-Name "MyAnfVolume"
-NewPoolResourceId 7d6e4069-6c78-6c61-7bf6-c60968e45fbf
```

저작권 정보

Copyright © 2024 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽, 전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적 보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는 모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의 발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items) 조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점 자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인 비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에 대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로 가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정, 수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에 명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.