Python ZC ME
ONTAP Select

NetApp
January 31, 2025

This PDF was generated from https://docs.netapp.com/ko-kr/ontap-select-
9111/reference_api_script_cc.html on January 31, 2025. Always check docs.netapp.com for the latest.

=Pl

Python ZE MZ
S AHE WMot ATZEQLICE
et AR ES AHE5H0]
L E 2IO|MIAE FTI5H= AT EYL|CE
S2AHE MASt= AT E/JL|CH
S XH S
S2|AF LE9| IV EHEE A3

12
16
18
22

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter
["hostname']) :
log info("Registering vcenter {} credentials".format (vcenter
['hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}
data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log debug trace ()

hosts = config.get ('hosts', [1])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists
('/security/credentials',
'hostname',
host['name']) :
log info("Registering host {} credentials".format (host][
'name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}
deploy.post ('/security/credentials', data)

def register unkown_hosts (deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource exists('/hosts', 'name', host['name']):

['type']}

host))

'user']}

missing host cnt += 1
host config = {"name": host['name'], "hypervisor type": host

if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log info(

"Registering from vcenter {mgmt server}".format (**

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host]|

log info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found

if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):

LI |

POST a new cluster with all needed attribute values.

Returns the cluster id of the new config

LI |

log _debug trace ()

cluster config = config['cluster']

cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:

log info("Creating cluster config named {name}".format (

**cluster config))

Filter to only the valid attributes, ignores anything else in

the Jjson
data

'dns_info',

= {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'ntp servers']}

num nodes = len(config['nodes'])

log info("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),
data)
cluster id = resp.headers.get ('Location') .split ('/") [-1]

return cluster id

def get node_ids(deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'''

log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))
node ids = [node['id'] for node in response.json() .get('records')]
return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log _debug trace ()
log info("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number',6 'instance type',
'is storage efficiency enabled'] if k in
node'}
Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log and exit ("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
'"'" Set the network information for a node '''

log _debug trace ()
log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_num_records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource (
'/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['wvlan']:

data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node_ id, network id), data)

def add node_storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''

log debug trace ()

log info("Adding node '{}' storage properties".format (node id))

log info("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:

data = {'disks': node['storage']['disks']}

deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def create cluster config(deploy, config):

LI |

json data '''

def

log debug trace ()
cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log debug trace ()

log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'

]['ontap admin password']}}

deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log _debug trace() :

stack = traceback.extract stack()

parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
log_info (msg) :

logging.getLogger ('deploy') .info (msqg)

log_and exit (msqg) :

logging.getLogger ('deploy') .error (msqg)

Construct a cluster config in the deploy server using the input

exit (1)

def configure logging (verbose):
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)

def main (args) :
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials(deploy, config)
register unkown hosts(deploy, config)

cluster id = create cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)

def parseArgs () :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '—--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument ('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument ('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse args ()

if name == ' main J g

args = parseArgs ()

main (args)

[f2tM A3 E AE0IH S AES dd5h= JSONRILICE

ﬂllﬂJ

Python ZE ME2 AL235t0{ ONTAP Select 22{AEE MMt Ll AX[S of JSON IS
ASZEO YHo= H|ZoHoF LTt HHIE Al=lof w2} MEHSE JSON MES SASIH =3Y
= USLICH

ESXi2| T = S2{AH

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

ip": "10.206.80.115",

n

"name": "mycluster"
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"
by
"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

vCentersS AM25t= ESXi| B = S{AH

"hosts": [

{
"name" :"host-1234",
"type":"ESX"’

"mgmt server":"vcenter-1234"

1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "lab2

.company-

10

demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],

"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",
"username":"selectadmin”

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": [

{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

KVMS| THd L& S2{AH

* ONTAP Select 9.10.1E2E{= KVM 50| IHH}O| KO Af 22{AEZ O O|AL 2XEH 2 of
=

=
@ * ONTAP Select 9.11.18E{= 2Zatol 9l A 7|52 H|Qst RE 22| 7|52 7|
SHAE SAENM AFEE = §IELICH

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"
}
1,
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"CBF4ED97",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",
"purpose": "data",
"vlan": null
by
{
"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [

{
"name": "storage-pool-1",
"capacity": 4802666790125

L 2lO|MIAE =7
o0

2 ATRIEE AR} NTAP Select .- =0j| CHst 2}0|

12

#!/usr/bin/env python

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H FH= FH H = FH H H H H FH H H H H

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :
log info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log info('Adding license for serial number: {}'.format (serial number))

deploy.put ('/licensing/licenses/{}'.format (serial number), data=data,
files=files)

14

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :

LI |

If the license 1is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license(deploy, serial number, data, files)

def get serial number from license(license filename) :
''"" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get ('statusResp', {})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:
log and exit ("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log _and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setlLevel (logging.WARNING)

def main(args) :
configure logging()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post new license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of ONTAP Select Deploy')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument ('-1l', '--license', required=True, type=str, help
='Filename of the NLF license data')

parser.add argument('-u', '--ontap username',6 type=str,

15

help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password',6 type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse

import json

import logging

from deploy requests import DeployRequests
def find cluster(deploy, cluster name):

return deploy.find_resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusters/{}?fieldszstate'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':

log info ("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_cluster (deploy, cluster id):
log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging():
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setlLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info("Found the cluster {} with id: {}.".format (config
['cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster(deploy, cluster id)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

17

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of Deploy server')

parser.add argument ('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_ args ()
if name == ' main ':
args = parseArgs ()
main (args)

s Xl

[0

D=

HE Python 23 EEE= HY ZS0j|M S8 Python S A S AFERLIL.

#!/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()
class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

18

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: $s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def put (self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format (data))

19

response = requests.put (self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)

else:

self.logger.debug ('PUT DATA:"')

response = requests.put (self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors(response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def find resource (self, path, name, value):
""" Returns the 'id' of the resource if it exists, otherwise None

None
self.get ('{path}?{field}={value}'.format (
path=path, field=name, value=value))

resource

response

20

if response.status code == 200 and response.json() .get
("num records') >= 1:
resource = response.json().get('records') [0].get ('id")
return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

if response.status code == 200
return response.json().get('num_records')
return None

def resource exists(self, path, name, value):
return self.find resource(path, name, value) is not None

def wait_for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"

.format (
job id, poll timeout, last modified))
job body = response.json().get ('record', {})
Show interesting message updates
message = job body.get ('message', ''")
self.logger.info('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job body.get('last modified')
Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB: %s',
job body)

exit (1) # End the script if a failure occurs

22

break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: $s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers[key] for key in ['Location',
'request-id'] if key in response.headers}

S+

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S S S S e SR S S Sk S S o e

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mmn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=(

'A space separated list of node names for which the resize

2

23

24

operation'

' should be performed. The default is to apply the resize to all
nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

resized in the same operation.'

))

return parser.parse_ args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).json
() ['record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig(
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getLogger ('requests.packages.urllib3"') .setLevel (logging
.WARNING)

parsed args = parse args|()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1

changes = get request body(parsed args, cluster)

(o

deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job

=True)

if name == ' main g

sys.exit (main())

25

4=

M =

Copyright © 2025 NetApp, Inc. All Rights Reserved. O|=30|A Q12 E 2 EA2| oot HEE HEH ARXIL
A MH 521 glo|= ofet HAO|Lt EHFAL =2, =% EE= MX AM A|AH0| Y& SH= AS HIZet 22T,

XA = 7|AN e o2 SXE o~ glEL Ch

NetAppO| MZH#E S 7HE Xt=0f| A= 2ZELY|0{0f|i= of2Q] 20| M ALF nX|ALeto] X ZEL|C}.

=5, Ho|E &4, 0] &4, Y Sths Zel5t0](010f I X| §4F), Of ALEH 0] A= QIol| LMd}=

I
2= A o 721 A8, QU Sof, UM Ao, ZHA AdHo] Lo chotod 1 2 0|9, ME, Ao}
O, {243t Mol S Bel(hAl twi JX| %2 F2)2t 2210] Ofm{Et MUT X|X| oD, 0fet 22 Ao
24y JH5 0| SX|EI{CH SHEFE ORI pRILIc

NetApp2 & A0 2 E MFS ANEX o2 glo] HEY AH2|E EFELICE NetApp2 NetApp2| HAE Q!
MH So|E &2 ZRE Melste & 2M0 2 E HFS A5 2dst= ofet ZH|0l| = MRS X|X| 5LICt.
= HEZQ A = F0i2 B2 NetAppOfiA= Ot ESH, S HH = 7|6 XA T LHH0| HEE|= 2to| AT
M SotXA| gdELItt.

= B0 2FE HMFZ2 oLt ol g2l 0= 59, ot 5] L= £ ¢l 5512 2 UL

Mgtd M| Al HEo| o3t AF2, EX| = S7H0ll= DFARS 252.227-7013(2014'F 28) 8! FAR 52.227-
19(2007'4 12&)2| 7|= H|O|H-H| &4 HA S=0i et #2|(Rights in Technical Data -Noncommercial ltems)
o 5t =g (b)(3)oll dHE MptAtEto] MEEL|CE.

of7|off Z&E MO = AU ME W/EE 4YUE AH|A(FAR 2.1010] H2|)ofl sH=HSHH NetApp, Inc.2l 5&
RHAtIL|CE & A2k 2l HS &= 25 NetApp 7|2 CIO|E X ZEE AZEY s 2EMOZ MAHE0|H 710l
HI20O 2 JNUE|JELICH O|= M2 = HIO|E 7t M3E O|= Alefat 2sto] sHEh Al2kS XSt o2t HI0|E ol
CHot M MAXMOE HISHHO0|I e 4 ol THAHE0| E7t56HH F| & S7Hst 2to| A E Mgt o=
ZHELICE of7]0f] IS E BRE M 2lSt NetApp, Inc.2| AP MH S01 ¢l0|= O] HIO|HE AHE, 37H, M4t +=H,
28 e FA|E & QI&LICE 0|2 2UHR0)| Cist M5 210 MlA = DFARS 8t 252.227-7015(b)(2014 2€)0]|
HA|El Ao 2 F|SHEIL|CH

AE H-

NETAPP, NETAPP 211 5! http://www.netapp.com/TM0| L}ZEl Ot3= NetApp, Inc.2| HEL|CEH 7|EF S|AF S

HE OIE2 SiE 27X dHY &= ASLIC

26

http://www.netapp.com/TM

	Python 코드 샘플 : ONTAP Select
	목차
	Python 코드 샘플
	클러스터를 생성하는 스크립트입니다
	따라서 스크립트를 사용하여 클러스터를 생성하는 JSON입니다
	노드 라이센스를 추가하는 스크립트입니다
	클러스터를 삭제하는 스크립트입니다
	공통 지원 모듈
	클러스터 노드의 크기를 조정하는 스크립트입니다

