
REST로 자동화
ONTAP Select
NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/ko-kr/ontap-select-9171/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

목차
REST로 자동화 . 1

개념. 1

ONTAP Select 클러스터 배포 및 관리를 위한 REST 웹 서비스 기반 . 1

ONTAP Select Deploy API에 액세스하는 방법. 2

ONTAP Select Deploy API 기본 운영 특성 . 2

ONTAP Select 대한 요청 및 응답 API 트랜잭션 . 4

ONTAP Select 위한 Job 객체를 사용한 비동기 처리 . 6

브라우저로 접속 . 8

브라우저를 사용하여 ONTAP Select Deploy API에 액세스하기 전에 . 8

ONTAP Select Deploy 문서 페이지에 액세스하세요 . 8

ONTAP Select Deploy API 호출을 이해하고 실행합니다. 9

워크플로 프로세스 . 9

ONTAP Select Deploy API 워크플로를 사용하기 전에 . 9

워크플로 1: ESXi에서 ONTAP Select 단일 노드 평가 클러스터 만들기 . 10

Python으로 접근하기 . 17

Python을 사용하여 ONTAP Select Deploy API에 액세스하기 전에 . 17

ONTAP Select Deploy를 위한 Python 스크립트 이해. 17

파이썬 코드 샘플 . 18

ONTAP Select 클러스터를 생성하는 스크립트 . 18

ONTAP Select 클러스터를 생성하기 위한 스크립트용 JSON . 25

ONTAP Select 노드 라이선스를 추가하는 스크립트 . 30

ONTAP Select 클러스터를 삭제하는 스크립트 . 33

ONTAP Select 위한 공통 지원 Python 모듈 . 35

ONTAP Select 클러스터 노드 크기를 조정하는 스크립트. 40

REST로 자동화

개념

ONTAP Select 클러스터 배포 및 관리를 위한 REST 웹 서비스 기반

REST(Representational State Transfer)는 분산 웹 애플리케이션을 구축하는 스타일입니다. 웹
서비스 API 설계에 적용되면 서버 기반 리소스를 노출하고 상태를 관리하는 데 필요한 기술과
모범 사례를 확립합니다. 주요 프로토콜과 표준을 사용하여 ONTAP Select 클러스터를 배포하고
관리하기 위한 유연한 기반을 제공합니다.

건축과 고전적 제약

REST는 Roy Fielding이 그의 박사 학위 논문에서 공식적으로 언급했습니다. "논문" 2000년에 UC 어바인에서. 이
논문은 일련의 제약 조건을 통해 아키텍처 스타일을 정의하며, 이러한 제약 조건들이 모여 웹 기반 애플리케이션과 그
기반 프로토콜을 개선합니다. 제약 조건은 상태 비저장 통신 프로토콜을 사용하는 클라이언트/서버 아키텍처 기반의
RESTful 웹 서비스 애플리케이션을 구축합니다.

자원과 국가 대표

리소스는 웹 기반 시스템의 기본 구성 요소입니다. REST 웹 서비스 애플리케이션을 구축할 때 초기 설계 작업은 다음과
같습니다.

• 시스템 또는 서버 기반 리소스 식별 모든 시스템은 리소스를 사용하고 관리합니다. 리소스는 파일, 비즈니스
트랜잭션, 프로세스 또는 관리 개체일 수 있습니다. REST 웹 서비스 기반 애플리케이션을 설계할 때 가장 먼저 해야
할 작업 중 하나는 리소스를 식별하는 것입니다.

• 리소스 상태 및 관련 상태 작업 정의 리소스는 항상 유한한 수의 상태 중 하나에 속합니다. 상태와 상태 변경에
영향을 미치는 관련 작업은 명확하게 정의되어야 합니다.

클라이언트와 서버 간에는 일반적인 CRUD(생성, 읽기, 업데이트, 삭제) 모델에 따라 리소스에 액세스하고 상태를
변경하기 위한 메시지가 교환됩니다.

URI 엔드포인트

모든 REST 리소스는 명확하게 정의된 주소 지정 체계를 사용하여 정의하고 제공해야 합니다. 리소스가 위치하고
식별되는 엔드포인트는 URI(Uniform Resource Identifier)를 사용합니다. URI는 네트워크의 각 리소스에 고유한
이름을 생성하는 일반적인 프레임워크를 제공합니다. URL(Uniform Resource Locator)은 웹 서비스에서 리소스를
식별하고 액세스하는 데 사용되는 URI 유형입니다. 리소스는 일반적으로 파일 디렉터리와 유사한 계층 구조로
노출됩니다.

HTTP 메시지

HTTP(Hypertext Transfer Protocol)는 웹 서비스 클라이언트와 서버가 리소스에 대한 요청 및 응답 메시지를 교환하는
데 사용하는 프로토콜입니다. 웹 서비스 애플리케이션을 설계하는 과정에서 HTTP 동사(예: GET 및 POST)는 리소스
및 해당 상태 관리 작업에 매핑됩니다.

HTTP는 상태를 저장하지 않습니다. 따라서 관련된 요청과 응답 집합을 하나의 트랜잭션으로 연결하려면 요청/응답
데이터 흐름과 함께 전달되는 HTTP 헤더에 추가 정보를 포함해야 합니다.

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

JSON 포맷팅

클라이언트와 서버 간에 정보를 구조화하고 전송하는 방법은 여러 가지가 있지만, 가장 널리 사용되는 방식(그리고
Deploy REST API와 함께 사용되는 방식)은 JavaScript Object Notation(JSON)입니다. JSON은 간단한 데이터
구조를 일반 텍스트로 표현하는 업계 표준이며, 리소스를 설명하는 상태 정보를 전송하는 데 사용됩니다.

ONTAP Select Deploy API에 액세스하는 방법

REST 웹 서비스의 본질적인 유연성 덕분에 ONTAP Select Deploy API에 여러 가지 방법으로
액세스할 수 있습니다.

ONTAP Select Deploy에 포함된 REST API에는 버전 번호가 지정되어 있습니다. API 버전 번호는
Deploy 릴리스 번호와 무관합니다. ONTAP Select 9.17.1 Deploy 관리 유틸리티에는 REST API 버전
3이 포함되어 있습니다.

유틸리티 네이티브 사용자 인터페이스 배포

API에 접근하는 주요 방법은 ONTAP Select Deploy 웹 사용자 인터페이스를 이용하는 것입니다. 브라우저가 API를
호출하고 사용자 인터페이스 디자인에 따라 데이터를 재구성합니다. Deploy 유틸리티 명령줄 인터페이스를 통해서도
API에 접근할 수 있습니다.

ONTAP Select Deploy 온라인 문서 페이지

ONTAP Select Deploy 온라인 설명서 페이지는 브라우저를 사용할 때 다른 접근 방식을 제공합니다. 개별 API 호출을
직접 실행하는 방법을 제공할 뿐만 아니라, 각 호출에 대한 입력 매개변수 및 기타 옵션을 포함한 API에 대한 자세한
설명도 제공합니다. API 호출은 여러 기능 영역 또는 범주로 구성됩니다.

맞춤형 프로그램

다양한 프로그래밍 언어와 도구를 사용하여 Deploy API에 액세스할 수 있습니다. Python, Java, cURL 등이 많이
사용됩니다. API를 사용하는 프로그램, 스크립트 또는 도구는 REST 웹 서비스 클라이언트 역할을 합니다. 프로그래밍
언어를 사용하면 API를 더 잘 이해하고 ONTAP Select 배포를 자동화할 수 있습니다.

ONTAP Select Deploy API 기본 운영 특성

REST는 공통된 기술과 모범 사례를 제공하지만, 각 API의 세부 사항은 설계 방식에 따라 달라질
수 있습니다. ONTAP Select Deploy API를 사용하기 전에 해당 API의 세부 사항과 운영 특성을
숙지해야 합니다.

하이퍼바이저 호스트 대 ONTAP Select 노드

_하이퍼바이저 호스트_는 ONTAP Select 가상 머신을 호스팅하는 핵심 하드웨어 플랫폼입니다. ONTAP Select 가상
머신이 하이퍼바이저 호스트에 배포되고 활성화되면 해당 가상 머신은 _ONTAP Select 노드_로 간주됩니다. Deploy

REST API 버전 3에서는 호스트 객체와 노드 객체가 분리되어 있습니다. 이를 통해 하나 이상의 ONTAP Select 노드가
동일한 하이퍼바이저 호스트에서 실행될 수 있는 일대다 관계가 가능합니다.

객체 식별자

각 리소스 인스턴스 또는 객체는 생성될 때 고유 식별자가 할당됩니다. 이러한 식별자는 ONTAP Select Deploy의 특정
인스턴스 내에서 전역적으로 고유합니다. 새로운 객체 인스턴스를 생성하는 API 호출을 발행한 후 연관된 ID 값이

2

호출자에게 반환됩니다. location HTTP 응답의 헤더. 식별자를 추출하여 리소스 인스턴스를 참조할 때 후속
호출에서 사용할 수 있습니다.

객체 식별자의 내용과 내부 구조는 언제든지 변경될 수 있습니다. 연관된 객체를 참조할 때 해당 API

호출에서 필요에 따라서만 식별자를 사용해야 합니다.

요청 식별자

모든 성공적인 API 요청에는 고유 식별자가 할당됩니다. 식별자는 다음에서 반환됩니다. request-id 연관된 HTTP

응답의 헤더. 요청 식별자를 사용하여 단일 특정 API 요청-응답 트랜잭션의 활동을 집합적으로 참조할 수 있습니다. 예를
들어, 요청 ID를 기반으로 트랜잭션의 모든 이벤트 메시지를 검색할 수 있습니다.

동기 및 비동기 호출

서버가 클라이언트로부터 받은 HTTP 요청을 처리하는 주요 방법은 두 가지가 있습니다.

• 동기식 서버는 요청을 즉시 수행하고 200, 201 또는 204 상태 코드로 응답합니다.

• 비동기: 서버가 요청을 수락하고 상태 코드 202로 응답합니다. 이는 서버가 클라이언트 요청을 수락하고 요청을
완료하기 위한 백그라운드 작업을 시작했음을 나타냅니다. 최종 성공 또는 실패 여부는 즉시 알 수 없으며 추가 API

호출을 통해 결정해야 합니다.

장기 실행 작업의 완료 확인

일반적으로 완료하는 데 시간이 오래 걸릴 수 있는 모든 작업은 서버에서 백그라운드 작업을 사용하여 비동기적으로
처리됩니다. Deploy REST API를 사용하면 모든 백그라운드 작업은 작업을 추적하고 현재 상태와 같은 정보를
제공하는 Job 객체에 의해 고정됩니다. 백그라운드 작업이 생성된 후 고유 식별자를 포함한 Job 객체가 HTTP 응답으로
반환됩니다.

Job 객체를 직접 쿼리하여 관련 API 호출의 성공 또는 실패 여부를 확인할 수 있습니다. 자세한 내용은 _Job 객체를
사용한 비동기 처리_를 참조하세요.

Job 객체를 사용하는 것 외에도 요청의 성공 또는 실패를 판별하는 데 사용할 수 있는 다른 방법이 있습니다.

• 이벤트 메시지: 원래 응답과 함께 반환된 요청 ID를 사용하여 특정 API 호출과 관련된 모든 이벤트 메시지를 검색할
수 있습니다. 이벤트 메시지에는 일반적으로 성공 또는 실패 여부가 표시되며, 오류 조건을 디버깅할 때도 유용할 수
있습니다.

• 리소스 상태 또는 상태 여러 리소스는 요청의 성공 또는 실패를 간접적으로 확인하기 위해 쿼리할 수 있는 상태 또는
상태 값을 유지합니다.

보안

Deploy API는 다음과 같은 보안 기술을 사용합니다.

• 전송 계층 보안: 배포 서버와 클라이언트 간에 네트워크를 통해 전송되는 모든 트래픽은 TLS를 통해 암호화됩니다.

암호화되지 않은 채널을 통한 HTTP 프로토콜 사용은 지원되지 않습니다. TLS 버전 1.2가 지원됩니다.

• HTTP 인증: 기본 인증은 모든 API 트랜잭션에 사용됩니다. 사용자 이름과 비밀번호를 base64 문자열로 포함하는
HTTP 헤더가 모든 요청에 추가됩니다.

3

ONTAP Select 대한 요청 및 응답 API 트랜잭션

모든 Deploy API 호출은 Deploy 가상 머신에 대한 HTTP 요청으로 수행되며, 이 요청은
클라이언트에 연관된 응답을 생성합니다. 이 요청/응답 쌍은 API 트랜잭션으로 간주됩니다.

Deploy API를 사용하기 전에 요청을 제어하는 데 사용할 수 있는 입력 변수와 응답 출력 내용을
숙지해야 합니다.

API 요청을 제어하는 입력 변수

HTTP 요청에 설정된 매개변수를 통해 API 호출이 처리되는 방식을 제어할 수 있습니다.

요청 헤더

HTTP 요청에는 다음을 포함한 여러 헤더를 포함해야 합니다.

• content-type 요청 본문에 JSON이 포함되어 있는 경우 이 헤더를 application/json으로 설정해야 합니다.

• 응답 본문에 JSON이 포함되는 경우 이 헤더를 application/json으로 설정해야 합니다.

• 인증 기본 인증은 base64 문자열로 인코딩된 사용자 이름과 비밀번호로 설정해야 합니다.

요청 본문

요청 본문의 내용은 특정 호출에 따라 다릅니다. HTTP 요청 본문은 다음 중 하나로 구성됩니다.

• 입력 변수(예: 새 클러스터의 이름)가 있는 JSON 객체

• 비어 있는

객체 필터링

GET을 사용하는 API 호출을 실행할 때 반환되는 객체를 속성에 따라 제한하거나 필터링할 수 있습니다. 예를 들어,

일치시킬 정확한 값을 지정할 수 있습니다.

<field>=<query value>

정확한 일치 외에도, 다양한 값 범위에 대한 객체 집합을 반환하는 다른 연산자도 있습니다. ONTAP Select 아래에
표시된 필터링 연산자를 지원합니다.

연산자 설명

= 동일하다

< 미만

> 보다 크다

⇐ 이하

>= 이상 또는 같음

또는

! 같지 않다

* 탐욕스러운 와일드카드

4

null 키워드나 부정(!null)을 쿼리의 일부로 사용하면 특정 필드가 설정되었는지 여부에 따라 객체 집합을 반환할 수도
있습니다.

객체 필드 선택

기본적으로 GET을 사용하여 API 호출을 실행하면 객체를 고유하게 식별하는 속성만 반환됩니다. 이 최소 필드 집합은
각 객체의 키 역할을 하며 객체 유형에 따라 달라집니다. 다음과 같은 방법으로 fields 쿼리 매개변수를 사용하여 추가
객체 속성을 선택할 수 있습니다.

• 저렴한 필드 지정 fields=* 로컬 서버 메모리에 유지 관리되거나 액세스하는 데 거의 처리가 필요하지 않은 개체
필드를 검색합니다.

• 비싼 필드 지정 fields=** 추가적인 서버 처리가 필요한 항목을 포함하여 모든 개체 필드를 검색합니다.

• 사용자 정의 필드 선택 사용 fields=FIELDNAME 원하는 정확한 필드를 지정하세요. 여러 필드를 요청할 경우,

공백 없이 쉼표로 값을 구분해야 합니다.

의 필요할 때만 비용이 많이 들거나 저렴한 필드 집합을 검색해야 합니다. 비용이 많이 들거나 저렴한
필드 분류는 NetApp 에서 내부 성능 분석을 기반으로 결정합니다. 분류는 언제든지 변경될 수 있습니다.

출력 세트의 객체 정렬

리소스 컬렉션의 레코드는 객체에 정의된 기본 순서대로 반환됩니다. 다음과 같이 필드 이름과 정렬 방향을 사용하여
order_by 쿼리 매개변수를 사용하여 순서를 변경할 수 있습니다.

order_by=<field name> asc|desc

예를 들어, 유형 필드를 내림차순으로 정렬한 다음 ID를 오름차순으로 정렬할 수 있습니다.

order_by=type desc, id asc

여러 개의 매개변수를 포함하는 경우 필드를 쉼표로 구분해야 합니다.

쪽수 매기기

동일한 유형의 객체 컬렉션에 액세스하기 위해 GET 방식으로 API 호출을 실행하면 기본적으로 일치하는 모든 객체가
반환됩니다. 필요한 경우, 요청과 함께 max_records 쿼리 매개변수를 사용하여 반환되는 레코드 수를 제한할 수
있습니다. 예를 들어:

max_records=20

필요한 경우 이 매개변수를 다른 쿼리 매개변수와 결합하여 결과 집합을 좁힐 수 있습니다. 예를 들어, 다음은 지정된
시간 이후에 생성된 최대 10개의 시스템 이벤트를 반환합니다.

time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

이벤트(또는 모든 객체 유형)를 페이지별로 탐색하기 위해 여러 요청을 보낼 수 있습니다. 이후의 각 API 호출은 마지막
결과 집합의 최신 이벤트를 기반으로 새로운 시간 값을 사용해야 합니다.

API 응답 해석

각 API 요청은 클라이언트에게 응답을 생성합니다. 응답을 검토하여 성공 여부를 확인하고 필요에 따라 추가 데이터를
검색할 수 있습니다.

HTTP 상태 코드

Deploy REST API에서 사용하는 HTTP 상태 코드는 아래와 같습니다.

5

암호 의미 설명

200 OK 새로운 객체를 생성하지 않는 호출의 경우 성공을 나타냅니다.

201 생성됨 객체가 성공적으로 생성되었습니다. 위치 응답 헤더에 객체의 고유 식별자가
포함되어 있습니다.

202 수락됨 요청을 수행하기 위해 장기 실행 백그라운드 작업이 시작되었지만 작업이
아직 완료되지 않았습니다.

400 잘못된 요청 요청 입력이 인식되지 않거나 부적절합니다.

403 금지됨 인증 오류로 인해 접근이 거부되었습니다.

404 찾을 수 없음 요청에 언급된 리소스가 존재하지 않습니다.

405 허용되지 않는
메서드입니다

요청의 HTTP 동사는 해당 리소스에서 지원되지 않습니다.

409 갈등 개체가 이미 존재하기 때문에 개체를 생성하려는 시도가 실패했습니다.

500 내부 오류 서버에서 일반적인 내부 오류가 발생했습니다.

501 구현되지 않음 URI는 알려져 있지만 요청을 수행할 수 없습니다.

응답 헤더

Deploy 서버에서 생성된 HTTP 응답에는 다음을 포함한 여러 헤더가 포함됩니다.

• 요청 ID 모든 성공적인 API 요청에는 고유한 요청 식별자가 지정됩니다.

• 위치 객체가 생성되면 위치 헤더에는 고유한 객체 식별자를 포함한 새 객체의 전체 URL이 포함됩니다.

대응 기관

API 요청과 관련된 응답 내용은 객체, 처리 유형, 요청의 성공 또는 실패 여부에 따라 달라집니다. 응답 본문은 JSON

형식으로 렌더링됩니다.

• 단일 객체: 요청에 따라 필드 집합과 함께 단일 객체를 반환할 수 있습니다. 예를 들어, GET을 사용하면 고유
식별자를 사용하여 클러스터의 선택된 속성을 검색할 수 있습니다.

• 여러 객체 리소스 컬렉션에서 여러 객체를 반환할 수 있습니다. 모든 경우에 일관된 형식이 사용됩니다.

num_records 레코드의 개수와 객체 인스턴스의 배열을 포함하는 레코드를 나타냅니다. 예를 들어, 특정
클러스터에 정의된 모든 노드를 검색할 수 있습니다.

• Job 객체 API 호출이 비동기적으로 처리되면 백그라운드 작업을 고정하는 Job 객체가 반환됩니다. 예를 들어,

클러스터 배포에 사용되는 POST 요청은 비동기적으로 처리되어 Job 객체를 반환합니다.

• 오류 객체: 오류가 발생하면 항상 Error 객체가 반환됩니다. 예를 들어, 이미 존재하는 이름으로 클러스터를
생성하려고 하면 오류가 발생합니다.

• 비어 있음 특정 경우에는 데이터가 반환되지 않고 응답 본문이 비어 있습니다. 예를 들어, DELETE 키를 사용하여
기존 호스트를 삭제한 후 응답 본문이 비어 있는 경우가 있습니다.

ONTAP Select 위한 Job 객체를 사용한 비동기 처리

일부 Deploy API 호출, 특히 리소스를 생성하거나 수정하는 호출은 다른 호출보다 완료하는 데
시간이 더 오래 걸릴 수 있습니다. ONTAP Select Deploy는 이러한 장기 실행 요청을
비동기적으로 처리합니다.

6

Job 객체를 사용하여 설명된 비동기 요청

비동기적으로 실행되는 API 호출 후 HTTP 응답 코드 202는 요청이 성공적으로 검증되고 수락되었지만 아직 완료되지
않았음을 나타냅니다. 요청은 클라이언트에 대한 초기 HTTP 응답 이후에도 계속 실행되는 백그라운드 작업으로
처리됩니다. 응답에는 요청을 앵커링하는 Job 객체와 고유 식별자가 포함됩니다.

어떤 API 호출이 비동기적으로 작동하는지 확인하려면 ONTAP Select Deploy 온라인 설명서 페이지를
참조하세요.

API 요청과 연관된 Job 객체를 쿼리합니다.

HTTP 응답으로 반환되는 Job 객체에는 여러 속성이 포함되어 있습니다. state 속성을 쿼리하여 요청이 성공적으로
완료되었는지 확인할 수 있습니다. Job 객체는 다음 상태 중 하나일 수 있습니다.

• 대기 중

• 달리기

• 성공

• 실패

작업의 최종 상태(성공 또는 실패)를 감지하기 위해 Job 객체를 폴링할 때 사용할 수 있는 두 가지 기술이 있습니다.

• 표준 폴링 요청 현재 작업 상태가 즉시 반환됩니다.

• 롱 폴링 요청 작업 상태는 다음 중 하나가 발생할 때만 반환됩니다.

◦ 여론조사 요청에 제공된 날짜-시간 값보다 최근에 상태가 변경되었습니다.

◦ 시간 초과 값이 만료되었습니다(1~120초)

표준 폴링과 롱 폴링은 동일한 API 호출을 사용하여 Job 객체를 쿼리합니다. 그러나 긴 폴링 요청에는 두 개의 쿼리

매개변수가 포함됩니다. poll_timeout 그리고 last_modified .

배포 가상 머신의 작업 부하를 줄이려면 항상 롱 폴링을 사용해야 합니다.

비동기 요청을 발행하기 위한 일반 절차

다음의 고급 절차를 사용하여 비동기 API 호출을 완료할 수 있습니다.

1. 비동기 API 호출을 실행합니다.

2. 요청이 성공적으로 수락되었음을 나타내는 HTTP 응답 202를 받습니다.

3. 응답 본문에서 Job 객체의 식별자를 추출합니다.

4. 루프 내에서 각 사이클마다 다음을 수행합니다.

a. 롱폴 요청으로 Job의 현재 상태를 가져옵니다.

b. 작업이 종료 상태가 아닌 상태(대기 중, 실행 중)인 경우 루프를 다시 수행합니다.

5. 작업이 최종 상태(성공, 실패)에 도달하면 중지됩니다.

7

브라우저로 접속

브라우저를 사용하여 ONTAP Select Deploy API에 액세스하기 전에

Deploy 온라인 문서 페이지를 사용하기 전에 알아두어야 할 몇 가지 사항이 있습니다.

배포 계획

특정 배포 또는 관리 작업의 일환으로 API 호출을 실행하려는 경우 배포 계획을 수립하는 것이 좋습니다. 이러한 계획은
공식적이거나 비공식적일 수 있으며, 일반적으로 목표와 사용할 API 호출을 포함합니다. 자세한 내용은 REST API

배포를 사용하는 워크플로 프로세스를 참조하세요.

JSON 예제 및 매개변수 정의

각 API 호출은 일관된 형식을 사용하여 설명서 페이지에 설명되어 있습니다. 문서 내용에는 구현 참고 사항, 쿼리
매개변수, HTTP 상태 코드가 포함됩니다. 또한, 다음과 같이 API 요청 및 응답에 사용된 JSON에 대한 세부 정보를
표시할 수 있습니다.

• 예제 값 API 호출에서 _예제 값_을 클릭하면 해당 호출의 일반적인 JSON 구조가 표시됩니다. 필요에 따라 예제를
수정하여 요청의 입력으로 사용할 수 있습니다.

• 모델 _모델_을 클릭하면 JSON 매개변수의 전체 목록이 각 매개변수에 대한 설명과 함께 표시됩니다.

API 호출 시 주의 사항

배포 설명서 페이지를 사용하여 수행하는 모든 API 작업은 실시간 작업입니다. 구성이나 기타 데이터를 실수로 생성,

업데이트 또는 삭제하지 않도록 주의해야 합니다.

ONTAP Select Deploy 문서 페이지에 액세스하세요

API 설명서를 표시하고 수동으로 API 호출을 실행하려면 ONTAP Select Deploy 온라인 설명서
페이지에 액세스해야 합니다.

시작하기 전에

다음 사항이 있어야 합니다.

• ONTAP Select Deploy 가상 머신의 IP 주소 또는 도메인 이름

• 관리자의 사용자 이름과 비밀번호

단계

1. 브라우저에 URL을 입력하고 *Enter*를 누르세요:

https://<ip_address>/api/ui

2. 관리자 사용자 이름과 비밀번호를 사용하여 Sign in .

결과

배포 문서 웹 페이지가 표시되고, 페이지 하단에는 호출이 범주별로 정리되어 있습니다.

8

ONTAP Select Deploy API 호출을 이해하고 실행합니다.

모든 API 호출의 세부 정보는 ONTAP Select Deploy 온라인 문서 웹 페이지에 공통된 형식으로
문서화 및 표시됩니다. 단일 API 호출을 이해하면 모든 API 호출의 세부 정보에 접근하고 해석할
수 있습니다.

시작하기 전에

ONTAP Select Deploy 온라인 설명서 웹 페이지에 로그인해야 합니다. 클러스터 생성 시 ONTAP Select 클러스터에
고유 식별자가 할당되어 있어야 합니다.

이 작업에 관하여

고유 식별자를 사용하여 ONTAP Select 클러스터를 설명하는 구성 정보를 검색할 수 있습니다. 이 예에서는 '저렴함
’으로 분류된 모든 필드가 반환됩니다. 하지만 가장 좋은 방법은 필요한 특정 필드만 요청하는 것입니다.

단계

1. 메인 페이지에서 맨 아래로 스크롤하여 *클러스터*를 클릭하세요.

2. ONTAP Select 클러스터에 대한 정보를 반환하는 데 사용되는 API 호출의 세부 정보를 표시하려면 *GET

/clusters/{cluster_id}*를 클릭합니다.

워크플로 프로세스

ONTAP Select Deploy API 워크플로를 사용하기 전에

워크플로 프로세스를 검토하고 사용할 준비를 해야 합니다.

워크플로에서 사용되는 API 호출을 이해합니다.

ONTAP Select 온라인 설명서 페이지에는 모든 REST API 호출에 대한 세부 정보가 포함되어 있습니다. 워크플로
샘플에 사용된 각 API 호출에는 여기에서 해당 세부 정보를 반복해서 설명하는 대신, 설명서 페이지에서 해당 호출을
찾는 데 필요한 정보만 포함되어 있습니다. 특정 API 호출을 찾으면 입력 매개변수, 출력 형식, HTTP 상태 코드, 요청
처리 유형을 포함한 호출의 전체 세부 정보를 검토할 수 있습니다.

워크플로 내의 각 API 호출에 대해 다음 정보가 포함되어 있어 설명서 페이지에서 호출을 찾는 데 도움이 됩니다.

• API 호출은 문서 페이지에서 기능적으로 관련된 영역 또는 범주별로 정리되어 있습니다. 특정 API 호출을 찾으려면
페이지 하단으로 스크롤하여 해당 API 범주를 클릭하세요.

• HTTP 동사 HTTP 동사는 리소스에서 수행되는 동작을 식별합니다. 각 API 호출은 단일 HTTP 동사를 통해
실행됩니다.

• 경로 경로는 호출 수행 시 작업이 적용되는 특정 리소스를 결정합니다. 경로 문자열은 핵심 URL에 추가되어
리소스를 식별하는 완전한 URL을 형성합니다.

REST API에 직접 액세스하기 위한 URL을 구성합니다.

ONTAP Select 문서 페이지 외에도 Python과 같은 프로그래밍 언어를 통해 Deploy REST API에 직접 액세스할 수
있습니다. 이 경우, 핵심 URL은 온라인 문서 페이지에 액세스할 때 사용하는 URL과 약간 다릅니다. API에 직접
액세스할 때는 도메인 및 포트 문자열에 /api를 추가해야 합니다. 예를 들어:

http://deploy.mycompany.com/api

9

워크플로 1: ESXi에서 ONTAP Select 단일 노드 평가 클러스터 만들기

vCenter에서 관리하는 VMware ESXi 호스트에 단일 노드 ONTAP Select 클러스터를 배포할
수 있습니다. 이 클러스터는 평가판 라이선스로 생성됩니다.

클러스터 생성 워크플로는 다음과 같은 상황에서 다릅니다.

• ESXi 호스트는 vCenter(독립형 호스트)에서 관리되지 않습니다.

• 클러스터 내에서 여러 노드 또는 호스트가 사용됩니다.

• 클러스터는 구매한 라이선스로 프로덕션 환경에 배포됩니다.

• VMware ESXi 대신 KVM 하이퍼바이저를 사용합니다.

1. vCenter 서버 자격 증명 등록

vCenter Server에서 관리하는 ESXi 호스트에 배포하는 경우, 호스트를 등록하기 전에 자격 증명을 추가해야 합니다.

그러면 Deploy 관리 유틸리티에서 해당 자격 증명을 사용하여 vCenter에 인증할 수 있습니다.

범주 HTTP 동사 길

배포 우편 /보안/자격 증명

컬

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

JSON 입력(step01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

처리 유형

비동기

산출

• 위치 응답 헤더의 자격 증명 ID

• Job 객체

2. 하이퍼바이저 호스트 등록

ONTAP Select 노드가 포함된 가상 머신이 실행될 하이퍼바이저 호스트를 추가해야 합니다.

10

범주 HTTP 동사 길

무리 우편 /호스트

컬

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

JSON 입력(step02)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

처리 유형

비동기

산출

• 위치 응답 헤더의 호스트 ID

• Job 객체

3. 클러스터 생성

ONTAP Select 클러스터를 생성하면 기본 클러스터 구성이 등록되고 노드 이름은 Deploy에서 자동으로 생성됩니다.

범주 HTTP 동사 길

무리 우편 /클러스터

컬

단일 노드 클러스터의 경우 쿼리 매개변수 node_count를 1로 설정해야 합니다.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

JSON 입력(step03)

11

{

 "name": "my_cluster"

}

처리 유형

동기식

산출

• 위치 응답 헤더의 클러스터 ID

4. 클러스터 구성

클러스터를 구성하는 과정에서 제공해야 하는 몇 가지 속성이 있습니다.

범주 HTTP 동사 길

무리 반점 /클러스터/{클러스터_ID}

컬

클러스터 ID를 제공해야 합니다.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON 입력(step04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

처리 유형

동기식

산출

None

12

5. 노드 이름을 검색합니다.

Deploy 관리 유틸리티는 클러스터 생성 시 노드 식별자와 이름을 자동으로 생성합니다. 노드를 구성하려면 먼저 할당된
ID를 가져와야 합니다.

범주 HTTP 동사 길

무리 얻다 /클러스터/{클러스터_ID}/노드

컬

클러스터 ID를 제공해야 합니다.

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

처리 유형

동기식

산출

• 각 레코드는 고유한 ID와 이름을 사용하여 단일 노드를 설명합니다.

6. 노드 구성

노드에 대한 기본 구성을 제공해야 합니다. 이는 노드를 구성하는 데 사용되는 세 가지 API 호출 중 첫 번째입니다.

범주 HTTP 동사 길

무리 길 /클러스터/{클러스터_ID}/노드/{노드_ID}

컬

클러스터 ID와 노드 ID를 제공해야 합니다.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON 입력(step06)

ONTAP Select 노드가 실행될 호스트 ID를 제공해야 합니다.

13

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

처리 유형

동기식

산출

None

7. 노드 네트워크 검색

단일 노드 클러스터의 노드에서 사용하는 데이터 및 관리 네트워크를 식별해야 합니다. 내부 네트워크는 단일 노드
클러스터에 사용되지 않습니다.

범주 HTTP 동사 길

무리 얻다 /클러스터/{클러스터_ID}/노드/{노드_ID}/네트워크

컬

클러스터 ID와 노드 ID를 제공해야 합니다.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

처리 유형

동기식

산출

• 노드의 단일 네트워크를 각각 설명하는 두 개의 레코드 배열(고유 ID 및 목적 포함)

8. 노드 네트워킹 구성

데이터 및 관리 네트워크를 구성해야 합니다. 내부 네트워크는 단일 노드 클러스터에 사용되지 않습니다.

각 네트워크에 대해 한 번씩, 다음 API 호출을 두 번 실행합니다.

범주 HTTP 동사 길

무리 반점 /클러스터/{클러스터_ID}/노드/{노드_ID}/네트워크/{네트워크_ID}

14

컬

클러스터 ID, 노드 ID, 네트워크 ID를 제공해야 합니다.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON 입력(step08)

네트워크 이름을 제공해야 합니다.

{

 "name": "sDOT_Network"

}

처리 유형

동기식

산출

None

9. 노드 스토리지 풀 구성

노드 구성의 마지막 단계는 스토리지 풀을 연결하는 것입니다. vSphere 웹 클라이언트를 통해 또는 선택적으로 Deploy

REST API를 통해 사용 가능한 스토리지 풀을 확인할 수 있습니다.

범주 HTTP 동사 길

무리 반점 /클러스터/{클러스터_ID}/노드/{노드_ID}/네트워크/{네트워크_ID}

컬

클러스터 ID, 노드 ID, 네트워크 ID를 제공해야 합니다.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON 입력(step09)

풀 용량은 2TB입니다.

15

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

처리 유형

동기식

산출

None

10. 클러스터 배포

클러스터와 노드가 구성된 후 클러스터를 배포할 수 있습니다.

범주 HTTP 동사 길

무리 우편 /클러스터/{클러스터_ID}/배포

컬

클러스터 ID를 제공해야 합니다.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

JSON 입력(10단계)

ONTAP 관리자 계정의 비밀번호를 제공해야 합니다.

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

처리 유형

비동기

산출

• Job 객체

16

관련 정보

"ONTAP Select 클러스터의 90일 평가 인스턴스 배포"

Python으로 접근하기

Python을 사용하여 ONTAP Select Deploy API에 액세스하기 전에

샘플 Python 스크립트를 실행하기 전에 환경을 준비해야 합니다.

Python 스크립트를 실행하기 전에 환경이 올바르게 구성되었는지 확인해야 합니다.

• Python2의 최신 버전을 설치해야 합니다. 샘플 코드는 Python2를 사용하여 테스트되었습니다. Python3로도 이식
가능하지만, 호환성 테스트는 아직 진행되지 않았습니다.

• Requests 및 urllib3 라이브러리를 설치해야 합니다. 환경에 따라 pip 또는 다른 Python 관리 도구를 사용할 수
있습니다.

• 스크립트가 실행되는 클라이언트 워크스테이션에는 ONTAP Select Deploy 가상 머신에 대한 네트워크 액세스
권한이 있어야 합니다.

또한, 다음 정보가 필요합니다.

• 배포 가상 머신의 IP 주소

• 배포 관리자 계정의 사용자 이름 및 비밀번호

ONTAP Select Deploy를 위한 Python 스크립트 이해

샘플 Python 스크립트를 사용하면 여러 가지 작업을 수행할 수 있습니다. 실제 Deploy

인스턴스에서 사용하기 전에 스크립트를 이해해야 합니다.

일반적인 디자인 특성

스크립트는 다음과 같은 공통적인 특성을 갖도록 설계되었습니다.

• 클라이언트 머신의 명령줄 인터페이스에서 실행하세요. 제대로 구성된 모든 클라이언트 머신에서 Python

스크립트를 실행할 수 있습니다. 자세한 내용은 _시작하기 전에_를 참조하세요.

• CLI 입력 매개변수 허용 각 스크립트는 입력 매개변수를 통해 CLI에서 제어됩니다.

• 입력 파일 읽기: 각 스크립트는 용도에 따라 입력 파일을 읽습니다. 클러스터를 생성하거나 삭제할 때는 JSON 구성
파일을 제공해야 합니다. 노드 라이선스를 추가할 때는 유효한 라이선스 파일을 제공해야 합니다.

• 공통 지원 모듈 사용 공통 지원 모듈인 _deploy_requests.py_에는 단일 클래스가 포함되어 있으며, 각
스크립트에서 가져와서 사용합니다.

클러스터 생성

cluster.py 스크립트를 사용하여 ONTAP Select 클러스터를 생성할 수 있습니다. CLI 매개변수와 JSON 입력 파일의
내용을 기반으로 다음과 같이 스크립트를 배포 환경에 맞게 수정할 수 있습니다.

• 하이퍼바이저 ESXI 또는 KVM(배포 릴리스에 따라 다름)에 배포할 수 있습니다. ESXi에 배포하는 경우,

하이퍼바이저는 vCenter에서 관리하거나 독립형 호스트로 사용할 수 있습니다.

17

https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/ko-kr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html

• 클러스터 크기 단일 노드 또는 다중 노드 클러스터를 배포할 수 있습니다.

• 평가 또는 프로덕션 라이선스 평가 또는 구매 라이선스를 사용하여 프로덕션을 위한 클러스터를 배포할 수
있습니다.

스크립트의 CLI 입력 매개변수는 다음과 같습니다.

• 배포 서버의 호스트 이름 또는 IP 주소

• 관리자 사용자 계정의 비밀번호

• JSON 구성 파일의 이름

• 메시지 출력을 위한 자세한 플래그

노드 라이선스 추가

프로덕션 클러스터를 배포하려면 add_license.py 스크립트를 사용하여 각 노드에 대한 라이선스를 추가해야 합니다.

클러스터 배포 전이나 후에 라이선스를 추가할 수 있습니다.

스크립트의 CLI 입력 매개변수는 다음과 같습니다.

• 배포 서버의 호스트 이름 또는 IP 주소

• 관리자 사용자 계정의 비밀번호

• 라이센스 파일의 이름

• 라이선스를 추가할 권한이 있는 ONTAP 사용자 이름

• ONTAP 사용자의 비밀번호

클러스터 삭제

delete_cluster.py 스크립트를 사용하여 기존 ONTAP Select 클러스터를 삭제할 수 있습니다.

스크립트의 CLI 입력 매개변수는 다음과 같습니다.

• 배포 서버의 호스트 이름 또는 IP 주소

• 관리자 사용자 계정의 비밀번호

• JSON 구성 파일의 이름

파이썬 코드 샘플

ONTAP Select 클러스터를 생성하는 스크립트

다음 스크립트를 사용하면 스크립트 내에 정의된 매개변수와 JSON 입력 파일을 기반으로
클러스터를 만들 수 있습니다.

#!/usr/bin/env python

##--

#

18

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter[

'hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter[

'hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username', 'password

']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

19

 hosts = config.get('hosts', [])

 for host in hosts:

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

 if 'password' in host and not deploy.resource_exists(

'/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host['name

']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host[

'password']}

 deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host[

'type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

20

 host_config['credential'] = {

 "password": host['password'], "username": host['user

']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

 '''

 log_debug_trace()

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

21

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

22

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource('/clusters/{}/nodes/{}/networks

'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

23

 node_ids = get_node_ids(deploy, cluster_id)

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'][

'ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

24

 logging.WARNING)

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

 cluster_id = create_cluster_config(deploy, config)

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

ONTAP Select 클러스터를 생성하기 위한 스크립트용 JSON

Python 코드 샘플을 사용하여 ONTAP Select 클러스터를 생성하거나 삭제할 때는 스크립트에
JSON 파일을 입력으로 제공해야 합니다. 배포 계획에 따라 적절한 JSON 샘플을 복사하고
수정할 수 있습니다.

25

ESXi의 단일 노드 클러스터

{

 "hosts": [

 {

 "password": "mypassword1",

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

26

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

vCenter를 사용한 ESXi의 단일 노드 클러스터

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

27

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

28

]

}

KVM의 단일 노드 클러스터

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

29

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

ONTAP Select 노드 라이선스를 추가하는 스크립트

다음 스크립트를 사용하여 ONTAP Select 노드에 대한 라이선스를 추가할 수 있습니다.

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

30

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

 data = {}

31

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

its used

32

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help=

'Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

ONTAP Select 클러스터를 삭제하는 스크립트

다음 CLI 스크립트를 사용하여 기존 클러스터를 삭제할 수 있습니다.

33

#!/usr/bin/env python

##--

#

File: delete_cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

34

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config[

'cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

ONTAP Select 위한 공통 지원 Python 모듈

모든 Python 스크립트는 단일 모듈에서 공통 Python 클래스를 사용합니다.

35

#!/usr/bin/env python

##--

#

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

36

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

37

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get(

'num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

 def resource_exists(self, path, name, value):

38

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

 return {key: response.headers[key] for key in ['Location',

39

'request-id'] if key in response.headers}

ONTAP Select 클러스터 노드 크기를 조정하는 스크립트

다음 스크립트를 사용하여 ONTAP Select 클러스터의 노드 크기를 조정할 수 있습니다.

#!/usr/bin/env python

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

40

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

41

.cluster)

 if not cluster_id:

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json()[

'record']

def _get_request_body(parsed_args, cluster):

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

42

parsed_args.cluster)

 return 1

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

 sys.exit(main())

43

저작권 정보

Copyright © 2026 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의
사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽,

전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적
보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용
불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는
모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약
여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의
발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인
서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다.

본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도
제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-

19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items)

조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점
자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인
비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에
대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로
가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정,

수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에
명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및
제품 이름은 해당 소유자의 상표일 수 있습니다.

44

http://www.netapp.com/TM

	REST로 자동화 : ONTAP Select
	목차
	REST로 자동화
	개념
	ONTAP Select 클러스터 배포 및 관리를 위한 REST 웹 서비스 기반
	ONTAP Select Deploy API에 액세스하는 방법
	ONTAP Select Deploy API 기본 운영 특성
	ONTAP Select 대한 요청 및 응답 API 트랜잭션
	ONTAP Select 위한 Job 객체를 사용한 비동기 처리

	브라우저로 접속
	브라우저를 사용하여 ONTAP Select Deploy API에 액세스하기 전에
	ONTAP Select Deploy 문서 페이지에 액세스하세요
	ONTAP Select Deploy API 호출을 이해하고 실행합니다.

	워크플로 프로세스
	ONTAP Select Deploy API 워크플로를 사용하기 전에
	워크플로 1: ESXi에서 ONTAP Select 단일 노드 평가 클러스터 만들기

	Python으로 접근하기
	Python을 사용하여 ONTAP Select Deploy API에 액세스하기 전에
	ONTAP Select Deploy를 위한 Python 스크립트 이해

	파이썬 코드 샘플
	ONTAP Select 클러스터를 생성하는 스크립트
	ONTAP Select 클러스터를 생성하기 위한 스크립트용 JSON
	ONTAP Select 노드 라이선스를 추가하는 스크립트
	ONTAP Select 클러스터를 삭제하는 스크립트
	ONTAP Select 위한 공통 지원 Python 모듈
	ONTAP Select 클러스터 노드 크기를 조정하는 스크립트

