Python ZC ME
ONTAP Select

NetApp
January 10, 2026

This PDF was generated from https://docs.netapp.com/ko-kr/ontap-select/reference_api_script_cc.html
on January 10, 2026. Always check docs.netapp.com for the latest.

=

Python ZE MZ

ONTAP Select 22{AEE AMM517]| 9

ONTAP Select 22{AEE AM517| 9
ESXi9| Tt .= E2{AH
vCenterE AI26t= ESXiQ| tHY L E SE{AH
KVMQ| &t L= S2{AFH

ONTAP Select ' E 20| HIAE FI1517| [t

ONTAP Select 2HAEKE AfA[o17] fIot ATZEQLICE

ONTAP Select2 Python ZE2 X|gtL|C}

ONTAP Select 22{AFH =9 37|12 =XsH= ATRE

|>
|1
o o

[m

Im

o 7ot
>
if

ol cHet JSON

mm;_\

12
16
18
22

Python ZE ME

ONTAP Select 22{AEIE AMM5}Y| =
CIS A3ZIEE AIRSI0] ATZIE 9l JSON 23 ol Ljof| ™o|=l o7 H4E J|dio 2
Z2{AEE MM £ QUELICT

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter|
'hostname']) :
log_info ("Registering vcenter {} credentials".format (vcenter|
'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password

data['type'] = "vcenter"
deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.

Does nothing if the host credential already exists on the Deploy.

mman

log_debug_ trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials’,
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password’']}
deploy.post('/security/credentials', data)

def register unkown_hosts (deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log _debug trace()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log _info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host['user

log_info ("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''' POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log_debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

if not cluster id:
log _info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])

log _info ("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node count={}'.format (num nodes),
data)
cluster id = resp.headers.get('Location') .split('/"') [-1]

return cluster id

def get node_ids(deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'''

log_debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))
node ids = [node['id'] for node in response.json() .get('records')]
return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''' Set all the needed properties on a node '''
log_debug trace ()

log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number',6 'instance type',
'is storage efficiency enabled'] if k in
node'}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'nmame' in node:
data['name'] = node['name']

log_info ("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
'"'" Set the network information for a node '''

log_debug trace ()
1og_info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_pum_records('/Clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['wvlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''

log_debug trace ()

log _info ("Adding node '{}' storage properties".format (node id))
log_info ("Node storage: {}".format (node['storage']['pools']))

data = {'pool array': node['storage']['pools']} # use all the json
properties
deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}

deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def

create cluster config(deploy, config):

'''" Construct a cluster config in the deploy server using the input

json data '''

def

log _debug trace ()
cluster id = add cluster_ attributes (deploy, config)

node ids = get node_ ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug_ trace ()

log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']]|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log _debug trace() :
stack = traceback.extract_stack()
parent function = stack[-2] [2]

[o)

logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

log_and exit (msqg) :
logging.getlLogger ('deploy') .error (msqg)

exit(1l)

def configure logging (verbose):
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main(args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add _standalone host credentials (deploy, config)
register unkown hosts (deploy, config)
cluster id = create_cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)
def parseArgs () :
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main J g

args = parseArgs ()

main (args)

ONTAP Select 22{AEHE MASI7| flet AAZEO| CHel JSON
Python ZE ME2 AL23t0{ ONTAP Select 22{AEHE MMt LL AX[S of JSON IS
ASRIEO QU2oZ H|Zsof SHLICt HHE A/=loj| w2} HAT JSON MES ARSI Rt

= ASFLICE

ESXi2| T = S2{AH

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

L) %

ip": "10.206.80.115",

"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"
by
"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

vCentersS AM25t= ESXi| B = S{AH

"hosts": [

{
"name" :"host-1234",
"type":"ESX"’

"mgmt server":"vcenter-1234"

1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "lab2

.company-

10

demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],

"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",
"username":"selectadmin”

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": [

{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

KVMS| THd L& S2{AH

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"
}
1,
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1y

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [1,

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

ONTAP Select .- E 20| MIAE FII617| 2ot AT EQIL|CE

CI2 ATZIEE AR50 ONTAP Select .= =0 CHSt 2t0|MIAE X=J}&h & SLLCY,

#!/usr/bin/env python

File: add license.py

12

S o S S S S S SR S S S S o ok

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import json

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):

log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,

files=files)

def put used license (deploy, serial number, license filename,

ontap username, ontap password) :

''"' If the license is used by an 'online' cluster, a username/password

13

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license(deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {1})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log _and exit("The license file seems to be missing the

serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .
setlLevel (logging.WARNING)

def main(args):

14

configure logging ()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if
its used
if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license (deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put_free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use
post new license (deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the

ontap username. Required only if ontap username is given.')

15

11
Olo
®)
—
| >
|l
1]
[m
i
>
oo
ot
2
N
i

16

return parser.parse_args ()

if name == main U g

args = parseArgs ()
main (args)

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be

powered off.")

deploy.patch('/clusters/{}"'.format (cluster id), {'availability':
'powered off'}, True)

def delete cluster (deploy, cluster id):

log_info ("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .
setLevel (logging.WARNING)

def main(args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config|
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete_ cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,

17

he

if

lp='Filename of the cluster json config')
return parser.parse_args ()

__name == "' main ':
args = parseArgs ()
main (args)

ONTAP Select Python Z== K| EL|C}

2= Python ATEEE HHY B E0M S5 Python S2AE ALEELILCL.

18

#!

S+

S S S S S S S S S S S S o o e

/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json

import logging

import requests

re

cl

quests.packages.urllib3.disable warnings ()

ass DeployRequests (object) :
LI |
Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init_ (self, ip, admin password) :
self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)

self.headers = {'Accept': 'application/Jjson'}
self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:

19

self.logger.debug('PUT DATA:')

response = requests.put(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_ errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def find resource(self, path, name, value):
""" Returns the 'id' of the resource if it exists, otherwise None

resource = None
response = self.get('{path}?{field}={value}'.format (

path=path, field=name, value=value))

if response.status_code == 200 and response.json () .get (
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

20

def get num records(self, path, query=None):
""" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

if response.status_code == 200
return response.json() .get('num records')

return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

self.get('/jobs/{}?fields=state,messages&’
'poll timeout={}&last modified=>={}"

response

.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})
Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job body.get('last modified')
Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit(1l) # End the script if a failure occurs
break

def exit on_errors(self, response):
if response.status code >= 400:

self.logger.error ('FAILED request to URL: $s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response.text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod
def filter headers (response):
'''" Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

ONTAP Select 22{AE =9 A7|E Z™ot= ATEE

Cte AR EE ALE5I0 ONTAP Select 22 AE{|M LE 7|8 ZFY = JUSLICL

22

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():

""" Parses the arguments provided on the command line when executing
this
script and returns the resulting namespace. If all required

arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin.'
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'
' should be performed. The default is to apply the resize to all
nodes in'

' the cluster. If a list of nodes is provided, it must be provided

23

in HA'

' pairs. That is, in a 4 node cluster,
must be'

' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):

""" Tocate the cluster using the arguments

cluster id = deploy.find resource('/clusters',

.cluster)
if not cluster id:
return None

nodes 1 and 2

provided """

[o

'ip', parsed args

(partners)

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

if provided, use the list of nodes given,

the cluster

nodes = [node for node in cluster['nodes']]

if parsed args.nodes:

nodes = [node for node in nodes if node['name']

.nodes]

changes|['nodes'] = [

else use all the nodes in

{'instance type': parsed args.instance type, 'id':

node 1in nodes]

return changes

def main() :

node [

Iid'

in parsed args

]} for

""" Set up the resize operation by gathering the necessary data and

then send

the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig (
format='[% (asctime)s] [%(levelname) 5s]

logging.INFO,)

24

% (message) s'

, level=

logging.getLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

25

4=

M =

Copyright © 2026 NetApp, Inc. All Rights Reserved. 0|30 A Q12 E 2 EA2| oot HEE HEH ARXL
A MH 521 glo|= ofet HAO|Lt EHFAL =2, =% EE= MX AM A|AH0| Y& SH= AS HIZet 22T,

XA = 7|AN e o2 SXE o~ glEL Ch

NetAppO| MZH#E S 7HE Xt=0f| A= 2ZELY|0{0f|i= of2Q] 20| M ALF nX|ALeto] X ZEL|C}.

=5, Ho|E &4, 0] &4, Y Sths Zel5t0](010f I X| §4F), Of ALEH 0] A= QIol| LMd}=

I
2= A o 721 A8, QU Sof, UM Ao, ZHA AdHo] Lo chotod 1 2 0|9, ME, Ao}
O, {243t Mol S Bel(hAl twi JX| %2 F2)2t 2210] Ofm{Et MUT X|X| oD, 0fet 22 Ao
24y JH5 0| SX|EI{CH SHEFE ORI pRILIc

NetApp2 & A0 2 E MFS ANEX o2 glo] HEY AH2|E EFELICE NetApp2 NetApp2| HAE Q!
MH So|E &2 ZRE Melste & 2M0 2 E HFS A5 2dst= ofet ZH|0l| = MRS X|X| 5LICt.
= HEZQ A = F0i2 B2 NetAppOfiA= Ot ESH, S HH = 7|6 XA T LHH0| HEE|= 2to| AT
M SotXA| gdELItt.

= B0 2FE HMFZ2 oLt ol g2l 0= 59, ot 5] L= £ ¢l 5512 2 UL

Mgtd M| Al HEo| o3t AF2, EX| = S7H0ll= DFARS 252.227-7013(2014'F 28) 8! FAR 52.227-
19(2007'4 12&)2| 7|= H|O|H-H| &4 HA S=0i et #2|(Rights in Technical Data -Noncommercial ltems)
o 5t =g (b)(3)oll dHE MptAtEto] MEEL|CE.

of7|off Z&E MO = AU ME W/EE 4YUE AH|A(FAR 2.1010] H2|)ofl sH=HSHH NetApp, Inc.2l 5&
RHAtIL|CE & A2k 2l HS &= 25 NetApp 7|2 CIO|E X ZEE AZEY s 2EMOZ MAHE0|H 710l
HI20O 2 JNUE|JELICH O|= M2 = HIO|E 7t M3E O|= Alefat 2sto] sHEh Al2kS XSt o2t HI0|E ol
CHot M MAXMOE HISHHO0|I e 4 ol THAHE0| E7t56HH F| & S7Hst 2to| A E Mgt o=
ZHELICE of7]0f] IS E BRE M 2lSt NetApp, Inc.2| AP MH S01 ¢l0|= O] HIO|HE AHE, 37H, M4t +=H,
28 e FA|E & QI&LICE 0|2 2UHR0)| Cist M5 210 MlA = DFARS 8t 252.227-7015(b)(2014 2€)0]|
HA|El Ao 2 F|SHEIL|CH

AE H-

NETAPP, NETAPP 211 5! http://www.netapp.com/TM0| L}ZEl Ot3= NetApp, Inc.2| HEL|CEH 7|EF S|AF S

HE OIE2 SiE 27X dHY &= ASLIC

26

http://www.netapp.com/TM

	Python 코드 샘플 : ONTAP Select
	목차
	Python 코드 샘플
	ONTAP Select 클러스터를 생성하기 위한 스크립트
	ONTAP Select 클러스터를 생성하기 위한 스크립트에 대한 JSON
	ESXi의 단일 노드 클러스터
	vCenter를 사용하는 ESXi의 단일 노드 클러스터
	KVM의 단일 노드 클러스터

	ONTAP Select 노드 라이센스를 추가하기 위한 스크립트입니다
	ONTAP Select 클러스터를 삭제하기 위한 스크립트입니다
	ONTAP Select용 Python 모듈을 지원합니다
	ONTAP Select 클러스터 노드의 크기를 조정하는 스크립트

