OnCommand® Workflow Automation 5.1

REST Web Services Primer

November 2019 | 215-14537_A0
doccomments@netapp.com

F NetApp:

mailto:doccomments@netapp.com

2 | OnCommand Workflow Automation 5.1 Rest API Primer

Contents

INtroduction t0 the DOCUMENTcccoiiiiiiiiiieie e 6
(LT L] o | USSP 6
Authentication and authOriZatiONcoccoiiiiiiiiii e 7
BV T 57T 1 Vo OSSR 7
Pattern for client API development ..o 7
Links and relations (applicable only for XML)ccccccoiiviiiiiiiiiie e, 8
WA 0DJECT COIBCTION ... 9
[0 |\ oS- Vo L T TP P PP 12
‘Hello World’ workflow: An example illustrating APl usage 14
Getting a filtered wWorkflow COlleCtion............cccooiiiiiiiiiic 14
Inspecting the response and extracting the links (only for XML)........c...c..c....... 16
Creating a request object and executing @ WOrkflowcccccoeeviiiiviiciienenn, 16
Extracting the job’s ‘self' link to monitor and obtain the status of the workflow
(oL 1NV (0] a1/ 1 TSP 19
SBOUNTLY .ttt bbbttt e bbbttt 22
(o I =T 0] ol o [TSRS 22
Dar eXport/import ... e 23
SBOUNTLY .ttt bbbttt e bbbttt 23
HT TP BITOE COUBS ...uitiitiitieieie ettt sttt bbb 23
ConfiQUIratioN ..o 24
1101 |] 02 USSP 24
ValidatioNREPIESENTALIONcvieiieiicie e te et e e ane e s e e reesraesaeeneeas 24
[I =T 0] ol Lo [TSR 24
Free Text SearCh...........ccoii 25
SBOUNTLY .ottt bbbttt b bbbt 25
Search different NTITIESccoviiiiiieee e 25
[I =T 0 oo L= 26
AutoSupport Configurationccceiieiiiii i 27
SBOUNTLY .ttt bbbt ettt b e bbbt 27
Return AutoSUpport CoNfIgUIatioN...........cccooeiiiiiiiiniieeee e 27
Update AutoSupport configurationccccoveiiii i 28
Download AUtOSUPPOIT Aata..........ccoviiiiiiiiee s 29
R LC T 0100 1T=N oo o Y 29
Upload AUtOSUPPOIT Aata..........ccceeiviiieiieiecec et 29
REQUESE DOAY ...ttt bbbt bttt ettt bbb 29
[I I I T o] gl oo o SRR 30
LDAP Configuration..............cccooiiiiiiiiic e 31
SBOUNTLY .ottt bbbt bttt b bbbttt 31
Return LDAP configurationccooiiiiiieiie it 31
Set LDAP CONFIQUIAtIONccviiiiiiiiciic et 32
RESPONSE DOTY ...t b bttt bena e bbb 32
TSt USEE CrEUENTIAIScvieiieieee et nre s 33
=0 1S A oo T | 33

RESPONSE DOTY ...ttt bbbttt b e b a e b e 33

4 | OnCommand Workflow Automation 5.1 Rest API Primer

HT TP €FTOF COUBS ...ttt ettt et re e rae e e nree s 33
System Information...................cccoo i 35
SBOUNTLY ..ttt bbb bttt e bbbt bt 35
Return software detailScccovee i 35
[I =T 0 ot o L= S 36
LU Y=Y OO SROPRRPOPR 37
10T |] 2SSOSR 37
USEE data SEFUCTUIESccvviiiie ettt sttt sre e ne e sre e 37
L T SRR RRP 37
e o] o ot o g -SSR 38
User links, relations, and action (only for XML)cccccvveiiniiiiniienene e, 38
HT TP €FTOF COUBS ...ttt ettt e e et e e e e s aeentee s 39
WOIKFIOWS ... 40
Query parameters for filtering the workflow collectionccccccooviennnnn, 40
QUETY Parameter EXAMPIESc.ecvi it se st e e et e st et e e te e e s e e sreesteenaeenaeeneennee e 40
SBOUNTLY .ttt bbbttt e bbbttt 40
WOrKFIOW data STFUCTUTESoocveeiiieciec ettt et 40
KEYANAVAIUEPAIT ...ttt bbbt b bbbt eb bbbt et sn e ebe e 41
WVOTKFIOW ...ttt e e e e s te e s teeteeneeaneesaeesta e teesteeneeas 41
L L= T o | ST 43
WOPKFIOW TNPUL. ...ttt bt 44
RETUIN PATAMETEToiiiiieie i e sre s 45
L] 1] LU OP OSSR 45
WOTKFIOW JOD ...t e et e et e e esne e ta e ta e reenneas 46
Workflow links, relations, and actions (only for XML)c.ccccoeniiiiiiiinienen, 48
[I =T 0] ot o [SRS 51
WOrkflow EX@CULIONS.............ccooiiiiiiccc e 53
CommandEXeCULIONATGUMENTSccviiieiieceeieeeie et 53
L L2110] £ T PP PP PR 53
LT 10 01 T £ PP 53
Il OIS ... 54
Query parameters to filter collection of filters.........ccccoovveveiieni i, 54
QUErY Parameter EXAMPIE:c..iiiiiitiieiete bbbt bbb 54
R LToT |] 0SSOSR 54
FIIter data StrUCTUIESccviiiie ettt naee s 54
KEYANAVAIUEPAITecvtiteeeite ettt et b e bbbt eb e bbbt et sbe e ebe e 55
=T ST 55
FIEI TESIRESUILS ...ttt et e et e e te e te e aeeneesaeesreenas 56
Filter links, relations, and actions (only for XML)ccccooiiiiiniininiieeee, 59
HT TP BITOF COUBS ...ttt re e e s beenree s 60
FINAEIS.... ..ot e e e s bae e e s ebreee e 61
Query parameters to filter collection of filters.........cccccoeviiiiiiii i, 61
QuUErY Parameter EXAMPIEcoiiiiiiieieiie ettt bbbt ae bbb eneas 61
FINAer data STFUCTUTESee et ae e aane s 61
KEYANAVAIUBPAITcviitiieeieie etttk b ettt bbbttt sttt e b e ere e 61
T L= ST 61

FINAEITESTRESUILS ...ttt et e e et e e s bt e e e s saba e e s s ebbae e s sabanessbaees 63

Finder links, relations, and actions (only for XML)........cccoceviniiiiniiiin i 65

[I =T 0 ot o L= SRS 66
Remote System TYPesS ... 67

EXAMPIE e b bbbt b et b e renes 67
1T oT |] 2SSOSR 67
Remote System Type data SEFUCTUIESc.coeiiiiiiiininieeeee e 67

REMOTE SYSTEM TYPE ..ottt 67
[I =T 0] ot Lo L= SRS 70
Credentials ... 71
Query parameters to filter collection of credentials............c.ccccveviiiiiiiiiciienenn, 71

QuEry Parameter EXAMPIEcii i sre e e eneas 71
SBOUNTLY ..ttt bbbttt e bbbttt et 71
Credential data StFUCTUTEScccveiieieiie et 71

CIEABNTIAL ...ttt bbbt h et e e b s bt sb e e bt bt e b e e st et e b e besbesbeene e 71

CredentialWIthPaSSWOITcoiiiiiiiiie ittt b ettt nb e bbb 73
Links and relations (oNly for XIML)........cccoviiiiiiiiiseee e 73
[I =T 0] ot o [SRS 74
Data Source and Data Source TYPesccccoceiiiiiiiiiiiieien e 75
1101 |] 02 USSP 75
DAtA STFUCTUIESeeeitiee e ettt et e et e e e st e e e et e e e e st e e e e s nnnr e e e e e nbaeeessnnreeeeans 75

Data SOUICE TYPE ...ttt e sr e r e nre s 75

DALA SOUICE ...ttt ettt b ekt e ket e be e s be e e sbe e e s hb e e s bb e e shb e e sab e e sabeesnbeesnbeennneeanes 77

Aot [T o] L] o S UOSPRSN 78
Links, relations, and actions (only for XML).......c.ccocviiiniiiiiencnceeeeees 80
[I =T 0] ot o [SRS 81
Schedules and recurring schedulescccooiiiiii 82
R LToT |] 0SSOSR 82
Query parameters to filter collection of schedule instancescccccccevvenen. 82

SCRBAUIES ... bbb bbbt h e bbbt eb e s bt bt et e e et sbenbenbeeneas 82
Links, relations, and actions (only for XML).......c.ccccceviiiiiiiie i 83

RECUITING SCREAUIES ...ttt e be e te e e e saeesaeenas 83
Appendix A — Return Parameters — Feature Description.......................... 87
Appendix B — Detailed Error Messages and Status Codes 88
COPYIIGRNL ... 94
Trad@mMarkK.............coooiiiiiie e 95

How to send comments about documentation and receive update
NOtIFICAtIONS ... 96

6 | OnCommand Workflow Automation 5.1 Rest APl Primer

Introduction to the Document

This document provides information about OnCommand Workflow Automation (WFA) REST
APIs and the document is specifically intended for developers who build RESTful clients.

In addition to this detailed and descriptive programmer’s guide, the Reference Manual is
available from within WFA. You can use this Reference Manual to look up the resource URLS,
request and response formats, links and relations, XML or JSON schema definitions of input
and output XMLs or JSONs, and sample HTTP request and response messages.

General

WFA allows external services to access various resources and perform CRUD operations on
these resources using a RESTful API. The following functionalities are available through the
RESTful APIs:

» Accessing workflow definitions and metadata

» Executing workflows and monitoring jobs (Jobs in this context are instances of workflows)
* Viewing users, roles, and changingpasswords

« Executing and testing resource selectionfilters

» Executing and testing resource finders

+ Managing credentials of storage or other data center objects
* Viewing data sources and data sourcetypes

+ Taking backup and restoring databases

* Exporting and importing of entity using .dar files

« Searching entities using Free textsearch

* Updating AutoSupportconfiguration

* Updating LDAP configuration

+ Validating WFA configurations

* WHFA System versioninformation

For more information about RESTful web services, see the following document:

REST In Practice: Hypermedia and Systems Architecture by Jim Webber et. al.

For testing and validating your clients written in Java, you must refer to the following frameworks:
REST ASSURED

REST CLIENT

NetApp WFA API supports developers who build clients of WFA services (workflow
execution), using a RESTful application development style.

WFA REST APIs provide access to resource collections such as workflows, users, filters, and
finders, through URI paths. To use a REST API, the client application must make an HTTP
request and parse the response. The response includes a header and body, which is similar to all
HTTP responses. The body includes an XML or JSON representation of the resource specified
by the URI path.

http://restinpractice.com/book/authors.html
http://code.google.com/p/rest-assured/
http://code.google.com/p/rest-client/

HTTP verbs, such as GET, PUT, POST, and DELETE, can be used on these URIs to perform
various CRUD operations on the resources. The links and relations that a particular object
supports are provided as a part of the response.

Authentication and authorization

Every web service request must be accompanied by a valid username and password. WFA
uses oneway SSL (HTTPS) with HTTP basic authentication (See RFC 2617). With HTTP
basic authentication, the WFA server sends a “401 Unauthorized” challenge to the connecting
client and the client must specify the username and password in response to the challenge. The
client can also send the username and password in the original request to avoid this challenge
or response cycle.

All users, except guest users, are allowed to execute workflows through the REST API. If a
client authenticates with a valid username and password, but the authenticated user does not have
the rights to access the specified resource (either because of the role performed by the user or
the resource itself restricts the user from accessing the resource), then the WFA server might still
send a “403 Forbidden” error response.

Versioning

WFA API currently does not support multiple versions.

Pattern for client APl development

Developers who develop a client that uses WFA API must perform the following steps in
developing the client. Clients must not use hardcoded URLSs. Every time a client wants to use
the API for achieving a particular task, the client must use the following procedure:

1. During client development, refer to the API documentation of the URL for the root object
collection (for example, /rest/workflows) of the object set that the client wants to operate on.
(See: WFA object collection for a complete list of root object collections available).

2. Create the following root URL.:

https://{host:port}/rest/{<wfa-object-collection-
name>}

3. Add the required query parameters to the URL. Refer to the quick reference documentation to view the
query parameters that are available for the particular object collection.

4. Issue an HTTP GET request on the URL. Ensure that the ‘Accept’ and ‘ Authorization” headers are
properly filled. The ‘Accept’ header must be ‘application/xml’ for XML media type, and
‘application/json’ for JSON media type, and the ‘Authorization’ header must include the base64
encoded credentials. WFA uses basic authentication. It is best to use HTTPS instead of HTTP.

5. WFA supports both application/xml and application/json as the content type for all APIs.
6. Ifthe HTTP code is 200 OK, extract the response body.

7. If there is more than one item in the collection, the client must extract from the response, the specific
item on which the client wants to perform an operation.

8. During client development, refer to the documentation for the names of the ‘rel” attribute that specify
the operation that the client wants to perform on the object. Extract the link object from the response
body matching the ‘rel” attribute of interest.

9. Find the names of the ‘rel’ attribute that specify the operation that the client wants to perform on the
object. Extract the link object from the response body matching the ‘rel” attribute of interest.

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

8 | OnCommand Workflow Automation 5.1 Rest APl Primer

10. Ifan input needs to be specified, refer to the XSD for the expected operation and build the request
accordingly. Issue the supported HTTP request for that operation. The HTTP request matching the ‘rel’
attribute is provided in this document and in the quick reference document.

Note: Points 7, 8, and 9 are applicable only for XML.
A detailed ‘hello world’ style example is provided in the chapter, ‘Hello World” workflow:
An example illustrating API usage depicting this flow.

Note: JSON does not support atom links and relations.

Links and relations (applicable only for XML)

WFA REST API makes extensive use of atom links to provide references to objects and the
actions that they support. These links are the mechanism that the client must use to access
and operate on an object. The client must make use of the links to drill down further and
perform operations on an object. If a client request body includes links, the server ignores
them.

Links are context sensitive. Links appear in a response body based on which, the given user is
allowed to perform in the given context. Due to this, links provide a way to gradually self-
discover and explore the resources exposed by the API.

Typically, links are provided in the following form in response objects:
<ns2:1link href="URL" rel="relationship"/>

The ‘href” attribute provides the actual URL that should be used to access the resource. The
clients must always use the URL specified in the above link to operate on individual target
objects instead of hardcoding the URLSs.

The ‘rel” attribute value provides the relationship of the object; whose XML representation
contains the link to a target object. The relationship also specifies the operations or actions
that can be performed on a given resource. The relationship also indicates the HT TP request
type to use when making a request with the ‘href” attribute.

The following table contains the definitions of all the common links that might appear in
responses. These relations are standard across all WFA object collections.

Note: If a particular relation does not appear in a response object, it might either mean that
this particular operation is not supported for that object or mean that the operation or relation
specified by the link is not relevant to the current context.

Relation (specified by rel) Description of the relation Relevant HTTP Request
Self View the representation of an GET
object.
List View the object collection. GET
Add Add a new object to the object POST
collection.
Update Update an object. PUT

Remove Remove an object. DELETE

Apart from a partial or complete set of the standard actions listed above, objects in a given
object collection might support several non-standard actions and relations that are specific to
that object. The following sections in this document that describe these object collections also
contains a table that explains all the standard and non-standard links a given object supports.

WEFA object collection

WFA API defines and exposes a collection of resources and their representations. These can be
used by clients to access and operate on the collection or individual items within the collection.

The following WFA object collections are represented through the API:
e Users (/rest/users)

e Backup and Restore (/rest/backups)

e Dar export/import (rest/dars)

e Configurations(/rest/configurations)

e Free text search (/rest/search)

e AutoSupport configuration (/rest/system/asup)

e LDAP configuration (/rest/system/Idap)

e System information (/rest/system)

e Workflows and associated Jobs (/rest/workflows)
e Workflow Executions

o Filters (/rest/filters)

e Finders (/rest/finders)

e Credentials (/rest/credentials)

e Data Sources and Data Source types (/rest/data_sources and /rest/data_source_types) and associate
acquisition jobs WFA has some internal APIs:

The following internal APIs should not be used by clients directly:
e Command executions (/rest/execution/command)
e Job execution (/rest/execution/jobcommand)

e Script execution(/rest/execution/script)

Users

The user collection allows authenticated and authorized clients to programmatically view user
accounts and change passwords. WFA also provides REST API support for addition and
deletion of users.

The root URI for the user collection is /rest/users. The client can start consuming
the API by invoking a GET on this URI. It returns a collection of users based on what
the logged in user is eligible to see and operate on.

10 | OnCommand Workflow Automation 5.1 Rest APl Primer

The links that appear in each user resource in the collection can be used by the
client to further drill down and perform other operations on individual user objects.
The root URI for user management is /rest/users

Refer to the chapter: Users to learn more about the request and response content, available
links and relations, and supported query parameters.

Backup and restore

It allows the authenticated and authorized clients to take the database backup and download
and restore from the local file.

The root URI for backup and restore is /rest/backup.

Refer to the chapter: Backup and Restore to learn more about the request and response

content, available links and relations, and supported query parameters.

Dar export and import

It allows the authenticated and authorized clients to export and import the entities to and from
the local file.

The root URI for dars is /rest/dars.

It also allows export or import of a specific entity using their UUID.
Refer to the chapter: Dar export/import to learn more about the request and response content,
available links and relations, and supported query parameters.

Configurations

It validates WFA configurations. In case of validation failure, it returns the list of
Validation Representation for invalid objects; otherwise returns no content.

The root URI for validate configurations is /rest/configurations.

Refer to the chapter: Configuration to learn more about the request and response content, available
links and relations, and supported query parameters.

Free text search

The search allows authenticated and authorized clients to search for different entities
given a term and a search context. The term should be at least two characters and
complete (It does not support regular expressions).

Search contexts available are: ALL, FINDERS, FILTERS, WORK_FLOWS,
CATEGORIES, POLICIES, FUNCTIONS, COMMANDS, DICTIONARY_ENTRIES,
EXECUTION_STATUS, CACHE_QUERIES, and STORE.

The root URI for search is /rest/search. Refer to the chapter: Free Text Search to learn more
about the request and response content, available links and relations, and supported query

parameters.

AutoSupport configurations

The AutoSupport configurations allow authenticated and authorized clients to change the
AutoSupport configurations. It supports uploading the AutoSupport data to AutoSupport store at
NetApp. Download allows the AutoSupport data to be downloaded to local machine.

The root URI for asup configurations is /rest/system/asup.

Refer to the chapter: AutoSupport Configuration to learn more about the request and response
content, available links and relations, and supported query parameters.

LDAP configurations

The LDAP configurations allow authenticated and authorized clients to change
the LDAP configurations.

It supports the validation of LDAP user credentials.
The root URI for LDAP configurations is /rest/system/ldap.

Refer to the chapter: LDAP Configuration to learn more about the request and response
content, available links and relations and supported query parameters.

System information

It represents WFA system information mainly major and minor versions of different components.

The root URI for system information configuration is /rest/system.

Refer to the chapter: System Information to learn more about the request and response

content, available links and relations, and supported query parameters.

Workflows

The workflow collection allows authenticated and authorized clients to retrieve a collection
of workflow objects and to perform various actions on this workflow. It provides the ability
to execute, monitor, and control workflows.

WFA delivers a set of sample workflows. Users can also create their own customized
workflows as per their requirements. WFA API does not allow users to create, update, or delete
workflows. Users must use the WFA designer GUI to create workflows. The API can only be
used to access, execute, control, and monitor the sample or user-created workflows.

Each workflow object encapsulates the workflow providing metadata information, such as
name and description about the workflow as well as the user input (input) and return parameter
(output) information associated with the workflow.

Query parameters allow the client to filter the workflow collection based on a given category or
based on a given name.

The workflow collection visible to a user will depend on which category of workflows the user
is eligible to see and operate on.

12 | OnCommand Workflow Automation 5.1 Rest APl Primer

The root URI for workflows is /rest/workflows.

Refer to the chapter: Workflows to view all supported query parameters, links, relations, and

action.

Workflow Executions

Workflow Executions represents WFA workflow execution instance.

The root URI for workflow execution instance is /rest/workflows/executions.

Refer to the chapter: Workflow Executions to view all supported query parameters, links,

relations, and action.

Filters

Filters represent a collection of filter objects. Each filter in the collection is an object that

encapsulates individual resource selection criteria.

WFA has many sample filters. In addition to the sample filters, users can create their own
customized filters. Currently, WFA API can only be used to view and test these filters. The

creation of new filters, or modification or deletion of existing filters can only be done through

the WFA designer GUI.

The root URI for filters is /rest/filters.

Refer to the chapter: Filters

which correspond to child workflow execution.
When specified, this returns the list of
CommandExecutionArguments of the child

workflow execution corresponding to the index.

Name Description Type Default
workflow_execution_id Workflow execution ID. path
child_command_index Index of the CommandExecutionArguments query

Response body

element: (custom) media
types: application/xml or
application/json

LogMessage

It returns the list of LogMessage with a given workflow execution id and command/step index.

13

Parameters
Name Description Type Default
workflow_execution_id Workflow execution ID. path
command_index Command/step index whose log messages are path
to be returned. The index starts with 0.
child_command_index Command/step index whose log messages are | query
to be returned from within the child workflow.
The index starts with 0.

Response body

element: (custom) media
types: application/xml or
application/json

Filters to learn more about the request and response content, available links and
relations, and supported query parameters.

Finders

Finders represent a collection of finder objects. Each finder represents a logical collection of
resource selection filters that are executed together to find a resource that matches multiple
criteria. RESTful clients can operate on these resources to view and to test a given finder and
obtain results.

WFA has many sample finders. In addition to the sample finders, users can create their own
custom finders. Currently, the WFA API can only be used to view and test these finders.

The creation of new finders, or modification or deletion of existing finders can only be done
through the WFA designer GUI.

The root URI for finders is /rest/finders.

Refer to the chapter: Finders to learn more about the request and response content, available
links and relations, and supported query parameters.

Credentials

Credentials represent a collection of credential objects. Each credential object represents the
credential details of a given data center object. The data center object could be, for example, a
Data ONTAP system, a VMware vCenter system or a NetApp management server.

REST APIs are available to retrieve, add, modify, and delete credentialsof
a given system. The root URI for credentials is /rest/credentials.

Refer to the chapter: Credentials to learn more about the request and response content,
available links and relations, and supported queryparameters.

Data sources and data sourcetypes

14 | OnCommand Workflow Automation 5.1 Rest APl Primer

Data sources represent a collection of data sources of a given type. Data source types
represent the collection of different data source types that are created within WFA. The API
allows clients to view these data sources and data source types and to programmatically run
acquisition jobs on the data sources.

Each data source represents an instance of a given data source type that is created for the
purpose of acquiring data to meet resource selection needs.

The root URI for data sources is /rest/data_sources. The root URI for data source types is

/rest/data source types.

Refer to the chapter: Data Source and Data Source Types to learn more about the request and
response content, available links and relations, and supported query parameters.

‘Hello World’ workflow: An example illustrating API
usage

The information provided in this chapter is designed to serve developers who develop
a client application that consumes various WFA services using the API.

The following topics are covered as example:

e Retrieving a workflow collection filtered by query parameter (for example, a name). This
will also demonstrate how to fill the Accept’ and ‘ Authorization” headers.

e Inspecting the response and extracting the links (applicable only for XML).

e Creating a request object and executing a workflow using the appropriate link (applicable
only for XML).

e Extracting the ‘self” link and executing an HT TP request to retrieve the status of the
workflow (applicable only for XML).

Note: This is an example to illustrate the usage of the API. This example might not run as it
is on an installed WFA server (as we do not ship the ‘Hello World’ workflow). The client
should replace the ‘Hello World” workflow with the exact name of the workflow the client
wishes to execute. The rest of the services provided by the WFA server can be consumed by
the client in a similar fashion.

Note: The example is shown with HTTP messages to illustrate the client/server interactions
without the use of any languages. A client written in a particular language can use the
standard HTTP client library and standard XML or JSON library supported by the language
to build a client.

Getting a filtered workflow collection

Every WFA request requires authentication. WFA uses HTTP basic authentication. For this to
work, the client must either fill the ‘Authorization’ header properly the first time or fill the
credentials when challenged with a ‘401 Unauthorized’ error code by the server. With HTTP
basic authentication, the client must fill the Authorization’ header with the proper user
credentials (MIME base64 encoding of the form username: password).

The root URL for getting a workflow collection is /rest/workflows.

Example 3-1: Getting a filtered workflow collection by name Request:
XML request:

GET /rest/workflows?name=Hello%20World HTTP/1.1
Authorization: Basic <encoded credentials>

Accept: application/xml

JSON request:

GET /rest/workflows?name=Hello%20World HTTP/1.1
Authorization: Basic <encoded credentials>

Accept: application/xml

Response:
XML response
200 OK
Date: <date of

request> Content-
Type: application/xml

<collection xmlns:ns2="http://www.w3.0rg/2005/Atom">

<workflow uuid="76b936ba-d52e-4304-b562-01676d35ad43">

<name>Hello World</name>
<description>
Hello World Example
</description>
<certification>NONE</certification>
<categories>
<category>API EXAMPLE</category>
</categories>
<userInputList>
<userInput>
<name>Name</name>
<description>My Name</description>
<type>String</type>
<mandatory>true</mandatory>
</userInput>
</userInputList>
<returnParameters>
<returnParameter>
<name>Name</name>
<value>John Doe</value>
<description>My Name</description>
</returnParameter>
</returnParameters>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-
d52e-4304b562- 01676d35ad43" rel="self"/>

<ns2:1link href="http://localhost/rest/workflows" rel="1list"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-
d52e-4304b562- 01676d35ad43/jobs" rel="execute"/>

<ns2:1link href="http://localhost/rest/workflows/76b936ba-
d52e-4304b562- 01676d35ad43/out" rel="out-parameter"/>

<ns2:1link href="http://localhost/rest/workflows/76b936ba-
d52e-4304b562- 01676d35ad43/preview" rel="preview"/>

</workflow>
</collection>

JSON response

15

http://www.w3.org/2005/Atom
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

16 | OnCommand Workflow Automation 5.1 Rest APl Primer
200 OK

Date: <date of request>
Content-Type: application/json

[

"uuid": "76b936ba-d52e-4304-b562-01676d35ad43",

"name": "Hello World",
"description": "Hello World Example",
"certification™: "NONE",
"categories": [

"API EXAMPLE"
]I
"userInputList": [
{
"name": "Name",
"description": "My Name",
"type": "String",
"mandatory": true
}
]!
"returnParameters": [

{

"name": "Name",
"value": "John Doe",
"description": "My Name"

}
]

Inspecting the response and extracting the links (only for
XML)

The client can now extract the link for ‘execute’ (highlighted in red) from the message,
which is as follows:

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs

Using the link above, the client can execute the workflow. If the developers’ looks up this
guide, they can see that the HTTP request associated with execute is ‘POST’ and the request
type is “Workflow Input’. The client should now fill this request information as shown in the

following section.

Creating a request object and executing a workflow
Using XML
Now the ‘execute’ URL has been extracted for a given workflow (from the ‘href” attribute of
the link with the ‘rel” attribute matching ‘execute’), the client can execute the given workflow

as shown in the following example:

Request:

POST /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs HTTP/1.1\

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs

17

Accept: application/xml
Authorization: Basic encoded-credentials

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowInput>
<userInputValues>
<userInputEntry key="Name" value="John Doe"/>
</userInputValues>
<comments>API Example Execution</comments>

<executionDateAndTime>9/23/11 2:59 PM</executionDateAndTime>
</workflowInput>

Using JSON

The client can execute the given workflow using workflow uuid as shown in the following example:

Request:

POST /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs HTTP/1.1
Accept: application/json
Authorization: Basic encoded-credentials

"executionDateAndTime": "9/23/11 2:59 PM",
"comments": "API Example Execution",
"userInputValues": [
{
"key" : "Name",
"value": "John Doe"
}
1
}
Response:
Using
XML

HTTP/1.1 201 Created

Date: request-date

Content-Type: application/xml

Location: http://localhost/rest/workflows/76b936ba-d52e-4304-b562-
01676d35ad43/jobs/83

<?xml version="1.0" encoding="UTF-8"?>
<workflow uuid="76b936ba-d52e-4304-b562-01676d35ad43">

<name>Hello World</name>
<description>
Hello World Example
</description>
<certification>NONE</certification>
<categories>
<category>API EXAMPLE</category>
</categories>
<userInputList>
<userInput>
<name>Name</name>
<description>My Name</description>
<type>String</type>
<mandatory>true</mandatory>
</userInput>

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-

18 | OnCommand Workflow Automation 5.1 Rest APl Primer

</userInputList>
<returnParameters>
<returnParameter>
<name>Name</name>
<value>John Doe</value>
<description>My Name</description>
</returnParameter>
</returnParameters>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43" rel="self"/>
<ns2:1link href="http://localhost/rest/workflows" rel="1list"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/jobs" rel="execute"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/out" rel="out-parameter"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/preview" rel="preview"/>
</workflow>
<jobStatus>
<jobStatus>SCHEDULED</jobStatus>
<jobType>Workflow Execution — Hello World</jobType>
<scheduleType>Immediate</scheduleType>
<plannedExecutionTime>Dec 14, 2012
12:47:23 PM</plannedExecutionTime>
<comment>API Example Execution</comment>
</jobStatus>
<ns2:1link
href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562-01676d35ad43/jobs" rel="add"/>
<ns2:link
href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562-01676d35ad43/jobs/83/resume" rel="resume" />
<ns2:link
href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562-01676d35ad43/jobs/83/cancel" rel="cancel"/>
<ns2:1link
href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562-01676d35ad43/jobs/83/plan/out” rel="out"/>
<ns2:1link
href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562-01676d35ad43/jobs/83" rel="self"/>
</job>

As shown in the above example, the job is scheduled (highlighted in blue) and the client can
extract the URL either from the location response header or from the self-link in the response
body (highlighted in red). A GET on this URL provides the current status of the job.

Using JSON

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-

"JobId": 100,

"workflow": ({
"uuid": "76b936ba-d52e-4304-b562-01676d35ad43",
"name": "Hello World",
"description": "Hello World Example",
"certification™: "NONE",
"categories": |

"API EXAMPLE"
I
"userInputList": [
{
"name": "Name",
"description": "My Name",
"type": "string",
"mandatory": true
}
] 14

"returnParameters": [
{
"name": "Name",
"value": "John Doe",
"description": "My Name"
}
]
}!
"jobStatus": {
"jobStatus": "SCHEDULED",
"jobType": "Workflow Execution - Hello World",
"scheduleType": "Immediate",
"plannedExecutionTime": "Dec 14, 2012 12:47:23 pM",
"comment": "API Example Execution",
"userInputValues": [
{
"key": "string",
"value": "string"
}
]I
"returnParameters": [
{
"key": "string",
"value": "string"
}

Extracting the job’s ‘self' link to monitor and obtain the
status of the workflow (only for XML)

After extracting the status link from the above response, the client can retrieve the
status of the workflow as follows:

Request:

GET /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs/83 HTTP/1.1
Accept: application/xml
Authorization: Basic encoded-credentials

19

20 | OnCommand Workflow Automation 5.1 Rest API Primer

Response:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<workflow uuid="760b936ba-d52e-4304-b562-01676d35ad43">
<name>Hello World</name>
<description>
Hello World Example
</description>
<certification>NONE</certification>
<categories>
<category>API EXAMPLE</category>
</categories>
<userInputList>
<userInput>
<name>Name</name>
<description>My Name</description>
<type>String</type>
<mandatory>true</mandatory>
</userInput>
</userInputList>
<returnParameters>
<returnParameter>
<name>Name</name>
<value>John Doe</value>
<description>My Name</description>
</returnParameter>
</returnParameters>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43" rel="self"/>
<ns2:1link href="http://localhost/rest/workflows" rel="1list"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/jobs" rel="execute"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/out" rel="out-parameter"/>
<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-
4304b562- 01676d35ad43/preview" rel="preview"/>
</workflow>
<jobStatus>
<jobStatus> </jobStatus>
<jobType>Workflow Execution - Hello World</jobType>
<scheduleType>Immediate</scheduleType>
<startTime>Dec 14, 2012 12:47:27 PM</startTime>

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

<endTime>Dec 14, 2012 12:47:36 PM</endTime>
<plannedExecutionTime>Dec 14, 2012 12:47:23
PM</plannedExecutionTime>
<comment>API Example Execution</comment>
<returnParameters>
<returnParameters value="John Doe" key="Name"/>
</returnParameters>
</jobStatus>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs" rel="add"/>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-
01676d35ad43/jobs/83/resume" rel="resume"/>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-
01676d35ad43/jobs/83/cancel" rel="cancel"/>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-
01676d35ad43/jobs/83/plan/out" rel="out"/>

<ns2:1ink href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-
01676d35ad43/jobs/83" rel="self"/>
</job>

As shown above in green, the status of the workflow job shows that the job is completed. The client
can now extract the return parameters from the job status in the response listed above.

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

22 | OnCommand Workflow Automation 5.1 Rest API Primer

Backup and Restore

The root URL is /rest/ backups.

An HTTP GET on this URL returns a URL of the backup file to be downloaded. The API accepts a
query parameter named “full”. When this parameter is set to true, a full backup is taken that includes
configuration parameters.

An HTTP POST or PUT on this URL restores the resources from external backup file. The KeyName
of the backup file in the form data must be "backupFile”. The media type must be “multipart or
formdata”. This API accepts a query parameter named “full”. When this parameter is set to true, even
the configuration parameters are restored along with the resources from the backup file.

The response for the POST or PUT at this URL returns a response with no contents in case of a
successful restore. In case of a failure, error message is returned as a response. In case of successful
restore with minor issues, warning is returned in response. Typical examples of warnings include cache
upgrade failures, mismatches in packs imported before and after the restore.

Security

Only users with backup, admin, or architect privileges can invoke this API to download the backup
file.

A ‘403 Forbidden’ response will be returned other users.
Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized
‘response by the server.

HTTP error codes

Status Code Response

Valid codes See Appendix B on HTTP status codes and detailed error messages for

Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes
400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported Media
Type

500 Server error

Dar export/import

The root URL is /rest/dars. An HTTP GET on this URL returns a URL of the export file to be
downloaded.

An HTTP POST or PUT on this URL imports the resources from the dar file. The KeyName for import

file in the form data must be "dar”. The media type should be “multipart/form-data”.

Security

Only a user with backup, architect, or admin privileges can invoke this API to export/import dar file.
A ‘403 Forbidden’ response will be returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401
Unauthorized’ by the server.

HTTP error codes

Status Code Response

Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be

200 OK returned.

Error Codes
400 Bad request

401 Unauthorized
403 Forbidden
404 Not found

405 Method Not Allowed
415 Unsupported Media
Type

500 Server error

24 | OnCommand Workflow Automation 5.1 Rest API Primer

Configuration

The root URL is /rest/configurations. An HTTP Get on the URL/rest/configurations/validate the WFA

configurations for every object.

In case of validation failure, it returns the list of ValidationRepresentation for invalid objects;

otherwise returns no content.

Security

Only a user with admin privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server.

ValidationRepresentation

The following table shows the contents of ValidationRepresentation object.

Name Type Mandatory Description
i Object type or entity type
Type String True on which validation is
performed.
Message String True Validation error message
» . Identifiers of the object
|dentifiers String True whose validation is failed.
HTTP error codes
Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

messages for a detailed description of these error codes and

when they will be returned.

O APIExecutions

The root URL is /rest/execution/api. It represents generic execution session.

Free Text Search

Search API represents WFA free text search features.
The root URL is /rest/search.

The following resources are part of this group:
/rest/search

Security
Only a user with admin or architect privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server

Search different entities
Search for different entities for a given a term and a search context.

URI:/rest/search

Parameters
Name Description Type Default
Term String term to search for in various entities in the system | query
context Defines the search context where the search has to be query

conducted. Valid values are: ALL, FINDERS,
FILTERS, WORK_FLOWS, CATEGORIES,
POLICIES, FUNCTIONS, COMMANDS,
DICTIONARY_ENTRIES, EXECUTION_STATUS,
CACHE_QUERIES, STORE, SCHEMES,
REMOTE_SYSTEM_TYPES,PACKS

Response body

element: (custom) media
types: application/xml or
application/json

Return list of SearchResult objects

Using XML
<?xml version="1.0" encoding="UTF-8"?>
<searchResult id="...">

<name>...</name>
<type>...</type>
<schemeNames>. . .</schemeNames>

<version>
<major>...</major>
<minor>...</minor>

<revision>...</revision>

</version>
</searchResult>

26 | OnCommand Workflow Automation 5.1 Rest API Primer

Using JSON
{

"id": "..."’
"name": "...",

Veyees Voo oW,

"schemeNames": "...

"version": {
"major": ...,
"minor": ...,
"revision":

}

HTTP error codes

Status Code

Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

500 Server error

415 Unsupported MediaType

See Appendix B on HTTP status codes and detailed error messages for
a detailed description of these error codes and when they will be
returned.

AutoSupport Configuration

AutoSupport API represents WFA auto support data and configurations.

The root URL is /rest/system/asup.

The following resources are part of this group:

/rest/system/asup
/rest/system/asup/download /rest/system/asup/send

Security
Only a user with admin privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’
by the server.

Return AutoSupport configuration
It returns AutoSupport configuration using HTTP post. Only admin can perform this task.\

URI: /rest/system/asup

Response body

element: asup-configuration media
types: application/xml or
application/json

asup-configuration

Using XML:

<?xml version="1.0" encoding="UTF-8"7>
<asup—configuraticon>
<enabled>...</enabled>
<protocol>...</protocol:>
<destination>...</destination>
<content>...</content>
<sender-mail-address>...</sender-mail-address>
<scheduler>
<enabled>...</enabled>
<wesk—day>...</weck-day>
<hour>...</hour>
</acheduler>
<proxy>
<host>...</host>
<port>...</ports
</proxy:>
<runtime>
<site>...</site>
<companyz>. . .</company>
<host>...</host>
<system—-id>...</system-id>
<o5¥...</os>
</runtime>

<fasup-configuration>

28 | OnCommand Workflow Automation 5.1 Rest API Primer

Using JSON

"protocol™: "...",

"destination": L
"content": "...",
"scheduler": {
"hour": ...,
"enabled": ...,
"week-day": "..."
}I
"proxy": {
"host": "...",

oeEt™e Yoo
}y

"runtime": {
"site": "...",
"company": ooy
"host": "...",
"os": "...",
"system-id":

}I

"enabled": ...,

"sender-mail-address":

" "

Update AutoSupport configuration

It updates AutoSupport configuration. Only admin can perform this task.
Request body

element: asup-configuration media
types: application/xml or
application/json

asup-configuration
Using XML

<?xml version="1.0" encoding="UTF-8"?>
<asup-configuration>
<enabled>...</enabled>
<protocol>...</protocol>
<destination>...</destination>

<content>...</content>
<sender-mail-address>...</sender-mail-address>
<scheduler>

<enabled>...</enabled>
<week-day>...</week-day>
<hour>...</hour>
</scheduler>
<proxy>
<host>...</host>
<port>...</port>
</proxy>
<runtime>
<site>...</site>
<company>...</company>
<host>...</host>
<system-id>...</system-id>
<os>...</os>
</runtime>

</asup-configuration>

Using JSON

{

"protocol": "...",

"destination": "...",

"content": "...",

"scheduler": {
"hour": ...,
"enabled": ...,
"week_day" . " "

1

"proxy": {
"host": "...",
"port": ". . ."

b

"runtime": {
"site": "...",
"company": "...",
"host": "...",
"OS": ".'.",
"SyStem_id" . " "

by

"enabled": ...,

"sender-mail-address": "..."

Response body

element: asup-configuration media
types: application/xml or
application/json

Updated ASUP configuration

Download AutoSupport data

Download the AutoSupport data. Only admin user can perform this task.

URI: /rest/system/asup/download

Response body

element: (custom) media
types: application/xml or
application/json

Response with URL for AutoSupport data to be downloaded.

Upload AutoSupport data
It uploads the AutoSupport data to the AutoSupport store at NetApp.
URI: /rest/system/asup/send
Request body

element: asup-configuration media
types: application/xml or
application/json

asup-configuration

30 | OnCommand Workflow Automation 5.1 Rest API Primer

Response body

element: (custom) media
types: application/xml or
application/json

Response with nocontents

HTTP error codes

Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be

returned.
200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

LDAP Configuration

LDAP API represents LDAP configurations for WFA.

The root URL is /rest/system/ldap.
The following resources are part of this group:

/rest/system/ldap
/rest/system/ldap/test

Security

Only a user with admin privileges can invoke this API.
A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’
by the server.

Return LDAP configuration

It returns LDAP configuration using HTTP GET. Only admin can perform this task.

URI: /rest/system/ldap
Response body

element: LdapConfiguration media
types: application/xml or
APPLICATION/JSON

LDAPConfiguration

Using XML

<?xml version="1.0" encoding="UTF-8"?>

<LdapConfiguration>
<enabled>...</enabled>
<ldapServerUrlList>...</ldapServerUrlList>
<usernameAttribute>...</usernameAttribute>
<searchTimeOutSeconds>...</searchTimeOutSeconds>
<distinguishedNameAttribute>...</distinguishedNameAttribute>
<mailAttribute>...</mailAttribute>
<groupMembershipAttribute>...</groupMembershipAttribute>
<adminGroups>. ..</adminGroups>
<architectGroups>...</architectGroups>
<operatorGroups>...</operatorGroups>
<guestGroups>...</guestGroups>

32 | OnCommand Workflow Automation 5.1 Rest API Primer

<approverGroups>...</approverGroups>
<ldapServers>
<ldapServer>
<url>...</url>
<bindUsername>...</bindUsername>
<bindPassword>...</bindPassword>
<baseDistinguishedName>. ..</baseDistinguishedName>
</ldapServer>

</ldapServers>
</LdapConfiguration >

Using JSON

"enabled": ...,
"ldapServerUrlList": "...",
"usernameAttribute": "...",
"searchTimeOutSeconds": ...,
"distinguishedNameAttribute": "",
"mailAttribute": "..."
"groupMembershipAttribute": "...",
"adminGroups": "...",
"architectGroups": "...",
"operatorGroups": "...",
"guestGroups": "...",
"approverGroups": "...",
"ldapServers": [
{
"url": "...",

"bindUsername": "...",

"bindPassword": "...", "baseDistinguishedName": "...

Set LDAP configuration
Request body

element: LdapConfiguration media
types: application/xml or
application/json

The xml or json object for the new LdapConfiguration

Response body

element: (custom) media
types: application/xml or
application/json

REST Response with updated LdapConfiguration entity.

Test user credentials
It tests user credentials. Only admin can perform this task and is supported only for LDAP users.

URI:/rest/system/ldap/test
Request body

element: user media types:
application/xml or
application/json

LDAP User details
Using XML

<?xml version="1.0" encoding="UTF-8"?>
<user name="...">
<password>...</password>
<domain>...</domain>
<roleType>...</roleType>
<categories>
<category>...</category>
<category>...</category>

<!--...more "category" elements...-->
</categories>
<isLdap>...</isLdap> <atom:link

xmlns:atom="http://www.w3.0rg/2005/Atom">...</atom:link><atom:link
xmlns:atom="http://www.w3.0rg/2005/Atom">...</atom:1link><!--
...more "link" elements...-->
</user>

Using JSON
{

"name": "..",
"password": "..",
"domain": "..",
"roleType": "..",
"categories": [
J r

"ldap": true

Response body

element: (custom) media
types: application/xml or
application/json

REST Response

HTTP error codes

Status Code Response

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

34 | OnCommand Workflow Automation 5.1 Rest API Primer

Valid codes See Appendix B on HTTP status codes and detailed error messages for

Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

System Information

System represents WFA system information. The root URL is /rest/system.

The following resources are part of this group:

/rest/system

Security

Unauthenticated access (missing or invalid credentials) is challenged with a ‘401 Unauthorized’ by the
server.

Return software details
It returns software details using HTTP post.

URI: /rest/system

Response body

element: about media types:
application/xml or
application/json

About

The following table shows a sample XML containing the WFA system information:

<?xml version="1.0" encoding="UTF-8"?>
<about>
<wfa-software-version>
<majorVersion>4</majorVersion>
<minorVersion>0...</minorVersion>
<maintenanceVersion>0...</maintenanceVersion>
<configurationVersion>0...</configurationVersion>
<contentVersion>0...</contentVersion>
</wfa-software-version>
<wfa-vendor> NetApp </wfa-vendor>
<atom:1link xmlns:atom="http://www.w3.0rg/2005/Atom">...</atom:1link>
<atom:link xmlns:atom="http://www.w3.0rg/2005/Atom">...</atom:link> <!--
...more "link" elements...-->
</about>

The following table shows a sample JSON containing WFA system information:

"wfa-software-version": {
"majorVersion": "4",
"minorVersion": "0",
"maintenanceVersion": "0",
"configurationVersion": "O",
"contentVersion": "O0"

}I

"wfa-vendor": "NetApp"

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

36 | OnCommand Workflow Automation 5.1 Rest API Primer

HTTP error codes

Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes

400 Bad request
401 Unauthorized
403 Forbidden
404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

Users

The root URI is /rest/users. An HTTP GET on this URL returns a list of users.

The user API allows the client (admin users) to programmatically view, create, update, and delete user
information and change the current user’s password. A user can only change his or her password.

Currently the user collection does not support any query parameters for filtering the collection.

Security

Only users with admin privilege can add or delete users.

Only a user with admin or architect privileges can invoke the API to get the list of all users.

A user with the ‘operator’ role will not be able to view other users. In such cases, the response simply
returns a collection containing only the user on behalf of whom the client invoked the API.

A user can only change his or her own password using this API.
Guest users cannot access this API. A ‘403 Forbidden’ response is returned for guest users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’
by the server.

User data structures

The collection of users returned on a HTTP GET on /rest/users is nothing but a collection of user
objects, whose content is described in detail in this section.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual, which is available from within the
product.

User

The following table shows the contents of each individual USER object.

Name Type Mandatory Description
User Name String True Name of the user
User Role Type UserRoleType | True Role performed by the user. An enumeration

with any one of the following:

* Guest

» Operator

» Architect

* Admin

+ System

+ Backup

User Categories | Array of False Categories that the user has access to. Only
Strings valid for users with operator role.

Is LDAP Boolean True Is this user in LDAP?

38 | OnCommand Workflow Automation 5.1 Rest API Primer

Links (only for Array of False A collection of atom links that specifies

XML) Atom Links available resources and their links. Allows
clients to do hypermedia traversal.

Domain String False Domain to which the user belongs in case the
user is a LDAP user.

The following table shows a sample XML containing a collection of exactly one user:

<?xml version="1.0" encoding="UTF-8"?>
<collection xmlns:ns2="http://www.w3.0rg/2005/Atom">
<user name="admin">
<roleType>Admin</roleType>
<categories/>
<isLdap>false</isLdap>
<ns2:1link href="http://localhost/rest/users/admin" rel="self"/>
<ns2:1link href="http://localhost/rest/users/admin/password"
rel="change password"/>
</user>
</collection>

The following table shows a sample JSON containing a collection of exactly one user:

[
{
"name": "admin",
"roleType": "Admin",
"ldap": false,
"categories": []
}
]

Password change

This request object is to encapsulate password change information for clients that want to change the
password of the current user.

Name Type Mandatory Description
Old Password String True Current Password
New Password String True New Password

User links, relations, and action (only for XML)

The following table illustrates the links and their relations available for each user in the user collection.

Relation Description of the relation Relevant Input Type | Output Type

(specified by HTTP

rel) Request

Self View the representation of an | GET NA Users[]
individual user object.

List View the collection of users. | GET NA Users[]

change_passw Change the password of a PUT Password Users([]

ord given user. change

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://localhost/rest/users/admin
http://localhost/rest/users/admin/password

add_user Add a new user POST Users[] Users[]

Notes:User entries that are LDAP linked contains Idap_domain_name or user_name in the URI. Non
LDAP users will just have user_name in the URI. So it is necessary that the client uses the link found
in the link relations to access individual users. change_password link will not be available for LDAP
users.

If current password is empty or null, the service returns the following error message:
“Unable to change password because old password is empty”.

If new password is empty or null, the service returns the following error message:
“Unable to change password because new password is empty”.

If current password is incorrect, the service returns the following error message:

“Unable to change password because old password does not match existing
password”.

HTTP error codes

Status Code Response

Valid codes See Appendix B on HTTP status codes and detailed error messages for

Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

40 | OnCommand Workflow Automation 5.1 Rest API Primer

Workflows

The root URL is /rest/workflows. An HTTP GET on this URL returns a collection of workflows based
on what the user can view. The client can also filter the collection using supported query parameters.

The workflow collection is a list of workflows, filtered based on the query parameters. If no query
parameters are specified, this API returns a collection of workflows that are accessible to the user who
invoked the API. See the table below for the description of the query parameters.

Query parameters for filtering the workflow collection

Parameter Value Description

Categories String [] A set of one or more categories
specified in the example below. If this
query parameter is specified, only
workflows that belong to at least one of
the list of categories is returned.

Name String Name of the workflow that needs to be
returned. If this query parameter is
specified, the collection of workflows
contains only one entry that represents
the workflow specified by the name.

Query parameter examples

The following URL returns a workflow that is named as ‘Hello World’, if the workflow is in ready for
production state.

https://localhost/rest/workflows?name=Hello%20World

The following URL returns a collection of workflows for which categories are either ‘Application
Provisioning’ or ‘Setup’.

https://localhost/rest/workflows?categories=Application%20Provisioningé&cate
gories=Setup

The following example URL returns all the workflows that are in production.

https://localhost/rest/workflows

Security

Users with admin or architect privileges can access all workflows using this API. An ‘operator’ can
only access and execute workflows that are in categories that are accessible by the user.

A 403’ forbidden is returned for guest users or for operators who try to execute workflows that they
are not authorized to execute.

Unauthenticated access (missing or invalid credentials) is challenged with a ‘401 Unauthorized’ by the
server.

Workflow data structures

This section provides a description of all the major data structures exposed through the workflows API.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual, which is available from within the
product.

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description
Key String True Key
Value String True Value
Workflow

The workflow object represents a single workflow. The following table describes the information
encapsulated within this object.

Name Type Mandatory Description
Workflow UUID | String True A 32 byte UUID string that uniquely identifies the
workflow.
Workflow name | String True Name of the workflow
Workfl String False Description
ow
descripti
on
Workflow Enum False Certified by. Can be any one of the following:
certification - NONE,
+ PS,

+ COMMUNITY

USER_LOCKED

« NETAPP
Workflow Array of False One or more categories to which the workflow
category/categorie| Strings belongs.
S
User Input Array False A collection of allowed User input for this
workflow.
Return Parameter| Array False A collection of possible Return parameter that will

be returned after the workflow is executed or
previewed.

42 | OnCommand Workflow Automation 5.1 Rest API Primer

Hyper media Array of False A collection of atom links that specify available
Links (only for | Atom resources and their links. Allows clients to do
XML) links hypermedia traversal. Each of these URLs and their

associated methods are described in this document.

This entry is read-only for the client.

minOntapVersio | String The minimum Data ONTAP version of the storage
n system required for the workflow execution.
version Version Indicates the version of the workflow and has

elements for major, minor, and revision.

The following is a sample XML output containing a collection of exactly one workflow.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><collection
xmlns:ns2="http://www.w3.0rg/2005/Atom">
<workflow uuid="alea8848-15e3-4162-9282-befl1380d£f310">
<name>Example workflow - Create a volume and NFS Export</name>
<description>This workflow is a sample.</description>
<categories>
<category>Example</category>
</categories>
<userInputList>
<userInput>
<name>vol name</name>
<description>The name of the volume</description>
<defaultValue>voll</defaultValue>
<type>String</type>
</userInput>
<userInput>
<name>rwHosts</name>
<description>Hosts with access</description>
<type>String</type>
</userInput>
</userInputList>
<returnParameters>
<returnParameter>
<name>exportpathname</name>
<value>the export.export path</value>
<description>The pathname </description>
</returnParameter>
</returnParameters>
<ns2:1ink href="http://localhost/rest/workflows/" rel="1list"/>
<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-41629282-
bef1380d£f310" rel="self"/>
<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-41629282-
bef1380df310/jobs" rel="execute"/>
<ns2:1link href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282-bef1380df310/out" rel="out-parameter"/>
<ns2:1link href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282-bef1380df310/preview" rel="preview"/>
</workflow>
</collection>

The following is a sample JSON output containing a collection of exactly one workflow:

http://www.w3.org/2005/Atom
http://localhost/rest/workflows/
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-

"uuid": "alea8848-15e3-4162-9282-befl1380d4d£310",

"name": "Example workflow - Create a volume and NFS Export",
"description": "This workflow is a sample.",
"categories":
"Example"
1,
"userInputList":
{
"name": "vol name",
"description": "The name of the volume",
"defaultValue":
"type":

"name":

vvtypeu .
}
1,

"returnParameters":

{
"name":
"value":

"description":

User input

"rwHosts",
"description":

"Hosts with access",

"exportpathname",
"the export.export path",
"The pathname "

This object encapsulates a single user input of a workflow. A workflow might contain zero or more of

such user inputs.

Name Type Mandatory | Description

Parameter Name String True Name of the input
parameter

Parameter Description String False Description of the
parameter

Parameter default value String False Default value for
the parameter, if
any

Parameter Type String True Type of parameter.

Can be any one of
String, Query or
Enumeration

44 | OnCommand Workflow Automation 5.1 Rest API Primer

Allowed Values

Aurray of Strings

False

Range or list
depicting a set of
legally allowed
values for this
parameter. Used in
case of
Enumeration or
Query types only.

ConditionalUserInput

User input

False

Indicates the user
input on which this
user input is

conditionally
dependent on.

conditionalUserInputValues/conditional
UserInputValues

String

False

NA

Mandatory

Boolean

True

NA

rowSelectionType

Enum

Indicates if the row

selection type is
single or multiple
for a query
multiselect user
input type.

Columns

Array of User
Inputs

The set of user
inputs in a Table
user input type.

Workflow input

The workflow input object is used to encapsulate information required to execute a workflow. The
contents of the workflow input object is explained in the following table.

Name Type Mandatory Description

Input parameters | Array False Input parameters
A collection of KeyAndValuePair

Execution Date String False Execution date and time. For example:

and Time 9/23/11 2:59 PM
Relevant only for executing or resuming jobs.
If left empty, the job will be executed
immediately.

Comment String False A free form string that can be used to
describe the action by the client. This
comment is stored against the job and can be
retrieved later by the client.

SchedulelD String False ID of the schedule to execute the

workflow job.

The following is sample XML for a Workflowlnput that is sent by a client.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowInput>
<userInputValues>
<userInputEntry key="ArrayIP" value="10.68.66.214"/>
<userInputEntry key="VolName" value="TestWS"/>
</userInputValues>
<comments>Execution for creating Test volumes</comments>

<executionDateAndTime>9/23/11 2:59 PM</executionDateAndTime>
</workflowInput>

The following is sample JSON for a Workflowlnput that is sent by a client:

"executionDateAndTime": "9/23/11 2:59 PM",
"comments": "Execution for creating Test volumes",
"userInputValues": [
{
"key": "ArrayIP",
"value": "10.68.66.214"

}y

{
"key": "VolName",
"value": "TestWsS"

}y

Return parameter

The return parameter object encapsulates the output of the workflow. Each entry represents a field that
corresponds to a particular output of the workflow. The following table shows the contents of each
individual RETURN PARAMETER object. This structure represents details of each return parameter
that might be returned as a result of executing the workflow.

Name Type Mandatory Description
Name String True Name of the return parameter (for example,
volume).
Value String True Value of the parameter (for example,
$VolumeName).
Description String False Description (for example, This is a Volume).
Job status

This structure depicts status information about the job that was executed against the workflow.

Note: There are some discrepancies in the XSD schema where every entry is a string, which makes it
difficult to do XSD validation for dates, integers and enumerations. This discrepancy will be fixed in
future versions.

Name Type Mandatory Description

46 | OnCommand Workflow Automation 5.1 Rest API Primer

Job Status String True Status of the Job. It is one of the following:
+ SCHEDULED
*+ PENDING
« EXECUTING
* COMPLETED
* FAILED
* PARTIALLY_SUCCESSFUL
*+ ABORTING
*+ CANCELED
+ OBSOLETE
* PLANNING
* PAUSED
Job Type String True Job type — Cache / Workflow execution
Schedule Type String True Schedule type — Delayed / Immediate /
Recurring
Start Time String False Actual start time of job execution
End Time String False Actual time when the job execution
completed
Planned String False Planned time for job execution
Execution Time
Error Message String False Error message if any (if the job execution
failed)
Execution String False Comment supplied by the client while
Comment executing the job

Workflow job

This structure depicts all aspects of a single instance of a workflow job. This is to represent a workflow
job resource only and is typically returned when a workflow job status is queried or when a workflow
job is created.

Name Type Mandatory Description

Job ID Integer True ID of the workflow job.

Workflow Workflow True Workflow details of the job.

Job status Job status True Current Job status of the job.

Links (only for | Atom Links False Atom links depicting other sub resources and

XML) allowed operations for the job. These links
are read only for the client.

The following is a sample XML output containing job.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<job xmlns:ns2="http://www.w3.0rg/2005/Atom" jobId="3">

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

<workflow uuid="alea8848-15e3-4162-9282-befl1380d4£310">
<name>Example workflow - Create a volume</name>
<description>This workflow is a sample.</description>
<categories><category>Example</category></categories>
<userInputList>

<userInput>

<name>vol size</name>

<description>The size</description>
<defaultValue>1</defaultValue>

<type>Number</type>

<allowedValues><value>0.01-5000</value></allowedValues>

</userInput>

</userInputList>

<returnParameters>

<returnParameter>

<name>export-pathname</name>

<value>the export.export path</value>

<description>The pathname</description>

</returnParameter>

</returnParameters>

<ns2:1link href="http://localhost/rest/workflows/" rel="1list"/>

<ns2:1link href="http://localhost/rest/workflows/alea8848-15e3- 41629282-bef1380d£f310"
rel="self"/>

<ns2:1link href="http://localhost/rest/workflows/alea8848-15e3- 41629282-befl1380d£310/jobs"
rel="execute"/>

<ns2:1link href="http://localhost/rest/workflows/alea8848-15e3-4162- 9282-bef1380d£310/out"
rel="out-parameter"/> <ns2:1link href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282-befl1380df310/preview" rel="preview"/>

</workflow>

<jobStatus>

<jobStatus>SCHEDULED</jobStatus>

<jobType>Workflow Execution - Example workflow - Create
a volume</jobType>
<scheduleType>Delayed</scheduleType>
<plannedExecutionTime>Sep 23, 2012 2:59:00 PM</plannedExecutionTime>
<comment>Execution for creating Test volumes</comment>
</jobStatus>

<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282bef1380d£f310/jobs™ rel="add"/>

<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282bef1380df310/jobs/3/resume" rel="resume"/>

<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282bef1380df310/jobs/3/cancel" rel="cancel"/>

<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-4162-
9282bef1380df310/jobs/3/plan/out" rel="out"/>

<ns2:1ink href="http://localhost/rest/workflows/alea8848-15e3-4162—
9282bef1380df310/jobs/3" rel="self"/>
</job>

The following is a sample JSON output containing job:

http://localhost/rest/workflows/
http://localhost/rest/workflows/a1ea8848-15e3-
http://localhost/rest/workflows/a1ea8848-15e3-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-

48 | OnCommand Workflow Automation 5.1 Rest API Primer

"jobId": 3,
"workflow": {
"uuid": "alea8848-15e3-4162-9282-befl1380d£310",
"name": "Example workflow - Create a volume",
"description": "This workflow is a sample.",
"categories": [
"Example"
1y
"userInputList": [
{
"name": "vol size",
"description": "The size",
"defaultvalue": "1",
"type": "Number",
"allowedValues": [
"0.01-5000"

}
1,

"returnParameters": [

{

"name": "export-pathname",
"value": "the export.export path",
"description": "The pathname"
}
]
}y
"jobStatus": {
"jobStatus": "SCHEDULED",
"jobType": "Workflow Execution - Example workflow - Create a volume",
"scheduleType": "Delayed",
"plannedExecutionTime": "Sep 23, 2012 2:59:00 pM",
"comment": "Execution for creating Test volumes"

Workflow links, relations, and actions (only for XML)

The links available in the response of a request can be used by the client to drill down further and
access and operate on an individual workflow object.

The following table provides a detailed list of links and their relations with respect to the workflow
resources. These links are represented in each workflow object in the collection, when the server
returns the collection. The link fields are read-only for the client and the client need not specify the
links when submitting requests. If the client submits links in requests, the server ignores them.

Relation Description of the relation HTTP Request Response Type
(specified by Request Type

rel)

list Provides a list of workflow GET NA Workflow[]

objects based on certain
criteria. If no criteria are
specified through a query
parameter, all workflows that
the user is eligible to view are
returned.

self Returns the workflow object | GET NA Workflow[]

specified by the link. The
URL in the ‘href” attribute
has the UUID of the
Workflow. UUID uniquely
identifies a specific workflow
resource.

execute

Executes a given workflow.
This creates a new job object
and returns the job object as a
part of the response.

POST

Workflow
input[]

Workflow job []

out-parameter

Returns the possible output
(return) parameter values of a
workflow as a key value pair.

GET

NA

Return parameter[]

Preview

Runs a preview (dry run) of
the workflow with the given
user inputs and returns the
output. This action will not
execute an actual workflow
on the storage system. After
previewing, this method
returns the result as return
parameters.

POST

Workflow
input(]

Return parameter[]

User_input_quer
y_result

Returns the query result for a
given user input type which
is either "Query" type or
"QueryMultiSelect" .
Reservation flag is derived
from the workflow and
applied for query result. For
dependent query parameter
mappings are passed through
query parameter.

GET

NA

UserlnputQueryResult

Notes: If the format of user input pair string is incorrect, the service returns the following error
message as part of the BAD_REQUEST response:

“Invalid user-input value ‘some input with value’

,should be name=value”

Default values are used if a user input value has not been provided (if applicable).

Array of parameter names or an empty array is mandatory. In case, all the parameters are
requested, use ‘@ ()’ (in case of PowerShell WS command line client).

When the client performs the execute operation (shown above), a job is created. Thus, the resulting
response contains a job representation (WorkflowJob) that contains another set of links, which allows
the user to operate on the job resource. The following table shows the link and relations that are
relevant for the job object.

50 | OnCommand Workflow Automation 5.1 Rest API Primer

Relation (rel Description HTTP Request Type [Response Type
attl’lbute) Request
Resume Resumes this job. This method will |pOST Workflow input[] Workflow job

resume or reschedule a job that
was already scheduled for
execution.

Cancel POST Workflow INPUt[] \workflow job

Cancels this job. This method
rejects a workflow that was already
scheduled for execution.

Out

Returns the output GET NA Return parameter[]
parameters and their

values for the job.

Query Parameters:

parameters

Denotes the parameters
for which the values need
to be returned. Can
specify zero or more such
parameters. If no
parameters are specified,
then all the return
parameters of the
workflow are returned.

Self

GET NA Workflow job
Returns the

representation of this
job. This link can be
used to inspect the
current state of the job.

Notes: For resuming and executing operations, if no date and time is provided in the
‘WorkflowInput’, the workflow is resumed and executed immediately.

E}

For canceling operation, the execution data and time need not be specified in the ‘WorkflowInput’.
If it is specified, it is ignored by the client.

If the user executing the service is an operator who is not allowed to resume or execute this

workflow, due to workflow authorization restrictions (the workflow is assigned to a category, this
user is not assigned to) the following error is returned:

"current user 'user name' is not allowed to resume workflow ' workflowId'.

Only workflows with the status of ‘Paused’, ‘Scheduled’, ‘Aborted’ or ‘Failed’ can be resumed.
When an operator tries to resume a workflow with any other status the following error is returned:

"Could not resume workflow execution with id ' the workflow job id'. Resume is
only allowed from status ' PAUSED'."

When an operator tries to resume a failed workflow, that has expired, the following error is
returned:

"Resume of failed workflow execution with id ' the workflow job Id ' is not
allowed. Workflow execution is expired - more than ' number of expiration days'
days have passed since failure"

For the ‘status’ operation, the service returns output data (Return Parameters) only if the job status
is in a final state. It must be in one of the following statuses: COMPLETED, FAILED,
PARTIALLY_SUCCESSFUL or ABORTED.

Return Parameter Values are returned as per planning phase. Failure of the job will not result
in any change to the returned values.

For the ‘out’ operation, if the status of the job in question is not one of COMPLETED, FAILED,
PARTIALLY_SUCCESSFUL, ABORTED, then the service returns the following error message:

“The job’s status is <Current Job Status>, data can be retrieved only in
the following statuses: COMPLETED, FAILED, ABORTED”.

For the ‘out’ operation, if the requested parameter name is not defined for the workflow, the
service returns the following error message:

“Parameter ’parameter name’ not found. It's not defined as a return parameter”

For the ‘cancel’ operation, if the user executing the service is an operator who is not allowed to
execute this workflow, due to workflow authorization restrictions (the workflow is assigned to a
category, this user is not assigned to) the following error is returned:

"current user 'user name' 1is not allowed to reject workflow ' workflowId'

Only workflows with the status of ‘Paused’, ‘Scheduled’, ‘Pending’ or ‘Running’ can be rejected.
No error is returned if a user tries to reject a workflow with a wrong status.

When an operator is trying to reject a paused workflow, that an operator is not allowed to reject,
the following error is returned:

"Users with 'Operator' role are not allowed to reject workflow executions".

HTTP error codes

Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be
returned.
200 OK

Error Codes
400 Bad request

52 | OnCommand Workflow Automation 5.1 Rest API Primer

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

Workflow Executions

WorkflowExecutionResource represents WFA workflow execution instance.

CommandExecutionArguments

It returns the list of CommandExecutionArguments with a given workflow execution id.

Parameters
Name Description Type Default
workflow_execution_id Workflow execution ID. path
child_command_index Index of the CommandExecutionArguments query

which correspond to child workflow execution.
When specified, this returns the list of
CommandExecutionArguments of the child

workflow execution corresponding to the
index.

Response body

element: (custom) media
types: application/xml or
application/json

LogMessage

It returns the list of LogMessage with a given workflow execution id and command/step index.

Parameters
Name Description Type Default

workflow_execution_id Workflow execution ID. path

command_index Command/step index whose log messages are path
to be returned. The index starts with 0.

child_command_index Command/step index whose log messages are | query
to be returned from within the child workflow.
The index starts with 0.

Response body
element: (custom) media

types: application/xml or
application/json

54 | OnCommand Workflow Automation 5.1 Rest API Primer

Filters

Filters are the resource selection primitive that WFA uses to automatically select resources while
planning a workflow before workflow execution. In WFA, filters are SQL statements with associated
meta-data and input parameters and the output dictionary item that describes the input and output to the
filter.

WFA REST API can be used by clients to programmatically view the meta-data and other aspects
about a filter. The API can also be used to execute a filter (for testing the filter) and obtain its results.
Currently, WFA API cannot be used to create, update, or delete a filter.

Query parameters to filter collection of filters

Parameter Value Description

dictionary String Name of the dictionary item. For example, if
cm_storage.aggregate is specified, only filters that
return this dictionary item as output will be returned.

Query Parameter Example:

An HTTP GET on the following URL returns all filters.
https://localhost/rest/filters

An HTTP GET on the following URL returns all filters that filter the
dictionary item cm storage.aggregate.
https://localhost/rest/filters?dictionary=cm storage.aggregate

Security

Only users with the admin role or the architect role can use FILTERS API. If operators or guest users
attempt to use this AP, the server returns a ‘403 Forbidden’.

Any ‘unauthorized access’ (i.e. incorrect or missing credentials) will be challenged with a ‘401
Unauthorized’ by WFA server.

Filter data structures
This section provides a description of all the major data structures exposed through the filters API.

Note: To obtain the corresponding XML schema definition and sample XML documents representing
these data structures, see the Reference Manual, which is available from within the product.

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description
Key String True Key
Value String True Value

Filter

The filter object represents a single filter. The following table describes the information encapsulated
within this object.

Name Type Mandatory Description
Filter UUID String True A 32 byte UUID string that uniquely
identifies the filter.
Filter name String True Name of the filter.
Filter Enum False Certified by. Can be any one of the
certification following:
* NONE
« PS

« COMMUNITY
.+ USER_LOCKED

* NETAPP
Input Parameters | Array False A set of string that specifies the input
parameters that need to be passed as input to
the filter.
Dictionary Name | String False The fully qualified name of the dictionary

item that the filter is used to filter resources.

(for example, cm_storage.aggregate)

Hyper media Array of False A collection of atom links that specifies
Links (only for Atom links available resources and their links. Allows
XML) clients to do hypermedia traversal. Each of

these URLs and their associated methods are
described in this document.

This entry is read-only for the client.

The following table shows a sample XML output of /rest/filters that returns a collection of exactly one
filter.

<collection xmlns:ns2="http://www.w3.0rg/2005/Atom">
<filter id="eb6fc609-bcd4c-4b28-b7af-d80e7c620645">

http://www.w3.org/2005/Atom

56 | OnCommand Workflow Automation 5.1 Rest API Primer

<name>CM aggregates based on ONTAP version</name>
<certification>NETAPP</certification>
<parameters>
<parameter>os version</parameter>
</parameters>
<dictionaryName>cm storage.Aggregate</dictionaryName>
<ns2:1ink href="http://localhost/rest/filters/eb6fc609-bcdc-4b28-
b7afd80e7¢c620645" rel="self"/>
<ns2:1ink href="http://localhost/rest/filters" rel="1list"/>
<ns2:1ink href="http://localhost/rest/filters/eb6fc609-bcdc-4b28-
b7afd80e7c620645/test no reservations'"rel="test no reservations"/>
<ns2:1ink href="http://localhost/rest/filters/eb6fc609-bcdc-4b28—-
b7afd80e7c620645/test" rel="test"/>
</filter>
<filter id="7d88e46l-ec6e-401d-8da3-beab6fl1606c32">
<name>CM aggregate by used space %</name>
<certification>NETAPP</certification>
<parameters>
<parameter>used size threshold</parameter>
<parameter>used space</parameter>
</parameters>
<dictionaryName>cm storage.Aggregate</dictionaryName>
<ns2:1ink href="http://localhost/rest/filters/7d88e461l-ec6e-401d-
8da3bea6f1606c32" rel="self"/>
<ns2:1link href="http://localhost/rest/filters" rel="1list"/> <ns2:1link
href="http://localhost/rest/filters/7d88ed6l-ecbe-401d-
8da3beab6fl606c32/test no reservations"rel="test no reservations"/>
<ns2:1link href="http://localhost/rest/filters/7d88ed46l-ecbe-401d-
8da3bea6f1606c32/test" rel="test"/>
</filter>
</collection>

The following table shows a sample JSON output of /rest/filters that returns a collection of exactly one
filter:

[
{
"id": "eb6fc609-bc4c-4b28-b7af-d80e7c620645",

"name": "CM aggregates based on ONTAP version",
"certification": "NETAPP",

"dictionaryName": "cm storage.Aggregate",
"parameters": [

"os version"

]

FilterTestResults

The FilterTestResults object encapsulates the output of a filter test execution.

Name Type Mandatory Description
Filter name String True Name of the filter.
Dictionary name | String True Fully qualified name of the dictionary item that
this filter is associated with.

http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-

Parameters KeyAndValuePair | false A collection of KeyAndValuePair items. Each
item specifies an input parameter and the
corresponding value that was passed by the
client to test the filter.

Columns Array of column | False Contains column description of the output
columns of the query result.

Rows Array of row False Array of row. Each row contains exactly one
output dictionary item that matches the criteria.

The following is sample XML output of FilterTestResults run on a filter that filters Clustered Data
ONTAP aggregates based on os_version. In this example, the os_version was specified as 8.1.

<filterTestResults>
<filterName>CM aggregates based on ONTAP version</filterName>
<dictionaryName>cm storage.Aggregate</dictionaryName>
<parameters>
<parameter value="8.1" key="os version"/>
</parameters>
<columns>
<column>#</column>
<column>name</column>
<column>node.cluster.primary address</column>
<column>node.name</column>
</columns>
<rows>
<row>
<cell value="1" key="#"/>
<cell value="aggr0" key="name"/>
<cell value="10.72.181.165" key="node.cluster.primary address"/>
<cell value="f3170-181-42" key="node.name"/>
</row>
<row>
<cell value="2" key="#"/>
<cell value="f£317018142 aggrl" key="name"/>
<cell value="10.72.181.165" key="node.cluster.primary address"/>
<cell value="f3170-181-42" key="node.name"/>
</row>
<row>
<cell value="3" key="#"/>
<cell value="aggr0O £3170 181 43 0" key="name"/>
<cell value="10.72.181.165" key="node.cluster.primary address"/>
<cell value="f3170-181-43" key="node.name"/>
</row>
<row>
<cell value="4" key="#"/>
<cell value="£317018143 aggrl" key="name"/>
<cell value="10.72.181.165" key="node.cluster.primary address"/>
<cell value="f3170-181-43" key="node.name"/>
</row>
</rows>
</filterTestResults>

The following is sample JSON output of FilterTestResults run on a filter that filters Clustered Data
ONTAP aggregates based on os_version. In this example, the os_version was specified as 8.1.

58 | OnCommand Workflow Automation 5.1 Rest API Primer

"filterName": "CM aggregates based on ONTAP version",
"dictionaryName": "cm storage.Aggregate",
"parameters": |
{
"key": "os version",
"value": "8.1"
}
1,
"columns": [
u#u,
"name",
"node.cluster.primary address",
"node.name"

1,

"rows": [
{
"cell™: [
{
"key": "#",
"value": "1"
}I
"key": "name",
"value": "aggrQ"
}I
"key": "node.cluster.primary address",
"value"™: "10.72.181.165"
}I
{
"key": "node.name",
"value": "£3170-181-42"
}
]
}I
"cell”™: [
{
"key": "#",
"value": "2"
}I
"key": "name",
"value": "£317018142 aggrl"
}I
"key": "node.cluster.primary address",
"value": "10.72.181.165"
}I
{
"key": "node.name",

"value": "£3170-181-42"

"cell": [
{

"key": H#H,
"value": "3"
by
{
" key" : "name" ,

"value": "aggrO £3170 181 43 0"
1
{

"key": "node.cluster.primary address",
"value": "10.72.181.165"

}I

{
"key": "node.name",
"value": "f£3170-181-43"

}

]
by
{
"cell™: [

{
"key": "4",
"value": "4"

}I
"key": "name",
"value": "£317018143 aggrl"

}I
"key": "node.cluster.primary address",
"value": "10.72.181.165"

}I

{
"key": "node.name",
"value": "£3170-181-43"

Filter links, relations, and actions (only for XML)

The following table shows the links and relations of a filter object.

Relation Description HTTP Reques | Response
Reques | tType | Type
t
list Lists all the filters. Query parameters can be GET NA Filter[]
used to restrict the list based on specific
criteria.
self Returns this specific filter. GET NA Filter

60 | OnCommand Workflow Automation 5.1 Rest API Primer

test

Tests the filter and returns the results. The
results include reservation data.

Query Parameters

<parameter>=<value>: The test filter expects
the client to specify the input parameters to
the filter as query parameters. An example is
asbelow: http://localhost/rest/filters/eb6fc609-

GET

NA

FilterTestResu
Its

bcac-
4b28-b7af-

me=test

d80e7c620645/test?0s_version=8.1&clusterna

test no_re | Tests the filter without applying GET NA FilterTestResu
servation RESERVATION data. This action also Its

supports query parameters exactly as the ‘test’
action shown in the row above.

HTTP error codes

Error Codes

400 Bad request
401 Unauthorized
403 Forbidden

Status Code Response

Valid codes See Appendix B on HTTP status codes and detailed error messages for

Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

http://localhost/rest/filters/eb6fc609-

Finders

Finders are a logical group of filters for the same dictionary item, where each filter specifies particular
criteria. Finders return a resource collection that matches all the criteria of all the filters in the finder.

WFA REST API can be used by clients to programmatically view the meta-data and other aspects of a
finder. The API can also be used to execute a finder (for testing the finder) and obtain its results.
Currently, WFA API cannot be used to create, update, or delete a finder.

Query parameters to filter collection of filters

Parameter Value Description

dictionary String Name of the dictionary item. For example, if
cm_storage.aggregate is specified, only finders that return this
dictionary item as output are returned.

Query Parameter Example

An HTTP GET on the following URL returns all finders.
https://localhost/rest/finders

An HTTP GET on the following URL returns all finders that find the
dictionary item cm storage.aggregate.
https://localhost/rest/finders?dictionary=cm storage.aggregate SECURITY

Security

Only users with the admin role or the architect role can use the finders API. If operators or guests
attempt to use this AP, the server returns a ‘403 Forbidden’.

Any unauthorized access (either incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the server.

Finder data structures

This section provides a description of all the major data structures exposed through the finders API.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual, that is available from in the product.

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description

Key String True Key

Value String True Value
Finder

The finder object represents a single finder. The following table describes the information encapsulated
within this object.

62 | OnCommand Workflow Automation 5.1 Rest API Primer

Name Type Mandatory Description
Finder UUID String True A 32 byte UUID string that uniquely
identifies the finder.
Finder name String True Name of the finder.
Finder Enum false Certified by. Can be any one of the
certification following:
+ NONE
« PS

« COMMUNITY
.« USER_LOCKED

+ NETAPP
Input Array False A set of String that specifies the input
Parameters parameters that need to be passed as input

to the finder.

Dictionary String False The fully qualified name of the dictionary
Name item that the filter is used to filter
resources. (for example,
cm_storage.aggregate).

Filters Array of Filter False A logical grouping of filters corresponding
to the same dictionary item that together
forms this dictionary item finder.

Hyper media Array of Atom False A collection of atom links that specifies
Links (only for | links available resources and their links. Allows
XML) clients to do hypermedia traversal. Each of

these URLSs and the associated methods are

described in this document.

This entry is read-only for the client.

The following is a sample XML output of /rest/finders that returns a collection of exactly one finder.

<collection xmlns:ns2="http://www.w3.0rg/2005/Atom">

<finder id="915c8c3f-3863-4fef-a198-b35257d5de2d">

<name>Find CM aggregate in a given CM node</name>

<dictionaryName>cm storage.Aggregate</dictionaryName>
<certification>NETAPP</certification>

<filters>

<filter id="e6ee693c-5707-4936-bf27-99d6c8b319db">

<name>CM aggregate by key</name>

<certification>WFA</certification>

<parameters>

<parameter>name</parameter>

<parameter>node.cluster.name</parameter>
<parameter>node.name</parameter>

</parameters>

<dictionaryName>cm storage.Aggregate</dictionaryName>

<ns2:1ink href="http://localhost/rest/filters/e6ee693c-57074936- bf27-
99d6c8b319db" rel="self"/>

<ns2:1ink href="http://localhost/rest/filters" rel="1list"/>

<ns2:1ink href="http://localhost/rest/filters/e6ee693c-5707- 4936-bf27-
99d6c8b319db/test no reservations"rel="test no reservations"/>
<ns2:1ink href="http://localhost/rest/filters/e6ee693c-5707- 4936-bf27-
99d6c8b319db/test" rel="test"/>

</filter>

http://www.w3.org/2005/Atom
http://localhost/rest/filters/e6ee693c-57074936-
http://localhost/rest/filters/e6ee693c-57074936-
http://localhost/rest/filters
http://localhost/rest/filters/e6ee693c-5707-
http://localhost/rest/filters/e6ee693c-5707-

</filters>

<parameters>

<parameter>name</parameter>
<parameter>node.cluster.name</parameter>
<parameter>node.name</parameter>

</parameters>

<ns2:1ink href="http://localhost/rest/finders/915c8c3f-3863-4fef-
al98b35257d5de2d/test no reservations"rel="test no reservations"/>
<ns2:1ink href="http://localhost/rest/finders/915c8c3f-3863-4fef—-
al98b35257d5de2d/test" rel="test"/>

<ns2:1ink href="http://localhost/rest/finders/915c8c3f-3863-4fef-
al98b35257d5de2d" rel="self"/>

<ns2:1link href="http://localhost/rest/finders" rel="1list"/>
</finder>

</collection>

The following is a sample JSON output of /rest/finders that returns a collection of exactly one finder:

"id": "915c8c3f-3863-4fef-al98-b35257d5de2d",

"name": "Find CM aggregate in a given CM node",
"dictionaryName": "cm storage.Aggregate",
"certification": "NETAPP",

"filters": [

{
"id": "e6ee693c-5707-4936-bf27-99d6c8b319db",

"name": "CM aggregate by key",
"certification": "WFA",
"parameters": [

"name",

"node.cluster.name",
"node.name"

}

] 4

"parameters": [
"name",

"node.cluster.name",

"node.name"

1

}
1

FinderTestResults

The FinderTestResults object encapsulates the output of a finder test execution.

Name Type Mandatory Description

Finder Name String True Name of the finder.

Dictionary String True Fully qualified name of the dictionary item
Name that this filter is associated with.
Parameters KeyAndValuePair | false A collection of KeyAndValuePair items.

Each item specifies an input parameter and
the corresponding value that was passed by
the client to test the filter.

Columns Array of column | False Contains column description of the output
columns of the finder result.

http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders

64 | OnCommand Workflow Automation 5.1 Rest API Primer

Rows Avrray of row False

Array of rows. Each row contains exactly
one output dictionary item that matches all
the criteria within the finder.

The following is a sample XML output of FinderTestResults run on a finder that finds cluster mode

aggregates based on name, node name and cluster name.

<finderTestResults>

<finderName>Find CM aggregate in a given CM node</finderName>
<dictionaryName>cm storage.Aggregate</dictionaryName>

<parameters>

<parameter value="f2040-181-51" key="node.name"/>

<parameter value="aggr0" key="name"/>

<parameter value="clus51 52 test" key="node.cluster.name"/>

</parameters>

<columns>
<column>#</column>
<column>node.name</column>

<column>node.cluster.primary address</column>

<column>name</column>
</columns>
<rows>
<row selected="true">
<cell value="1" key="#"/>
<cell value="aggr0" key="name"/>

<cell value="10.72.181.75" key="node.cluster.primary address"/>
<cell value="f2040-181-51" key="node.name"/>

</row>

</rows>

</finderTestResults>
"node.cluster.primary address",

"name"
]l
"rows": [
{
"cell”™: [
{
"key": "#",
"value": "1"
}l
{
"key": "name",
"value": "aggrQ"
}I
{
"key": "#",
"value": "1"
}I
{
"key": "node.cluster.primary address",
"value": "10.72.181.75"
}I
{
"key": "node.name",
"value": "f£2040-181-51"

The following is a sample JSON output of FinderTestResults run on a finder that finds cluster mode

aggregates based on name, node name, and cluster name.

The following table shows a sample XML output of FinderTestResults run on a finder that tries to find
a cluster mode aggregate based on name, node name, and cluster name of a cluster name that does not
exist.

<finderTestResults>
<finderName>Find CM aggregate in a given CM node</finderName>
<dictionaryName>cm storage.Aggregate</dictionaryName>
<parameters>
<parameter value="nodel" key="node.name"/>
<parameter value="aggrl" key="name"/>
<parameter value="clusl" key="node.cluster.name"/>

</parameters>
<columns/>
<rows/>
<reasonForNoResult>
No results were found. The following filters have returned empty results:
CM aggregate by key
</reasonForNoResult>
</finderTestResults>

The following table shows a sample JSON output of FinderTestResults run on a finder that tries to find
a cluster mode aggregate based on name, node name, and cluster name of a cluster name that does not
exist.

"finderName": "Find CM aggregate in a given CM node",
"dictionaryName™:"cm_storage.Aggregate”,
"parameters": [
{
"key": "node.name",
"value": "nodel"

b
{
"key": "name",
"value": "aggrl"
3
{

"key": "node.cluster.name",
"value": "clusl"
}
]l
"columns": [
]!
"rows": [
]!
"reasonForNoResult": "No results were found. The following filters have returned empty results:
CM aggregate by key"

¥

Finder links, relations, and actions (only for XML)
The following table shows the links and relations of a finder object.

Relation Description HTTP Request Response
Request | TyPe Type
list Lists all the finders. Query parameters can be | GET NA Finder[]

used to restrict the list based on a particular
dictionary item.

self Returns this specific finder only. GET NA Finder

66 | OnCommand Workflow Automation 5.1 Rest API Primer

<parameter>=<value>: The test finder
expects the client tospecify the input
parameters to the finder as query parameters.
See the following example:
http://localhost/rest/finders/915c8c 3f-3863-

test Tests the finder and returns results. The GET NA FinderTestRes
results include reservation data. ults
Query Parameters

4fef-a198-

b35257d5de2d/test?name=aggro&

node.cluster.name=clus51 52 test

&node.name=f2040-181-51

test_no_res Tests the finder without applying GET NA FinderTestRes
ervation RESERVATION data. This action also ults
supports query parameters exactly as the
‘test’ action shown in the row above.

HTTP error codes

Status Code Response

Valid codes See Appendix B on HTTP status codes and detailed error messages for

Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported MediaType
500 Server error

http://localhost/rest/finders/915c8c

Remote System Types

The Remote System Types API allows WFA API clients:
O Getinformation about existing remote system type(s)

Example

An HTTP GET on the following URL returns all remote system types.
https://localhost/rest/remote system types

An HTTP GET on the following URL returns the specific remote system type
with the given uuid. https://localhost/rest/remote system types/3e4e2811-
1b60-42ad- 8eb8d8250d182166

Security

Only users with the admin role or the architect role can use the Remote System Types API.

If operators or guest users attempt to use this API, the server returns a ‘403 Forbidden’.

Any unauthorized access (i.e either incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the server.

Remote System Type data structures

This section provides a description of all the major data structures exposed through the remote system
types API.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual that Sis available from within the
product.

Remote System Type

The Remote System Type object provides details of a single remote system type. The following table
describes the information encapsulated within this object.

Name Type Mandatory Description

Uuid String True ID that uniquely identifies the resource
instance.

Name String True Name of the remote system type.

Description String True Description of the remote system type.

Version Version True Version of the remote system type and
includes elements for major, minor, and
revision.

68 | OnCommand Workflow Automation 5.1 Rest API Primer

Certification

Enum

True

Certification of the remove system type
entry. Can be any one of the following:
*+ NONE
+ PS
+ COMMUNITY
*+ USER_LOCKED
* NETAPP

Connection
protocol

Enum

True

Connection protocols to be used for
connecting to the remote system.
Can be one of the following:

* HttpsToHttp

* HttpsOnly

* HttpOnly

» Others

Protocol details

Avrray of
Protocol detail

True

List of Protocol detail entries (in order driven
by Connection protocol).
Each Protocol detail entry has the following
fields:

* Protocol

+ defaultPort

O defaultTimeout

Hyper media
links (only for
XML)

Array of atom
links

False

A collection of atom links that specifies
available resources and their links. Allows
clients to do hypermedia traversal. Each of
these URLSs and the associated methods are
described in this document.

This entry is read-only for the client.

The following is sample XML containing the remote system type object

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

PN L DU Sy, , PINEUIRUN, [NV I | | IR S SN e

{

"uuid": "3e4e2811-1b60-42ad-8eb8-d8250d182166",

e IARRE [men @ cooe

"name": "Data ONTAP Systems",
"description": "System type for Data ONTAP Systems.",
"version": {
"major": 1,
"minor": O,
"revision": 0
}I
"certification": "NETAPP",
"connectionProtocol": "HttpsToHttp",

"protocol-details": [

{
"protocol": "HTTPS",
"defaultPort": 443,
"defaultTimeout": 60

}I
{
"protocol": "HTTP",
"defaultPort": 80,
"defaultTimeout": 60

}

gepbgdgzZoUdLlgZlbb™/ >

AN A~Nn011

<atom:1link rel="1list" href="https://localhost/rest/remote system types"/>

</remoteSystemType>

The following is sample JSON containing the remote system type object:

Links and relations (only for XML)

Relation Description HTTP Request Response
Request | Type Type
List Lists all remote system type objects. GET NA Remote System
Type(]
self Returns the specific remote system type GET NA Remote System
only. Type

http://www.w3.org/2005/Atom

70 | OnCommand Workflow Automation 5.1 Rest API Primer

HTTP error codes

Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be
returned.
200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported Media
Type

500 Server error

Credentials

The Credentials API allows WFA API clients to:

e Get information about existingcredential(s)

e Create and delete new credentials

e Test credentials

Query parameters to filter collection of credentials

Parameter Value

Description

Type ConnectionType

Filter credential collection based on a connection type.
Connection type can be any one of the following:

+ ONTAP

+ DFM
* VIRTUAL_CENTER
+ OTHER

This field is deprecated and query parameter
‘remoteSystemType’ must be used.

RemoteSystemType | String

Filter credential collection based on the given remote

system type name. Remote system type name must be one
of the valid remote system types existing in the WFA
system.

Query parameter example

An HTTP GET on the following URL returns all credentials.
https://localhost/rest/credentials

An HTTP GET on the following URL returns all credentials for ONTAP systems
https://localhost/rest/credentials?type=0ONTAP

An HTTP GET on the following URL returns all credentials with remote system

type Data ONTAP Systems

https://localhost/rest/credentials?remoteSystemType=Data%200NTAP%20Systems

Security

Only users with the admin role or the architect role can use the credentials API. If operators or guest
users attempt to use this API, the server returns a ‘403 Forbidden’.

Any ‘unauthorized access’ (i.e., incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the WFA server.

Since credentials are very sensitive data, it is recommended that an HTTPS connection is configured
before using this API, especially if the ‘create’ credential API is used.

Credential data structures

This section provides a description of all the major data structures exposed through the credentials API.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual that is available in the product.

Credential

72 | OnCommand Workflow Automation 5.1 Rest API Primer

The Credential object represents access information to a single device. The following table describes
the information encapsulated within this object.

Name

Type

Mandatory

Description

String

True

IP address of the host. The host can be an
ONTAP system, VMware vCenter or any
other data center resource.

Connection
Type

Enum

True

Type of connection. Can be any one of the
following:

O ONTAP

+ DFM
* VIRTUAL_CENTER
» OTHER

This field is deprecated with the introduction
of remote system type.

Match Type

Enum

True

Match type for the IP address. Could be any
one of the following:

« EXACT

* PATTERN

EXACT means the IP is an exact match.
PATTERN means IP is a regular expression
that can be used to match a range of IP
addresses.

Remote system
type

String

True

Name of the remote system type attached to
the Credential. Remote system type provides
connection details (port, protocol, and
timeout) for the given remote system.

Connection
protocol details

Array of
connection
protocol detail
entries.

True

This field includes the connection details for
the credential object as per the corresponding
remote system type.

A connection protocol detail entry includes

protocol, connectionPort, and
connectionTimeout values.

Name

String

False

Host name of the entity.

User Name

String

False

User name of the account that will be
accessed by WFA to access the device or
host.

Hyper media
Links (only for
XML)

Array of
Atom links

False

A collection of atom links that specifies
available resources and their links. Allows
clients to do hypermedia traversal. Each of
these URLSs and the associated methods are
described in this document.

This entry is read-only for the client.

The following is sample XML containing the credential object.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<credential xmlns:atom="http://www.w3.0rg/2005/Atom">

<ip>1.1.1.1</ip>
<connectionType>ONTAP</connectionType><remoteSystemType>Data ONTAP
Systems</remoteSystemType>

<connection-protocol-details>
<connection-protocol-detail>
<connectionPort>443</connectionPort>
<connectionTimeout>60</connectionTimeout>
<protocol>HTTPS</protocol>
</connection-protocol-detail>
<connection-protocol-detail>
<connectionPort>80</connectionPort>
<connectionTimeout>60</connectionTimeout>
<protocol>HTTP</protocol>
</connection-protocol-detail>
</connection-protocol-details>
<matchType>EXACT</matchType>
<name>name 1</name>
<userName>user name 1</userName> <atom:link rel="test"
href="http://localhost:9095/rest/credentials/1.1.1.1/test"/>
<atom:1link rel="self"
href="http://localhost:9095/rest/credentials/1.1.1.1"/>
</credential>
<atom:1link rel="remote-system-type"

href="http://localhost:9095/rest/remote system types/3e4e2811-1b60-42ad8eb8-
d8250d182166" />

The following is sample JSON containing the credential object:

{
MipWg Wi, L. 1.9,
"connectionType": "ONTAP",
"remoteSystemType": "Data ONTAP Systems",
"matchType": "EXACT",
"name": "name 1",
"userName": "user name 1"
"connection-protocol-details": [

{
"protocol": "HTTPS",
"connectionPort": 443,
"connectionTimeout": 60

"protocol": "HTTP",
"connectionPort": 80,
"connectionTimeout": 60

CredentialWithPassword

The ‘Credential WithPassword’ is a credential object described above along with an additional string
field that represents the password of the device or host. It is only used as input when creating new
credentials. It is not used as output, as the API will not let out password of any credentials that are
already stored within the system.

Links and relations (only for XML)

Relation Description HTTP Request Response
Request | Type Type

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

74 | OnCommand Workflow Automation 5.1 Rest API Primer

list Lists all credential objects. Query GET NA Credential[]
parameters can be used to restrict the list
based on a particular connection type.

self Returns this specific credential only. GET NA Credential

test Tests the credential and returns the GET NA Credentiall
credential objects if the test was
successful. Query Parameters
testiP=<value>: The IP address of the
device or host against which the credential
has to be tested.

http://localhost/rest/10.72.76.*/test?testlp=

10.72.76.76
add Creates a new credential object. POST Credential | Credential
WithPassw
ord
Remove Removes the credential specified by name | DELETE | NA NA
or IP address.
remotesystemtype | Lists the remote system type for the given | GET NA Remote
credential. System Type
HTTP error codes
Status Code Response
Valid codes See Appendix B on HTTP status codes and detailed error messages for
Success Codes: a detailed description of these error codes and when they will be
returned.

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported Media
Type

500 Server error

http://localhost/rest/10.72.76

Data Source and Data Source Types

The Data source API allows the client to perform the following:

Get information about existing data source types on the server

Get information about existing data sources on the server

Perform an immediate acquisition on a specific data source

Get information on the status of a specific acquisition job

The root URIs for these resources is /rest/data sources and

/rest/data source types.

Security

All the resources under /rest/data_sources and /rest/data_source_types are visible only for admins and
architects.

An HTTP ‘403 Forbidden’ error code is returned for operators and guest users.

Any unauthorized access (i.e., incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the WFA server.

Data structures

Data source type

Name Type Description
Uuid String ID that uniquely identifies this resource instance.
Certification Enum NONE/PS/ICOMMUNITY/USER_LOCKED/NETA
PP
productType String for example, “onCommand unified manager (DFM)”
productVersion String for example, 5.1.X Cluster-Mode
dataSourceDriver String for example, Sybase jConnect 3.0 (if not null)
Links (only for XML) Array of Links to relations and actions that are navigable from
atom links this resource.
Scheme String Scheme of the data source type.
Method String Indicates whether the data source type is of SQL or
SCRIPT type.
DefaultDatabaseName String Name of the default database.
Version Version Version of the data source type. Provides major,

minor, and revision numbers.

DefaultPort

int

NA

Instructions

String

Setup instructions to configure the data source.

76 | OnCommand Workflow Automation 5.1 Rest API Primer

The following sample XML illustrates the dataSourceType.

<dataSourceType uuid="6eebe2a9-dacf-445d-a700-37d346526809">
<certification>NETAPP</certification>
<productType>OnCommand Unified Manager</productType>

<productVersion>5.2.X for Clustered Data ONTAP</productVersion>
<dataSourceDriver>Sybase jConnect3</dataSourceDriver>
<version>
<major>1</major>
<minor>0</minor>
<revision>0</revision>
</version>
<defaultPort>2638</defaultPort>
<scheme>cm storage</scheme>
<method>SQL</method>
<instructions>For Windows 1. Connect to the OnCommand Unified Manager host
using Remote Desktop Connection as a local admin. 2. On the OnCommand
Unified Manager host, perform the following: a. Download wfa ocsetup.exe
from the following address to a temp folder:
http://localhost/download/wfa ocsetup.exe b. Run wfa ocsetup.exe while
providing the following details: c. Select a valid path to a Java Runtime
Environment (You may approve the suggested one if applicable) d. Provide
the username and password that will be created. e. Verify setup finished
successfully. For Linux 1. Connect to the OnCommand Unified Manager host
using SSH, logged in as root. 2. On the OnCommand Unified Manager host,
perform the following: a. Download wfa ocsetup.sh from the following
address to a temp directory: # wget --user=<admin/architect user> -
password=<password> http://localhost/download/wfa ocsetup.sh b. Modify the
permissions of wfa ocsetup.sh to be executable:chmod +x wfa ocsetup.shc.
Run wfa ocsetup.sh, providing a valid path to a Java Runtime Environment
(1.6 and above) .Example: # ./wfa ocsetup.sh /usr/bin/java d. Supply the
username and password when prompted to override the default credentials. e.
Verify setup finished successfully.</instructions>
<atom:1link rel="add-data-source"
href="https://localhost/rest/data sources/type/6ee5e2a9-dacf-445d-
a70037d346526809" />
<atom:link rel="data-sources"
href="https://localhost/rest/data_sources/type/6ee5e2a9-dacf-445d-
a70037d346526809" />
<atom:1link rel="list" href="https://localhost/rest/data source types"/>
<atom:1link rel="self"
href="https://localhost/rest/data source types/6ee5e2a9-dacf-445d-
a70037d346526809" />
</dataSourceType><dataSourceType uuid="6dee7cb0-c411-4aal-81bl-
70ac32d2af8a”>
<cetification>WFA</certification>
<productType>OnCommand Unified Manager (DFM)</productType>
<productVersion>5.1.X Cluster-Mode</productVersion>
<dataSourceDriver>Sybase jConnect 3.0</dataSourceDriver>
<ns2:1link href="http://localhost/rest/data source types" rel="list
<ns2:1link href="http://localhost/rest/data source types/{uuid}" rel="self"/>
<ns2:1link href=".../rest/data source/type/6dee7cb0-c411-4aal-81bl-
70ac32d2af8a rel="data-sources"/></dataSourceType>

http://localhost/download/wfa_ocsetup.exe
http://localhost/download/wfa_ocsetup.sh
http://localhost/rest/data_source_types
http://localhost/rest/data_source_types/

The following sample JSON illustrates the dataSourceType:

{

"uuid": "6eebe2a9-dacf-445d-a700-37d346526809", "certification": "NETAPP",
"productType": "OnCommand Unified Manager", "productVersion": "5.2.X for Clustered
Data

ONTAP</productVersion> <dataSourceDriver>Sybase jConnect3",

"dataSourceDriver": "Sybase jConnect 3.0", "version": {

"major": 1,

"minor": O,

"revision": 0

by

"defaultPort": 2638, "scheme": "cm storage", "method": "SQL",

"instructions": "For Windows 1. Connect to the OnCommand Unified Manager host using

Remote Desktop Connection as a local admin. 2. On the OnCommand Unified Manager host,
perform the following: a.

Download wfa ocsetup.exe from the following address to a temp folder:
http://localhost/download/wfa ocsetup.exe b. Run wfa ocsetup.exe while providing the
following details: c. Select a valid path to a Java Runtime Environment (You may
approve the suggested one if applicable) d. Provide the username and password that
will be created. e. Verify setup finished successfully. For Linux 1. Connect to the
OnCommand Unified Manager host using SSH, logged in as root.

2. On the OnCommand Unified Manager host, perform the following: a. Download

wfa ocsetup.sh from the following address to a temp directory: # wget --
user=<admin/architect user> -password=<password>
http://localhost/download/wfa ocsetup.sh b. Modify the permissions of wfa ocsetup.sh
to be executable:chmod +x wfa ocsetup.sh c. Run wfa ocsetup.sh, providing a valid path
to a Java Runtime Environment

(1.6 and above) .Example: # ./wfa ocsetup.sh

/usr/bin/java d. Supply the username and password when prompted to override the
default credentials. e.

Verify setup finished successfully."

}

Data source

Name Type Description
Name String Name of the data source
Schema String Storage/cm_storage
Type String String representation of the data source type

that the data source is using

typeUuid String Uuld of the data source type

Ip String Data source ip

Port Int Data source port

Interval Int Acquisition Interval (minutes)

links (only for XML) |Array of atom links Links specifying relations and actions that are

possible for this resource.

The combination of the name and the schema is the data source ID.
The following is a sample XML data source.

http://localhost/download/wfa_ocsetup.exe
http://localhost/download/wfa_ocsetup.sh

78 | OnCommand Workflow Automation 5.1 Rest API Primer

<dataSource name="DFM 234" schema="storage”>
<type>OnCommand Unified Manager (DFM) - 4.0 , 5.0.X,5.1.X 7 Mode
(SYBASE) </type>
<typeUuid>6dee7cb0-c41ll1-4aal-81bl-70ac32d2af8a</typeUuid>
<ip>10.68.66.234</ip>
<port>2638</port>
<interval>30</interval>
<ns2:1link href="http://localhost/rest/data sources" rel="list"/>
<ns2:1ink href="http://localhost/rest/data sources/DFM%20234/storage" rel="
self"/> N
<ns2:1ink href="http://localhost/rest/data sources/DFM%20234/storage/jobs"
rel="acquire"/> B
<ns2:1link href="http://localhost/rest/data source type/6dee7cb0-c41l-
4aal-81bl-70ac32d2af8a" rel="data-source-type"/>
</dataSource>

Note: “self” and “acquire” have the same URL. “self” uses GET and “acquire” uses POST.

The following is a sample JSON data source:

"name": " DFM 234",

"type": " OnCommand Unified Manager (DFM) - 4.0 , 5.0.X,5.1.X 7 Mode
(SYBASE) ",

"ip": "10.68.66.234",

"port": 2638,

"schema": " storage",

"interval": 30

Acquisition job

Name Type Description

Id Int The job id

Data Source Data Source Object The data source against which the
acquisition job is performed.

plannedExecution Date Job planned execution time
startTime Date Job start time

Duration Int Job duration in seconds
scheduleType String Immediate/Recurring
Status Enum Failed/Canceled/...
errorMessage String Error message if exists

99 93 99 9 99 95

Note: “startTime”,” duration”,” plannedExecution”,” scheduleType”,”status”, and “message” will be
warped by “jobStatus” element.

The following shows a sample XML of acquisition job.

<acquisitionJob xmlns:atom="http://www.w3.0rg/2005/Atom" jobId="248">
<jobStatus>

http://www.w3.org/2005/Atom
http://localhost/rest/data_sources
http://localhost/rest/data_sources/DFM%20234/storage
http://localhost/rest/data_sources/DFM%20234/storage/jobs
http://localhost/rest/data_source_type/6dee7cb0-c411-

<plannedExecution>Jan 28, 2016 12:09:35 PM</plannedExecution>

<scheduleType>Immediate</scheduleType>

<status>SCHEDULED</status>

</jobStatus>

<dataSource name="wfa-ocum-4" schema="cm storage">

<type>OnCommand Unified Manager - 6.3 (MYSQL)</type>

<ip>wfa-ocum-4</ip>

<port>3306</port>

<interval>30</interval>

<atom:link rel="acquire"

href="http://localhost/rest/data sources/wfa-ocum-4/cm_storage/jobs"/>

<atom:link rel="acquire-data-source-by-name"

href="http://localhost/rest/data_ sources/wfa-ocum-4/jobs"/>

<atom:1link rel="1list" href="http://localhost/rest/data sources"/>

<atom:1link rel="edit-data-source" href="http://localhost/rest/data sources/wfa-ocum-

4u/>

<atom:1link rel="remove-data-source" href="http://localhost/rest/data sources/wfa-ocum-

4u/>

<atom:1link rel="last acquisition jobs by type"

href="http://localhost/rest/data sources/type/ddc7d0f2-2474-44£0-

b89bf26902b4872a/jobs" />

<atom:1link rel="self" href="http://localhost/rest/data sources/wfaocum-4/cm storage"/>

<atom:1link rel="data-source-type"

href="http://localhost/rest/data source types/ddc7d0£f2-2474-44f0- b89bf26902b4872a" />
</dataSource>

<atom:link rel="acquisition-job-by-name" href="http://localhost/rest/data sources/wfa-

ocum-4/jobs/248" />

<atom:link rel="self" href="http://localhost/rest/data sources/wfaocum-

4/cm_storage/jobs/248"/>

</acquisitionJob>

The following shows a sample JSON of acquisition job:

"jobId": "248",

"jobStatus": {
"plannedExecution”: "Jan 28, 2016 12:09:35 PM", "scheduleType":
"Immediate",

"status": "SCHEDULED"
}I
"dataSource": {
"name": "wfa-ocum-4",
"type": "OnCommand Unified Manager - 6.3 (MYSQL)", "ip":

"wfa-ocum-4",

"port": 3306,

"schema": "cm storage", "interval":
30

Links, relations, and actions (only for XML)

The following table explains links, relations, and actions corresponding to data sources and data source
types.

Relation | Description HTTP Request Response Type
Request Type

http://localhost/rest/data_sources/wfa-ocum-4/cm_storage/jobs
http://localhost/rest/data_sources/wfa-ocum-4/cm_storage/jobs
http://localhost/rest/data_sources/wfa-ocum-4/jobs
http://localhost/rest/data_sources/wfa-ocum-4/jobs
http://localhost/rest/data_sources
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/type/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/type/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/wfaocum-4/cm_storage
http://localhost/rest/data_sources/wfaocum-4/cm_storage
http://localhost/rest/data_source_types/ddc7d0f2-2474-44f0-
http://localhost/rest/data_source_types/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/wfa-ocum-4/jobs/248
http://localhost/rest/data_sources/wfa-ocum-4/jobs/248
http://localhost/rest/data_sources/wfaocum-

80 | OnCommand Workflow Automation 5.1 Rest API Primer

List

Lists all the data sources
(/rest/data_sources) or data source
types (/rest/data_source_types)

GET

NA

Data
source[]

OR

Data source

Self

Returns this specific resource only.

GET

NA

Data
source[]

OR

Data source

Acquire

Performs an immediate acquisition
from the specified data source. On
success, returns the acquisition job
details that was started. The body of
the request is ignored by the server.
URL request:

Using data source name and schema:
(/data_sources/{name}/{schema}/job
s) or

Using only data source name:
(/data_sources/{name}/jobs)

POST

None

Acquisition

job

data-
sources

Lists all data sources for a given data
source type. Relates data sources to
data source types.

GET

NA

Data
source[]

data-
source-

type

Lists the data source type of a given
data source. Relates data source type
to the data source.

GET

NA

Data source type

The following table shows the additional links returned in the ‘AcquisitionJob’ by the server to enable
the client to get the status of the job.r

Links, relations, and actions (only for XML)

Relation | Description HTTP Request Response Type
Request Type
Self Get the latest status of the acquisition job. | GET NA Acquisition job

Note: The status of the acquisition job can be obtained using either of the following URL requests:

Using data source name andschema:
/data_sources/{name}/{schema}/jobs/{job_id}

using only data source name: /data_sources/{name}/jobs/{job_id}

HTTP error codes

Status Code Response

Valid codes Refer to Appendix B on HTTP status codes and detailed error

Success Codes: messages for a detailed description of these error codes and when they
will be returned.

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed
415 Unsupported Media
Type

500 Server error

82 | OnCommand Workflow Automation 5.1 Rest API Primer

Schedules and recurring schedules

The Schedule API allows the client to perform the following tasks:
» Get information about existing schedules on theserver

* Get information about existing schedule instances on the server
+ Create, modify, and delete a schedule

» Suspend, resume, and delete a given schedule instance

The root URIs for these resources are /rest/schedules and
/rest/schedules/instances.

Security

All resources under the
/rest/schedules and
/rest/schedules/instances root

URIs are visible to admins, architects, approvers, and operators.
An HTTP ‘403 Forbidden’ error code returns for guest users.

Any unauthorized access (that is, incorrect or missing credentials) is challenged with a ‘401
Unauthorized’ error code by the WFA server.

Query parameters to filter collection of schedule instances

Parameter Value Description

schedule_id Schedule ID | Filter the schedule instances by the given schedule ID.

Data structures

Schedules
This section provides a description of all the major data structures exposed through the credentials API.

Note: To obtain the corresponding XML schema definition and sample XML documents
representing these data structures, see the Reference Manual that is available with the product.

The following table describes the information encapsulated within this object:

Name Type Mandatory Description

Id String False Schedule ID

Name String True Name of the recurring schedule

description String False Description of the schedule.

minutes String False Minutes in the range of 0 through 59.

hours String False Hours in the range of 0 through 23
daysOfMonth String False Days of a month in the range of 1 through

31

7

daysOfWeek String False Days of a week in the range of 1 through

The following is a sample XML containing the schedule object:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<schedule xmlns:atom="http://www.w3.0rg/2005/Atom" id="376">

<name>sch0001</name>

<description>This is a schedule</description>

<minutes>1</minutes>

<hours>2</hours>

<daysOfMonth>2</daysOfMonth>

<daysOfWeek>?</daysOfWeek>

<atom:link rel="1ist" href="http://localhost:90/rest/schedules"/>
<atom:link rel="add" href="http://localhost:90/rest/schedules"/>
<atom:link rel="edit" href="http://localhost:90/rest/schedules/376"/>

<atom:link rel="remove" href="http://localhost:90/rest/schedules/376"/>

<atom:link rel="self" href="http://localhost:90/rest/schedules/376"/>

</schedule>

The following isasample JSON containing the schedule object:
{

"id": 376,

"name": "sch0001",

"description": "This is a schedule",

"minutes": "1",

"hours": "2",

"daysOfMonth": "2",

"daysOfWeek": "2"

}

Links, relations, and actions (only for XML)

The following table describes links, relations, and actions corresponding to schedules:

Relation Description HTTP Requ Response
request est type

List Lists all the schedules GET NA Schedules[
[rest/schedules 1

Add Add a schedule POST NA Schedules[]
[rest/schedules

Edit Edit a schedule PUT NA Schedules[]
[rest/schedules/<id>

Remove Delete a schedule DELETE NA No content
[rest/schedules/<id>

Self The given schedule GET NA Schedules[
Irest/schedules/<id> 1

Recurring schedules

The following table describes links, relations, and actions corresponding to schedules:

http://www.w3.org/2005/Atom

84 | OnCommand Workflow Automation 5.1 Rest API Primer

Name Type Mandatory Description
schedulelnstance String True Instance 1D
scheduleName String True Name of the
recurring
schedule
scheduleld String False Schedule ID
workflowName String False Workflow name
workflowUuid String False Workflow UUID
userlnputValues Array False User-input
values in the
given schedule
instance
status String False Status of the
workflow:
ACTIVE
SUSPENDED

The following is a sample XML schedule instance:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<schedulelInstance xmlns:atom="http://www.w3.0rg/2005/Atom" id="3">

<scheduleName>sch-hourly</scheduleName>

<scheduleId>2</scheduleId>

<workflowName>Workflow to Print a Footballer Name - delete itl -
copy</workflowName>

<workflowUuid>9f2b07fb-a0cl1-4075-b660-5f6ab152630b</workflowluid>

<userInputValues>

<userInputEntry key="S$Country" value="Sweden"/>
<userInputEntry key="$const" value="Adaptive Qos Service Manager"/>

</userInputValues>

<status>ACTIVE</status>

<atom:1link rel="resume"
href="http://localhost:90/rest/schedules/instances/3/resume" />

<atom:1link rel="self"
href="http://localhost:90/rest/schedules/instances/3"/>

<atom:link rel="remove"
href="http://localhost:90/rest/schedules/instances/3"/>

<atom:link rel="1list"
href="http://localhost:90/rest/schedules/instances"/>

<atom:1link rel="suspend"
href="http://localhost:90/rest/schedules/instances/3/suspend"/>
</scheduleInstance>

The following is a sample JSON schedule instance:

http://www.w3.org/2005/Atom

Links,

Ticl¥g 3,
"scheduleName": "sch-hourly",
"scheduleId": 2,
"workflowName": "Workflow to Print a Footballer Name - delete itl - copy",
"workflowUuid": "9f2b07fb-a0cl-4075-b660-5f6abl52630b",
"userInputValues": [
{
"key": "S$Country",
"value": "Sweden"
by
{
"key": "Sconst",
"value": "Adaptive Qos Service Manager"
}
1,

"status": "ACTIVE"

relations, and actions (only for XML)

The following table describes links, relations, and actions corresponding to recurring schedules:

Relation Description HTTP Requ Response type
request est
List Lists all the schedule instances GET NA Schedulelnstance []
Self The schedule instance GET NA Schedulelnstance[]
[rest/schedules/instances/<id>

86 | OnCommand Workflow Automation 5.1 Rest API Primer

Suspend Suspend a given schedule instance POST NA No Content
[rest/schedules/instances/<id>/suspend

Resume Resume a given schedule instance POST NA No Content
[rest/schedules/instances/<id>/resume

Delete Delete a given schedule instance DELETE | NA No Content

[rest/schedules/instances/<id>

Appendix A — Return Parameters — Feature Description

This feature allows designating a set of parameters, such as Variable attributes, expressions, user input
values in a workflow, and to retrieve the values for the defined parameters on request.
The designation is done in the Return Parameters tab in workflow preferences:

General | Commands Configuration | User Input | Column Visibility | Return Parameters

Parameter Value Parameter Name Description
myvol.name

"fvol/™ + myvol.name + "/qtree” Qtree_path Path for gtree
SNumLun Number_of_luns

[Add row J [Remove row J

v - -

Start by adding a row and determine which value you wish to be returned. It receives a label
automatically, identical to the parameter value column, which appears in light gray. You might change
it to match any label you like and even add a short description.

Note: When executing the workflow, the values are populated as soon as the planning phase is
completed and execution commences. It is crucial to test the workflow execution status and confirm
its completion before addressing the values of the return parameters.

These values are set per execution. If, after several executions, another parameter is added, that
parameter value would be available from that point onwards only, and not in any execution prior to the
addition of new parameter.

88 | OnCommand Workflow Automation 5.1 Rest API Primer

Appendix B — Detailed Error Messages and Status

Codes

Error

Description

Remarks

200 OK

This is returned by WFA service if the requested
verb on the requested resource was successfully
processed by WFA.

The response contains the
representation of the requested
resource in.

201 CREATED

This is returned by WFA if a new child resource
was created. This is typically returned in
response to a POST, which is the only verb that
represents a non-idempotent operation in HTTP.
This is returned only for POST operations that
actually create a child resource and return its
representation.

The response contains the
resource representation of the
created resource.

Unauthorized

204 NO This will be returned by WFA for operations that

CONTENT were successful but a matching resource was not
found for the specific URI and query parameter
combination.

401 This is returned if the client is not authenticated

OR if the client does not have the privilege to
perform the requested operation on the requested
resource (job or workflow).

400
Bad Request

This is returned if the input specified by the
client is invalid. Ex. specifying a non-existing
workflow UUID OR specifying a non-existing
row in a plan.

500
Server error

This is returned if an internal server error caused
the server to abort the requested operation on the
resource.

The internal error could include
but is not limited to server side
problems, such as network errors,
DB connectivity issues, lack of
resources to complete the
requested operation, and so on.

Workflow Collection

400 GET Category name The provided Category name: An
Jrest/workflows?categories=e <name> does not exist. | category name example does not
xamples does not exist. exist.

400 GET Current user is not The user is an Current user is not
Jrest/workflows?categories=e authorized for any of operator and is not | authorized for any of
xamples the given categories. authorized for_ any | the given categories.

of the categories
given as
parameter.

404 All operations on resources that| No workflow found for | The provided No workflow found for
match the following url: uuid: <uuid> workflow uuid id: some_uuid

does not exist.
Irest/workflows/{workflow_u
uid}/*

403 POST Current user is not The user is an Current user David is
Irestiworkflows/{workflow_u allowed to execute operator and not not allowed to execute
uid}/jobs workflow. assigned to the workflow 6.

workflow
category.

403 POST Current user is not The user is an Current user David is
Irest/workflows/{workflow_u allowed to execute operator and this not allowed to execute
uid}/jobs workflow since it is workflow is not workflow 6 as it is not

not read_y for “ready for ready for production
production yet. production”. yet.

400 POST Got incorrect date and | The date formatis | Got incorrect date and
Irest/workflows/{workflow_u time format input. not valid. time format '234".
uid}/jobs Correct format

'‘M/d/yy h:mm a', for
example: 2/14/12 3:28
PM.

400 POST Cannot schedule a The date for the Cannot schedule a

Irest/workflows/{workflow_u
uid}/jobs

workflow in the past.

workflow is in the
past.

workflow in the past.

90 | OnCommand Workflow Automation 5.1 Rest API Primer

400 POST Invalid user-input and | The user input Invalid user-input and
Irest/workflows/{workflow_u value, should be: value was not value volumeName,
uid}/jobs name=value provided in the should be:

POST right format. name=value
Irest/workflows/{workflow_u
uid}/preview

400 POST The values for When a user input | The values for
Irest/workflows/{workflow_u <user_input_key> is defined as a array_ip have to fit
uid}/jobs have to fit <query> locked query and select array_ip from
POST the value does not | wfa.array

match the query.
Irestiworkflows/{workflow_u
uid}/preview

400 POST The values for When a user input | The values for size
Irest/workflows/{workflow_u <user_input_key> is defined as a have to be within 30,
uid}/jobs have to be within iﬁckeol' Enum at“d 40, and 50.

: e value is no
POST <enum list> one of its values.
Irest/workflows/{workflow_u
uid}/preview

400 POST The values for When a user input | The values for age
Irest/workflows/{workflow_u <user_input_key> is defined as a should be between 10
uid}/jobs have to be between Number and the and 50.

POST <range> value is not in the
Irest/workflows/{workflow_u defined range.
uid}/preview

400 POST The values for When a user input | The values for ip must
Irest/workflows/{workflow_u <user_input_key> is defined as a match the regular
uid}/jobs must match the regular | String and the expression: ["]

POST expression: value does not

<expression> match the regular
Irest/workflows/{workflow _u expression.
uid}/preview

400 POST User input When a provided User input name is not
Irest/workflows/{workflow_u <user_input_key> is user input is not defined in workflow
uid}/jobs not defined in defined for the Create Vfiler.

POST workflow <workflow | workflow.
Irest/workflows/{workflow_u name=
uid}/preview

404 All operations on resources Workflow execution Id | The provided job Workflow execution
with URI <job_id> was not | Idwas notfound. | Id 12 was not found.
Irest/workflows/{workflow_u found.
uid}/jobs/{job_id}/*

403 POST current user The user is an Current user David is
Irest/workflows/{workflow_u <user_name> is not operator and not not allowed to resume
uid}/jobs/{job_id}/resume allowed to resume assigned to the workflow 6.

workflow <job_id> workflow
category.

400 POST Could not resume Resume is only Could not resume
Irest/workflows/{workflow_u workflow execution possible for jobs workflow execution
uid}/jobs/{job_id}/resume with id <job_id>. that are in statuses: | with id 213. Resume is

Resume is only PAUSED, only allowed from
allowed from statuses: | CANCELED, statuses: PAUSED,
PAUSED, FAILED, and CANCELED,
CANCELED, SCHEDULED. FAILED, and
FAILED, and SCHEDULED.
SCHEDULED.

400 POST Resume of workflow This job cannot be | Resume of workflow
Irestiworkflows/{workflow_u execution with id is resumed since its | execution with id 105
uid}/jobs/{job_id}/resume not allowed. Workflow | reservation has is not allowed.

execution is expired - already expired Workflow execution

more than the days and the results are | pag expired - more

have passed §ince it not predictable. than 2 days have

stopped running. passed since it stopped
running.

403 POST Users with role When an operator | Users with operator
Irest/workflows/{workflow_u <role_name> are not tries to resume a role are not allowed to
uid}/jobs/{job_id}/resume allowed to resume job which is in resume workflow

workflow executions. status paused and executions.
the configuration
forbids it.

400 POST Workflow execution | If the workflow Workflow execution
Irest/workflows/{workflow_u with id cannot be | was canceled with id 213 cannot be
uid¥/jobs/{job_id}/resume resumed because itwas | before the resumed because it

canceled before it | planning was done | was canceled before it

completed itsplanning.

then the workflow
cannot be
resumed.

completed its
planning.

92 | OnCommand Workflow Automation 5.1 Rest API Primer

403 POST current user The user is an Current user David is
Irest/workflows/{workflow_u <user_name> is not operator and not not allowed to reject
uid}/jobs/{job_id}/cancel allowed to reject assigned to the workflow 6.

workflow. workflow category.

403 POST Users with role When an operator | Users with operator
Irestiworkflows/{workflow_u <role_name> are not tries to reject a job | role are not allowed to
uid}/jobs/{job_id}/cancel allowed to reject which is in status reject workflow

workflow executions. paused and the executions.
configuration
forbids it.

400 GET The job status data can | Return parameters | The job status is
Irest/workflows/{workflow_u be retrieved only in the | can be viewed only | RUNNING, data can
uid}/jobs/{job_id}/plan/out following statuses: after the job be retrieved only in the

COMPLETED, finished running following statuses:

FAILED, that is in: COMPLETED,

PARTIALLY_SUCCE | COMPLETED, FAILED,

SSFUL, and FAILED, PARTIALLY_SUCC

CANCELED PARTIALLY_SU ESSFUL, and
CCESSFUL, and CANCELED.
CANCELED.

400 GET Parameter One of the Parameter
Irestiworkflows/{workflow_u <parameter_name> parameters was not | volumeName was not
uid}/jobs/{job_id}/plan/out was not yet calculated, | Yet calculated yet calculated, check

check the execution (should not the execution result.
result. happen).

400 GET Parameter not found. The given return Parameter
Irest/workflows/{workflow_u It's not defined as a | parameter was not | volumeName not
uid}/jobs/{job_id}/planfout?p | return parameter. defined for this found. It's not defined
aramterName=<parameter_na workflow. as a return parameter.
me>

400 GET Cannot wait on job The job iscurrently | Cannot wait on job
Irest/workflows/{workflow_u | With status: <status> not in a status that | with status:
uid}/jobs/{job_id}?waitinterv allows waiting for | comMPLETED.
al=-1 it to complete.

400 GET Cannot wait for The job is Executing
Irest/workflows/{workflow_u | executions that are not | scheduled to runin | ‘waitForCompletion’
uid}/jobs/{job_id}?waitInterv scheduled to run inthe | the near future (24 | with a jobld that is
al=-1 next 24 hours. hours). scheduled to run in a

week from today will
return the following
error: ‘Cannot wait for
executions that are not
scheduled to run in the
next 24 hours’.
User Collection
403 Irest/users Current user is not The current user is | User ‘operator’ is not
allowed to retrieve all not of role allowed to retrieve all
users. ‘Admin’ and users.
therefore not
allowed to retrieve
all users.

400 Irest/users/{user_name}/passw Unable to change Old password Unable to change
ord?oldPassword={oldPasswo | password because old | given as parameter | password because old
rd}&newPassword={newPass | password is empty. is either null or an | password is empty.
word} empty string.

400 Irest/users/{user_name}/passw | Unable to change New password | Unable to change
ord?oldPassword={oldPasswo | password because new | given as parameter | password because new
rd}&newPassword={newPass | password is empty. is either null or an | password is empty.
word} empty string.

400 [rest/users/{user_name}/passw | Unable to change Old password Unable to change
ord?oldPassword={oldPasswo | password because old given as parameter | password because old
rd}&newPassword={newPass | password does not does not match the | password does not
word} match existing password in the match existing

password. database. password.

403 [rest/users/{user_name}/passw | LDAP users are not The current user LDAP users are not

ord?oldPassword={oldPasswo
rd}&newPassword={newPass
word}

allowed to change their
passwords.

that is trying to
change his
password is an
LDAP user.

allowed to change
their passwords.

Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic,
electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval
system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide,
limited irrevocable license to use the Data only in connection with and in support of the U.S. Government
contract under which the Data was delivered. Except as provided herein, the Data may not be used,
disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp,
Inc. United States Government license rights for the Department of Defence are limited to those rights
identified in DFARS clause 252.227-7015(b).

Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http://www.netapp.com/us/legal/netapptmlist.aspx

http://www.netapp.com/us/legal/netapptmlist.aspx

96 | OnCommand Workflow Automation 5.1 Rest API Primer

How to send comments about documentation and
receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can
receive automatic notification when production-level (GA/FCS) documentation is initially released
or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email to
doccomments@netapp.com.

To help us direct your comments to the correct division, include in the subject line the product name, version,
and operating system.

If you want to be notified automatically when production-level documentation is released or important
changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:
e NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
e Telephone: +1 (408) 822-6000
e Fax: +1 (408) 822-4501

e Support telephone: +1 (888) 463-8277

mailto:doccomments@netapp.com

