

OnCommand® Workflow Automation 5.1

REST Web Services Primer

November 2019 | 215-14537_A0

doccomments@netapp.com

mailto:doccomments@netapp.com

2 | OnCommand Workflow Automation 5.1 Rest API Primer

Contents

Introduction to the Document ... 6

General .. 6

Authentication and authorization .. 7

Versioning ... 7

Pattern for client API development ... 7

Links and relations (applicable only for XML) .. 8

WFA object collection ... 9
LogMessage ... 12

‘Hello World’ workflow: An example illustrating API usage 14

Getting a filtered workflow collection .. 14

Inspecting the response and extracting the links (only for XML)....................... 16

Creating a request object and executing a workflow ... 16

Extracting the job’s ‘self' link to monitor and obtain the status of the workflow

(only for XML) ... 19

Security ... 22

HTTP error codes .. 22
Dar export/import .. 23

Security ... 23

HTTP error codes .. 23
Configuration .. 24

Security ... 24
ValidationRepresentation .. 24

HTTP error codes .. 24
Free Text Search .. 25

Security ... 25

Search different entities .. 25

HTTP error codes .. 26
AutoSupport Configuration .. 27

Security ... 27

Return AutoSupport configuration .. 27

Update AutoSupport configuration ... 28

Download AutoSupport data .. 29
Response body ... 29

Upload AutoSupport data ... 29
Request body ... 29

HTTP error codes .. 30

LDAP Configuration .. 31

Security ... 31

Return LDAP configuration ... 31

Set LDAP configuration .. 32
Response body ... 32

Test user credentials .. 33
Request body ... 33
Response body ... 33

4 | OnCommand Workflow Automation 5.1 Rest API Primer

HTTP error codes .. 33

System Information ... 35

Security ... 35

Return software details ... 35

HTTP error codes .. 36
Users ... 37

Security ... 37

User data structures .. 37
User .. 37
Password change .. 38

User links, relations, and action (only for XML) .. 38

HTTP error codes .. 39
Workflows .. 40

Query parameters for filtering the workflow collection 40
Query parameter examples .. 40

Security ... 40

Workflow data structures ... 40
KeyAndValuePair .. 41
Workflow ... 41
User input .. 43
Workflow input .. 44
Return parameter ... 45
Job status.. 45
Workflow job ... 46

Workflow links, relations, and actions (only for XML) 48

HTTP error codes .. 51

Workflow Executions .. 53

CommandExecutionArguments ... 53
Parameters ... 53
Parameters ... 53

Filters .. 54

Query parameters to filter collection of filters .. 54
Query Parameter Example: .. 54

Security ... 54

Filter data structures ... 54
KeyAndValuePair .. 55
Filter .. 55
FilterTestResults .. 56

Filter links, relations, and actions (only for XML) ... 59

HTTP error codes .. 60
Finders .. 61

Query parameters to filter collection of filters .. 61
Query Parameter Example ... 61

Finder data structures ... 61
KeyAndValuePair .. 61
Finder ... 61
FinderTestResults .. 63

Finder links, relations, and actions (only for XML) ... 65

HTTP error codes .. 66
Remote System Types ... 67

Example ... 67

Security ... 67

Remote System Type data structures .. 67
Remote System Type ... 67

HTTP error codes .. 70
Credentials .. 71

Query parameters to filter collection of credentials ... 71
Query parameter example .. 71

Security ... 71

Credential data structures .. 71
Credential... 71
CredentialWithPassword ... 73

Links and relations (only for XML) ... 73

HTTP error codes .. 74
Data Source and Data Source Types ... 75

Security ... 75

Data structures ... 75
Data source type .. 75
Data source .. 77
Acquisition job .. 78

Links, relations, and actions (only for XML) .. 80

HTTP error codes .. 81

Schedules and recurring schedules .. 82

Security ... 82

Query parameters to filter collection of schedule instances 82
Schedules ... 82

Links, relations, and actions (only for XML) .. 83
Recurring schedules ... 83

Appendix A – Return Parameters – Feature Description............................ 87

Appendix B – Detailed Error Messages and Status Codes 88
Copyright ... 94
Trademark .. 95

How to send comments about documentation and receive update
notifications .. 96

6 | OnCommand Workflow Automation 5.1 Rest API Primer

Introduction to the Document

This document provides information about OnCommand Workflow Automation (WFA) REST

APIs and the document is specifically intended for developers who build RESTful clients.

In addition to this detailed and descriptive programmer’s guide, the Reference Manual is

available from within WFA. You can use this Reference Manual to look up the resource URLs,

request and response formats, links and relations, XML or JSON schema definitions of input

and output XMLs or JSONs, and sample HTTP request and response messages.

General
WFA allows external services to access various resources and perform CRUD operations on

these resources using a RESTful API. The following functionalities are available through the

RESTful APIs:

• Accessing workflow definitions and metadata

• Executing workflows and monitoring jobs (Jobs in this context are instances of workflows)

• Viewing users, roles, and changing passwords

• Executing and testing resource selection filters

• Executing and testing resource finders

• Managing credentials of storage or other data center objects

• Viewing data sources and data source types

• Taking backup and restoring databases

• Exporting and importing of entity using .dar files

• Searching entities using Free text search

• Updating AutoSupport configuration

• Updating LDAP configuration

• Validating WFA configurations

• WFA System version information

For more information about RESTful web services, see the following document:

REST In Practice: Hypermedia and Systems Architecture by Jim Webber et. al.

For testing and validating your clients written in Java, you must refer to the following frameworks:

REST ASSURED

REST CLIENT

NetApp WFA API supports developers who build clients of WFA services (workflow

execution), using a RESTful application development style.

WFA REST APIs provide access to resource collections such as workflows, users, filters, and

finders, through URI paths. To use a REST API, the client application must make an HTTP

request and parse the response. The response includes a header and body, which is similar to all

HTTP responses. The body includes an XML or JSON representation of the resource specified

by the URI path.

http://restinpractice.com/book/authors.html
http://code.google.com/p/rest-assured/
http://code.google.com/p/rest-client/

7

HTTP verbs, such as GET, PUT, POST, and DELETE, can be used on these URIs to perform

various CRUD operations on the resources. The links and relations that a particular object

supports are provided as a part of the response.

Authentication and authorization

Every web service request must be accompanied by a valid username and password. WFA

uses oneway SSL (HTTPS) with HTTP basic authentication (See RFC 2617). With HTTP

basic authentication, the WFA server sends a “401 Unauthorized” challenge to the connecting

client and the client must specify the username and password in response to the challenge. The

client can also send the username and password in the original request to avoid this challenge

or response cycle.

All users, except guest users, are allowed to execute workflows through the REST API. If a

client authenticates with a valid username and password, but the authenticated user does not have

the rights to access the specified resource (either because of the role performed by the user or

the resource itself restricts the user from accessing the resource), then the WFA server might still

send a “403 Forbidden” error response.

Versioning

WFA API currently does not support multiple versions.

Pattern for client API development

Developers who develop a client that uses WFA API must perform the following steps in

developing the client. Clients must not use hardcoded URLs. Every time a client wants to use

the API for achieving a particular task, the client must use the following procedure:

1. During client development, refer to the API documentation of the URL for the root object

collection (for example, /rest/workflows) of the object set that the client wants to operate on.

(See: WFA object collection for a complete list of root object collections available).

2. Create the following root URL:

https://{host:port}/rest/{<wfa-object-collection-

name>}

3. Add the required query parameters to the URL. Refer to the quick reference documentation to view the

query parameters that are available for the particular object collection.

4. Issue an HTTP GET request on the URL. Ensure that the ‘Accept’ and ‘Authorization’ headers are

properly filled. The ‘Accept’ header must be ‘application/xml’ for XML media type, and

‘application/json’ for JSON media type, and the ‘Authorization’ header must include the base64

encoded credentials. WFA uses basic authentication. It is best to use HTTPS instead of HTTP.

5. WFA supports both application/xml and application/json as the content type for all APIs.

6. If the HTTP code is 200 OK, extract the response body.

7. If there is more than one item in the collection, the client must extract from the response, the specific

item on which the client wants to perform an operation.

8. During client development, refer to the documentation for the names of the ‘rel’ attribute that specify

the operation that the client wants to perform on the object. Extract the link object from the response

body matching the ‘rel’ attribute of interest.

9. Find the names of the ‘rel’ attribute that specify the operation that the client wants to perform on the

object. Extract the link object from the response body matching the ‘rel’ attribute of interest.

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

8 | OnCommand Workflow Automation 5.1 Rest API Primer

10. If an input needs to be specified, refer to the XSD for the expected operation and build the request

accordingly. Issue the supported HTTP request for that operation. The HTTP request matching the ‘rel’

attribute is provided in this document and in the quick reference document.

Note: Points 7, 8, and 9 are applicable only for XML.

A detailed ‘hello world’ style example is provided in the chapter, ‘Hello World’ workflow:

An example illustrating API usage depicting this flow.

Note: JSON does not support atom links and relations.

Links and relations (applicable only for XML)

WFA REST API makes extensive use of atom links to provide references to objects and the

actions that they support. These links are the mechanism that the client must use to access

and operate on an object. The client must make use of the links to drill down further and

perform operations on an object. If a client request body includes links, the server ignores

them.

Links are context sensitive. Links appear in a response body based on which, the given user is

allowed to perform in the given context. Due to this, links provide a way to gradually self-

discover and explore the resources exposed by the API.

Typically, links are provided in the following form in response objects:

<ns2:link href="URL" rel="relationship"/>

The ‘href’ attribute provides the actual URL that should be used to access the resource. The

clients must always use the URL specified in the above link to operate on individual target

objects instead of hardcoding the URLs.

The ‘rel’ attribute value provides the relationship of the object; whose XML representation

contains the link to a target object. The relationship also specifies the operations or actions

that can be performed on a given resource. The relationship also indicates the HTTP request

type to use when making a request with the ‘href’ attribute.

The following table contains the definitions of all the common links that might appear in

responses. These relations are standard across all WFA object collections.

Note: If a particular relation does not appear in a response object, it might either mean that

this particular operation is not supported for that object or mean that the operation or relation

specified by the link is not relevant to the current context.

Relation (specified by rel) Description of the relation Relevant HTTP Request

Self View the representation of an

object.

GET

List View the object collection. GET

Add Add a new object to the object

collection.

POST

Update Update an object. PUT

9

Remove Remove an object. DELETE

Apart from a partial or complete set of the standard actions listed above, objects in a given

object collection might support several non-standard actions and relations that are specific to

that object. The following sections in this document that describe these object collections also

contains a table that explains all the standard and non-standard links a given object supports.

WFA object collection

WFA API defines and exposes a collection of resources and their representations. These can be

used by clients to access and operate on the collection or individual items within the collection.

The following WFA object collections are represented through the API:

 Users (/rest/users)

 Backup and Restore (/rest/backups)

 Dar export/import (rest/dars)

 Configurations(/rest/configurations)

 Free text search (/rest/search)

 AutoSupport configuration (/rest/system/asup)

 LDAP configuration (/rest/system/ldap)

 System information (/rest/system)

 Workflows and associated Jobs (/rest/workflows)

 Workflow Executions

 Filters (/rest/filters)

 Finders (/rest/finders)

 Credentials (/rest/credentials)

 Data Sources and Data Source types (/rest/data_sources and /rest/data_source_types) and associate

acquisition jobs WFA has some internal APIs:

The following internal APIs should not be used by clients directly:

 Command executions (/rest/execution/command)

 Job execution (/rest/execution/jobcommand)

 Script execution (/rest/execution/script)

Users

The user collection allows authenticated and authorized clients to programmatically view user

accounts and change passwords. WFA also provides REST API support for addition and

deletion of users.

The root URI for the user collection is /rest/users. The client can start consuming

the API by invoking a GET on this URI. It returns a collection of users based on what

the logged in user is eligible to see and operate on.

10 | OnCommand Workflow Automation 5.1 Rest API Primer

The links that appear in each user resource in the collection can be used by the

client to further drill down and perform other operations on individual user objects.

The root URI for user management is /rest/users

Refer to the chapter: Users to learn more about the request and response content, available

links and relations, and supported query parameters.

Backup and restore

It allows the authenticated and authorized clients to take the database backup and download

and restore from the local file.

The root URI for backup and restore is /rest/backup.

Refer to the chapter: Backup and Restore to learn more about the request and response

content, available links and relations, and supported query parameters.

Dar export and import

It allows the authenticated and authorized clients to export and import the entities to and from

the local file.

The root URI for dars is /rest/dars.

It also allows export or import of a specific entity using their UUID.

Refer to the chapter: Dar export/import to learn more about the request and response content,

available links and relations, and supported query parameters.

Configurations

It validates WFA configurations. In case of validation failure, it returns the list of

Validation Representation for invalid objects; otherwise returns no content.

The root URI for validate configurations is /rest/configurations.

Refer to the chapter: Configuration to learn more about the request and response content, available

links and relations, and supported query parameters.

Free text search

The search allows authenticated and authorized clients to search for different entities

given a term and a search context. The term should be at least two characters and

complete (It does not support regular expressions).

Search contexts available are: ALL, FINDERS, FILTERS, WORK_FLOWS,

CATEGORIES, POLICIES, FUNCTIONS, COMMANDS, DICTIONARY_ENTRIES,

EXECUTION_STATUS, CACHE_QUERIES, and STORE.

The root URI for search is /rest/search. Refer to the chapter: Free Text Search to learn more

about the request and response content, available links and relations, and supported query

parameters.

11

AutoSupport configurations

The AutoSupport configurations allow authenticated and authorized clients to change the

AutoSupport configurations. It supports uploading the AutoSupport data to AutoSupport store at

NetApp. Download allows the AutoSupport data to be downloaded to local machine.

The root URI for asup configurations is /rest/system/asup.

Refer to the chapter: AutoSupport Configuration to learn more about the request and response

content, available links and relations, and supported query parameters.

LDAP configurations

The LDAP configurations allow authenticated and authorized clients to change

the LDAP configurations.

It supports the validation of LDAP user credentials.

The root URI for LDAP configurations is /rest/system/ldap.

Refer to the chapter: LDAP Configuration to learn more about the request and response

content, available links and relations and supported query parameters.

System information

It represents WFA system information mainly major and minor versions of different components.

The root URI for system information configuration is /rest/system.

Refer to the chapter: System Information to learn more about the request and response

content, available links and relations, and supported query parameters.

Workflows

The workflow collection allows authenticated and authorized clients to retrieve a collection

of workflow objects and to perform various actions on this workflow. It provides the ability

to execute, monitor, and control workflows.

WFA delivers a set of sample workflows. Users can also create their own customized

workflows as per their requirements. WFA API does not allow users to create, update, or delete

workflows. Users must use the WFA designer GUI to create workflows. The API can only be

used to access, execute, control, and monitor the sample or user-created workflows.

Each workflow object encapsulates the workflow providing metadata information, such as

name and description about the workflow as well as the user input (input) and return parameter

(output) information associated with the workflow.

Query parameters allow the client to filter the workflow collection based on a given category or

based on a given name.

The workflow collection visible to a user will depend on which category of workflows the user

is eligible to see and operate on.

12 | OnCommand Workflow Automation 5.1 Rest API Primer

The root URI for workflows is /rest/workflows.

Refer to the chapter: Workflows to view all supported query parameters, links, relations, and

action.

Workflow Executions

Workflow Executions represents WFA workflow execution instance.

The root URI for workflow execution instance is /rest/workflows/executions.

Refer to the chapter: Workflow Executions to view all supported query parameters, links,

relations, and action.

Filters

Filters represent a collection of filter objects. Each filter in the collection is an object that

encapsulates individual resource selection criteria.

WFA has many sample filters. In addition to the sample filters, users can create their own

customized filters. Currently, WFA API can only be used to view and test these filters. The

creation of new filters, or modification or deletion of existing filters can only be done through

the WFA designer GUI.

The root URI for filters is /rest/filters.

Refer to the chapter: Filters

Name Description Type Default

workflow_execution_id Workflow execution ID. path

child_command_index Index of the CommandExecutionArguments

which correspond to child workflow execution.

When specified, this returns the list of

CommandExecutionArguments of the child

workflow execution corresponding to the index.

query

Response body

element: (custom) media

types: application/xml or

application/json

LogMessage

It returns the list of LogMessage with a given workflow execution id and command/step index.

13

Parameters

Name Description Type Default

workflow_execution_id Workflow execution ID. path

command_index Command/step index whose log messages are

to be returned. The index starts with 0.

path

child_command_index Command/step index whose log messages are

to be returned from within the child workflow.

The index starts with 0.

query

Response body

element: (custom) media

types: application/xml or

application/json

Filters to learn more about the request and response content, available links and

relations, and supported query parameters.

Finders

Finders represent a collection of finder objects. Each finder represents a logical collection of

resource selection filters that are executed together to find a resource that matches multiple

criteria. RESTful clients can operate on these resources to view and to test a given finder and

obtain results.

WFA has many sample finders. In addition to the sample finders, users can create their own

custom finders. Currently, the WFA API can only be used to view and test these finders.

The creation of new finders, or modification or deletion of existing finders can only be done

through the WFA designer GUI.

The root URI for finders is /rest/finders.

Refer to the chapter: Finders to learn more about the request and response content, available

links and relations, and supported query parameters.

Credentials

Credentials represent a collection of credential objects. Each credential object represents the

credential details of a given data center object. The data center object could be, for example, a

Data ONTAP system, a VMware vCenter system or a NetApp management server.

Refer to the chapter: Credentials to learn more about the request and response content,

available links and relations, and supported query parameters.

Data sources and data source types

REST APIs are available to retrieve, add, modify, and delete credentials of

a given system. The root URI for credentials is /rest/credentials.

14 | OnCommand Workflow Automation 5.1 Rest API Primer

Data sources represent a collection of data sources of a given type. Data source types

represent the collection of different data source types that are created within WFA. The API

allows clients to view these data sources and data source types and to programmatically run

acquisition jobs on the data sources.

Each data source represents an instance of a given data source type that is created for the

purpose of acquiring data to meet resource selection needs.

The root URI for data sources is /rest/data_sources. The root URI for data source types is

/rest/data_source_types.

Refer to the chapter: Data Source and Data Source Types to learn more about the request and

response content, available links and relations, and supported query parameters.

‘Hello World’ workflow: An example illustrating API
usage

The information provided in this chapter is designed to serve developers who develop

a client application that consumes various WFA services using the API.

The following topics are covered as example:

 Retrieving a workflow collection filtered by query parameter (for example, a name). This

will also demonstrate how to fill the ‘Accept’ and ‘Authorization’ headers.

 Inspecting the response and extracting the links (applicable only for XML).

 Creating a request object and executing a workflow using the appropriate link (applicable

only for XML).

 Extracting the ‘self’ link and executing an HTTP request to retrieve the status of the

workflow (applicable only for XML).

Note: This is an example to illustrate the usage of the API. This example might not run as it

is on an installed WFA server (as we do not ship the ‘Hello World’ workflow). The client

should replace the ‘Hello World’ workflow with the exact name of the workflow the client

wishes to execute. The rest of the services provided by the WFA server can be consumed by

the client in a similar fashion.

Note: The example is shown with HTTP messages to illustrate the client/server interactions

without the use of any languages. A client written in a particular language can use the

standard HTTP client library and standard XML or JSON library supported by the language

to build a client.

Getting a filtered workflow collection

Every WFA request requires authentication. WFA uses HTTP basic authentication. For this to

work, the client must either fill the ‘Authorization’ header properly the first time or fill the

credentials when challenged with a ‘401 Unauthorized’ error code by the server. With HTTP

basic authentication, the client must fill the ‘Authorization’ header with the proper user

credentials (MIME base64 encoding of the form username: password).

The root URL for getting a workflow collection is /rest/workflows.

15

Example 3-1: Getting a filtered workflow collection by name Request:

XML request:

JSON request:

Response:

XML response

200 OK

Date: <date of

request> Content-

Type: application/xml

<collection xmlns:ns2="http://www.w3.org/2005/Atom">

<workflow uuid="76b936ba-d52e-4304-b562-01676d35ad43">

<name>Hello World</name>

<description>

Hello World Example

</description>

<certification>NONE</certification>

<categories>

<category>API EXAMPLE</category>

</categories>

<userInputList>

<userInput>

<name>Name</name>

<description>My Name</description>

<type>String</type>

<mandatory>true</mandatory>

</userInput>

</userInputList>

<returnParameters>

<returnParameter>

<name>Name</name>

<value>John Doe</value>

<description>My Name</description>

</returnParameter>

</returnParameters>

<ns2:link href="http://localhost/rest/workflows/76b936ba-

d52e-4304b562- 01676d35ad43" rel="self"/>

<ns2:link href="http://localhost/rest/workflows" rel="list"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-

d52e-4304b562- 01676d35ad43/jobs" rel="execute"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-

d52e-4304b562- 01676d35ad43/out" rel="out-parameter"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-

d52e-4304b562- 01676d35ad43/preview" rel="preview"/>

</workflow>

</collection>

JSON response

GET /rest/workflows?name=Hello%20World HTTP/1.1

Authorization: Basic <encoded_credentials>

Accept: application/xml

GET /rest/workflows?name=Hello%20World HTTP/1.1

Authorization: Basic <encoded_credentials>

Accept: application/xml

http://www.w3.org/2005/Atom
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

16 | OnCommand Workflow Automation 5.1 Rest API Primer

Inspecting the response and extracting the links (only for
XML)

The client can now extract the link for ‘execute’ (highlighted in red) from the message,

which is as follows:

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs

Using the link above, the client can execute the workflow. If the developers’ looks up this

guide, they can see that the HTTP request associated with execute is ‘POST’ and the request

type is ‘Workflow Input’. The client should now fill this request information as shown in the

following section.

Creating a request object and executing a workflow

Using XML

Now the ‘execute’ URL has been extracted for a given workflow (from the ‘href’ attribute of

the link with the ‘rel’ attribute matching ‘execute’), the client can execute the given workflow

as shown in the following example:

Request:

POST /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs HTTP/1.1\

200 OK

Date: <date of request>

Content-Type: application/json

[

{

"uuid": "76b936ba-d52e-4304-b562-01676d35ad43",

"name": "Hello World",

"description": "Hello World Example",

"certification": "NONE",

"categories": [

"API EXAMPLE"

],

"userInputList": [

{

"name": "Name",

"description": "My Name",

"type": "String",

"mandatory": true

}

],

"returnParameters": [

{

"name": "Name",

"value": "John Doe",

"description": "My Name"

}

]

}

]

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs

17

Using JSON

The client can execute the given workflow using workflow uuid as shown in the following example:

Request:

Response:

Using

XML

<description>

Hello World Example

</description>

<certification>NONE</certification>

<categories>

<category>API EXAMPLE</category>

</categories>

<userInputList>

<userInput>

<name>Name</name>

<description>My Name</description>

<type>String</type>

<mandatory>true</mandatory>

</userInput>

Accept: application/xml

Authorization: Basic encoded-credentials

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<workflowInput>

<userInputValues>

<userInputEntry key="Name" value="John Doe"/>

</userInputValues>

<comments>API Example Execution</comments>

<executionDateAndTime>9/23/11 2:59 PM</executionDateAndTime>

</workflowInput>

POST /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs HTTP/1.1

Accept: application/json

Authorization: Basic encoded-credentials

{

"executionDateAndTime": "9/23/11 2:59 PM",

"comments": "API Example Execution",

"userInputValues": [

{

"key": "Name",

"value": "John Doe"

}

]

}

HTTP/1.1 201 Created

Date: request-date

Content-Type: application/xml

Location: http://localhost/rest/workflows/76b936ba-d52e-4304-b562-

01676d35ad43/jobs/83

<?xml version="1.0" encoding="UTF-8"?>

<workflow uuid="76b936ba-d52e-4304-b562-01676d35ad43">

<name>Hello World</name>

http://localhost/rest/workflows/76b936ba-d52e-4304-b562-

18 | OnCommand Workflow Automation 5.1 Rest API Primer

</userInputList>

<returnParameters>

<returnParameter>

<name>Name</name>

<value>John Doe</value>

<description>My Name</description>

</returnParameter>

</returnParameters>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43" rel="self"/>

<ns2:link href="http://localhost/rest/workflows" rel="list"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/jobs" rel="execute"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/out" rel="out-parameter"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/preview" rel="preview"/>

</workflow>

<jobStatus>

<jobStatus>SCHEDULED</jobStatus>

<jobType>Workflow Execution – Hello World</jobType>

<scheduleType>Immediate</scheduleType>

<plannedExecutionTime>Dec 14, 2012

12:47:23 PM</plannedExecutionTime>

<comment>API Example Execution</comment>

</jobStatus>

<ns2:link

href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562-01676d35ad43/jobs" rel="add"/>

<ns2:link

href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562-01676d35ad43/jobs/83/resume" rel="resume"/>

<ns2:link

href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562-01676d35ad43/jobs/83/cancel" rel="cancel"/>

<ns2:link

href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562-01676d35ad43/jobs/83/plan/out" rel="out"/>

<ns2:link

href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562-01676d35ad43/jobs/83" rel="self"/>

</job>

As shown in the above example, the job is scheduled (highlighted in blue) and the client can

extract the URL either from the location response header or from the self-link in the response

body (highlighted in red). A GET on this URL provides the current status of the job.

Using JSON

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-
http://localhost/rest/workflows/76b936ba-d52e-

19

Extracting the job’s ‘self' link to monitor and obtain the
status of the workflow (only for XML)

After extracting the status link from the above response, the client can retrieve the

status of the workflow as follows:

Request:

{

"jobId": 100,

"workflow": {

"uuid": "76b936ba-d52e-4304-b562-01676d35ad43",

"name": "Hello World",

"description": "Hello World Example",

"certification": "NONE",

"categories": [

"API EXAMPLE"

],

"userInputList": [

{

"name": "Name",

"description": "My Name",

"type": "string",

"mandatory": true

}

],

"returnParameters": [

{

"name": "Name",

"value": "John Doe",

"description": "My Name"

}

]

},

"jobStatus": {

"jobStatus": "SCHEDULED",

"jobType": "Workflow Execution – Hello World",

"scheduleType": "Immediate",

"plannedExecutionTime": "Dec 14, 2012 12:47:23 PM",

"comment": "API Example Execution",

"userInputValues": [

{

"key": "string",

"value": "string"

}

],

"returnParameters": [

{

"key": "string",

"value": "string"

}

]

}

}

GET /rest/workflows/76b936ba-d52e-4304-b562-01676d35ad43/jobs/83 HTTP/1.1

Accept: application/xml

Authorization: Basic encoded-credentials

20 | OnCommand Workflow Automation 5.1 Rest API Primer

Response:

HTTP/1.1 200 OK

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<workflow uuid="76b936ba-d52e-4304-b562-01676d35ad43">

<name>Hello World</name>

<description>

Hello World Example

</description>

<certification>NONE</certification>

<categories>

<category>API EXAMPLE</category>

</categories>

<userInputList>

<userInput>

<name>Name</name>

<description>My Name</description>

<type>String</type>

<mandatory>true</mandatory>

</userInput>

</userInputList>

<returnParameters>

<returnParameter>

<name>Name</name>

<value>John Doe</value>

<description>My Name</description>

</returnParameter>

</returnParameters>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43" rel="self"/>

<ns2:link href="http://localhost/rest/workflows" rel="list"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/jobs" rel="execute"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/out" rel="out-parameter"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-

4304b562- 01676d35ad43/preview" rel="preview"/>

</workflow>

<jobStatus>

<jobStatus>COMPLETED</jobStatus>

<jobType>Workflow Execution – Hello World</jobType>

<scheduleType>Immediate</scheduleType>

<startTime>Dec 14, 2012 12:47:27 PM</startTime>

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

As shown above in green, the status of the workflow job shows that the job is completed. The client

can now extract the return parameters from the job status in the response listed above.

<endTime>Dec 14, 2012 12:47:36 PM</endTime>

<plannedExecutionTime>Dec 14, 2012 12:47:23

PM</plannedExecutionTime>

<comment>API Example Execution</comment>

<returnParameters>

<returnParameters value="John Doe" key="Name"/>

</returnParameters>

</jobStatus>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs" rel="add"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs/83/resume" rel="resume"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs/83/cancel" rel="cancel"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs/83/plan/out" rel="out"/>

<ns2:link href="http://localhost/rest/workflows/76b936ba-d52e-4304b562-

01676d35ad43/jobs/83" rel="self"/>

</job>

http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-
http://localhost/rest/workflows/76b936ba-d52e-4304b562-

22 | OnCommand Workflow Automation 5.1 Rest API Primer

Backup and Restore

The root URL is /rest/ backups.

An HTTP GET on this URL returns a URL of the backup file to be downloaded. The API accepts a

query parameter named “full”. When this parameter is set to true, a full backup is taken that includes

configuration parameters.

An HTTP POST or PUT on this URL restores the resources from external backup file. The KeyName

of the backup file in the form data must be "backupFile”. The media type must be “multipart or

formdata”. This API accepts a query parameter named “full”. When this parameter is set to true, even

the configuration parameters are restored along with the resources from the backup file.

The response for the POST or PUT at this URL returns a response with no contents in case of a

successful restore. In case of a failure, error message is returned as a response. In case of successful

restore with minor issues, warning is returned in response. Typical examples of warnings include cache

upgrade failures, mismatches in packs imported before and after the restore.

Security

Only users with backup, admin, or architect privileges can invoke this API to download the backup

file.

A ‘403 Forbidden’ response will be returned other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized

‘response by the server.

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media

Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

Dar export/import

The root URL is /rest/dars. An HTTP GET on this URL returns a URL of the export file to be

downloaded.

An HTTP POST or PUT on this URL imports the resources from the dar file. The KeyName for import

file in the form data must be "dar”. The media type should be “multipart/form-data”.

Security

Only a user with backup, architect, or admin privileges can invoke this API to export/import dar file.

A ‘403 Forbidden’ response will be returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401

Unauthorized’ by the server.

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media

Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

24 | OnCommand Workflow Automation 5.1 Rest API Primer

Configuration

The root URL is /rest/configurations. An HTTP Get on the URL/rest/configurations/validate the WFA

configurations for every object.

In case of validation failure, it returns the list of ValidationRepresentation for invalid objects;

otherwise returns no content.

Security
Only a user with admin privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server.

ValidationRepresentation

The following table shows the contents of ValidationRepresentation object.

Name Type Mandatory Description

Type String True
Object type or entity type

on which validation is

performed.

Message String True Validation error message

Identifiers String True
Identifiers of the object

whose validation is failed.

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error

messages for a detailed description of these error codes and

when they will be returned.

 API Executions

The root URL is /rest/execution/api. It represents generic execution session.

Free Text Search

Search API represents WFA free text search features.
The root URL is /rest/search.

The following resources are part of this group:

/rest/search

Security
Only a user with admin or architect privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server

Search different entities
Search for different entities for a given a term and a search context.

URI:/rest/search

Parameters

Name Description Type Default

Term String term to search for in various entities in the system query

context Defines the search context where the search has to be

conducted. Valid values are: ALL, FINDERS,

FILTERS, WORK_FLOWS, CATEGORIES,

POLICIES, FUNCTIONS, COMMANDS,

DICTIONARY_ENTRIES, EXECUTION_STATUS,

CACHE_QUERIES, STORE, SCHEMES,

REMOTE_SYSTEM_TYPES, PACKS

query

Response body

Return list of SearchResult objects

Using XML

element: (custom) media

types: application/xml or

application/json

<?xml version="1.0" encoding="UTF-8"?>

<searchResult id="...">

<name>...</name>

<type>...</type>

<schemeNames>...</schemeNames>

<version>

<major>...</major>

<minor>...</minor>

<revision>...</revision>

26 | OnCommand Workflow Automation 5.1 Rest API Primer

Using JSON

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

</version>

</searchResult>

{

"id": "...",

"name": "...",

"type": "...",

"schemeNames": "...",

"version": {

"major": ...,

"minor": ...,

"revision": ...

}

AutoSupport Configuration

AutoSupport API represents WFA auto support data and configurations.

The root URL is /rest/system/asup.

The following resources are part of this group:

Security

Only a user with admin privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server.

Return AutoSupport configuration

It returns AutoSupport configuration using HTTP post. Only admin can perform this task.\

URI: /rest/system/asup

Response body

asup-configuration

Using XML:

/rest/system/asup

/rest/system/asup/download /rest/system/asup/send

element: asup-configuration media

types: application/xml or

application/json

28 | OnCommand Workflow Automation 5.1 Rest API Primer

Using JSON

Update AutoSupport configuration

It updates AutoSupport configuration. Only admin can perform this task.

Request body

asup-configuration

Using XML

"port": "..."

},

"runtime": {

"site": "...",

"company": "...",

"host": "...",

"os": "...",

"system-id": "..."

},

"enabled": ...,

"sender-mail-address": "..."

}

{

"protocol": "...",

"destination": "...",

"content": "...",

"scheduler": {

"hour": ...,

"enabled": ...,

"week-day": "..."

},

"proxy": {

"host": "...",

element: asup-configuration media

types: application/xml or

application/json

<?xml version="1.0" encoding="UTF-8"?>

<asup-configuration>

<enabled>...</enabled>

<protocol>...</protocol>

<destination>...</destination>

<content>...</content>

<sender-mail-address>...</sender-mail-address>

<scheduler>

<enabled>...</enabled>

<week-day>...</week-day>

<hour>...</hour>

</scheduler>

<proxy>

<host>...</host>

<port>...</port>

</proxy>

<runtime>

<site>...</site>

<company>...</company>

<host>...</host>

<system-id>...</system-id>

<os>...</os>

</runtime>

</asup-configuration>

Using JSON

Response body

Updated ASUP configuration

Download AutoSupport data

Download the AutoSupport data. Only admin user can perform this task.

URI: /rest/system/asup/download

Response body

Response with URL for AutoSupport data to be downloaded.

Upload AutoSupport data

It uploads the AutoSupport data to the AutoSupport store at NetApp.

URI: /rest/system/asup/send

Request body

asup-configuration

{

"protocol": "...",

"destination": "...",

"content": "...",

"scheduler": {

"hour": ...,

"enabled": ...,

"week-day": "..."

},

"proxy": {

"host": "...",

"port": "..."

},

"runtime": {

"site": "...",

"company": "...",

"host": "...",

"os": "...",

"system-id": "..."

},

"enabled": ...,

"sender-mail-address": "..."

}

element: asup-configuration media

types: application/xml or

application/json

element:(custom) media

types: application/xml or

application/json

element: asup-configuration media

types: application/xml or

application/json

30 | OnCommand Workflow Automation 5.1 Rest API Primer

Response body

Response with no contents

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

element: (custom) media

types: application/xml or

application/json

<?xml version="1.0" encoding="UTF-8"?>

<LdapConfiguration>

<enabled>...</enabled>

<ldapServerUrlList>...</ldapServerUrlList>

<usernameAttribute>...</usernameAttribute>

<searchTimeOutSeconds>...</searchTimeOutSeconds>

<distinguishedNameAttribute>...</distinguishedNameAttribute>

<mailAttribute>...</mailAttribute>

<groupMembershipAttribute>...</groupMembershipAttribute>

<adminGroups>...</adminGroups>

<architectGroups>...</architectGroups>

<operatorGroups>...</operatorGroups>

<guestGroups>...</guestGroups>

LDAP Configuration

LDAP API represents LDAP configurations for WFA.

The root URL is /rest/system/ldap.

The following resources are part of this group:

Security

Only a user with admin privileges can invoke this API.

A ‘403 Forbidden’ response is returned for other users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server.

Return LDAP configuration

It returns LDAP configuration using HTTP GET. Only admin can perform this task.

URI: /rest/system/ldap

Response body

LDAPConfiguration

Using XML

element: LdapConfiguration media

types: application/xml or

APPLICATION/JSON

/rest/system/ldap

/rest/system/ldap/test

32 | OnCommand Workflow Automation 5.1 Rest API Primer

Using JSON

Set LDAP configuration

Request body

The xml or json object for the new LdapConfiguration

Response body

REST Response with updated LdapConfiguration entity.

<approverGroups>...</approverGroups>

<ldapServers>

<ldapServer>

<url>...</url>

<bindUsername>...</bindUsername>

<bindPassword>...</bindPassword>

<baseDistinguishedName>...</baseDistinguishedName>

</ldapServer>

</ldapServers>

</LdapConfiguration >

{

"enabled": ...,

"ldapServerUrlList": "...",

"usernameAttribute": "...",

"searchTimeOutSeconds": ...,

"distinguishedNameAttribute": "",

"mailAttribute": "..."

"groupMembershipAttribute": "...",

"adminGroups": "...",

"architectGroups": "...",

"operatorGroups": "...",

"guestGroups": "...",

"approverGroups": "...",

"ldapServers": [

{

"url": "...",

"bindUsername": "...",

"bindPassword": "...", "baseDistinguishedName": "..."

}

]

}

element: LdapConfiguration media

types: application/xml or

application/json

element: (custom) media

types: application/xml or

application/json

Test user credentials
It tests user credentials. Only admin can perform this task and is supported only for LDAP users.

URI:/rest/system/ldap/test

Request body

LDAP User details

Using XML

Using JSON

Response body

REST Response

HTTP error codes

Status Code Response

element: user media types:

application/xml or

application/json

<?xml version="1.0" encoding="UTF-8"?>

<user name="...">

<password>...</password>

<domain>...</domain>

<roleType>...</roleType>

<categories>

<category>...</category>

<category>...</category>

<!--...more "category" elements...-->

</categories>

<isLdap>...</isLdap> <atom:link

xmlns:atom="http://www.w3.org/2005/Atom">...</atom:link> <atom:link

xmlns:atom="http://www.w3.org/2005/Atom">...</atom:link> <!--

...more "link" elements...-->

</user>

{

"name": "…",

"password": "…",

"domain": "…",

"roleType": "…",

"categories": [

"..."

],

"ldap": true

}

element: (custom) media

types: application/xml or

application/json

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

34 | OnCommand Workflow Automation 5.1 Rest API Primer

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

System Information

System represents WFA system information. The root URL is /rest/system.

The following resources are part of this group:

/rest/system

Security

Unauthenticated access (missing or invalid credentials) is challenged with a ‘401 Unauthorized’ by the

server.

Return software details
It returns software details using HTTP post.

 URI: /rest/system

Response body

About

The following table shows a sample XML containing the WFA system information:

The following table shows a sample JSON containing WFA system information:

element: about media types:

application/xml or

application/json

<?xml version="1.0" encoding="UTF-8"?>

<about>

<wfa-software-version>

<majorVersion>4</majorVersion>

<minorVersion>0...</minorVersion>

<maintenanceVersion>0...</maintenanceVersion>

<configurationVersion>0...</configurationVersion>

<contentVersion>0...</contentVersion>

</wfa-software-version>

<wfa-vendor> NetApp </wfa-vendor>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom">...</atom:link>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom">...</atom:link> <!--

...more "link" elements...-->

</about>

{

"wfa-software-version": {

"majorVersion": "4",

"minorVersion": "0",

"maintenanceVersion": "0",

"configurationVersion": "0",

"contentVersion": "0"

},

"wfa-vendor": "NetApp"

}

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

36 | OnCommand Workflow Automation 5.1 Rest API Primer

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

Users

The root URI is /rest/users. An HTTP GET on this URL returns a list of users.

The user API allows the client (admin users) to programmatically view, create, update, and delete user

information and change the current user’s password. A user can only change his or her password.

Currently the user collection does not support any query parameters for filtering the collection.

Security

Only users with admin privilege can add or delete users.

Only a user with admin or architect privileges can invoke the API to get the list of all users.

A user with the ‘operator’ role will not be able to view other users. In such cases, the response simply

returns a collection containing only the user on behalf of whom the client invoked the API.

A user can only change his or her own password using this API.

Guest users cannot access this API. A ‘403 Forbidden’ response is returned for guest users.

Unauthenticated access (missing or invalid credentials) will be challenged with a ‘401 Unauthorized’

by the server.

User data structures

The collection of users returned on a HTTP GET on /rest/users is nothing but a collection of user

objects, whose content is described in detail in this section.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual, which is available from within the

product.

User

The following table shows the contents of each individual USER object.

Name Type Mandatory Description

User Name String True Name of the user

User Role Type UserRoleType True Role performed by the user. An enumeration

with any one of the following:

 • Guest

• Operator

• Architect

• Admin

• System

• Backup

User Categories Array of

Strings

False Categories that the user has access to. Only

valid for users with operator role.

Is LDAP Boolean True Is this user in LDAP?

38 | OnCommand Workflow Automation 5.1 Rest API Primer

Links (only for

XML)

Array of

Atom Links

False A collection of atom links that specifies

available resources and their links. Allows

clients to do hypermedia traversal.

Domain String False Domain to which the user belongs in case the

user is a LDAP user.

The following table shows a sample XML containing a collection of exactly one user:

The following table shows a sample JSON containing a collection of exactly one user:

Password change

This request object is to encapsulate password change information for clients that want to change the

password of the current user.

Name Type Mandatory Description

Old Password String True Current Password

New Password String True New Password

User links, relations, and action (only for XML)

The following table illustrates the links and their relations available for each user in the user collection.

Relation Description of the relation Relevant Input Type Output Type

(specified by

rel)

 HTTP

Request

Self View the representation of an

individual user object.

GET NA Users[]

List View the collection of users. GET NA Users[]

change_passw

ord

Change the password of a

given user.

PUT Password

change

Users[]

<?xml version="1.0" encoding="UTF-8"?>

<collection xmlns:ns2="http://www.w3.org/2005/Atom">

<user name="admin">

<roleType>Admin</roleType>

<categories/>

<isLdap>false</isLdap>

<ns2:link href="http://localhost/rest/users/admin" rel="self"/>

<ns2:link href="http://localhost/rest/users/admin/password"

rel="change_password"/>

</user>

</collection>

[

{

"name": "admin",

"roleType": "Admin",

"ldap": false,

"categories": []

}

]

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://localhost/rest/users/admin
http://localhost/rest/users/admin/password

add_user Add a new user POST Users[] Users[]

Notes:User entries that are LDAP linked contains ldap_domain_name or user_name in the URI. Non

LDAP users will just have user_name in the URI. So it is necessary that the client uses the link found

in the link relations to access individual users. change_password link will not be available for LDAP

users.

If current password is empty or null, the service returns the following error message:

“Unable to change password because old password is empty”.

If new password is empty or null, the service returns the following error message:

“Unable to change password because new password is empty”.

If current password is incorrect, the service returns the following error message:

“Unable to change password because old password does not match existing

password”.

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

40 | OnCommand Workflow Automation 5.1 Rest API Primer

Workflows

The root URL is /rest/workflows. An HTTP GET on this URL returns a collection of workflows based

on what the user can view. The client can also filter the collection using supported query parameters.

The workflow collection is a list of workflows, filtered based on the query parameters. If no query

parameters are specified, this API returns a collection of workflows that are accessible to the user who

invoked the API. See the table below for the description of the query parameters.

Query parameters for filtering the workflow collection

Parameter Value Description

Categories String [] A set of one or more categories

specified in the example below. If this

query parameter is specified, only

workflows that belong to at least one of

the list of categories is returned.

Name String Name of the workflow that needs to be

returned. If this query parameter is

specified, the collection of workflows

contains only one entry that represents

the workflow specified by the name.

Query parameter examples

The following URL returns a workflow that is named as ‘Hello World’, if the workflow is in ready for

production state.

https://localhost/rest/workflows?name=Hello%20World

The following URL returns a collection of workflows for which categories are either ‘Application

Provisioning’ or ‘Setup’.

The following example URL returns all the workflows that are in production.

https://localhost/rest/workflows

Security

Users with admin or architect privileges can access all workflows using this API. An ‘operator’ can

only access and execute workflows that are in categories that are accessible by the user.

A ’403’ forbidden is returned for guest users or for operators who try to execute workflows that they

are not authorized to execute.

Unauthenticated access (missing or invalid credentials) is challenged with a ‘401 Unauthorized’ by the

server.

Workflow data structures

https://localhost/rest/workflows?categories=Application%20Provisioning&cate

gories=Setup

This section provides a description of all the major data structures exposed through the workflows API.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual, which is available from within the

product.

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description

Key String True Key

Value String True Value

Workflow

The workflow object represents a single workflow. The following table describes the information

encapsulated within this object.

Name Type Mandatory Description

Workflow UUID String True A 32 byte UUID string that uniquely identifies the

workflow.

Workflow name String True Name of the workflow

Workfl

ow

descripti

on

String False Description

Workflow

certification

Enum False Certified by. Can be any one of the following:

• NONE,

• PS,

• COMMUNITY

 • USER_LOCKED

• NETAPP

Workflow

category/categorie

s

Array of

Strings

False One or more categories to which the workflow

belongs.

User Input Array False A collection of allowed User input for this

workflow.

Return Parameter Array False A collection of possible Return parameter that will

be returned after the workflow is executed or

previewed.

42 | OnCommand Workflow Automation 5.1 Rest API Primer

Hyper media

Links (only for

XML)

Array of

Atom

links

False A collection of atom links that specify available

resources and their links. Allows clients to do

hypermedia traversal. Each of these URLs and their

associated methods are described in this document.

This entry is read-only for the client.

minOntapVersio

n

String The minimum Data ONTAP version of the storage

system required for the workflow execution.

version Version Indicates the version of the workflow and has

elements for major, minor, and revision.

The following is a sample XML output containing a collection of exactly one workflow.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <collection

xmlns:ns2="http://www.w3.org/2005/Atom">

<workflow uuid="a1ea8848-15e3-4162-9282-bef1380df310">

<name>Example workflow - Create a volume and NFS Export</name>

<description>This workflow is a sample.</description>

<categories>

<category>Example</category>

</categories>

<userInputList>

<userInput>

<name>vol_name</name>

<description>The name of the volume</description>

<defaultValue>vol1</defaultValue>

<type>String</type>

</userInput>

<userInput>

<name>rwHosts</name>

<description>Hosts with access</description>

<type>String</type>

</userInput>

</userInputList>

<returnParameters>

<returnParameter>

<name>exportpathname</name>

<value>the_export.export_path</value>

<description>The pathname </description>

</returnParameter>

</returnParameters>

<ns2:link href="http://localhost/rest/workflows/" rel="list"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-41629282-

bef1380df310" rel="self"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-41629282-

bef1380df310/jobs" rel="execute"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282-bef1380df310/out" rel="out-parameter"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282-bef1380df310/preview" rel="preview"/>

</workflow>

</collection>

The following is a sample JSON output containing a collection of exactly one workflow:

http://www.w3.org/2005/Atom
http://localhost/rest/workflows/
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-41629282-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-

User input

This object encapsulates a single user input of a workflow. A workflow might contain zero or more of

such user inputs.

Name Type Mandatory Description

Parameter Name String True Name of the input

parameter

Parameter Description String False Description of the

parameter

Parameter default value String False Default value for

the parameter, if

any

Parameter Type String True Type of parameter.

Can be any one of

String, Query or

Enumeration

},

{

"name": "rwHosts",

"description": "Hosts with access",

"type": "string"

}

],

"returnParameters": [

{

"name": "exportpathname",

"value": "the_export.export_path",

"description": "The pathname "

}

]

}

]

[

{

"uuid": "a1ea8848-15e3-4162-9282-bef1380df310",

"name": "Example workflow - Create a volume and NFS Export",

"description": "This workflow is a sample.",

"categories": [

"Example"

],

"userInputList": [

{

"name": "vol_name",

"description": "The name of the volume",

"defaultValue": "vol1",

"type": "string",

44 | OnCommand Workflow Automation 5.1 Rest API Primer

Allowed Values Array of Strings False Range or list

depicting a set of

legally allowed

values for this

parameter. Used in

case of

Enumeration or

Query types only.

ConditionalUserInput User input False Indicates the user

input on which this

user input is

conditionally

dependent on.

conditionalUserInputValues/conditional

UserInputValues

String False NA

Mandatory Boolean True NA

rowSelectionType Enum Indicates if the row

selection type is

single or multiple

for a query

multiselect user

input type.

Columns Array of User

Inputs

 The set of user

inputs in a Table

user input type.

Workflow input

The workflow input object is used to encapsulate information required to execute a workflow. The

contents of the workflow input object is explained in the following table.

Name Type Mandatory Description

Input parameters Array False Input parameters

A collection of KeyAndValuePair

Execution Date

and Time

String False Execution date and time. For example:

9/23/11 2:59 PM

Relevant only for executing or resuming jobs.

If left empty, the job will be executed

immediately.

Comment String False A free form string that can be used to

describe the action by the client. This

comment is stored against the job and can be

retrieved later by the client.

ScheduleID String False ID of the schedule to execute the

workflow job.

The following is sample XML for a WorkflowInput that is sent by a client.

The following is sample JSON for a WorkflowInput that is sent by a client:

{

"executionDateAndTime": "9/23/11 2:59 PM",

"comments": "Execution for creating Test volumes",

"userInputValues": [

{

"key": "ArrayIP",

"value": "10.68.66.214"

},

{

"key": "VolName",

"value": "TestWS"

},

]

}

Return parameter

The return parameter object encapsulates the output of the workflow. Each entry represents a field that

corresponds to a particular output of the workflow. The following table shows the contents of each

individual RETURN PARAMETER object. This structure represents details of each return parameter

that might be returned as a result of executing the workflow.

Name Type Mandatory Description

Name String True Name of the return parameter (for example,

volume).

Value String True Value of the parameter (for example,

$VolumeName).

Description String False Description (for example, This is a Volume).

Job status

This structure depicts status information about the job that was executed against the workflow.

Note: There are some discrepancies in the XSD schema where every entry is a string, which makes it

difficult to do XSD validation for dates, integers and enumerations. This discrepancy will be fixed in

future versions.

Name Type Mandatory Description

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<workflowInput>

<userInputValues>

<userInputEntry key="ArrayIP" value="10.68.66.214"/>

<userInputEntry key="VolName" value="TestWS"/>

</userInputValues>

<comments>Execution for creating Test volumes</comments>

<executionDateAndTime>9/23/11 2:59 PM</executionDateAndTime>

</workflowInput>

46 | OnCommand Workflow Automation 5.1 Rest API Primer

Job Status String True Status of the Job. It is one of the following:

• SCHEDULED

• PENDING

• EXECUTING

• COMPLETED

• FAILED

• PARTIALLY_SUCCESSFUL

• ABORTING

• CANCELED

• OBSOLETE

• PLANNING

• PAUSED

Job Type String True Job type – Cache / Workflow execution

Schedule Type String True Schedule type – Delayed / Immediate /

Recurring

Start Time String False Actual start time of job execution

End Time String False Actual time when the job execution

 completed

Planned

Execution Time

String False Planned time for job execution

Error Message String False Error message if any (if the job execution

failed)

Execution

Comment

String False Comment supplied by the client while

executing the job

Workflow job

This structure depicts all aspects of a single instance of a workflow job. This is to represent a workflow

job resource only and is typically returned when a workflow job status is queried or when a workflow

job is created.

Name Type Mandatory Description

Job ID Integer True ID of the workflow job.

Workflow Workflow True Workflow details of the job.

Job status Job status True Current Job status of the job.

Links (only for

XML)

Atom Links False Atom links depicting other sub resources and

allowed operations for the job. These links

are read only for the client.

The following is a sample XML output containing job.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<job xmlns:ns2="http://www.w3.org/2005/Atom" jobId="3">

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

<workflow uuid="a1ea8848-15e3-4162-9282-bef1380df310">

<name>Example workflow - Create a volume</name>

<description>This workflow is a sample.</description>

<categories><category>Example</category></categories>

<userInputList>

<userInput>

<name>vol_size</name>

<description>The size</description>

<defaultValue>1</defaultValue>

<type>Number</type>

<allowedValues><value>0.01-5000</value></allowedValues>

</userInput>

</userInputList>

<returnParameters>

<returnParameter>

<name>export-pathname</name>

<value>the_export.export_path</value>

<description>The pathname</description>

</returnParameter>

</returnParameters>

<ns2:link href="http://localhost/rest/workflows/" rel="list"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3- 41629282-bef1380df310"

rel="self"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3- 41629282-bef1380df310/jobs"

rel="execute"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162- 9282-bef1380df310/out"

rel="out-parameter"/> <ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282-bef1380df310/preview" rel="preview"/>

</workflow>

<jobStatus>

<jobStatus>SCHEDULED</jobStatus>

The following is a sample JSON output containing job:

<jobType>Workflow Execution - Example workflow - Create

a volume</jobType>

<scheduleType>Delayed</scheduleType>

<plannedExecutionTime>Sep 23, 2012 2:59:00 PM</plannedExecutionTime>

<comment>Execution for creating Test volumes</comment>

</jobStatus>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282bef1380df310/jobs" rel="add"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282bef1380df310/jobs/3/resume" rel="resume"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282bef1380df310/jobs/3/cancel" rel="cancel"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282bef1380df310/jobs/3/plan/out" rel="out"/>

<ns2:link href="http://localhost/rest/workflows/a1ea8848-15e3-4162-

9282bef1380df310/jobs/3" rel="self"/>

</job>

http://localhost/rest/workflows/
http://localhost/rest/workflows/a1ea8848-15e3-
http://localhost/rest/workflows/a1ea8848-15e3-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-
http://localhost/rest/workflows/a1ea8848-15e3-4162-

48 | OnCommand Workflow Automation 5.1 Rest API Primer

Workflow links, relations, and actions (only for XML)

The links available in the response of a request can be used by the client to drill down further and

access and operate on an individual workflow object.

The following table provides a detailed list of links and their relations with respect to the workflow

resources. These links are represented in each workflow object in the collection, when the server

returns the collection. The link fields are read-only for the client and the client need not specify the

links when submitting requests. If the client submits links in requests, the server ignores them.

Relation

(specified by

rel)

Description of the relation HTTP

Request

Request

Type

Response Type

list Provides a list of workflow

objects based on certain

criteria. If no criteria are

specified through a query

parameter, all workflows that

the user is eligible to view are

returned.

GET NA Workflow[]

self Returns the workflow object GET NA Workflow[]

{

"jobId": 3,

"workflow": {

"uuid": "a1ea8848-15e3-4162-9282-bef1380df310",

"name": "Example workflow - Create a volume",

"description": "This workflow is a sample.",

"categories": [

"Example"

],

"userInputList": [

{

"name": "vol_size",

"description": "The size",

"defaultValue": "1",

"type": "Number",

"allowedValues": [

"0.01-5000"

]

}

],

"returnParameters": [

{

"name": "export-pathname",

"value": "the_export.export_path",

"description": "The pathname"

}

]

},

"jobStatus": {

"jobStatus": "SCHEDULED",

"jobType": "Workflow Execution - Example workflow - Create a volume",

"scheduleType": "Delayed",

"plannedExecutionTime": "Sep 23, 2012 2:59:00 PM",

"comment": "Execution for creating Test volumes"

}

}

 specified by the link. The

URL in the ‘href’ attribute

has the UUID of the

Workflow. UUID uniquely

identifies a specific workflow

resource.

execute Executes a given workflow.

This creates a new job object

and returns the job object as a

part of the response.

POST Workflow

input[]
Workflow job []

out-parameter Returns the possible output

(return) parameter values of a

workflow as a key value pair.

GET NA Return parameter[]

Preview Runs a preview (dry run) of

the workflow with the given

user inputs and returns the

output. This action will not

execute an actual workflow

on the storage system. After

previewing, this method

returns the result as return

parameters.

POST Workflow

input[]

Return parameter[]

User_input_quer

y_result

Returns the query result for a

given user input type which

is either "Query" type or

"QueryMultiSelect" .

Reservation flag is derived

from the workflow and

applied for query result. For

dependent query parameter

mappings are passed through

query parameter.

GET NA UserInputQueryResult

Notes: If the format of user input pair string is incorrect, the service returns the following error

message as part of the BAD_REQUEST response:

“Invalid user-input value ‘some_input_with_value’ ,should be name=value”

Default values are used if a user input value has not been provided (if applicable).

Array of parameter names or an empty array is mandatory. In case, all the parameters are

requested, use ‘@ ()’ (in case of PowerShell WS command line client).

When the client performs the execute operation (shown above), a job is created. Thus, the resulting

response contains a job representation (WorkflowJob) that contains another set of links, which allows

the user to operate on the job resource. The following table shows the link and relations that are

relevant for the job object.

50 | OnCommand Workflow Automation 5.1 Rest API Primer

Relation (rel

attribute)
Description HTTP

Request

Request Type Response Type

Resume Resumes this job. This method will

resume or reschedule a job that

was already scheduled for

execution.

POST Workflow input[] Workflow job

Cancel
Cancels this job. This method

rejects a workflow that was already

scheduled for execution.

POST Workflow input[] Workflow job

Out Returns the output

parameters and their

values for the job.

Query Parameters:

 GET NA Return parameter[]

parameters

Denotes the parameters

for which the values need

to be returned. Can

specify zero or more such

parameters. If no

parameters are specified,

then all the return

parameters of the

workflow are returned.

Self

Returns the

representation of this

job. This link can be

used to inspect the

current state of the job.

GET NA Workflow job

Notes: For resuming and executing operations, if no date and time is provided in the

‘WorkflowInput’, the workflow is resumed and executed immediately.

For canceling operation, the execution data and time need not be specified in the ‘WorkflowInput’.

If it is specified, it is ignored by the client.

If the user executing the service is an operator who is not allowed to resume or execute this

workflow, due to workflow authorization restrictions (the workflow is assigned to a category, this

user is not assigned to) the following error is returned:

 "current user 'user name' is not allowed to resume workflow ' workflowId'.

Only workflows with the status of ‘Paused’, ‘Scheduled’, ‘Aborted’ or ‘Failed’ can be resumed.

When an operator tries to resume a workflow with any other status the following error is returned:

"Could not resume workflow execution with id ' the workflow job id'. Resume is

only allowed from status ' PAUSED'."

When an operator tries to resume a failed workflow, that has expired, the following error is

returned:

"Resume of failed workflow execution with id ' the workflow job Id ' is not

allowed. Workflow execution is expired - more than ' number of expiration days'

days have passed since failure"

For the ‘status’ operation, the service returns output data (Return Parameters) only if the job status

is in a final state. It must be in one of the following statuses: COMPLETED, FAILED,

PARTIALLY_SUCCESSFUL or ABORTED.

Return Parameter Values are returned as per planning phase. Failure of the job will not result

in any change to the returned values.

For the ‘out’ operation, if the status of the job in question is not one of COMPLETED, FAILED,

PARTIALLY_SUCCESSFUL, ABORTED, then the service returns the following error message:

“The job’s status is <Current Job Status>, data can be retrieved only in

the following statuses: COMPLETED, FAILED, ABORTED”.

For the ‘out’ operation, if the requested parameter name is not defined for the workflow, the

service returns the following error message:

 “Parameter ’parameter name’ not found. It's not defined as a return parameter”

For the ‘cancel’ operation, if the user executing the service is an operator who is not allowed to

execute this workflow, due to workflow authorization restrictions (the workflow is assigned to a

category, this user is not assigned to) the following error is returned:

"current user 'user name' is not allowed to reject workflow ' workflowId'

Only workflows with the status of ‘Paused’, ‘Scheduled’, ‘Pending’ or ‘Running’ can be rejected.

No error is returned if a user tries to reject a workflow with a wrong status.

When an operator is trying to reject a paused workflow, that an operator is not allowed to reject,

the following error is returned:

 "Users with 'Operator' role are not allowed to reject workflow executions".

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

52 | OnCommand Workflow Automation 5.1 Rest API Primer

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

Workflow Executions

WorkflowExecutionResource represents WFA workflow execution instance.

CommandExecutionArguments

It returns the list of CommandExecutionArguments with a given workflow execution id.

Parameters

Name Description Type Default

workflow_execution_id Workflow execution ID. path

child_command_index Index of the CommandExecutionArguments

which correspond to child workflow execution.

When specified, this returns the list of

CommandExecutionArguments of the child

workflow execution corresponding to the

index.

query

Response body

LogMessage

It returns the list of LogMessage with a given workflow execution id and command/step index.

Parameters

Name Description Type Default

workflow_execution_id Workflow execution ID. path

command_index Command/step index whose log messages are

to be returned. The index starts with 0.

path

child_command_index Command/step index whose log messages are

to be returned from within the child workflow.

The index starts with 0.

query

Response body

element: (custom) media

types: application/xml or

application/json

element: (custom) media

types: application/xml or

application/json

54 | OnCommand Workflow Automation 5.1 Rest API Primer

Filters

Filters are the resource selection primitive that WFA uses to automatically select resources while

planning a workflow before workflow execution. In WFA, filters are SQL statements with associated

meta-data and input parameters and the output dictionary item that describes the input and output to the

filter.

WFA REST API can be used by clients to programmatically view the meta-data and other aspects

about a filter. The API can also be used to execute a filter (for testing the filter) and obtain its results.

Currently, WFA API cannot be used to create, update, or delete a filter.

Query parameters to filter collection of filters

Parameter Value Description

dictionary String Name of the dictionary item. For example, if

cm_storage.aggregate is specified, only filters that

return this dictionary item as output will be returned.

Query Parameter Example:

Security

Only users with the admin role or the architect role can use FILTERS API. If operators or guest users

attempt to use this API, the server returns a ‘403 Forbidden’.

Any ‘unauthorized access’ (i.e. incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by WFA server.

Filter data structures
This section provides a description of all the major data structures exposed through the filters API.

Note: To obtain the corresponding XML schema definition and sample XML documents representing

these data structures, see the Reference Manual, which is available from within the product.

An HTTP GET on the following URL returns all filters.

https://localhost/rest/filters

An HTTP GET on the following URL returns all filters that filter the

dictionary item cm_storage.aggregate.

https://localhost/rest/filters?dictionary=cm_storage.aggregate

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description

Key String True Key

Value String True Value

Filter

The filter object represents a single filter. The following table describes the information encapsulated

within this object.

Name Type Mandatory Description

Filter UUID String True A 32 byte UUID string that uniquely

identifies the filter.

Filter name String True Name of the filter.

Filter

certification

Enum False Certified by. Can be any one of the

following:

• NONE

• PS

• COMMUNITY

• USER_LOCKED

• NETAPP

Input Parameters Array False A set of string that specifies the input

parameters that need to be passed as input to

the filter.

Dictionary Name String False The fully qualified name of the dictionary

item that the filter is used to filter resources.

 (for example, cm_storage.aggregate)

Hyper media

Links (only for

XML)

Array of

Atom links

False A collection of atom links that specifies

available resources and their links. Allows

clients to do hypermedia traversal. Each of

these URLs and their associated methods are

described in this document.

This entry is read-only for the client.

The following table shows a sample XML output of /rest/filters that returns a collection of exactly one

filter.

<collection xmlns:ns2="http://www.w3.org/2005/Atom">

<filter id="eb6fc609-bc4c-4b28-b7af-d80e7c620645">

http://www.w3.org/2005/Atom

56 | OnCommand Workflow Automation 5.1 Rest API Primer

The following table shows a sample JSON output of /rest/filters that returns a collection of exactly one

filter:

FilterTestResults

The FilterTestResults object encapsulates the output of a filter test execution.

Name Type Mandatory Description

Filter name String True Name of the filter.

Dictionary name String True Fully qualified name of the dictionary item that

this filter is associated with.

<name>CM aggregates based on ONTAP version</name>

<certification>NETAPP</certification>

<parameters>

<parameter>os_version</parameter>

</parameters>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<ns2:link href="http://localhost/rest/filters/eb6fc609-bc4c-4b28-

b7afd80e7c620645" rel="self"/>

<ns2:link href="http://localhost/rest/filters" rel="list"/>

<ns2:link href="http://localhost/rest/filters/eb6fc609-bc4c-4b28-

b7afd80e7c620645/test_no_reservations"rel="test_no_reservations"/>

<ns2:link href="http://localhost/rest/filters/eb6fc609-bc4c-4b28-

b7afd80e7c620645/test" rel="test"/>

</filter>

<filter id="7d88e461-ec6e-401d-8da3-bea6f1606c32">

<name>CM aggregate by used space %</name>

<certification>NETAPP</certification>

<parameters>

<parameter>used_size_threshold</parameter>

<parameter>used_space</parameter>

</parameters>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<ns2:link href="http://localhost/rest/filters/7d88e461-ec6e-401d-

8da3bea6f1606c32" rel="self"/>

<ns2:link href="http://localhost/rest/filters" rel="list"/> <ns2:link

href="http://localhost/rest/filters/7d88e461-ec6e-401d-

8da3bea6f1606c32/test_no_reservations"rel="test_no_reservations"/>

<ns2:link href="http://localhost/rest/filters/7d88e461-ec6e-401d-

8da3bea6f1606c32/test" rel="test"/>

</filter>

</collection>

[

{

"id": "eb6fc609-bc4c-4b28-b7af-d80e7c620645",

"name": "CM aggregates based on ONTAP version",

"certification": "NETAPP",

"dictionaryName": "cm_storage.Aggregate",

"parameters": [

"os_version"

]

}

]

http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/eb6fc609-bc4c-4b28-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-
http://localhost/rest/filters/7d88e461-ec6e-401d-

Parameters KeyAndValuePair false A collection of KeyAndValuePair items. Each

item specifies an input parameter and the

corresponding value that was passed by the

client to test the filter.

Columns Array of column False Contains column description of the output

columns of the query result.

Rows Array of row False Array of row. Each row contains exactly one

output dictionary item that matches the criteria.

The following is sample XML output of FilterTestResults run on a filter that filters Clustered Data

ONTAP aggregates based on os_version. In this example, the os_version was specified as 8.1.

<filterTestResults>

<filterName>CM aggregates based on ONTAP version</filterName>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<parameters>

<parameter value="8.1" key="os_version"/>

</parameters>

<columns>

<column>#</column>

<column>name</column>

<column>node.cluster.primary_address</column>

<column>node.name</column>

</columns>

<rows>

<row>

<cell value="1" key="#"/>

<cell value="aggr0" key="name"/>

<cell value="10.72.181.165" key="node.cluster.primary_address"/>

<cell value="f3170-181-42" key="node.name"/>

</row>

<row>

<cell value="2" key="#"/>

<cell value="f317018142_aggr1" key="name"/>

<cell value="10.72.181.165" key="node.cluster.primary_address"/>

<cell value="f3170-181-42" key="node.name"/>

</row>

<row>

<cell value="3" key="#"/>

<cell value="aggr0_f3170_181_43_0" key="name"/>

<cell value="10.72.181.165" key="node.cluster.primary_address"/>

<cell value="f3170-181-43" key="node.name"/>

</row>

<row>

<cell value="4" key="#"/>

<cell value="f317018143_aggr1" key="name"/>

<cell value="10.72.181.165" key="node.cluster.primary_address"/>

<cell value="f3170-181-43" key="node.name"/>

</row>

</rows>

</filterTestResults>

The following is sample JSON output of FilterTestResults run on a filter that filters Clustered Data

ONTAP aggregates based on os_version. In this example, the os_version was specified as 8.1.

58 | OnCommand Workflow Automation 5.1 Rest API Primer

{

"filterName": "CM aggregates based on ONTAP version",

"dictionaryName": "cm_storage.Aggregate",

"parameters": [

{

"key": "os_version",

"value": "8.1"

}

],

"columns": [

"#",

"name",

"node.cluster.primary_address",

"node.name"

],

"rows": [

{

"cell": [

{

"key": "#",

"value": "1"

},

{

"key": "name",

"value": "aggr0"

},

{

"key": "node.cluster.primary_address",

"value": "10.72.181.165"

},

{

"key": "node.name",

"value": "f3170-181-42"

}

]

},

{

"cell": [

{

"key": "#",

"value": "2"

},

{

"key": "name",

"value": "f317018142_aggr1"

},

{

"key": "node.cluster.primary_address",

"value": "10.72.181.165"

},

{

"key": "node.name",

"value": "f3170-181-42"

}

]

},

{

Filter links, relations, and actions (only for XML)

The following table shows the links and relations of a filter object.

Relation Description HTTP

Reques

t

Reques

t Type

Response

Type

list Lists all the filters. Query parameters can be

used to restrict the list based on specific

criteria.

GET NA Filter[]

self Returns this specific filter. GET NA Filter

"cell": [

{

"key": "#",

"value": "3"

},

{

"key": "name",

"value": "aggr0_f3170_181_43_0"

},

{

"key": "node.cluster.primary_address",

"value": "10.72.181.165"

},

{

"key": "node.name",

"value": "f3170-181-43"

}

]

},

{

"cell": [

{

"key": "#",

"value": "4"

},

{

"key": "name",

"value": "f317018143_aggr1"

},

{

"key": "node.cluster.primary_address",

"value": "10.72.181.165"

},

{

"key": "node.name",

"value": "f3170-181-43"

}

]

}

]

}

60 | OnCommand Workflow Automation 5.1 Rest API Primer

test Tests the filter and returns the results. The

results include reservation data.

Query Parameters

<parameter>=<value>: The test filter expects

the client to specify the input parameters to

the filter as query parameters. An example is

as below: http://localhost/rest/filters/eb6fc609-

bc4c-

4b28-b7af-

d80e7c620645/test?os_version=8.1&clusterna

me=test

GET NA FilterTestResu

lts

test_no_re

servation

Tests the filter without applying

RESERVATION data. This action also

supports query parameters exactly as the ‘test’

action shown in the row above.

GET NA FilterTestResu

lts

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

http://localhost/rest/filters/eb6fc609-

Finders

Finders are a logical group of filters for the same dictionary item, where each filter specifies particular

criteria. Finders return a resource collection that matches all the criteria of all the filters in the finder.

WFA REST API can be used by clients to programmatically view the meta-data and other aspects of a

finder. The API can also be used to execute a finder (for testing the finder) and obtain its results.

Currently, WFA API cannot be used to create, update, or delete a finder.

Query parameters to filter collection of filters

Parameter Value Description

dictionary String Name of the dictionary item. For example, if

cm_storage.aggregate is specified, only finders that return this

dictionary item as output are returned.

Query Parameter Example

Security

Only users with the admin role or the architect role can use the finders API. If operators or guests

attempt to use this API, the server returns a ‘403 Forbidden’.

Any unauthorized access (either incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the server.

Finder data structures

This section provides a description of all the major data structures exposed through the finders API.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual, that is available from in the product.

KeyAndValuePair

The key and value pair is used to encapsulate a single key and its value.

Name Type Mandatory Description

Key String True Key

Value String True Value

Finder

The finder object represents a single finder. The following table describes the information encapsulated

within this object.

An HTTP GET on the following URL returns all finders.

https://localhost/rest/finders

An HTTP GET on the following URL returns all finders that find the

dictionary item cm_storage.aggregate.

https://localhost/rest/finders?dictionary=cm_storage.aggregate SECURITY

62 | OnCommand Workflow Automation 5.1 Rest API Primer

Name Type Mandatory Description

Finder UUID String True A 32 byte UUID string that uniquely

identifies the finder.

Finder name String True Name of the finder.

Finder

certification

Enum false Certified by. Can be any one of the

following:

• NONE

• PS

• COMMUNITY

• USER_LOCKED

• NETAPP

Input

Parameters

Array False A set of String that specifies the input

parameters that need to be passed as input

to the finder.

Dictionary

Name

String False The fully qualified name of the dictionary

item that the filter is used to filter

resources. (for example,

cm_storage.aggregate).

Filters Array of Filter False A logical grouping of filters corresponding

to the same dictionary item that together

forms this dictionary item finder.

Hyper media

Links (only for

XML)

Array of Atom

links

False A collection of atom links that specifies

available resources and their links. Allows

clients to do hypermedia traversal. Each of

these URLs and the associated methods are

described in this document.

This entry is read-only for the client.

The following is a sample XML output of /rest/finders that returns a collection of exactly one finder.

<collection xmlns:ns2="http://www.w3.org/2005/Atom">

<finder id="915c8c3f-3863-4fef-a198-b35257d5de2d">

<name>Find CM aggregate in a given CM node</name>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<certification>NETAPP</certification>

<filters>

<filter id="e6ee693c-5707-4936-bf27-99d6c8b319db">

<name>CM aggregate by key</name>

<certification>WFA</certification>

<parameters>

<parameter>name</parameter>

<parameter>node.cluster.name</parameter>

<parameter>node.name</parameter>

</parameters>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<ns2:link href="http://localhost/rest/filters/e6ee693c-57074936- bf27-

99d6c8b319db" rel="self"/>

<ns2:link href="http://localhost/rest/filters" rel="list"/>

<ns2:link href="http://localhost/rest/filters/e6ee693c-5707- 4936-bf27-

99d6c8b319db/test_no_reservations"rel="test_no_reservations"/>

<ns2:link href="http://localhost/rest/filters/e6ee693c-5707- 4936-bf27-

99d6c8b319db/test" rel="test"/>

</filter>

http://www.w3.org/2005/Atom
http://localhost/rest/filters/e6ee693c-57074936-
http://localhost/rest/filters/e6ee693c-57074936-
http://localhost/rest/filters
http://localhost/rest/filters/e6ee693c-5707-
http://localhost/rest/filters/e6ee693c-5707-

</filters>

<parameters>

<parameter>name</parameter>

<parameter>node.cluster.name</parameter>

<parameter>node.name</parameter>

</parameters>

<ns2:link href="http://localhost/rest/finders/915c8c3f-3863-4fef-

a198b35257d5de2d/test_no_reservations"rel="test_no_reservations"/>

<ns2:link href="http://localhost/rest/finders/915c8c3f-3863-4fef-

a198b35257d5de2d/test" rel="test"/>

<ns2:link href="http://localhost/rest/finders/915c8c3f-3863-4fef-

a198b35257d5de2d" rel="self"/>

<ns2:link href="http://localhost/rest/finders" rel="list"/>

</finder>

</collection>

The following is a sample JSON output of /rest/finders that returns a collection of exactly one finder:

FinderTestResults

The FinderTestResults object encapsulates the output of a finder test execution.

Name Type Mandatory Description

Finder Name String True Name of the finder.

Dictionary String True Fully qualified name of the dictionary item

Name that this filter is associated with.

Parameters KeyAndValuePair false A collection of KeyAndValuePair items.

Each item specifies an input parameter and

the corresponding value that was passed by

the client to test the filter.

Columns Array of column False Contains column description of the output

columns of the finder result.

"node.cluster.name",

"node.name"

]

}

],

"parameters": [

"name",

"node.cluster.name",

"node.name"

]

}

]

[

{

"id": "915c8c3f-3863-4fef-a198-b35257d5de2d",

"name": "Find CM aggregate in a given CM node",

"dictionaryName": "cm_storage.Aggregate",

"certification": "NETAPP",

"filters": [

{

"id": "e6ee693c-5707-4936-bf27-99d6c8b319db",

"name": "CM aggregate by key",

"certification": "WFA",

"parameters": [

"name",

http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders/915c8c3f-3863-4fef-
http://localhost/rest/finders

64 | OnCommand Workflow Automation 5.1 Rest API Primer

Rows Array of row False Array of rows. Each row contains exactly

one output dictionary item that matches all

the criteria within the finder.

The following is a sample XML output of FinderTestResults run on a finder that finds cluster mode

aggregates based on name, node name and cluster name.

The following is a sample JSON output of FinderTestResults run on a finder that finds cluster mode

aggregates based on name, node name, and cluster name.

{

"finderName": "Find CM aggregate in a given CM node",

"dictionaryName": "cm_storage.Aggregate",

"parameters": [

{

"key": "node.name",

"value": "f2040-181-51"

},

{

"key": "name",

"value": "aggr0"

},

{

"key": "node.cluster.name",

"value": "f2040-clus51_52_test-51"

}

],

"columns": [

"#",

"node.name",

"node.cluster.primary_address",

"name"

],

"rows": [

{

"cell": [

{

"key": "#",

"value": "1"

},

{

"key": "name",

"value": "aggr0"

},

{

"key": "#",

"value": "1"

},

{

"key": "node.cluster.primary_address",

"value": "10.72.181.75"

},

{

"key": "node.name",

"value": "f2040-181-51"

}

]

}

]

}

<finderTestResults>

<finderName>Find CM aggregate in a given CM node</finderName>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<parameters>

<parameter value="f2040-181-51" key="node.name"/>

<parameter value="aggr0" key="name"/>

<parameter value="clus51_52_test" key="node.cluster.name"/>

</parameters>

<columns>

<column>#</column>

<column>node.name</column>

<column>node.cluster.primary_address</column>

<column>name</column>

</columns>

<rows>

<row selected="true">

<cell value="1" key="#"/>

<cell value="aggr0" key="name"/>

<cell value="10.72.181.75" key="node.cluster.primary_address"/>

<cell value="f2040-181-51" key="node.name"/>

</row>

</rows>

</finderTestResults>

The following table shows a sample XML output of FinderTestResults run on a finder that tries to find

a cluster mode aggregate based on name, node name, and cluster name of a cluster name that does not

exist.

The following table shows a sample JSON output of FinderTestResults run on a finder that tries to find

a cluster mode aggregate based on name, node name, and cluster name of a cluster name that does not

exist.

{

"finderName": "Find CM aggregate in a given CM node",

"dictionaryName":"cm_storage.Aggregate",

"parameters": [

{

"key": "node.name",

"value": "node1"

},

{

"key": "name",

"value": "aggr1"

},

{

"key": "node.cluster.name",

"value": "clus1"

}

],

"columns": [

],

"rows": [

],

"reasonForNoResult": "No results were found. The following filters have returned empty results:

CM aggregate by key"

}

Finder links, relations, and actions (only for XML)
The following table shows the links and relations of a finder object.

Relation Description HTTP

Request

Request

Type
Response

Type

list Lists all the finders. Query parameters can be

used to restrict the list based on a particular

dictionary item.

GET NA Finder[]

self Returns this specific finder only. GET NA Finder

<finderTestResults>

<finderName>Find CM aggregate in a given CM node</finderName>

<dictionaryName>cm_storage.Aggregate</dictionaryName>

<parameters>

<parameter value="node1" key="node.name"/>

<parameter value="aggr1" key="name"/>

<parameter value="clus1" key="node.cluster.name"/>

</parameters>

<columns/>

<rows/>

<reasonForNoResult>

No results were found. The following filters have returned empty results:

CM aggregate by key

</reasonForNoResult>

</finderTestResults>

66 | OnCommand Workflow Automation 5.1 Rest API Primer

test Tests the finder and returns results. The

results include reservation data.

Query Parameters

<parameter>=<value>: The test finder

expects the client to specify the input

parameters to the finder as query parameters.

See the following example:

http://localhost/rest/finders/915c8c 3f-3863-

4fef-a198-

b35257d5de2d/test?name=aggr0&

node.cluster.name=clus51_52_test

&node.name=f2040-181-51

GET NA FinderTestRes

ult s

test_no_res

ervation

Tests the finder without applying

RESERVATION data. This action also

supports query parameters exactly as the

‘test’ action shown in the row above.

GET NA FinderTestRes

ult s

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

http://localhost/rest/finders/915c8c

Remote System Types

The Remote System Types API allows WFA API clients:

Example

Get information about existing remote system type(s)

Security
Only users with the admin role or the architect role can use the Remote System Types API.

If operators or guest users attempt to use this API, the server returns a ‘403 Forbidden’.

Any unauthorized access (i.e either incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the server.

Remote System Type data structures

This section provides a description of all the major data structures exposed through the remote system

types API.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual that Sis available from within the

product.

Remote System Type

The Remote System Type object provides details of a single remote system type. The following table

describes the information encapsulated within this object.

Name Type Mandatory Description

Uuid String True ID that uniquely identifies the resource

instance.

Name String True Name of the remote system type.

Description String True Description of the remote system type.

Version Version True Version of the remote system type and

includes elements for major, minor, and

revision.

An HTTP GET on the following URL returns all remote system types.

https://localhost/rest/remote_system_types

An HTTP GET on the following URL returns the specific remote system type

with the given uuid. https://localhost/rest/remote_system_types/3e4e2811-

1b60-42ad- 8eb8d8250d182166

68 | OnCommand Workflow Automation 5.1 Rest API Primer

Certification Enum True Certification of the remove system type

entry. Can be any one of the following:

• NONE

• PS

• COMMUNITY

• USER_LOCKED

• NETAPP

Connection

protocol

Enum True Connection protocols to be used for

connecting to the remote system.

Can be one of the following:

• HttpsToHttp

• HttpsOnly

• HttpOnly

• Others

Protocol details Array of

Protocol detail

True List of Protocol detail entries (in order driven

by Connection protocol).

Each Protocol detail entry has the following

fields:

• Protocol

• defaultPort

 defaultTimeout

Hyper media

links (only for

XML)

Array of atom

links

False A collection of atom links that specifies

available resources and their links. Allows

clients to do hypermedia traversal. Each of

these URLs and the associated methods are

described in this document.

This entry is read-only for the client.

The following is sample XML containing the remote system type object

The following is sample JSON containing the remote system type object:

Links and relations (only for XML)

Relation Description HTTP

Request

Request

Type

Response

Type

List Lists all remote system type objects. GET NA Remote System

Type[]

self Returns the specific remote system type

only.

GET NA Remote System

Type

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<remoteSystemType xmlns:atom="http://www.w3.org/2005/Atom" uuid="3e4e2811-

1b60-42ad-8eb8-d8250d182166">

<name>Data ONTAP Systems</name>

<description>System type for Data ONTAP Systems.</description>

<version>

<major>1</major>

<minor>0</minor>

<revision>0</revision>

</version>

<certification>NETAPP</certification>

<connectionProtocol>HttpsToHttp</connectionProtocol>

<protocol-details>

<protocol-detail>

<defaultPort>443</defaultPort>

<defaultTimeout>60</defaultTimeout>

<protocol>HTTPS</protocol>

</protocol-detail>

<protocol-detail>

<defaultPort>80</defaultPort>

<defaultTimeout>60</defaultTimeout>

<protocol>HTTP</protocol>

</protocol-detail>

</protocol-details>

<atom:link rel="self"

href="https://localhost/rest/remote_system_types/3e4e2811-1b60-42ad-

8eb8d8250d182166"/>

<atom:link rel="list" href="https://localhost/rest/remote_system_types"/>

</remoteSystemType>

{

"uuid": "3e4e2811-1b60-42ad-8eb8-d8250d182166",

"name": "Data ONTAP Systems",

"description": "System type for Data ONTAP Systems.",

"version": {

"major": 1,

"minor": 0,

"revision": 0

},

"certification": "NETAPP",

"connectionProtocol": "HttpsToHttp",

"protocol-details": [

{

"protocol": "HTTPS",

"defaultPort": 443,

"defaultTimeout": 60

},

{

"protocol": "HTTP",

"defaultPort": 80,

"defaultTimeout": 60

}

]

}

http://www.w3.org/2005/Atom

70 | OnCommand Workflow Automation 5.1 Rest API Primer

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media

Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

Credentials

The Credentials API allows WFA API clients to:

 Get information about existing credential(s)

 Create and delete new credentials

 Test credentials

Query parameters to filter collection of credentials

Parameter Value Description

Type ConnectionType Filter credential collection based on a connection type.

Connection type can be any one of the following:

• ONTAP

• DFM

• VIRTUAL_CENTER

• OTHER

This field is deprecated and query parameter

‘remoteSystemType’ must be used.

RemoteSystemType String Filter credential collection based on the given remote

 system type name. Remote system type name must be one

of the valid remote system types existing in the WFA

system.

Query parameter example

Security

Only users with the admin role or the architect role can use the credentials API. If operators or guest

users attempt to use this API, the server returns a ‘403 Forbidden’.

Any ‘unauthorized access’ (i.e., incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the WFA server.

Since credentials are very sensitive data, it is recommended that an HTTPS connection is configured

before using this API, especially if the ‘create’ credential API is used.

Credential data structures

This section provides a description of all the major data structures exposed through the credentials API.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual that is available in the product.

Credential

An HTTP GET on the following URL returns all credentials.

https://localhost/rest/credentials

An HTTP GET on the following URL returns all credentials for ONTAP systems

https://localhost/rest/credentials?type=ONTAP

An HTTP GET on the following URL returns all credentials with remote system

type Data ONTAP Systems

https://localhost/rest/credentials?remoteSystemType=Data%20ONTAP%20Systems

72 | OnCommand Workflow Automation 5.1 Rest API Primer

The Credential object represents access information to a single device. The following table describes

the information encapsulated within this object.

Name Type Mandatory Description

IP String True IP address of the host. The host can be an

ONTAP system, VMware vCenter or any

other data center resource.

Connection

Type

Enum True Type of connection. Can be any one of the

following:

 ONTAP

 • DFM

• VIRTUAL_CENTER

• OTHER

This field is deprecated with the introduction

of remote system type.

Match Type Enum True Match type for the IP address. Could be any

one of the following:

• EXACT

• PATTERN

EXACT means the IP is an exact match.

PATTERN means IP is a regular expression

that can be used to match a range of IP

addresses.

Remote system

type

String True Name of the remote system type attached to

the Credential. Remote system type provides

connection details (port, protocol, and

timeout) for the given remote system.

Connection

protocol details

Array of

connection

protocol detail

entries.

True This field includes the connection details for

the credential object as per the corresponding

remote system type.

A connection protocol detail entry includes

protocol, connectionPort, and

connectionTimeout values.

Name String False Host name of the entity.

User Name String False User name of the account that will be

accessed by WFA to access the device or

host.

Hyper media

Links (only for

XML)

Array of

Atom links

False A collection of atom links that specifies

available resources and their links. Allows

clients to do hypermedia traversal. Each of

these URLs and the associated methods are

described in this document.

This entry is read-only for the client.

The following is sample XML containing the credential object.

The following is sample JSON containing the credential object:

CredentialWithPassword

The ‘CredentialWithPassword’ is a credential object described above along with an additional string

field that represents the password of the device or host. It is only used as input when creating new

credentials. It is not used as output, as the API will not let out password of any credentials that are

already stored within the system.

Links and relations (only for XML)

Relation Description HTTP

Request

Request

Type

Response

Type

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<credential xmlns:atom="http://www.w3.org/2005/Atom">

<ip>1.1.1.1</ip>

<connectionType>ONTAP</connectionType><remoteSystemType>Data ONTAP

Systems</remoteSystemType>

<connection-protocol-details>

<connection-protocol-detail>

<connectionPort>443</connectionPort>

<connectionTimeout>60</connectionTimeout>

<protocol>HTTPS</protocol>

</connection-protocol-detail>

<connection-protocol-detail>

<connectionPort>80</connectionPort>

<connectionTimeout>60</connectionTimeout>

<protocol>HTTP</protocol>

</connection-protocol-detail>

</connection-protocol-details>

<matchType>EXACT</matchType>

<name>name_1</name>

<userName>user_name_1</userName> <atom:link rel="test"

href="http://localhost:9095/rest/credentials/1.1.1.1/test"/>

<atom:link rel="self"

href="http://localhost:9095/rest/credentials/1.1.1.1"/>

</credential>

<atom:link rel="remote-system-type"

href="http://localhost:9095/rest/remote_system_types/3e4e2811-1b60-42ad8eb8-

d8250d182166"/>

{

"ip": "1.1.1.1",

"connectionType": "ONTAP",

"remoteSystemType": "Data ONTAP Systems",

"matchType": "EXACT",

"name": "name_1",

"userName": "user_name_1"

"connection-protocol-details": [

{

"protocol": "HTTPS",

"connectionPort": 443,

"connectionTimeout": 60

},

{

"protocol": "HTTP",

"connectionPort": 80,

"connectionTimeout": 60

}

]

}

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

74 | OnCommand Workflow Automation 5.1 Rest API Primer

list Lists all credential objects. Query

parameters can be used to restrict the list

based on a particular connection type.

GET NA Credential[]

self Returns this specific credential only. GET NA Credential

test Tests the credential and returns the

credential objects if the test was

successful. Query Parameters

testIP=<value>: The IP address of the

device or host against which the credential

has to be tested.

GET NA Credentiall

 http://localhost/rest/10.72.76.*/test?testIp=

10.72.76.76

add Creates a new credential object. POST Credential
WithPassw
ord

Credential

Remove Removes the credential specified by name

or IP address.

DELETE NA NA

remotesystemtype Lists the remote system type for the given

credential.

GET NA Remote
System Type

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media

Type

500 Server error

See Appendix B on HTTP status codes and detailed error messages for

a detailed description of these error codes and when they will be

returned.

http://localhost/rest/10.72.76

Data Source and Data Source Types

The Data source API allows the client to perform the following:

• Get information about existing data source types on the server

• Get information about existing data sources on the server

• Perform an immediate acquisition on a specific data source

• Get information on the status of a specific acquisition job

Security

All the resources under /rest/data_sources and /rest/data_source_types are visible only for admins and

architects.

An HTTP ‘403 Forbidden’ error code is returned for operators and guest users.

Any unauthorized access (i.e., incorrect or missing credentials) will be challenged with a ‘401

Unauthorized’ by the WFA server.

Data structures

Data source type

Name Type Description

Uuid String ID that uniquely identifies this resource instance.

Certification Enum NONE/PS/COMMUNITY/USER_LOCKED/NETA

PP

productType String for example, “onCommand unified manager (DFM)”

productVersion String for example, 5.1.X Cluster-Mode

dataSourceDriver String for example, Sybase jConnect 3.0 (if not null)

Links (only for XML) Array of

atom links

Links to relations and actions that are navigable from

this resource.

Scheme String Scheme of the data source type.

Method String Indicates whether the data source type is of SQL or

SCRIPT type.

DefaultDatabaseName String Name of the default database.

Version Version Version of the data source type. Provides major,

minor, and revision numbers.

DefaultPort int NA

Instructions String Setup instructions to configure the data source.

The root URIs for these resources is /rest/data_sources and

/rest/data_source_types.

76 | OnCommand Workflow Automation 5.1 Rest API Primer

The following sample XML illustrates the dataSourceType.

<dataSourceType uuid="6ee5e2a9-dacf-445d-a700-37d346526809">

<certification>NETAPP</certification>

<productType>OnCommand Unified Manager</productType>

<productVersion>5.2.X for Clustered Data ONTAP</productVersion>

<dataSourceDriver>Sybase jConnect3</dataSourceDriver>

<version>

<major>1</major>

<minor>0</minor>

<revision>0</revision>

</version>

<defaultPort>2638</defaultPort>

<scheme>cm_storage</scheme>

<method>SQL</method>

<instructions>For Windows 1. Connect to the OnCommand Unified Manager host

using Remote Desktop Connection as a local admin. 2. On the OnCommand

Unified Manager host, perform the following: a. Download wfa_ocsetup.exe

from the following address to a temp folder:

http://localhost/download/wfa_ocsetup.exe b. Run wfa_ocsetup.exe while

providing the following details: c. Select a valid path to a Java Runtime

Environment (You may approve the suggested one if applicable) d. Provide

the username and password that will be created. e. Verify setup finished

successfully. For Linux 1. Connect to the OnCommand Unified Manager host

using SSH, logged in as root. 2. On the OnCommand Unified Manager host,

perform the following: a. Download wfa_ocsetup.sh from the following

address to a temp directory: # wget --user=<admin/architect user> -

password=<password> http://localhost/download/wfa_ocsetup.sh b. Modify the

permissions of wfa_ocsetup.sh to be executable:chmod +x wfa_ocsetup.sh c.

Run wfa_ocsetup.sh, providing a valid path to a Java Runtime Environment

(1.6 and above).Example: # ./wfa_ocsetup.sh /usr/bin/java d. Supply the

username and password when prompted to override the default credentials. e.

Verify setup finished successfully.</instructions>

<atom:link rel="add-data-source"

href="https://localhost/rest/data_sources/type/6ee5e2a9-dacf-445d-

a70037d346526809"/>

<atom:link rel="data-sources"

href="https://localhost/rest/data_sources/type/6ee5e2a9-dacf-445d-

a70037d346526809"/>

<atom:link rel="list" href="https://localhost/rest/data_source_types"/>

<atom:link rel="self"

href="https://localhost/rest/data_source_types/6ee5e2a9-dacf-445d-

a70037d346526809"/>

</dataSourceType><dataSourceType uuid=”6dee7cb0-c411-4aa1-81b1-

70ac32d2af8a”>

<cetification>WFA</certification>

<productType>OnCommand Unified Manager (DFM)</productType>

<productVersion>5.1.X Cluster-Mode</productVersion>

<dataSourceDriver>Sybase jConnect 3.0</dataSourceDriver>

<ns2:link href="http://localhost/rest/data_source_types" rel="list

<ns2:link href="http://localhost/rest/data_source_types/{uuid}" rel="self"/>

<ns2:link href=".../rest/data_source/type/6dee7cb0-c411-4aa1-81b1-

70ac32d2af8a rel="data-sources"/></dataSourceType>

http://localhost/download/wfa_ocsetup.exe
http://localhost/download/wfa_ocsetup.sh
http://localhost/rest/data_source_types
http://localhost/rest/data_source_types/

The following sample JSON illustrates the dataSourceType:

{

"uuid": "6ee5e2a9-dacf-445d-a700-37d346526809", "certification": "NETAPP",

"productType": "OnCommand Unified Manager", "productVersion": "5.2.X for Clustered

Data

ONTAP</productVersion> <dataSourceDriver>Sybase jConnect3",

"dataSourceDriver": "Sybase jConnect 3.0", "version": {

"major": 1,

"minor": 0,

"revision": 0

},

"defaultPort": 2638, "scheme": "cm_storage", "method": "SQL",

"instructions": "For Windows 1. Connect to the OnCommand Unified Manager host using

Remote Desktop Connection as a local admin. 2. On the OnCommand Unified Manager host,

perform the following: a.

Download wfa_ocsetup.exe from the following address to a temp folder:

http://localhost/download/wfa_ocsetup.exe b. Run wfa_ocsetup.exe while providing the

following details: c. Select a valid path to a Java Runtime Environment (You may

approve the suggested one if applicable) d. Provide the username and password that

will be created. e. Verify setup finished successfully. For Linux 1. Connect to the

OnCommand Unified Manager host using SSH, logged in as root.

2. On the OnCommand Unified Manager host, perform the following: a. Download

wfa_ocsetup.sh from the following address to a temp directory: # wget --

user=<admin/architect user> -password=<password>

http://localhost/download/wfa_ocsetup.sh b. Modify the permissions of wfa_ocsetup.sh

to be executable:chmod +x wfa_ocsetup.sh c. Run wfa_ocsetup.sh, providing a valid path

to a Java Runtime Environment

(1.6 and above).Example: # ./wfa_ocsetup.sh

/usr/bin/java d. Supply the username and password when prompted to override the

default credentials. e.

Verify setup finished successfully."

}

Data source

Name Type Description

Name String Name of the data source

Schema String Storage/cm_storage

Type String String representation of the data source type

that the data source is using

typeUuid String UUId of the data source type

Ip String Data source ip

Port Int Data source port

Interval Int Acquisition Interval (minutes)

links (only for XML) Array of atom links Links specifying relations and actions that are

possible for this resource.

The combination of the name and the schema is the data source ID.

The following is a sample XML data source.

http://localhost/download/wfa_ocsetup.exe
http://localhost/download/wfa_ocsetup.sh

78 | OnCommand Workflow Automation 5.1 Rest API Primer

Note: “self” and “acquire” have the same URL. “self” uses GET and “acquire” uses POST.

The following is a sample JSON data source:

Acquisition job

Name Type Description

Id Int The job id

Data Source Data Source Object The data source against which the

acquisition job is performed.

plannedExecution Date Job planned execution time

startTime Date Job start time

Duration Int Job duration in seconds

scheduleType String Immediate/Recurring

Status Enum Failed/Canceled/…

errorMessage String Error message if exists

Note: “startTime”,” duration”,” plannedExecution”,” scheduleType”,”status”, and “message” will be

warped by “jobStatus” element.

The following shows a sample XML of acquisition job.

<acquisitionJob xmlns:atom="http://www.w3.org/2005/Atom" jobId="248">

<jobStatus>

<dataSource name="DFM 234" schema=”storage”>

<type>OnCommand Unified Manager (DFM) - 4.0 , 5.0.X,5.1.X 7 Mode

(SYBASE)</type>

<typeUuid>6dee7cb0-c411-4aa1-81b1-70ac32d2af8a</typeUuid>

<ip>10.68.66.234</ip>

<port>2638</port>

<interval>30</interval>

<ns2:link href="http://localhost/rest/data_sources" rel="list"/>

<ns2:link href="http://localhost/rest/data_sources/DFM%20234/storage" rel="

self"/>

<ns2:link href="http://localhost/rest/data_sources/DFM%20234/storage/jobs"

rel="acquire"/>

<ns2:link href="http://localhost/rest/data_source_type/6dee7cb0-c411-

4aa1-81b1-70ac32d2af8a" rel="data-source-type"/>

</dataSource>

{

"name": " DFM 234",

"type": " OnCommand Unified Manager (DFM) - 4.0 , 5.0.X,5.1.X 7 Mode

(SYBASE)",

"ip": "10.68.66.234",

"port": 2638,

"schema": " storage",

"interval": 30

}

http://www.w3.org/2005/Atom
http://localhost/rest/data_sources
http://localhost/rest/data_sources/DFM%20234/storage
http://localhost/rest/data_sources/DFM%20234/storage/jobs
http://localhost/rest/data_source_type/6dee7cb0-c411-

<plannedExecution>Jan 28, 2016 12:09:35 PM</plannedExecution>

<scheduleType>Immediate</scheduleType>

<status>SCHEDULED</status>

</jobStatus>

<dataSource name="wfa-ocum-4" schema="cm_storage">

<type>OnCommand Unified Manager - 6.3 (MYSQL)</type>

<ip>wfa-ocum-4</ip>

<port>3306</port>

<interval>30</interval>

<atom:link rel="acquire"

href="http://localhost/rest/data_sources/wfa-ocum-4/cm_storage/jobs"/>

<atom:link rel="acquire-data-source-by-name"

href="http://localhost/rest/data_sources/wfa-ocum-4/jobs"/>

<atom:link rel="list" href="http://localhost/rest/data_sources"/>

<atom:link rel="edit-data-source" href="http://localhost/rest/data_sources/wfa-ocum-

4"/>

<atom:link rel="remove-data-source" href="http://localhost/rest/data_sources/wfa-ocum-

4"/>

<atom:link rel="last_acquisition_jobs_by_type"

href="http://localhost/rest/data_sources/type/ddc7d0f2-2474-44f0-

b89bf26902b4872a/jobs"/>

<atom:link rel="self" href="http://localhost/rest/data_sources/wfaocum-4/cm_storage"/>

<atom:link rel="data-source-type"

href="http://localhost/rest/data_source_types/ddc7d0f2-2474-44f0- b89bf26902b4872a"/>

 </dataSource>

<atom:link rel="acquisition-job-by-name" href="http://localhost/rest/data_sources/wfa-

ocum-4/jobs/248"/>

<atom:link rel="self" href="http://localhost/rest/data_sources/wfaocum-

4/cm_storage/jobs/248"/>

</acquisitionJob>

The following shows a sample JSON of acquisition job:

Links, relations, and actions (only for XML)

The following table explains links, relations, and actions corresponding to data sources and data source

types.

Relation Description HTTP

Request

Request

Type

Response Type

{

"jobId": "248",

"jobStatus": {

"plannedExecution": "Jan 28, 2016 12:09:35 PM", "scheduleType":

"Immediate",

"status": "SCHEDULED"

},

"dataSource": {

"name": "wfa-ocum-4",

"type": "OnCommand Unified Manager - 6.3 (MYSQL)", "ip":

"wfa-ocum-4",

"port": 3306,

"schema": "cm_storage", "interval":

30

}

}

http://localhost/rest/data_sources/wfa-ocum-4/cm_storage/jobs
http://localhost/rest/data_sources/wfa-ocum-4/cm_storage/jobs
http://localhost/rest/data_sources/wfa-ocum-4/jobs
http://localhost/rest/data_sources/wfa-ocum-4/jobs
http://localhost/rest/data_sources
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/wfa-ocum-4
http://localhost/rest/data_sources/type/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/type/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/wfaocum-4/cm_storage
http://localhost/rest/data_sources/wfaocum-4/cm_storage
http://localhost/rest/data_source_types/ddc7d0f2-2474-44f0-
http://localhost/rest/data_source_types/ddc7d0f2-2474-44f0-
http://localhost/rest/data_sources/wfa-ocum-4/jobs/248
http://localhost/rest/data_sources/wfa-ocum-4/jobs/248
http://localhost/rest/data_sources/wfaocum-

80 | OnCommand Workflow Automation 5.1 Rest API Primer

List Lists all the data sources

(/rest/data_sources) or data source

types (/rest/data_source_types)

GET NA Data

source[]

OR

Data source

Self Returns this specific resource only. GET NA Data

source[]

OR

Data source

Acquire Performs an immediate acquisition

from the specified data source. On

success, returns the acquisition job

details that was started. The body of

the request is ignored by the server.

URL request:

Using data source name and schema:

(/data_sources/{name}/{schema}/job

s) or

Using only data source name:

(/data_sources/{name}/jobs)

POST None Acquisition

job

data-

sources

Lists all data sources for a given data

source type. Relates data sources to

data source types.

GET NA Data

source[]

data-

source-

type

Lists the data source type of a given

data source. Relates data source type

to the data source.

GET NA Data source type

The following table shows the additional links returned in the ‘AcquisitionJob’ by the server to enable

the client to get the status of the job.r

Links, relations, and actions (only for XML)

Relation Description HTTP

Request

Request

Type

Response Type

Self Get the latest status of the acquisition job. GET NA Acquisition job

Note: The status of the acquisition job can be obtained using either of the following URL requests:

• Using data source name and schema:

/data_sources/{name}/{schema}/jobs/{job_id}

• using only data source name: /data_sources/{name}/jobs/{job_id}

HTTP error codes

Status Code Response

Valid codes

Success Codes:

200 OK

Error Codes

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method Not Allowed

415 Unsupported Media

Type

500 Server error

Refer to Appendix B on HTTP status codes and detailed error

messages for a detailed description of these error codes and when they

will be returned.

82 | OnCommand Workflow Automation 5.1 Rest API Primer

Schedules and recurring schedules

The Schedule API allows the client to perform the following tasks:

• Get information about existing schedules on the server

• Get information about existing schedule instances on the server

• Create, modify, and delete a schedule

• Suspend, resume, and delete a given schedule instance

Security

URIs are visible to admins, architects, approvers, and operators.

An HTTP ‘403 Forbidden’ error code returns for guest users.

Any unauthorized access (that is, incorrect or missing credentials) is challenged with a ‘401

Unauthorized’ error code by the WFA server.

Query parameters to filter collection of schedule instances

Parameter Value Description

schedule_id Schedule ID Filter the schedule instances by the given schedule ID.

Data structures

Schedules
This section provides a description of all the major data structures exposed through the credentials API.

Note: To obtain the corresponding XML schema definition and sample XML documents

representing these data structures, see the Reference Manual that is available with the product.

The following table describes the information encapsulated within this object:

Name Type Mandatory Description

Id String False Schedule ID

Name String True Name of the recurring schedule

description String False Description of the schedule.

minutes String False Minutes in the range of 0 through 59.

hours String False Hours in the range of 0 through 23

daysOfMonth String False Days of a month in the range of 1 through

31

The root URIs for these resources are /rest/schedules and
/rest/schedules/instances.

All resources under the

/rest/schedules and

/rest/schedules/instances root

daysOfWeek String False Days of a week in the range of 1 through

7

The following is a sample XML containing the schedule object:

The following is a sample JSON containing the schedule object:

Links, relations, and actions (only for XML)

The following table describes links, relations, and actions corresponding to schedules:

Relation Description HTTP

request

Requ

est

Response

type

List Lists all the schedules

/rest/schedules

GET NA Schedules[

]

Add Add a schedule

/rest/schedules

POST NA Schedules[]

Edit Edit a schedule

/rest/schedules/<id>

PUT NA Schedules[]

Remove Delete a schedule

/rest/schedules/<id>

DELETE NA No content

Self The given schedule

/rest/schedules/<id>

GET NA Schedules[

]

Recurring schedules

The following table describes links, relations, and actions corresponding to schedules:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<schedule xmlns:atom="http://www.w3.org/2005/Atom" id="376">

<name>sch0001</name>

<description>This is a schedule</description>

<minutes>1</minutes>

<hours>2</hours>

<daysOfMonth>2</daysOfMonth>

<daysOfWeek>?</daysOfWeek>

<atom:link rel="list" href="http://localhost:90/rest/schedules"/>

<atom:link rel="add" href="http://localhost:90/rest/schedules"/>

<atom:link rel="edit" href="http://localhost:90/rest/schedules/376"/>

<atom:link rel="remove" href="http://localhost:90/rest/schedules/376"/>

<atom:link rel="self" href="http://localhost:90/rest/schedules/376"/>

</schedule>

{

"id": 376,

"name": "sch0001",

"description": "This is a schedule",

"minutes": "1",

"hours": "2",

"daysOfMonth": "2",

"daysOfWeek": "?"

}

http://www.w3.org/2005/Atom

84 | OnCommand Workflow Automation 5.1 Rest API Primer

Name Type Mandatory Description

scheduleInstance String True Instance ID

scheduleName String True Name of the

recurring

schedule

scheduleId String False Schedule ID

workflowName String False Workflow name

workflowUuid String False Workflow UUID

userInputValues Array False User-input

values in the

given schedule

instance

status String False Status of the

workflow:

ACTIVE

SUSPENDED

The following is a sample XML schedule instance:

The following is a sample JSON schedule instance:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<scheduleInstance xmlns:atom="http://www.w3.org/2005/Atom" id="3">

<scheduleName>sch-hourly</scheduleName>

<scheduleId>2</scheduleId>

<workflowName>Workflow to Print a Footballer Name - delete it1 -

copy</workflowName>

<workflowUuid>9f2b07fb-a0c1-4075-b660-5f6ab152630b</workflowUuid>

<userInputValues>

<userInputEntry key="$Country" value="Sweden"/>

<userInputEntry key="$const" value="Adaptive Qos Service Manager"/>

</userInputValues>

<status>ACTIVE</status>

<atom:link rel="resume"

href="http://localhost:90/rest/schedules/instances/3/resume"/>

<atom:link rel="self"

href="http://localhost:90/rest/schedules/instances/3"/>

<atom:link rel="remove"

href="http://localhost:90/rest/schedules/instances/3"/>

<atom:link rel="list"

href="http://localhost:90/rest/schedules/instances"/>

<atom:link rel="suspend"

href="http://localhost:90/rest/schedules/instances/3/suspend"/>

</scheduleInstance>

http://www.w3.org/2005/Atom

Links, relations, and actions (only for XML)

The following table describes links, relations, and actions corresponding to recurring schedules:

Relation Description HTTP

request

Requ

est

Response type

List Lists all the schedule instances GET NA ScheduleInstance []

Self The schedule instance

/rest/schedules/instances/<id>

GET NA ScheduleInstance[]

{

"id": 3,

"scheduleName": "sch-hourly",

"scheduleId": 2,

"workflowName": "Workflow to Print a Footballer Name - delete it1 - copy",

"workflowUuid": "9f2b07fb-a0c1-4075-b660-5f6ab152630b",

"userInputValues": [

{

"key": "$Country",

"value": "Sweden"

},

{

"key": "$const",

"value": "Adaptive Qos Service Manager"

}

],

"status": "ACTIVE"

}

86 | OnCommand Workflow Automation 5.1 Rest API Primer

Suspend Suspend a given schedule instance

/rest/schedules/instances/<id>/suspend

POST NA No Content

Resume Resume a given schedule instance

/rest/schedules/instances/<id>/resume

POST NA No Content

Delete Delete a given schedule instance

/rest/schedules/instances/<id>

DELETE NA No Content

Appendix A – Return Parameters – Feature Description

This feature allows designating a set of parameters, such as Variable attributes, expressions, user input

values in a workflow, and to retrieve the values for the defined parameters on request.

The designation is done in the Return Parameters tab in workflow preferences:

Start by adding a row and determine which value you wish to be returned. It receives a label

automatically, identical to the parameter value column, which appears in light gray. You might change

it to match any label you like and even add a short description.

Note: When executing the workflow, the values are populated as soon as the planning phase is

completed and execution commences. It is crucial to test the workflow execution status and confirm

its completion before addressing the values of the return parameters.

These values are set per execution. If, after several executions, another parameter is added, that

parameter value would be available from that point onwards only, and not in any execution prior to the

addition of new parameter.

88 | OnCommand Workflow Automation 5.1 Rest API Primer

Appendix B – Detailed Error Messages and Status
Codes

Error Description Remarks

200 OK This is returned by WFA service if the requested

verb on the requested resource was successfully

processed by WFA.

The response contains the

representation of the requested

resource in.

201 CREATED This is returned by WFA if a new child resource

was created. This is typically returned in

response to a POST, which is the only verb that

represents a non-idempotent operation in HTTP.

This is returned only for POST operations that

actually create a child resource and return its

representation.

The response contains the

resource representation of the

created resource.

204 NO

CONTENT

This will be returned by WFA for operations that

were successful but a matching resource was not

found for the specific URI and query parameter

combination.

401

Unauthorized

This is returned if the client is not authenticated

OR if the client does not have the privilege to

perform the requested operation on the requested

resource (job or workflow).

400

Bad Request

This is returned if the input specified by the

client is invalid. Ex. specifying a non-existing

workflow UUID OR specifying a non-existing

row in a plan.

500

Server error

This is returned if an internal server error caused

the server to abort the requested operation on the

resource.

The internal error could include

but is not limited to server side

problems, such as network errors,

DB connectivity issues, lack of

resources to complete the

requested operation, and so on.

400 GET

/rest/workflows?categories=e

xamples

Category name

<name> does not exist.

The provided

category name

does not exist.

Category name: An

example does not

exist.

400 GET

/rest/workflows?categories=e

xamples

Current user is not

authorized for any of

the given categories.

The user is an

operator and is not

authorized for any

of the categories

given as

parameter.

Current user is not

authorized for any of

the given categories.

404 All operations on resources that

match the following url:

/rest/workflows/{workflow_u

uid}/*

No workflow found for

uuid: <uuid>

The provided

workflow uuid

does not exist.

No workflow found for

id: some_uuid

403 POST

/rest/workflows/{workflow_u

uid}/jobs

Current user is not

allowed to execute

workflow.

The user is an

operator and not

assigned to the

workflow

category.

Current user David is

not allowed to execute

workflow 6.

403 POST

/rest/workflows/{workflow_u

uid}/jobs

Current user is not

allowed to execute

workflow since it is

not ready for

production yet.

The user is an

operator and this

workflow is not

“ready for

production”.

Current user David is

not allowed to execute

workflow 6 as it is not

ready for production

yet.

400 POST

/rest/workflows/{workflow_u

uid}/jobs

Got incorrect date and

time format input.

The date format is

not valid.

Got incorrect date and

time format '234'.

Correct format

'M/d/yy h:mm a', for

example: 2/14/12 3:28

PM.

400 POST

/rest/workflows/{workflow_u

uid}/jobs

Cannot schedule a

workflow in the past.

The date for the

workflow is in the

past.

Cannot schedule a

workflow in the past.

STATUS

CODE

Resource URI and method Error Message Description Example

 Workflow Collection

90 | OnCommand Workflow Automation 5.1 Rest API Primer

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

Invalid user-input and

value, should be:

name=value

The user input

value was not

provided in the

right format.

Invalid user-input and

value volumeName,

should be:

name=value

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

The values for

<user_input_key>

have to fit <query>

When a user input

is defined as a

locked query and

the value does not

match the query.

The values for

array_ip have to fit

select array_ip from

wfa.array

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

The values for

<user_input_key>

have to be within

<enum list>

When a user input

is defined as a

locked Enum and

the value is not

one of its values.

The values for size

have to be within 30,

40, and 50.

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

The values for

<user_input_key>

have to be between

<range>

When a user input

is defined as a

Number and the

value is not in the

defined range.

The values for age

should be between 10

and 50.

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

The values for

<user_input_key>

must match the regular

expression:

<expression>

When a user input

is defined as a

String and the

value does not

match the regular

expression.

The values for ip must

match the regular

expression: [^]

400 POST

/rest/workflows/{workflow_u

uid}/jobs

POST

/rest/workflows/{workflow_u

uid}/preview

User input

<user_input_key> is

not defined in

workflow <workflow

name>

When a provided

user input is not

defined for the

workflow.

User input name is not

defined in workflow

Create Vfiler.

404 All operations on resources

with URI

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/*

Workflow execution Id

<job_id> was not

found.

The provided job

Id was not found.

Workflow execution

Id 12 was not found.

403 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/resume

current user

<user_name> is not

allowed to resume

workflow <job_id>

The user is an

operator and not

assigned to the

workflow

category.

Current user David is

not allowed to resume

workflow 6.

400 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/resume

Could not resume

workflow execution

with id <job_id>.

Resume is only

allowed from statuses:

PAUSED,

CANCELED,

FAILED, and

SCHEDULED.

Resume is only

possible for jobs

that are in statuses:

PAUSED,

CANCELED,

FAILED, and

SCHEDULED.

Could not resume

workflow execution

with id 213. Resume is

only allowed from

statuses: PAUSED,

CANCELED,

FAILED, and

SCHEDULED.

400 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/resume

Resume of workflow

execution with id is

not allowed. Workflow

execution is expired -

more than the days

have passed since it

stopped running.

This job cannot be

resumed since its

reservation has

already expired

and the results are

not predictable.

Resume of workflow

execution with id 105

is not allowed.

Workflow execution

has expired - more

than 2 days have

passed since it stopped

running.

403 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/resume

Users with role

<role_name> are not

allowed to resume

workflow executions.

When an operator

tries to resume a

job which is in

status paused and

the configuration

forbids it.

Users with operator

role are not allowed to

resume workflow

executions.

400 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/resume

Workflow execution

with id cannot be

resumed because it was

canceled before it

completed its planning.

If the workflow

was canceled

before the

planning was done

then the workflow

cannot be

resumed.

Workflow execution

with id 213 cannot be

resumed because it

was canceled before it

completed its

planning.

92 | OnCommand Workflow Automation 5.1 Rest API Primer

403 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/cancel

current user

<user_name> is not

allowed to reject

workflow.

The user is an

operator and not

assigned to the

workflow category.

Current user David is

not allowed to reject

workflow 6.

403 POST

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/cancel

Users with role

<role_name> are not

allowed to reject

workflow executions.

When an operator

tries to reject a job

which is in status

paused and the

configuration

forbids it.

Users with operator

role are not allowed to

reject workflow

executions.

400 GET

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/plan/out

The job status data can

be retrieved only in the

following statuses:

COMPLETED,

FAILED,

PARTIALLY_SUCCE

SSFUL, and

CANCELED

Return parameters

can be viewed only

after the job

finished running

that is in:

COMPLETED,

FAILED,

PARTIALLY_SU

CCESSFUL, and

CANCELED.

The job status is

RUNNING, data can

be retrieved only in the

following statuses:

COMPLETED,

FAILED,

PARTIALLY_SUCC

ESSFUL, and

CANCELED.

400 GET

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/plan/out

Parameter

<parameter_name>

was not yet calculated,

check the execution

result.

One of the

parameters was not

yet calculated

(should not

happen).

Parameter

volumeName was not

yet calculated, check

the execution result.

400 GET

/rest/workflows/{workflow_u

uid}/jobs/{job_id}/plan/out?p

aramterName=<parameter_na

me>

Parameter not found.

It's not defined as a

return parameter.

The given return

parameter was not

defined for this

workflow.

Parameter

volumeName not

found. It's not defined

as a return parameter.

400 GET

/rest/workflows/{workflow_u

uid}/jobs/{job_id}?waitInterv

al=-1

Cannot wait on job

with status: <status>

The job is currently

not in a status that

allows waiting for

it to complete.

Cannot wait on job

with status:

COMPLETED.

400 GET Cannot wait for The job is Executing
 /rest/workflows/{workflow_u executions that are not scheduled to run in ‘waitForCompletion’
 uid}/jobs/{job_id}?waitInterv

al=-1

scheduled to run in the

next 24 hours.

the near future (24

hours).
with a jobId that is

scheduled to run in a

 week from today will

 return the following

 error: ‘Cannot wait for

 executions that are not

scheduled to run in the
 next 24 hours’.

User Collection

403 /rest/users Current user is not The current user is User ‘operator’ is not

 allowed to retrieve all not of role allowed to retrieve all

 users. ‘Admin’ and users.

 therefore not

 allowed to retrieve

 all users.

400 /rest/users/{user_name}/passw

ord?oldPassword={oldPasswo

rd}&newPassword={newPass

word}

Unable to change

password because old

password is empty.

Old password

given as parameter

is either null or an

empty string.

Unable to change

password because old

password is empty.

400 /rest/users/{user_name}/passw

ord?oldPassword={oldPasswo

rd}&newPassword={newPass

word}

Unable to change

password because new

password is empty.

New password

given as parameter

is either null or an

empty string.

Unable to change

password because new

password is empty.

400 /rest/users/{user_name}/passw Unable to change Old password Unable to change
 ord?oldPassword={oldPasswo password because old given as parameter password because old
 rd}&newPassword={newPass password does not does not match the password does not
 word} match existing password in the match existing

 password. database. password.

403 /rest/users/{user_name}/passw LDAP users are not The current user LDAP users are not

 ord?oldPassword={oldPasswo allowed to change their that is trying to allowed to change

 rd}&newPassword={newPass passwords. change his their passwords.
 word} password is an

 LDAP user.

Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic,

electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval

system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY

DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to

NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide,

limited irrevocable license to use the Data only in connection with and in support of the U.S. Government

contract under which the Data was delivered. Except as provided herein, the Data may not be used,

disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp,

Inc. United States Government license rights for the Department of Defence are limited to those rights

identified in DFARS clause 252.227-7015(b).

Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of

NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http://www.netapp.com/us/legal/netapptmlist.aspx

http://www.netapp.com/us/legal/netapptmlist.aspx

96 | OnCommand Workflow Automation 5.1 Rest API Primer

How to send comments about documentation and
receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can

receive automatic notification when production-level (GA/FCS) documentation is initially released

or important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email to

doccomments@netapp.com.

To help us direct your comments to the correct division, include in the subject line the product name, version,

and operating system.

If you want to be notified automatically when production-level documentation is released or important

changes are made to existing production-level documents, follow Twitter account @NetAppDoc.

You can also contact us in the following ways:

 NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.

 Telephone: +1 (408) 822-6000

 Fax: +1 (408) 822-4501

 Support telephone: +1 (888) 463-8277

mailto:doccomments@netapp.com

