OnCommand® Workflow Automation 5.1

Workflow Developer's Guide

November 2019 | 215-14509_2019-11_en-us
doccomments@netapp.com

i NetApp-

Table of Contents | 3

Contents

Overview of OnCommand Workflow Automationc.ccccvevneninnnnns 6
Understanding Workflow Automation designerccccccevvevvevverieennnn, 7
Working with the building blocks in OnCommand Workflow Automation 7
What data SOUICES A€cviveiirireeeireeiiriei sttt 7

What dictionary eNtrieS @re ..o s 8

HOW COMMANGS WOTK ...c.oiviiiiiiciiiciiiciisese e 8

LT T U {1 (T3 U= S 10

What FINAEIS @recooviiiiciice e 10

What fUNCLIONS Arveveieiceeee e 10

What SCNEMES A€eiiciiiceieee e 11

What remote SYStEM tYPES Arecerveeirieerieirieeniee et 11

HOW YOU USE tEMPIALES ..o s 12

HOW YOU USE CALEJOTIES ..ouveveeiriiinieteieteiet ettt 12

How entity Versioning WOrKScccooeeiriiine i 12

What a playground database iSccovveiiiriiiiie i 14
Managing WOrKFIOWScccvoiiiiiiic e 16
Customizing predefined WOrkfFIOWSccooiiiiiiiiniiiiee 16
Customizing the Create a Volume and a CIFS Share workflow 17
Creating WOTKFIOWScoiiiiriiiice e 18
Tasks involved in creating WOrkflows ..., 19

How you define WOrkfIoWSccocooiiiiiiiiie e 20

How user inputs are defined ... 20

How you map command Parametersocooveeeeneenreeneeseesenese s 23

How you defing CONSEANTSccvouiiiiieieieeee e 25

HOW repeat FOW WOTKS ..o 26

How resource Selection WOTKS ..o 27

HOW reServation WOTKScceiviiiiiinieiene e 28

What incremental Naming iSooeieieiriniiiessse e 29

What conditional eXeCULION ISccovvveriiiincirei e 30

HOW return parameters WOIKcooeveieienieieieeeesese e 31

What approval POINES Arecocereirieiieeieese s 32

How you execute custom REST end pointscccocevenineneneneieneeeene 33

How continue on failure WOrKS ... 33
Sample workflow requirements checklist ... 34
Creating a WOrKFIOWcoooiiiiiiiii e 37
Creating WFA WOTrKFIOW PACKScooiiiiiiiiiie e e 42
Adding entities to WFA Workflow packs ... 42
Deleting OnCommand Workflow Automation packsccccceeervereieiicnnns 43
Exporting OnCommand Workflow Automation contentccccecvreinnen. 44
Importing OnCommand Workflow Automation contentcccccoveenee 45

Importing WFA WOrkflow packs ... 45

4 | Workflow Developer's Guide

Considerations while importing OnCommand Workflow Automation

CONTENT o 46

Pack identification during UPGradecoceoveeriiennensenseee e 46
Integrating WFA workflow packs with the SCM repositorycccceeenienieninenn 47
Checking in a new workflow pack to0 SCMcccccvviiiiiinienicieeieens 47
Checking in a new version of a WFA workflow packcccoconinennnnn 47
Updating WFA workflow packs from the SCM Servercccccocevvevveivnvannns 48
Checking in existing WFA workflow packs to the SCM server 48
Removing WFA workflow packs from entitiescccoevveineinnincnnnns 49
Rolling back a WFA workflow pack to its previous version in SCM 50
Creating building blocks for Workflows ... 51
Creating a data SOUICE TYPEoveeeieieieeee ettt e 51
Creating & COMMENTcoveiriiiiiirieer ettt b es 52
Testing the reservation script for commandscccovoviininininieneneneene 55
Creating @ fINGEY ..o 55
Creating @ fITEroeecc e 56
Creating & dictioNAry ENEIYcooiiiiieirieie e 57
Creating @ fUNCHION ..ot 58
Creating a teMPIALEccuiiei s 59
Creating @ CAChE QUETYo.e ot e 59
Creating recurring SChEAUIEScov i 60
Defining fIILEr FUIES ..o s 61
Adding apProval POINESc.ccveieeiieiee e 62
Coding guidelines FOr WA ..o 64
GUidelings fOr Variablesccccvviriiierereeee e e 64
Guidelines fOr iNAeNTAtIONcccoiiriiiriirer e 67
Guidelings fOr COMMENTScooiiiiiiieie et 68
GUIdElNES TOF 10GQING -.e.veiviieieiiiiie e 69
Guidelines for error handlingcccoeeiiinnin e 71
General PowerShell and Perl conventions for WEA ... 73
Perl modules bundled with WINAOWSccooceriiirniinniineneeneeseesieeae 73
Considerations for adding custom PowerShell and Perl modulescccccoevenene. 74
WFA cmdlets and fUNCLIONS ... 74
PowerShell and Perl WEA MOTUIESccvviiiiiiceeee e 74
Considerations while converting PowerShell commands to Perlcccccveveenene. 76
Guidelines for WFA building bIOCKSccooiiiiiiiiii e 78
Guidelines for SQL iN WAov i e 78
Guidelines for WEFA FUNCLIONSccooiiiireeieireee e 80
Guidelines for WFA dictionary entriesccoeoeveiereinenniencsense e 80
Guidelines for COMMANGScccoveiriireiiereee e 81
Guidelines for WOrKFIOWSccooiiiiiiiiic e 83
Guidelines for creating validation scripts for remote system types 87
Guidelines for creating data SOUICE tYPEScevvverivierrereeee e 88
RESEIVEA WOKS ...t 89

HOW YOU USE REST APIS ..o 90

Table of Contents | 5

References to learning material ... 91
Related documentation for OnCommand Workflow Automation 93
COPYIIGNT .t 94
LI 16 LT 0T TR 95

How to send comments about documentation and receive update
NOLITICALIONS ... 96

Overview of OnCommand Workflow Automation

OnCommand Workflow Automation (WFA) is a software solution that helps to automate storage
management tasks, such as provisioning, migration, decommissioning, data protection
configurations, and cloning storage. You can use WFA to build workflows to complete tasks that are
specified by your processes.

A workflow is a repetitive and procedural task that consists of sequential steps, including the
following types of tasks:

« Provisioning, migrating, or decommissioning storage for databases or file systems
» Setting up a new virtualization environment, including storage switches and datastores
» Setting up storage for an application as part of an end-to-end orchestration process

Storage architects can define workflows to follow best practices and meet organizational
requirements, such as the following:

» Using required naming conventions
» Setting unique options for storage objects
» Selecting resources

» Integrating internal configuration management database (CMDB) and ticketing applications

WFA features

» Workflow design portal to build workflows
The workflow design portal includes several building blocks, such as commands, templates,
finders, filters, and functions, that are used to create workflows. The designer enables you to
include advanced capabilities to workflows such as automated resource selection, row repetition
(looping), and approval points.
The workflow design portal also includes building blocks, such as dictionary entries, cache
queries, and data source types, for caching data from external systems.

« Execution portal to execute workflows, verify status of workflow execution, and access logs

» Administration/Settings option for tasks such as setting up WFA, connecting to data sources, and
configuring user credentials

» Web service interfaces to invoke workflows from external portals and data center orchestration
software

» Storage Automation Store to download WFA packs

WEFA license information

No license is required for using the OnCommand Workflow Automation server.

Understanding Workflow Automation designer

You create workflows in the Workflow Automation (WFA) designer using the building blocks such
as finders, filters, and commands. Understanding the building blocks and the workflow creation
process is important before you start creating your workflows.

Working with the building blocks in OnCommand Workflow
Automation

The Workflow Automation (WFA) workflows consist of several building blocks and WFA includes a
library of the predefined building blocks. You can use the building blocks that WFA provides to
create workflows that match the requirements of your organization.

WFA provides the structure for storage automation processes. WFA's flexibility is based on how the
workflows are constructed by using the workflow building blocks.

The WFA building blocks are as follows:
e Dictionary entries

e Commands

» Filters

* Finders

» Functions
» Templates

You should understand how the building blocks are used in WFA to help you in creating the
workflows.

Related concepts

What data sources are on page 7
What dictionary entries are on page 8
How commands work on page 8
What filters are on page 10

What finders are on page 10

What functions are on page 10

How you use templates on page 12

What data sources are

A data source is a method for establishing a connection to other systems, files and databases in order
to extract data. For example, a data source can be a connection to an Active 1Q Unified Manager
database of Active 1Q Unified Manager 9.4 data source type.

You can add a custom data source to OnCommand Workflow Automation (WFA) for data acquisition
after defining the required data source type by associating the caching scheme, the required port, and
the acquisition method with the data source type.

WFA caches information through various data sources. WFA collects resource information from the
data sources and formats it for the caching scheme. The cache tables, which are the tables inside the
caching schemes, are formatted to match the dictionary entry objects. When you use a finder in

8 | Workflow Developer's Guide

workflows, it returns a dictionary object and the data from the dictionary object is populated from the
cache tables. The process of acquiring data from the data sources is known as data source acquisition.
You can use either a script-based method or a driver-based method for data source acquisition. The
sources can be different from each other and data source acquisition might sample them at different
time intervals. WFA then merges that information in to the database and superimposes the reservation
data to maintain updated resource information in the database.

The WFA database includes several different caching schemes. A caching scheme is a set of tables
and each table includes information from a certain dictionary entry type; however, the tables might
include combined information from multiple sources of a specific data source type. WFA uses the
database information to understand the status of the resources, perform calculations, and execute
commands on the resources.

Related concepts

What dictionary entries are on page 8

Related tasks

Creating a dictionary entry on page 57
Creating a data source type on page 51

What dictionary entries are

Dictionary entries are one of the OnCommand Workflow Automation (WFA) building blocks. You
can use dictionary entries to represent object types and their relationships in your storage and
storage-related environments. You can then use filters in workflows to return the value of the natural
keys of the dictionary entries.

A dictionary entry is the definition of an object type that is supported by WFA. Each dictionary entry
represents an object type and its relationship in the supported storage and storage-related
environments. A dictionary object consists of a list of attributes, which might be type checked. A
dictionary object with complete values describes an object instance of a type. In addition, the
reference attributes describe the relationship of the object with the environment; for example, a
volume dictionary object has many attributes, such as name, size_mb, and volume_guarantee. In
addition, the volume dictionary object includes references to the aggregate and the array containing
the volume in the form of array_id and aggregate_id.

The cache table of an object is a database containing a few or all of the dictionary entry's attributes
that are marked for caching. For a dictionary entry to include a cache table, at least one of the
dictionary entry's attributes must be marked for caching. Dictionary entries include natural keys,
which are unique identifiers for the objects; for example, 7-Mode volumes are identified uniquely by
their name and the IP address of the array containing them. Qtrees are identified by the gtree name,
the volume name, and the array IP address. You must identify the dictionary attributes that are part of
the dictionary entry's natural keys when creating dictionary entries.

Related tasks

Creating a dictionary entry on page 57

How commands work

OnCommand Workflow Automation commands are the execution blocks for workflows. You can use
a command for each step in your workflow.

WFA commands are written using PowerShell and Perl scripts. PowerShell commands use the Data
ONTAP PowerShell toolkit and VMware PowerCLI, if the package is installed. Perl commands use
the Perl distribution and Perl modules installed on the WFA server. If you include multiple scripting
languages in a command, such as PowerShell and Perl, the appropriate script is chosen by WFA

Understanding Workflow Automation designer | 9

based on the operating system on which it is installed and the preferred order of language you have
specified in the WFA configuration menu.

The scripts for the WFA commands include several parameters. These parameters might be mapped
to dictionary entry attributes.

Note that each WFA command can include several Data ONTAP commands.

Some of the WFA commands are known as wait commands because they can wait for long-running
operations and poll periodically—for example, the Wait for multiple volume moves command. The
waiting interval at which the polling command is executed can be configured to check if the
operation has been completed.

A WFA command is initiated by WFA while the workflow is in its execution phase. WFA executes
the commands serially, in left-to-right and top-to-bottom order. The planning of the workflow
confirms the availability and validity of the parameters that are supplied to the command. The WFA
server supplies all the parameters required for the commands before the commands are executed.

Parameters to commands are finalized during workflow planning. The workflow then passes these
parameters to the commands during execution time. The commands cannot pass parameters back to
the workflow. However, if you want to exchange information that is obtained during execution time
between commands in a workflow, you can use the designated WFA PowerShell cmdlets or Perl
functions.

WFA PowerShell commands do not use the -ErrorAction stop flag for the PowerShell cmdlets;
therefore, workflow executions continue even when the cmdlets fail because of an error. If you want
the -ErrorAction stop flag to be included in a specific command, you can clone the command and
modify the PowerShell script to add the flag.

The following are the PowerShell cmdlets and Perl functions that are included in WFA to enable
exchange of information between commands:

PowerShell cmdlets Perl functions
Add-WfaWorkflowParameter addwfaWorkflowParameter
Get-WFaWorkflowParameter getWfaWorkflowParameter

Parameters added by the “add” cmdlets or functions to a command can be retrieved by a command
that is executed subsequently and uses the “get” cmdlets or functions. For example, in a PowerShell
WFA command, you can use the following in the code to add a parameter named volumeld: Add-
WfaWorkflowParameter -Name 'VolumeUUID" -Value 12345 -
AddAsReturnParameter $true. Then, you can use the following in a subsequent command to
retrieve the value of volumeld: $volumeld = Get-WfaWorkflowParameter -Name
volumeld.

WFA commands can query the WFA database and obtain the required result. This enables you to
construct a command without using filters and finders. You can use the following functions to query
the database:

PowerShell cmdlet Perl function
Invoke-MySqglQuery invokeMySqglQuery
For example:

Invoke-MySqlQuery -Query "SELECT
cluster_name AS "Cluster Name®" FROM
cm_storage.cluster”

Related tasks
Creating a filter on page 56

10 | Workflow Developer's Guide

Creating a finder on page 55
Creating a command on page 52

What filters are
You can use WFA filters in your workflows to select the required resources.

A WEFA filter is an SQL-based query that works on the WFA database. Each filter returns a list of
elements of a specific dictionary type. The returned elements are based on the selection criteria
specified in the SQL query. You must be aware of SQL syntaxes to create or edit a filter.

Related concepts

What finders are on page 10

Related tasks
Creating a filter on page 56

What finders are

A finder is a combination of one or more filters that are used together to identify common results.
You can use a finder in your workflows to select the required resources for workflow execution.

Finders might apply a sorting order to differentiate the applicable results. Finders return the best
resource based on the selection criteria and sorting.

Finders return either one result or no result; therefore, they can be used to verify the existence of
certain storage elements. However, when a finder is used as part of a repeat row definition, the result
sets are used to form the list of members in the group. Filters that are used in finders return the
natural key of the dictionary type, at a minimum, but might return additional fields, whose value can
be referenced. A sorting order might be applied to any returned field of a filter's SQL query.

You can test the results of a finder. When testing a finder, you can view the common results of all the
WEFA filters, where the effective result of the finder is highlighted in the results. When using a finder
in a workflow, you can create a customized error message to convey meaningful information to the
storage operator.

Related concepts

What filters are on page 10

Related tasks

Creating a finder on page 55

What functions are

You can use a function in your workflows for a complex task that has to be completed during the
planning phase of the workflow.

You can write functions by using the MVFLEX Expression Language (MVEL). You can use
functions to put together commonly used logic as well as more complex logic in a named function
and reuse it as values for command parameters or filter parameters. You can write a function once
and use it across workflows. You can use functions to handle repetitive tasks and tasks that might be
complex, such as defining a complex naming convention.

Functions might use other functions during their execution.

Related tasks

Creating a function on page 58

Understanding Workflow Automation designer | 11

What schemes are

A scheme represents the data model for a system. A data model is a collection of dictionary entries.
You can define a scheme and then define a data source type. The data source defines how the data is
acquired and the scheme is populated. For example, a vc scheme acquires data about your virtual
environment, such as virtual machines, hosts, and datastores.

Schemes can also be populated directly with data through workflows that are customized to solve
specific problems.

Dictionary entries are associated with an existing scheme when the dictionary entries are created.
Dictionary entries are also associated with cache queries, and cache queries include SQL queries.

Schemes can acquire data using either script based data source type or SQL data source type. The
scripts are defined while creating the data source type and SQL queries are defined in the cache
queries.

The following schemes are included in WFA:

7-Mode (storage)

Scheme to acquire data through Active 1Q Unified Manager from Data ONTAP operating
in 7-Mode.

Clustered Data ONTAP (cm_storage)
Scheme to acquire data through Active 1Q Unified Manager from clustered Data ONTAP.

7-Mode Performance (performance)

Scheme to acquire performance data of Data ONTAP operating in 7-Mode through
Performance Advisor.

Clustered Data ONTAP Performance (cm_performance)

Scheme to acquire performance data of clustered Data ONTAP through Performance
Advisor.

VMware vCenter (vc)
Scheme to acquire data from \VMware vCenter.

Playground (playground)
Scheme that can you can directly populate with data.

What remote system types are

OnCommand Workflow Automation (WFA) communicates with remote system types. A remote
system type specifies the type of remote systems with which WFA can communicate. You can
configure remote system types in WFA. For example, Data ONTAP system can be configured as a
remote system type.

A remote system type has the following attributes:
* Name

» Description

* \ersion

* Protocol

e Port

* Timeout

You can have a Perl script for each remote system type to validate the credentials of the remote
system. You can store the credentials for the remote systems configured on WFA. You can add or edit

12 | Workflow Developer's Guide

a new custom remote system type. You can also clone an existing remote system type. You can delete
a remote system type only if no systems are associated with it.

Related references

Guidelines for creating validation scripts for remote system types on page 87

How you use templates
You can use WFA templates in your workflows as a reference or for adhering to usage policies.

A WFA template acts as a blueprint of an object definition. You can define a template by including
the properties of an object and the values for the object's properties. Then, you can use the template
for populating the properties of an object definition in your workflows.

When you use a template, you cannot edit the fields that include the values that are obtained from the
template. Therefore, you can use templates for setting up usage policies and creation of objects. If
you remove the association of a template with the workflow after you have applied the template, the
values populated from the template remain, but you can edit the fields.

Related tasks
Creating a template on page 59

How you use categories

You can categorize your workflows to better organize the workflows and to apply access control
capability on the workflows.

You can categorize workflows such that they appear in specific groups on the WFA portal. You can
also apply access control capability on workflow categories. For example, you can allow only certain
storage operators or approvers to view certain categories of workflows. Storage operators or
approvers can execute only the workflows within the category for which they have been granted
access rights.

Active Directory groups also can be used for access control to categories.

How entity versioning works

The OnCommand Workflow Automation (WFA) entities, such as commands and workflows, are
versioned. You can use the version numbers to easily manage changes to the WFA entities.

Each WFA entity includes a version number in the naj or . mi nor. r evi si on format—for example,
1.1.20. You can include up to three digits in each part of the version number.

Before modifying the version number of a WFA entity, you must be aware of the following rules:

» \ersion numbers cannot be changed from the current version to an earlier version.

» Each part of the version must be a number from 0 through 999.

* New WEFA entities are versioned as 1.0.0, by default.

» An entity's version number is retained when cloning or using Save As to save a copy of the entity.
» Multiple versions of an entity cannot exist in a WFA installation.

When you update the version of a WFA entity, the version of its immediate parent entity is updated
automatically. For example, updating the version of the Create Volume command updates the
Create an NFS Volume workflow, because the Create an NFS Volume workflow is an immediate
parent entity of the Create VVolume command. The automatic update to versions is applied as
follows:

Understanding Workflow Automation designer | 13

* Modifying the major version of an entity updates the minor version of its immediate parent

entities.

» Modifying the minor version of an entity updates the revision version of its immediate parent

entities.

» Modifying the revision version of an entity does not update any part of the version of its

immediate parent entities.

The following table lists the WFA entities and their immediate parent entities:

Entity Immediate parent entity
Cache query e Data source type
Template » Workflow
Function . Workflow
e Template
Note: If a function contains special or mixed
case characters, the version of its immediate
parent entities might not be updated.
Dictionary . Template
* Filter
e Cache query
* Command
« Data source types which are using script
method
Command » Workflow
Filter » Finder
» Workflow
Finder » Workflow
Data source type None
Workflow None

You can search for an entity in WFA either using the parts of the version number or the complete

version number.

If you delete a parent entity, the child entities are retained and their version is not updated for the

deletion.

How versioning works when importing entities

If you import entities from versions earlier than Workflow Automation 2.2, the entities are versioned
as 1.0.0, by default. If the imported entity is already present in the WFA server, the existing entity is

overwritten with the imported entity.

14 | Workflow Developer's Guide

The following are the potential changes to WFA entities during an import:

» Upgrade of entities
The entities are replaced with a later version.

» Rollback of entities
The entities are replaced with an earlier version.

Note: When you perform a rollback of an entity, the version of its immediate parent entities are
updated.

* Import of new entities
Note: You cannot selectively import entities from a .dar file.

If a later version of an entity is imported, the version of its immediate parent entities is updated.

If there are multiple child entities to the imported parent entity, only the highest degree of change
(major, minor, or revision) to the child entities is applied to the parent entity. The following examples
explain how this rule works:

» For an imported parent entity, if there is one child entity with a minor change and another child
entity with a revision change, the minor change is applied to the parent entity.

The revision part of the parent's version is incremented.

« For an imported parent entity, if there is one child entity with a major change and another child
entity with a minor change, the major change is applied to the parent entity.
The minor part of the parent's version is incremented.

Example of how the versions of imported child entities affect the parent's
version

Consider the following workflow in WFA: “Create Volume and export using NFS - Custom”
1.0.0.

The existing commands included in the workflow are as follows:

e “Create Export Policy - Custom” 1.0.0

» “Create Volume - Custom” 1.0.0

The commands included in the . dar file, which is to be imported, are as follows:
» “Create Export Policy - Custom” 1.1.0

+ “Create Volume - Custom” 2.0.0

When you import this . dar file, the minor version of the “Create Volume and export using
NFS - Custom” workflow is incremented to 1.1.0.

What a playground database is

The playground database is a MySQL database, which is included in the Workflow Automation
(WFA) server installation. You can add tables to the playground database to include information,
which can be used by filters and SQL queries for user inputs.

The playground database is a schema that cannot be accessed through the WFA web portal. You can
use a MySQL client, such as SQLyog, Toad for MySQL, and MySQL Workbench or a command-line
interface (CLI), to access the database.

You must use the following credentials to access the playground database:

Understanding Workflow Automation designer | 15

e User name: wfa
» Password: Wfal23

The credentials provide complete access to the playground database and read-only access to other
schemas defined in the WFA MySQL database. You can create the required tables in the playground
database.

You can add the tags or metadata that you are using for storage objects in your environment to a table
in the playground database. The tags or metadata can then be used along with the information in
other WFA cache tables by WFA filters and user input queries.

For example, you can use the playground database for the following use cases:

» Tagging aggregates with business unit (BU) name and allocating volumes to the BUs based on
these tags

e Tagging VvFiler units with BU names
» Adding geography or location details to storage objects
» Defining access of database admins to databases

For example, if you are using the name of the BU as a tag for the storage objects, such as aggregates
and vFiler units, you can create a table in the playground database that includes the name of the BU.
The BU name can then be used by filters and user input queries for your workflows.

The following is an example playground database table (playground.volume_bu):

array_ip volume_name BU
10.225.126.23 data_11 Marketing
10.225.126.28 arch_11 HR

The following is an example SQL query that you can use to filter volumes by BU:

SELECT
vol .name,
array.ip AS Tarray.ip”
FROM
storage.volume AS vol,
storage.array AS array,
playground.volume_bu AS vol_bu
WHERE
vol .array_id
AND array.ip = vol_bu.array_ip
AND vol.name = vol_bu.volume_name
AND vol_bu.bu = *"{$bu}"

array.id

Related information

SQLyog. www.webyog.com
MySQL Workbench: www.mysql.com/products/workbench
Toad for MySQL. www.quest.com/toad-for-mysql

https://www.webyog.com/
http://www.mysql.com/products/workbench/
http://www.quest.com/toad-for-mysql/

16

Managing workflows

You can customize predefined workflows or create new workflows as part of managing your
workflows. You must also understand the relevant concepts before you start managing your
workflows.

Related concepts

Tasks involved in creating workflows on page 19
What approval points are on page 32

How return parameters work on page 31

What conditional execution is on page 30

What incremental naming is on page 29

How reservation works on page 28

How resource selection works on page 27

How repeat row works on page 26

How you map command parameters on page 23
How user inputs are defined on page 20

How you define workflows on page 20

Related tasks

Customizing predefined workflows on page 16
Creating a workflow on page 37

Related references

Sample workflow requirements checklist on page 34

Customizing predefined workflows

You can customize a predefined Workflow Automation (WFA) workflow if there is no predefined
workflow that is suitable for your requirement.

Before you begin

You must have identified the required modifications for the predefined workflow.

About this task
Questions and support request for the following must be directed to the WFA community:

* Any content downloaded from the WFA community
» Custom WFA content that you have created

» WFA content that you have modified

Steps
1. Click Workflow Design > Workflows.

Managing workflows | 17

3
2. Select the predefined workflow that closely matches your requirement, and then click :-: on the
toolbar.

3. Inthe workflow designer, make the required changes in the appropriate tabs, such as editing the
description, adding or deleting a command, modifying the command details, and modifying the
user input.

4. Click Preview, enter the required user inputs to preview the workflow execution, and then click
Preview to view the planning details of the workflow.

5. Click OK to close the preview window.

6. Click Save.

After you finish

You can test the workflow that you modified in your test environment, and then mark the workflow as
ready for production.

Related concepts

How you define workflows on page 20
How user inputs are defined on page 20
How repeat row works on page 26

What approval points are on page 32
How resource selection works on page 27
How reservation works on page 28

What incremental naming is on page 29
What conditional execution is on page 30
How return parameters work on page 31

Related tasks

Creating workflow help content on page 41

Customizing the Create a Volume and a CIFS Share workflow
You can customize your workflows based on your requirements. For example, you can modify the
predefined Create a Volume and a CIFS Share workflow to include deduplication and compression.
About this task
The customization and illustrations in this task are examples; you can modify the WFA workflows
based on your requirements.
Steps
1. Click Workflow Design > Workflows.
3
2. Select the Create a Volume and a CIFS Share workflow, and then click i_: on the toolbar.

3. Click the Details tab and edit the description of the workflow in the Workflow name field.

4. Click the Workflow tab, expand the storage schema, and then drag and drop the Setup
deduplication and compression command in between the Create volume and Create CIFS
share commands.

18 | Workflow Developer's Guide

5. Place your mouse cursor below the Setup deduplication and compression command on the first

*

row and then click

6. Inthe Volume tab of the Parameters for 'Setup deduplication and compression® dialog box,
select the by using a previously defined Volume option, and then select the share_volume
option in the Define Volume field, which is the Volume object variable created by the Create
Volume command in the workflow.

7. Click the Other Parameters tab and perform the following steps:
a. Select true in the StartNow field.
b. Select Inline in the Compression field.

c. Enter "sun-sat@1" expression in the Schedule field, which schedules deduplication and
compression on all days of the week at 1 a.m.

8. Click OK.
9. Click Preview to ensure that the planning of the workflow is completed successfully, and then
click OK.
10. Click Save.

Creating workflows

If the predefined workflows do not match your requirements, you can create the required workflow.
Before you create your workflows, you should understand the capabilities available in the WFA
designer and create a workflow checklist.

Related concepts

What approval points are on page 32

How return parameters work on page 31

What conditional execution is on page 30

What incremental naming is on page 29

How reservation works on page 28

How resource selection works on page 27

How repeat row works on page 26

How you map command parameters on page 23
How user inputs are defined on page 20

How you define workflows on page 20

Tasks involved in creating workflows on page 19

Related tasks

Testing the reservation script for commands on page 55

Related references

Sample workflow requirements checklist on page 34

Managing workflows | 19

Tasks involved in creating workflows

Creating storage automation workflows in OnCommand Workflow Automation (WFA) includes
defining the steps to be performed by a workflow and creating the workflow using the WFA building

blocks, such as commands, finders,

The following flowchart illustrates

Define the goal of the

filters, and dictionary entries.

the workflow creation process:

Break down the goal in

workflow

to steps or tasks

Check if the
predefined
WFA commands
are suitable
for the steps

Check if you
can modify
the predefined

WFA commands

for the steps

Create the required

WFA command.
Clone and modify the You might need to
required predefined create other
WFA commands WFA building
blocks, as required.

Test the commands

Arrange the commands
in to a workflow using
the WFA Designer

Complete the WFA
command parameter
details, including the

user inputs and

Add command details
at the required rows for
each WFA command

resource selection

v

Save and test the
workflow in your test
environment

Assign a category and
mark the workflow as
ready for production

Related concepts

How you define workflows on page 20
How user inputs are defined on page 20
How you map command parameters on page 23

20 | Workflow Developer's Guide

Related tasks

Creating a workflow on page 37

Related references

Sample workflow requirements checklist on page 34

How you define workflows

You must break down the goal of a workflow into the steps that should be executed by the workflow.
You can then arrange the steps to complete your workflow.

A workflow is an algorithm that includes a series of steps that are required to complete an end-to-end
process. The scope of the process might vary, depending on the goal of the workflow. The goal of a
workflow might be defined to handle only storage operations or more complex processes such as
handling networking, virtualization, IT systems, and other applications as part of a single process.
OnCommand Workflow Automation (WFA) workflows are designed by storage architects and are
executed by storage operators.

Defining your workflow includes breaking down the goal of your workflow into a series of steps—
for example, creating an NFS volume includes the following steps:

1. Creating a volume object
2. Creating a new export policy and associating the policy with the volume

You can use a WFA command or a workflow for each step in your workflow. WFA includes
predefined commands and workflows, which are based on common storage use cases. If you do not
find a predefined command or workflow that can be used for a particular step, you can do one of the
following:

e Choose a predefined command or workflow that closely matches the step, and then clone and
modify the predefined command or workflow according to your requirements.

* Create a new command or workflow.

You can then arrange the commands or workflows in a new workflow to create the workflow that
accomplishes your goal.

At the beginning of the workflow execution, WFA plans the execution and verifies that the workflow
can be executed using the input to the workflow and the commands. When planning the workflow, all
resource selection and user input are resolved to create an execution plan. After planning is
completed, WFA executes the execution plan, which consists of a set of WFA commands with
applicable parameters.

Related concepts

Howv user inputs are defined on page 20
How you map command parameters on page 23

Related tasks

Creating a workflow on page 37

How user inputs are defined

The OnCommand Workflow Automation (WFA) user inputs are data input options that are available
during the execution of workflows. You must define the user input parameters for your workflows to
enhance the flexibility and usability of your workflows.

User inputs are shown as input fields, which can be filled out with relevant data when previewing or
executing workflows. You can create a user input field when specifying the command details in a

Managing workflows | 21

workflow by prefixing a label or variable with the dollar sign ($). For example, $VolumeName
creates a Volume Name user input field. WFA automatically populates the User Inputs tab in the
Workflow <workflow name> window with the user input labels that you have created. You can also
define the type of the user input and customize the input fields by modifying the user input attributes,
such as type, display name, default values, and validation values.

User input type options
String
You can use a regular expression for valid values—for example, a*.
Strings, such as 0d and OF, are evaluated as numbers similar to 0d evaluated as 0 of type
double.
Number
You can define a numerical range that can be selected—for example, 1 through15.

Enum
You can create enumeration values that can be selected when filling the user input field

using the enum type. You can optionally lock the enum values that you have created to
ensure that only the values you have created are selected for the user input.

Query
You can select the query type when you want the user input to be selected from the values
available in the WFA cache. For example, you can use the following query to
automatically populate the user input fields with the IP address and name values from the
WFA cache: SELECT ip, name FROM storage.array. You can optionally lock the
values retrieved by a query so that only the results retried by the query are selected.

Query (multi-select)

The query (multi-select) type, which is similar to the query type, enables the selection of
multiple values during the execution of the workflow. For example, users can select
multiple volumes or a volume together with its shares and exports. You can allow the
users to select multiple rows, or restrict the selection to a single row. Selecting a row
selects the values from all the columns of the selected row.

You can use the following functions when using the query (multi-select) type of user
input:

e QetSize

e getValueAt

e getValueAt2D

e getValueFrom2DByRowKey

Boolean

You can use the Boolean type to display a check box in the user input dialog box. You
must use the Boolean type for user inputs that have “true” and “false” as the possible
values.

Table

You can use the table type of user input to specify the column headers of a table that can
be used to enter multiple values during the execution of the workflow. For example, a
table that can be used to specify a list of node names and port names. You can also specify
one of the following user input types for the column headers to validate the values that are
entered during run time:

e String

22 | Workflow Developer's Guide

e Number
* Enum
* Boolean
e Query

String is the default user input type for the column headers. You must double-click the
Type column to specify a different user input type.

You can open the Create SnapMirror policy and rules workflow in the Designer to see how
the user input types are used in the “SnapMirrorPolicyRule” user input.

You can use the following functions when using the table type of user input:
e QetSize

e getValueAt

e getValueAt2D

e getValueFrom2DByRowKey

You can open the Create and configure a Storage Virtual Machine with Infinite
Volume workflow in the Designer to see how the table type is used.

Password

You can use the password type for user inputs that are meant for entering passwords. The
password entered by the user is encrypted and displayed as a sequence of asterisk
characters across the WFA application and in the log files. You can use the following
functions to decrypt the password, which can then be used by the command:

» For Perl commands: WFAULil::getWfalnputPassword ($password)

e For PowerShell commands: Get-WfalnputPassword -EncryptedPassword $password
Here, $password is the encrypted password that is passed by WFA to the command.

Dictionary

You can add the table data for the selected dictionary entry. The dictionary entry attribute
selects the attribute that is to be returned. You can select a single value or multiple values
while executing the workflow. For example, you can select a single volume or multiple
volumes. By default, single values are selected. You can also select Rules for filtering. A
rule consists of a dictionary entry attribute, an operator, and a value. The attribute can also
include attributes of its references.

For example, you can specify a rule for aggregates by listing all aggregates with name
starting with the string “aggr” and have an available size greater than 5 GB. The first rule
in the group is the attribute name, with the operator starts-with, and the value aggr.
The second rule for the same group is the attribute avai lable_size_mb, with the
operator > and the value 5000.

The following table lists the options that you can apply to the user input types:

Managing workflows | 23

Option

Description

Validating

You can validate the user inputs type so that
only valid values are entered by users:

» The string and number types of user input
can be validated with the values entered
during run time of the workflow.

» The string type can also be validated with a
regular expression.

* The number type is a numeric floating-point
field and can be validated using a specified
numeric range.

Locking values

You can lock the values of the query and enum
types to prevent the user from overwriting the
drop-down values and to enable the selection of
only the displayed values.

Marking as mandatory

You can mark user inputs as mandatory so that
the users must enter certain user inputs in order
to continue with the execution of the workflow.

Grouping

You can group related user inputs and provide a
name for the user input group. The groups can
be expanded and collapsed in the user input
dialog box. You can select a group that should
be expanded by default.

Applying conditions

With the conditional user input capability, you
can set the value of a user input based on the
value that is entered for another user input.

For example, in a workflow that configures the
NAS protocol, you can specify the required user
input for protocol as NFS to enable the “Read/
Write host lists™ user input.

Related concepts

How you map command parameters on page 23
How you define workflows on page 20

How you map command parameters

The parameters in Workflow Automation (WFA) commands are mapped to specific attributes and
dictionary entry references based on certain rules. You must be aware of the rules to map command
parameters when you create or edit a WFA command.

Command parameter mapping defines how command details are defined in the workflows. Mapped
command parameters of a command are displayed in tabs when you are specifying the command
details for commands in workflows. The tabs are named based on the group name specified in the
Object Name column of the Parameters Mapping tab. The parameters that are not mapped are
displayed in the Other Parameters tab when you are specifying the command details in workflows.

The rules for command parameter mapping are applicable based on the command category and how
the commands are represented in the workflow editor.

The following are the command categories:

24 | Workflow Developer's Guide

» Commands that create objects

» Commands that update objects

« Commands that remove objects

» Commands that deal with optional parent and child objects
» Commands that update associations between objects

The rules are listed below for each category:

All command categories

When mapping a command parameter, you should use the natural path based on how the command is
used in workflows.

The following examples show how you can define a natural path:

e For the ArrayIP parameter, depending on the command, you should use the
aggregate.array. ip attribute of the Volume dictionary entry and not the array . ip attribute.

This is important when a workflow creates a volume and then performs an additional step with
the created volume by referring to it. The following are similar examples:

o volume.aggregate.array. ip of the Qtree dictionary entry
o volume.aggregate.array. ip of the LUN dictionary entry
e For Cluster used in commands, you should use one of the following:
o wvserver.cluster.primary_address of the Volume dictionary entry

o volume.vserver.cluster.primary_address of the Qtree dictionary entry

Commands that create objects

This category of commands is used for one of the following:

* Finding a parent object and defining new objects

» Searching for an object and creating the object if the object does not exist

You should use the following parameter mapping rules for this category of commands:

» Map the relevant parameters of the object that is created to the object's dictionary entry.
» Map the parent object through the references of the dictionary entry that is created.

» Ensure that the relevant attribute is present in the dictionary entry when adding a new parameter.
The following are the exception scenarios for this rule:

o Some objects that are created do not have a corresponding dictionary entry and only the parent
object is mapped to the relevant parent dictionary entry—for example, the Create VIF
command—in which only an array can be mapped to array dictionary entry.

o Parameter mapping is not required

For example, the ExecutionTimeout parameter in the Create or resize aggregate
command is an unmapped parameter.

The following certified commands are examples for this category:
* Create Volume

e Create LUN

Managing workflows | 25

Commands that update objects
This category of commands is used to find an object and update the attributes.

You should use the following parameter mapping rules for this category of commands:
» Map the objects that are updated to the dictionary entry.

» Do not map the parameters that are updated for the object.
For example, in the Set Volume State command, the Volume parameter is mapped but the new
State is unmapped.

Commands that remove objects
This category of commands is used to find an object and delete it.

You should map the object that is deleted by the command to its dictionary entry. For example, in the
Remove Volume command, the Volume to be deleted is mapped to the relevant attributes and
references of the Volume dictionary entry.

Commands that deal with optional parent and child objects

You should use the following parameter mapping rules for this category of commands:

« Do not map any mandatory parameter of a command as a reference from an optional parameter of
the command.
This rule is more relevant when a command deals with optional child objects of a specific parent
object. In this case, the child and parent object should be mapped explicitly. For example, in the
Stop Deduplication Jobs command, the command stops a running deduplication job on a
specific volume when specified along with Array or on all volumes of the given Array. In this
case, the array parameter should be mapped directly to the array dictionary entry and not to
Volume - Array because Volume is an optional parameter in this command.

» If aparent and child relationship exists between dictionary entries at the logical level but not
between the actual instances in a specific command, then those objects should be mapped
separately.

For example, in the Move Volume command, Volume is moved from its current parent aggregate
to a new destination aggregate. Therefore, Volume parameters are mapped to a Volume
dictionary entry and the destination aggregate parameters are mapped separately to the
Aggregate dictionary entry but not as volume . aggregate . name.

Commands that update associations between objects

For this category of commands, you should map both the association and the objects to relevant
dictionary entries. For example, in the Add Volume to vFiler command, the Volume and
vFi ler parameters are mapped to the relevant attributes of the Volume and vFi ler dictionary
entries.

How you define constants

You can create and use constants to define a value, which can be used across a single workflow.
Constants are defined at a workflow level.

The constants used in the workflow and their value are displayed in the monitoring window of the
workflow during planning and execution. You must use unique names for constants.

You can use the following naming conventions to define constants:

» Uppercase for the first letter of each word, without underscores or spaces between words
All terms and abbreviations should use upper case—for example, ActualVolumeSize InMB.

26 | Workflow Developer's Guide

» Uppercase for all letters

You can use underscores to separate words—for example,
AGGREGATE_USED_SPACE_THRESHOLD.

You can include the following as values for workflow constants:
* Numbers
e Strings

* MVEL expressions

Expressions are evaluated during the planning and execution phases of the workflows. In the
expressions, you must not reference variables that are defined in a loop.

e User inputs

e Variables

How repeat row works

A workflow contains commands and command details arranged in rows. You can specify the
commands in a row to be repeated for a fixed number of iterations or dynamic number of iterations
based on the results of search criteria.

The command details in a row can be specified to repeat a certain number of times or when the
workflow is designed. The workflow can also be designed such that the number of times the row
must repeat can be specified when the workflow is executed or scheduled for an execution. You can
specify search criteria for an object and the commands in a row can be set to repeat as many times as
the objects are returned by the search criteria. Rows can also be set to repeat when certain conditions
are met.

Row repetition variables

You can specify variables in the variable list that can be manipulated during the row iterations. For
the variables, you can specify a name, a value with which the variables are initialized, and an
MVFLEX Expression Language (MVEL) expression that is evaluated after every iteration of the row
repetition.

The following illustration shows the repeat row options and an example of a row repetition variable:

Row Repetition Details (3) x

Repeats™ Number of times v

Number of times

Number of Times™*
For every resource in a group

Index Variable* Index1
Variables Name Initial Value Expression
size_to_alloc SIZE_MB (int)size_to_allocated - getData()

Add Remove

Cancel

Managing workflows | 27

Row repetition with approval points

When you have specified iterations of repeat rows for commands and included approval points, all
the iterations of the commands before an approval point are executed. After you approve the approval
point, the execution of all iterations of the successive commands continues until the next approval
point.

The following illustration shows how the iterations of repeat rows are executed when an approval
point is included in a workflow:

1 Employee_1:: abc & Departmen... Employee_1:: abc

i

2 Employee_1:: abc2 & Departme... Employee_1:: abc2

i

Repeat row examples in predefined workflows

You can open the following predefined workflows in the Designer to understand how repeat rows are
used:

» Create a Clustered Data ONTAP NFS Volume

e Create VMware NFS Datastore on Clustered Data ONTAP Storage
» Establish Cluster Peering

* Remove a Clustered Data ONTAP Volume

How resource selection works

OnCommand Workflow Automation (WFA) uses search algorithms to select storage resources for
workflow execution. You should understand how resource selection works in order to design
workflows efficiently.

WFA selects dictionary entry resources—such as vFiler units, aggregates, and virtual machines—
using search algorithms. The selected resources are then used for executing the workflow. The WFA
search algorithms are part of the WFA building blocks, and include finders and filters. To locate and
select the required resources, the search algorithms search through the data that is cached from
different repositories, such as Active 1Q Unified Manager, VMware vCenter Server, and a database.
By default, a filter is available for every dictionary entry for searching a resource based on its natural
keys.

You should define the resource selection criteria for each command in your workflow. In addition,
you can use a finder to define the resource selection criteria in each row of your workflow. For
example, when you are creating a volume that requires a specific amount of storage space, you can
use the “Find aggregate by available capacity” finder in the “Create Volume” command, which
selects an aggregate with a specific amount of available space and creates the volume on it.

You can define a set of filter rules for dictionary entry resources, such as vFiler units, aggregates, and
virtual machines. Filter rules can contain one or more groups of rules. A rule consists of a dictionary

entry attribute, an operator, and a value. The attribute can also include attributes of its references. For
example, you can specify a rule for aggregates as follows: List all aggregates that have names starting
with the string “aggr” and have more than 5 GB of available space. The first rule in the group is the

28 | Workflow Developer's Guide

attribute “name”, with the operator “starts-with”, and the value “aggr”. The second rule for the same
group is the attribute “available_size_mb”, with the operator “>", and the value “5000”. You can
define a set of filter rules along with public filters. The Define filter rules option is disabled if you
have selected a finder. The Save as Finder option is disabled if you have selected the Define filter
rules check box.

In addition to the filters and finders, you can use a search or define command to search for available
resources. The search or define command is the preferred option over the No-op commands. The
search and define command can be used to define resources of both the certified dictionary entry type
and the custom dictionary entry type. The search or define command searches for resources but does
not perform any action on the resource. However, when a finder is used to search for resources, it is
used in the context of a command, and the actions defined by the command are executed on the
resources. The resources returned by a search or define command are used as variables for the other
commands in the workflow.

The following illustration shows that a filter is used for resource selection:

Resource Selection (?) x

| Pre-defined filters Custom filters Advanced

Select one SnapMirror by its natural keys

Finder e None M

Filter Filter SnapMirr...

Parameters
Cluster Name or IP Addres...* SDestinationCluster

Storage Virtual Machine N...* $DestinationVserver

Tt

Resource selection examples in predefined workflows

You can open the command details of the following predefined workflows in the Designer to
understand how resource selection options are used:

» Create a Clustered Data ONTAP NFS Volume
» Establish Cluster Peering
* Remove a Clustered Data ONTAP Volume

How reservation works

OnCommand Workflow Automation resource reservation capability reserves the required resources
to ensure that the resources are available for successful execution of workflows.

WFA commands can reserve the required resources and remove the reservation after the resource is
available in the WFA cache database, typically after a cache acquisition. The reservation capability
ensures that the reserved resources are available for the workflow until the reservation expiration
period that you have configured in the WFA configuration settings.

Managing workflows | 29

You can use the reservation capability to exclude resources reserved by other workflows during
resource selection. For example, if a workflow that has reserved 100 GB of space on an aggregate is
scheduled for execution after a week, and you are executing another workflow that uses the Create
Volume command, the workflow that is executing does not consume the space reserved by the
scheduled workflow to create a new volume. In addition, the reservation capability enables
workflows to be executed in parallel.

When previewing a workflow for execution, the WFA planner considers all the reserved objects,
including the existing objects in the cache database. If you have enabled reservation, the effects of the
scheduled workflows and the workflows that are executing in parallel, and the existence of storage
elements are considered when planning the workflow.

The arrow in the following illustration shows that reservation is enabled for the workflow:

' . . .y
Workflow 'Abort SnapMirror relationship' @
Details Define Workflow User Inputs Constants Return Parameters Help Content Advanced
Workflow Name™ Abort SnapMirror relationship
Entity Version™ 1.0.0
Categories Data Protection
Workflow Description The 'Abort SnapMirror' workflow stops ongoing transfers fora
Ready For Production
Consider Reserved Elements «
Enable Element Existence Validation

Minimum Software Versions Clusterad Data ONTAP 8.2.0

Reservation examples in predefined workflows

You can open the following predefined workflows in the Designer to understand how reservation is
used:

+ Clone Environment

» Create a Clustered Data ONTAP Volume

» Establish Cluster Peering

* Remove a Clustered Data ONTAP Volume

What incremental naming is

Incremental naming is an algorithm that enables you to name the attributes in a workflow based on
the search results for a parameter. You can name the attributes based on an incremental value or a
custom expression. The incremental naming functionality helps you implement a naming convention
based on your requirement.

You can use the incremental naming functionality when designing workflows to dynamically name
the objects created by the workflow. The functionality enables you to specify search criteria for an
object using the resource selection feature and the value returned by the search criteria is used for the
object's attribute. In addition, you can specify a value for the attribute if no object was found with the
specified search criteria.

30 | Workflow Developer's Guide

You can use one of the following options for naming the attributes:

Providing an increment value and suffix

You can provide a value that should be used along with the value of the object found by the
search criteria and increment with the number you specify. For example, if you want to create
volumes with the naming convention of fi | er name_uni que nunber _envi ronment , you can
use a finder to find the last volume by its name prefix and increment the unique number by 1, as
well as add the suffix name to the volume name. If the last volume name prefix found was

v 023 _prodand you are creating three volumes, the names for the volumes created are

vf 024 prod, vf 025 prod, and v 026 prod.

Providing a custom expression

You can provide a value that should be used along with the value of the object found by the
search criteria and add additional values based on the expression you enter. For example, if you
want to create a volume with the naming convention of | ast vol ume name_envi r onment
name padded wi th 1, you can enter the expression last_volume.name + = " +
nextName("'l1ab1™). If the last volume name found was vFf 023, the name for the volume
created is vF_ 023 lab2.

The following illustration shows how a custom expression can be provided to specify a naming
convention:

Incremental Naming Wizard for Volume : name @ X

The Incremental Naming wizard allows you to define the volue of name
based on a search for an existing Volume

Search criteria for existing Volume Volume Name : $VolumeName, Cluster Name or IP Address: §...

Enter a value for name if no Volume matches the above search criteria
PRE_8_2_CLUSTER
if Volume was found using above search criteria, set value for name by

providing a custom expression v

Custom expression last_volume.name

What conditional execution is

Conditional execution helps you to design workflows that can execute commands when specified
conditions are met.

Execution of commands in a workflow can be dynamic. You can specify a condition for the execution
of each command or a row of commands in your workflow. For example, you might want the “Add
volume to dataset” command to be executed only when a specific dataset is found and you do not

Managing workflows | 31

want the workflow to fail if the dataset is not found. In this case, you can enable the “Add volume to
dataset” command to search for a specific dataset and if it is not found, you can disable the command
in the workflow.

Options for conditional execution of commands are available in the Di cti onary obj ect tab and
the Advanced tab of the Parameters for commands dialog box.

You can abort a workflow or disable a specific command in the workflow. In addition, you can set a
command to be executed using one of the following options:

» Without any condition

» When the variables you have specified are found

» When the variables you have specified are not found
* When the expression you have specified is true

You can also set a command to wait for a specific time interval.

Conditional execution examples in predefined workflows

You can open the command details of the following predefined workflows in the Designer to
understand how conditional execution of commands are used:

* Create a basic Clustered Data ONTAP Volume
* Create a Clustered Data ONTAP NFS Volume

How return parameters work

Return parameters are parameters that are available after the planning phase of a workflow. The
values returned by these parameters are useful in debugging a workflow. You should understand how
return parameters work and what parameters can be used as return parameters to debug workflows.

You can designate a set of parameters, such as variable attributes, expressions, and user input values,
in a workflow as return parameters. During workflow execution, the values of the designated
parameters are populated in the planning phase and execution of the workflow starts. The values of
these parameters are then returned the way they were calculated in that specific execution of the
workflow. If you want to debug the workflow, you can refer to the values that were returned by the
parameters.

You can specify the required return parameters in a workflow when you want to see what are the
calculated or selected values for those parameters. For example, when using resource selection logic
to select an aggregate in a workflow, you can specify aggregate as the return parameter so that you
can see which aggregate was selected during the planning of the workflow.

Before referring to the values of the return parameters for debugging your workflow, you should
confirm that the execution of the workflow is complete. The return parameter values are set for each
workflow execution. If you have added a return parameter after several executions of a workflow, the
value of that parameter is available only for executions after the addition of the parameter.

Parameters that can be used as return parameters

Return parameters Example

Variable attributes that are scalar vol umel. name, which is an attribute of the
“volume name” variable

Constants MAX_VOLUME_SIZE

User inputs $clusterName

32 | Workflow Developer's Guide

Return parameters Example

MVEL expressions that involve variable volumel.name+'-'+$clusterName

attributes, constants, and user inputs

The return parameter that a command adds The $volumeUUID parameter is added as a
during execution return parameter when you use the following

line in a PowerShell command: Add-
WfaWorkflowParameter -Name
"VolumeUUID" -Value “12345” -
AddAsReturnParameter $true.

Examples of return parameters in predefined workflows

If you want to understand how return parameters are specified, you can open the following
predefined workflows in the Designer and review the specified return parameters:

» Create an NFS Volume in a vFiler
» Create a Qtree CIFS Share in a vFiler

e Create a Clustered Data ONTAP Volume CIFS Share

What approval points are

Approval points are check points used in a workflow to pause the workflow execution and resume it
based on a user approval.

The blue vertical bar shown in the following illustration is an approval point:

oW |

Split volume clone

P |

clone_volume

You can use approval points for incremental execution of a workflow, where sections of the workflow
should be executed only after a certain condition is met. For example, when the next section has to be
approved or when successful execution of the first section is validated. Approval points do not handle
any process between pausing and resuming of a workflow. Email and SNMP notifications are sent, as
specified in the WFA configuration, and the storage operator can be asked to perform certain actions
upon receiving the workflow pause notification. For example, the storage operator can send planning
details to admin, approver, or operator for approval and resume the workflow when the approval is
received.

Approvals might not be required at all times. In some scenarios, the approval might be required only
if a particular condition is met and the conditions can be configured when an approval point is added.
For example, consider a workflow that is designed to increase the size of a volume. You can add an
approval point at the beginning of the workflow for the storage operator to obtain approval from the
managers when the increase in the volume size results in an 85% usage of the space in the aggregate
that contains the volume. During the workflow execution and on selecting a volume that results in
this condition, the execution is stopped until it is approved.

Managing workflows | 33

The condition that is set up for the approval point can have one of the following options:
» Without any condition

* When the variable you have specified is found

* When the variable you have specified is not found

» When the expression you have specified evaluates to true

There is no limitation on the number of approval points in a workflow. You can insert approval points
before commands in a workflow and set the commands after the approval point to wait for approval
before execution. Approval points provide information, such as time of change, user, and comments,
allowing you to see when and why the workflow execution was paused or resumed. The approval
point comments can include MVEL expressions.

Approval point examples in predefined workflows

You can open the following predefined workflows in the Designer to understand how approval points
are used:

* Remove a Clustered Data ONTAP Volume
» Controller and shelf upgrade of an HA pair

* Migrate Volumes

How you execute custom REST end points

OnCommand Workflow Automation (WFA) provides a mechanism to configure the custom REST
end points to execute the workflows. Custom REST end points help an architect to configure easy-to-
understand, intuitive, and uniform resource identifiers (URISs) to execute workflows, which follow the
REST conventions of POST, PUT, or DELETE based on the workflow semantics. These URIs ease
the client code development for client developers.

WFA enables you to configure a custom URI path for workflow execution through the API calls.
Each segment in the URI path can be a string or a valid name of the user input of the workflow in
brackets, for example, /devops/{ProjectName}/clone. The workflow can be invoked as a call to
https://WFAServer: HTTPS_PORT/rest/devops/Projectl/clone/jobs.

Validation for the URI path is as follows:
» The REST path must start with “/”.
» The characters allowed are alphabets, digits, and underscore.

e The user input name must be surrounded by “{}".

Note: You must check that the value surrounded by “{}” is a valid user input name.

» There should be no empty path segments, for example, 7/, /{}/, and so on.

e The HTTP method configuration and custom URI path configuration should either both be
configured or neither configured.

How continue on failure works

The continue on failure feature helps you to configure a step in a workflow so that the workflow
execution can continue even if the step fails. You can address the failed steps and resolve the issue
i

that caused the step to fail by accessing the wfa. log file or by clicking the icon.

A workflow that has one or more such failed steps is in the Partially Successful state after the
execution is complete. You can configure a step so that the workflow execution continues even if the

34 | Workflow Developer's Guide

step fails by selecting the required option in the Advanced tab of the Parameters for
<command_name> dialog box.

If a step is not configured to continue on failure, the workflow execution is aborted if the step fails.

If a step that is configured to continue on failure fails, you can set the workflow to be executed by
using one of the following options:

» Abort workflow execution (default option)
» Continue execution from the next step

» Continue execution from the next row

Sample workflow requirements checklist

A workflow requirements checklist includes detailed requirements—such as commands, user input,
and resources—for a planned workflow. You can use the checklist to plan your workflows and
identify the gaps in the requirements.

Requirements checklist example

The following sample workflow requirements checklist lists the requirements for the “Create a
Clustered Data ONTAP Volume” workflow. You can use this sample checklist as a template to list
your workflow requirements.

Workflow details

Workflow name Create a Clustered Data ONTAP Volume

Category Storage provisioning

Description The workflow creates a new volume in a specific SVM. This workflow is
meant for a scenario where a volume is provisioned and delegated for
later usage.

High-level description |, o s\/\ that contains the volume is specified by the user (cluster,
of how the workflow SVM names)

works
« A volume is created based on the specified size.

» The configuration of the volume is described in a template.

Managing workflows | 35

Details e Use the Create CM Volume command

» Command details for Create CM Volume:
o Execution is set as always
o \Volume details are specified by filling in attributes for the volume

o Use the Space Guaranteed Settings template for configuring the
volume

> Volume name and size are provided by user.
The volume will be mounted in the SVM namespace as /
volname (under the root namespace).

o Use the actualVolumeSize function because the snap reserve will
be 5%.

o SVM reference is defined with the following resource selection
logic:

- CM SVM by key — searches for SVM by name and the cluster,
which is provided by the user

- CM SVM by type — only data SVMs (type = cluster)
- SVM by state — (state = running)

o Aggregate reference is defined with the resource selection logic as
a predefined finder (CM Aggregate by space thresholds and RAID

Type):

- CM Aggregate by available capacity (capacity = size of
volume to be provisioned, cluster given by user)

- CM Aggregate by delegation to SVM
- CM Aggregate by RAID Type (RAID-DP)
- CM Aggregate not aggr0

- CM Aggregate by used size % (threshold = 90,
spaceToBeProvisioned = size provided, since guarantee is
volume)

- CM Aggregate by over commitment (threshold = 300,
spaceToBeAllocated = Size of volume being provisioned)

- Select the aggregate with maximum free space

User inputs

36 | Workflow Developer's Guide

Name Type Description (data values,
validation, and so on)
Cluster Locked query (tabular) « Cluster hosting the SVM
e Query can be tabular
display with primary
address and name of the
cluster
e Sort alphabetically by name
SVM Locked query ¢ SVM in which the volume
is provisioned
¢ Query should only display
SVM names belonging to
the cluster chosen in the
previous input
Show only cluster type
SVMs, not admin or node
(type column of
cm_storage.vserver)
« Sort alphabetically
Volume String ¢ Name of the volume to be
created
Size in GB Integer « Size of the volume to be
provisioned
« Data size (snap reserve
should be considered)
Commands
Name Description Status
Create CM Volume Creates a volume in the Existing
SVM
Return parameters
Name Value
\Volume name Name of the provisioned volume
Aggregate name Name of the selected aggregate
Node name Name of the node
Cluster name Name of the cluster
Gaps and issues
1.
2.

Managing workflows | 37

Creating a workflow

You can use Workflow Automation (WFA) to create workflows for tasks such as provisioning,
migrating, and decommissioning storage for databases or file systems. You should create workflows
when the predefined WFA workflows do not match your requirements.

Before you begin
* You must have understood the concepts for WFA building blocks.

« You must have understood capabilities such as repeat row, approval points, and resource selection
that are required for your workflow.

* You must have completed the planning required for your workflow, including the workflow
requirement checklist.

* You should have created the help content, which provides information about the workflow to
storage operators.

About this task

The construction of each workflow might vary based on the goal and requirement of the workflow.
This task does not provide instructions for a specific workflow, but provides general instructions for
creating a workflow.

Steps
1. Click Workflow Design > Workflows.

2. Click ' on the toolbar.

3. In the Workflow tab, perform the following steps:
a. Expand the required schema, and then double-click the required EX) (command) or @
(workflow) from the Available Steps list.

You can repeat this step as required. You can drag-and-drop steps to rearrange the steps in the
workflow editor.

b. Optional: Click - to add the required number of rows, which are used to specify details for
execution of steps.

Each step is executed based on the specified step details at the specified row and column. The
steps are executed from left to right and in the top to bottom order.

¢. Position your cursor below the step you have added and click to add step
details for the step execution, at the required row.

For this step... Do this...

Workflow Enter the required user inputs in the
Workflow tab and the required condition in
the Advanced tab.

38 | Workflow Developer's Guide

For this step...

Do this...

Command

In the Parameters for <command> tab, click
each object tab, select the required option to
define the object attributes, and then enter
the required details in the Advanced tab and
the Other Parameter tab.

Search or define

Select the dictionary entry object that should
be searched for or defined.

The following illustration shows the available options for defining the object attributes:

by filing-in attributes

Define Export_Policy: | export_policy2 l
— Attributes
Template:

by filing-in attributes
by using a previously defined Export_Policy
by searching for an existing Export_Policy

Choose the appropriate action:

For...

Do this...

by filling-in attributes

Enter the value for attributes using the
following options:

» Expressions

» \Variables

e User inputs

* Resource selection

e Incremental naming

You must position your cursor over the

attribute fields and click B to use the
resource selection or incremental naming
capabilities.

by using a previously defined obj ect

Select the previously defined obj ect in the
box before the option list.

6.

Managing workflows | 39

For...

Do this...

by searching for an existing obj ect

Click Enter search criteria to search for

the object using the resource selection
capability.

ii. Select one of the required options for
execution if the required object is not
found:

» Abort workflow
This option aborts the workflow
execution if the specific object is not
found.

» Disable this command
This option disables only the current
step and executes the workflow.

* Fill-in attributes for obj ect and
execute the command
This option enables you to enter the
required attributes and execute the
workflow.

If you want to insert an approval point, click and enter the required comment for the approval

point.

Approval point comments can include MVEL expressions.

Click ™ that is next to the row numbers to perform the following:

Insert a row.

Copy the row.

Repeat the row.
You can use one of the following options to specify repetition of the command parameters:

o

Number of times

You can use this option to repeat the command execution for the number of repetitions you
specify. For example, you can specify that the “Create gtree” command should be repeated
three times to create three gtrees.

You can also use this option for a dynamic number of command executions. For example,
you can create a user input variable for the number of LUNSs to be created and use the
number specified by the storage operator when the workflow is executed or scheduled.

For every resource in a group

You can use this option and then specify a search criteria for an object. The command is
repeated as many times as the object is returned by the search criteria. For example, you
can search for the nodes in a cluster and repeat the “Create iSCSI Logical Interface”
command for each node.

Add a condition for execution of the row.

Remove the row.

In the Details tab, perform the following steps:

40 | Workflow Developer's Guide

7.

8.

9.

10.

a. Specify the required information in the Workflow name and Workflow Description fields.
The workflow name and description must be unique for each workflow.

b. Optional: Specify the entity version.

¢. Optional: Clear the Consider Reserved Elements check box if you do not want to use the
reservation capability.

d. Optional: Clear the Enable element existence validation check box if you do not want to
enable validation for elements that exist with the same name.

If you want to edit the user inputs, perform the following steps:

a. Click the User Inputs tab.

b. Double-click the user input you want to edit.

¢. Inthe Edit Variable: <user input> dialog box, edit the user input.

If you want to add constants, perform the following steps

a. Click the Constants tab, and then add the required constants for your workflow by using the

Add button.

You can define constants when you are using a common value for defining the parameters for
multiple commands. For example, see the
AGGREGATE_OVERCOMMITMENT_THRESHOLD constant used in the “Create, map
and protect LUNs with SnapVault” workflow.

b. Enter the name, description, and value for each constant.

Click the Return Parameters tab, and then add the required parameters for your workflow by
using the Add button.

You can use return parameters when the workflow planning and execution must return some
calculated or selected values during planning. You can view the calculated or selected values in
the Return Parameters tab of the monitoring window in the workflow preview or after the
workflow execution is complete.

Example

Aggregate: You can specify aggregate as a return parameter to see which aggregate was selected
using the resource selection logic.

If you have included a child workflow in your workflow and if the child workflow return
parameter names contain a space, dollar sign ($), or a function, you should specify the return
parameter name within square brackets in the parent workflow to view the child workflow return
parameter value in your parent workflow.

Example
If the parameter name is... Specify as...
ChildWorkflow1.abc$ value ChildWorkflowI[" abc$"+" value']
ChildWorkflow1.$value ChildWorkflow1["$"+"value"]
ChildWorkflowl1.value$ ChildWorkflow1.value$
ChildWorkflow1.P N ChildWorkflow1["P N"]
ChildWorkflowl.return_string("HW") ChildWorkflowl["return_string(1"HW1")"]

Optional: Click the Help Content tab to add the help content file you have created for the
workflow.

Managing workflows | 41

11. Click Preview and ensure that the planning of the workflow is completed successfully.
12. Click OK to close the preview window.

13. Click Save.

After you finish

Test the workflow in your test environment, and then mark the workflow as ready for production in
Wor kf | owNane > Details.

Related concepts

How you define workflows on page 20
How user inputs are defined on page 20
How repeat row works on page 26

What approval points are on page 32
How resource selection works on page 27
How reservation works on page 28

What incremental naming is on page 29
What conditional execution is on page 30
How return parameters work on page 31

Related tasks

Creating workflow help content on page 41

Related references

Sample workflow requirements checklist on page 34

Creating workflow help content
OnCommand Workflow Automation (WFA) admins and architects who design workflows can create
help content for the workflows and include it in the workflow.
Before you begin

You must be aware of how to create web pages using HTML.

About this task

The help should provide information about the workflow and the user inputs for the workflow to the
storage operator who executes the workflow.

Steps

1. Create a folder with the following name: workflow-help.

2. Author the help content using an HTML editor or a text editor and save it as an index.htm file
in the workflow-help folder.

You must not include JavaScript files as part of the help content. The following are the supported
file extensions:

* -JpPg9

42 | Workflow Developer's Guide

* -png
e _xml
e _thmx
e _htm
e _html
e .css

You can also include the Thumbs . db file, which is created by Windows.

Verify that the index. htm file and other files associated with the help content, such as images,
are available in the workflow-help folder.

Create a . zip file of the folder and ensure that the size of the . zip file is not more than 2 MB.

Example

Create an NFS volume-help.zip

Edit the workflow for which you have created the help content, and then click Setup > Help
Content > Browse to upload the . zip file.

Creating WFA workflow packs

You can create workflow packs on OnCommand Workflow Automation (WFA) for your storage
automation and integration requirements.

Steps

1.

> N

o

Log in to the WFA window through a web browser.
Click Content Management > Packs.
Click the New Pack icon.

In the New Pack dialog box, enter values for the Name, Author, Version, and Description
fields.

Click Save.

Verify that the new pack is created in the Packs window.

Adding entities to WFA workflow packs

You can add one or more entities to a workflow pack in OnCommand Workflow Automation (WFA)
for your storage automation and integration requirements.

About this task

You can remove a pack from the following entities:

Workflow
Finders
Filters

Commands

Managing workflows | 43

» Functions
e Templates
» Schemes

» Dictionary

« Data Sources Types
* Remote System Types
e Cache Queries

» Categories

Steps
1. Log in to the WFA window through a web browser.
In the Workflow design portal, navigate to the entity you want to add and click <Entity>.

In the Entity window, select the entity you want to add to the pack.

A LoD

Click the Add To Pack icon.

“Add To Pack” is enabled only for entities for which the certification is set to None.

5. Inthe Add To Pack <Entity> dialog box, from the Available Packs drop-down list, select the
pack to which you want to add the entity.

6. Click OK.

Deleting OnCommand Workflow Automation packs
You can delete a pack from OnCommand Workflow Automation (WFA) if you no longer require it. If
you delete a pack, all the entities associated with the pack are deleted.
About this task

» You cannot delete a pack if there are any dependencies on the entities that are part of the pack.

For example, if you attempt to delete a pack that includes a command that is part of a custom
workflow, the delete operation will fail because the custom workflow is dependent on the pack.
You can delete the pack only after you delete the custom workflow.

» Entities that are part of a pack cannot be deleted individually.
To delete an entity that is part of a pack, you must delete the pack containing that entity. If an
entity is part of multiple packs, the entity will be deleted from the WFA server only when all the
packs containing that entity are deleted.

Steps
1. Log in to WFA through a web browser as an admin.

2. Click Content Management > Packs.

3. Select the pack you want to delete and click o

4. In the Delete Pack confirmation dialog box, click OK.

44 | Workflow Developer's Guide

Exporting OnCommand Workflow Automation content
You can save user-created OnCommand Workflow Automation (WFA) content as a . dar file and
share the content with other users. The WFA content can include the entire user-created content or
specific items such as workflows, finders, commands, and dictionary terms.
Before you begin

« You must have access to the WFA content that you want to export.

» If content that is to be exported contains references to certified content, the corresponding
certified content packs must be available on the system when the content is imported.

These packs can be downloaded from the Storage Automation Store.
About this task

* You cannot export the following types of certified content:
° ﬂ - NetApp-certified content

o
o W - content developed by Professional Services (PS), which is available only on custom
installations made by PS
e
° \E-;' - packs developed by users

» All of the objects that are dependent on the exported object are also exported.
For example, exporting a workflow also exports the dependent commands, filters, and finders for
the workflow.

* You can export locked objects.

The objects remain in the locked state when they are imported by other users.
Steps
1. Log in to WFA through a web browser.

2. Export the necessary content;

If you want to... Do this...

Export all user-created

] . Click Settings, and under Maintenance click Export All
content as a single .dar file

Workflows.

b. Specify a file name for the . dar file, and then click Export.

Export specific content a. Navigate to the window from which you want to export content.

b. Select one or more items from the window, and then click

c. Inthe Export As dialog box, specify a file name for the . dar file,
and then click Export.

3. Inthe Save As dialog box, specify the location where you want to save the _dar file, and then
click Save.

Managing workflows | 45

Importing OnCommand Workflow Automation content

You can import user-created OnCommand Workflow Automation (WFA) content such as workflows,
finders, and commands. You can also import content that is exported from another WFA installation,
content that is downloaded from the Storage Automation Store or the WFA community, as well as
packs, including Data ONTAP PowerShell toolkits and Perl NMSDK toolKkits.

Before you begin

* You must have access to the WFA content that you want to import.

» The content that you want to import must have been created on a system that is running the same
version or an earlier version of WFA.
For example, if you are running WFA 2.2, you cannot import content that was created using WFA
3.0.

* You can import content developed on N-2 versions of WFA only into WFA 5.1.

» Ifthe .dar file references NetApp-certified content, the NetApp-certified content packs must be
imported.
The NetApp-certified content packs can be downloaded from the Storage Automation Store. You
must refer to the documentation of the pack to verify that all requirements are met.

Steps

1. Log in to WFA through a web browser.

2. Click Settings, and under Maintenance click Import Workflows.

3. Click Choose File to select the - dar file that you want to import, and then click Import.

4. Inthe Import Success dialog box, click OK.

Related references

Considerations while importing OnCommand Workflow Automation content on page 46

Related information

NetApp community. OnCommand Workflow Automation

Importing WFA workflow packs

You can import workflow packs from the server to OnCommand Workflow Automation (WFA) for
your storage automation and integration requirements.

Before you begin

You must have access to the WFA content in the server that you want to import.

Steps
1. Log in to the WFA window through a web browser.
2. Click Content Management > Packs.

3. Click the Import From Server icon.

http://community.netapp.com/t5/OnCommand-Storage-Management-Software-Articles-and-Resources/tkb-p/oncommand-storage-management-software-articles-and-resources/label-name/workflow%20automation%20%28wfa%29?labels=workflow+automation+%28wfa%29

46 | Workflow Developer's Guide

5.
6.

In the Import From Server Folder dialog box, in the Folder location at server system field,
enter the location of the pack in the server in a string format, for example, C:\work\packs
\test.

Click OK.

Verify that the pack is imported in the Packs window.

Considerations while importing OnCommand Workflow Automation content

You must be aware of certain considerations when you import user-created content, content that is
exported from another OnCommand Workflow Automation (WFA) installation, or content that is
downloaded from the Storage Automation Store or the WFA community.

WEFA content is saved as a . dar file and can include the entire user-created content from another
system or specific items such as workflows, finders, commands, and dictionary terms.

When an existing category is imported from a _dar file, the imported content is merged with the
existing content in the category.

For example, consider there are two workflows WF1 and WF2 in category A in the WFA server.
If workflows WF3 and WF4 in category A are imported to the WFA server, category A will
contain workflows WF1, WF2, WF3, and WF4 after the import.

If the -dar file contains dictionary entries, then the cache tables corresponding to the dictionary
entries are automatically updated.
If the cache tables are not updated automatically, an error message is logged in the wfa. log file.

When importing a -dar file that has a dependency on a pack that is not present in the WFA
server, WFA tries to identify whether all the dependencies on the entities are met.

o If one or more entities are missing or if a lower version of an entity is found, the import fails
and an error message is displayed.
The error message provides details of the packs that should be installed in order to meet the
dependencies.

o If a higher version of an entity is found or if the certification has changed, a generic dialog
box about the version mismatch is displayed, and the import is completed.
The version mismatch details are logged in a wfa. log file.

Questions and support requests for the following must be directed to the WFA community:
o Any content downloaded from the WFA community
o Custom WFA content that you have created

o WEFA content that you have modified

Pack identification during upgrade

During the upgrade process, OnCommand Workflow Automation (WFA) identifies and classifies the
entities into a pack. If you had deleted any entity of a pack before the upgrade, the pack will not be
identified during the upgrade.

During the upgrade process, WFA compares the packs in the database with the list of packs that were
released in the Storage Automation Store to identify the packs that were installed before the upgrade.
Pack identification thus classifies existing packs in the database.

WFA performs the following processes to identify and classify packs:

Maintains a list of packs released in the Storage Automation Store to compare and identify the
packs that were installed before the upgrade.

Managing workflows | 47

» Classifies the entities in a pack as part of the Storage Automation Store synchronization, if
Storage Automation Store is enabled.

» Classifies the entities into packs using the updated list.

Pack identification is applicable only to NetApp-certified packs that were downloaded from the
Storage Automation Store.

If a pack is not identified during upgrade, you can re-import the pack to get it identified in WFA. The
wfa.log files provide details about the entities that were not identified as a pack during the upgrade.

Integrating WFA workflow packs with the SCM repository

You can integrate the OnCommand Workflow Automation (WFA) pack with the Source Control
Management (SCM) repository.

You must have admin or architect credentials.

SCM tools such as GitHub, Perforce, and SVN require you to map a local directory to check out the
code from the SCM repository server. This local directory mapping is called the SCM client location.
You must set up the SCM client with a file system location as a client area.

You can set up the SCM client on a WFA server system. You must have access to the WFA server
system for SCM operations

Checking in a new workflow pack to SCM

You can create a new workflow pack with OnCommand Workflow Automation (WFA) and check it
in to Source Control Management (SCM).

Before you begin

SCM must be set up and you must have admin or architect credentials.

Steps
1. Log in to the WFA window through a web browser.
2. Create a new workflow pack.
Creating a workflow automation pack on page 42
3. Add entities to the pack you created.
Adding entities to an OnCommand Workflow Automation pack on page 42
4. Click the Export To Server icon.

5. Inthe Export To Server Folder dialog box, in the Folder location at server system field, enter
the file system location where the pack is to be saved in the server containing the SCM client.

To edit or re-export the pack or the contents, click the Unlock icon.

6. Inthe SCM client location, check in the pack content to the SCM server.

Checking in a new version of a WFA workflow pack

You can update the version of a pack in OnCommand Workflow Automation (WFA), and then check
in the updated pack to a new location in the Source Control Management (SCM) server.

Before you begin

The SCM must be set up and you must have admin or architect credentials.

48 | Workflow Developer's Guide

Steps

1. Log in to the WFA window through a web browser.

Click Content Management > Packs.

Click the Edit Pack icon.

In the Pack <pack name> dialog box, in the Version field, update the version of the pack.
Click Save.

Click the Export To Server icon at the pack level.

N oo o b~ w DN

In the Export To Server Folder dialog box, in the Folder location at server system field, enter
a new file system location.

If the pack was previously saved in the C:\p4\cdot\1.0.0 file system location, now save it in
the C:\p4\cdot\2.0.0 location.

8. Inthe SCM client location, check in the pack content to a new location in the SCM server.

If the pack was previously saved in the //depot/wfa/packs/cdot/1.0.0 path in the SCM
server, you can save it in another location, such as //depot/wfa/packs/cdot/2.0.0.

Updating WFA workflow packs from the SCM server
You can update a pack in the Source Control Management (SCM) server, and then import the updated
pack to OnCommand Workflow Automation (WFA).
Before you begin

The SCM must be set up and you must have admin or architect credentials

About this task

If you make any changes or updates to a pack in the SCM server, the admin or architect needs to
resolve the conflicts, if any, using the SCM-provided diff tools. WFA tailors the XML diff file to
show only the relevant changes.

Before importing the pack, you are notified about the changes going in to the WFA pack content.

Steps
1. Log in to the WFA window through a web browser.
2. Import the updated pack to WFA.

Importing WFA workflow packs on page 45

Note: If the WFA database already contains the same pack, then the pack content will be
overwritten.

Checking in existing WFA workflow packs to the SCM server
You can check in already existing packs to the Source Control Management (SCM) server from
OnCommand Workflow Automation (WFA).

Before you begin

The SCM must be set up and you must have admin or architect credentials.

Managing workflows | 49

Steps
1. Log in to the WFA window through a web browser.
Click Content Management > Packs.

Click the Export To Server icon.

> won

In the Export To Server Folder dialog box, in the Folder location at server system field, enter
the server folder location where the pack is saved in the server.

This exports the pack in an exploded form in the file system where the SCM client is created.
5. Inthe SCM client location, check in the pack content to the SCM server.

6. Use the SCM-provided diff tools to verify the changes against the SCM version of the pack.

Removing WFA workflow packs from entities
You can remove a pack from the entities in OnCommand Workflow Automation (WFA) and check in
the updated pack to the Source Control Management (SCM) server.
Before you begin

The SCM must be set up and you must have admin or architect credentials.

About this task

You can remove a pack from the following entities:

e Workflow
* Finders
* Filters

* Commands

» Functions

» Templates

» Schemes

» Dictionary

» Data Sources Types

* Remote System Types
e Cache Queries

« Categories

Steps
1. Log in to the WFA window through a web browser.
In the Workflow design portal, navigate to the entity you want to remove and click <Entity>.

Click the Remove From Pack icon.

> won

In the Remove From Pack <Entity> dialog box, select the pack you want to delete from that
entity.

50 | Workflow Developer's Guide

Click OK.
Click the Packs tab.

Click the Export To Server icon.

© N o g

In the Export To Server Folder dialog box, in the Folder location at server system field, enter
the server folder location where the pack is saved in the server.

This exports the pack in exploded form in the file system where the SCM client is created.
9. Inthe SCM client location, check in the pack content to the SCM server.

10. Use the SCM-provided diff tools to verify the changes against the SCM version of the pack.

Rolling back a WFA workflow pack to its previous version in SCM
You can roll back a pack to the previous version in Source Control Management (SCM) and import it
to OnCommand Workflow Automation (WFA).

Before you begin

The SCM must be set up and you must have admin or architect credentials.

Steps

1. Inthe SCM client location, roll back the pack to a previous version in the file system location
using SCM tools.

The SCM client gets synced to the exact change number that you are interested in.
2. Log in to the WFA window through a web browser.
3. Import the updated pack to WFA.

Importing WFA workflow packs on page 45

Note: This rolls back the WFA database to the previous version.

51

Creating building blocks for workflows

Workflow Automation (WFA) includes several building blocks, which are used to construct
workflows. You can create the WFA buildings blocks that are required for your workflows.

Related tasks

Creating a finder on page 55

Creating a filter on page 56

Creating a dictionary entry on page 57
Creating a function on page 58
Creating a template on page 59
Creating a cache query on page 59
Creating a command on page 52
Creating a data source type on page 51

Creating a data source type

You must create a data source type to enable data acquisition from a data source, which is not
predefined in OnCommand Workflow Automation (WFA).

Before you begin

You must have created the required dictionary entry and scheme if you are creating a custom data
source type that is not predefined in WFA.

You must be aware of PowerShell scripting to create a data source type that uses the script
method.

Steps

1. Click Data Source Design > Data Source Types.

2. Click © on the toolbar.

3. Inthe New Data Source Type dialog box, enter or select the required details in the Data source,
Data source version, and Scheme fields.

4. In the Default port field, enter the port number.
Example
2638
The port number you have entered is populated when you add this data source type for data
acquisition. By default, the port is used by WFA to communicate with the data source and the port
should be open on the data source server.

5. From the Method list, select the method that WFA must use to acquire data:

52 | Workflow Developer's Guide

If you have selected...

Then...

SQL

From the Driver type list, select one of the following drivers that is
appropriate for the data source:

» Sybase jConnect3
* MySQL Connector/J
* MySQL Server JDBC Driver 3.0

e Oracle JDBC Driver 11.2.0.3

SCRIPT

In the Script field, enter the PowerShell script that is used to connect and
retrieve data from the data source.

Note: The data in the dictionary entry equivalent CSV files should
include tabs as field separator. For example, see the PowerShell script
for the VMware vCenter data source type.

6. Click Save.

Related tasks

Creating a dictionary entry on page 57

Related references

References to learning material on page 91

Creating a command

You can create a WFA command to complete a specific task in your workflow if there is no
predefined WFA command that is suitable for the task.

Before you begin

You must know how to write the required code for the command using either PowerShell or Perl.

Steps

1. Click Workflow Design > Commands.

2. Click I’onthetoolbar.

3. Inthe Properties tab of the New Command Definition dialog box, enter or select the required
details in the Name, Description, and Timeout fields.

a. Inthe String Representation field, enter a string representation for the command using

MVEL syntax.

Example

VolumeName + "'=>"

+ SnapshotName

The string representation for a command is used to display the information you want to see in
the workflow design during planning and execution. You must use only the parameters of the
command in string representation for a command.

b. Optional: If you are creating a wait command, select Wait for condition in the Command
type section, and set the required value in the Waiting interval (s) field.

Creating building blocks for workflows | 53

4. Inthe Code tab, perform the following steps:

a.

Select the required scripting language for the command from the Script Language list.

You can click + and select an additional language for the command.

Enter the appropriate code for the command in the selected language tab.

If you want to use password type for user inputs in the PowerShell script, you must create an
alias for the parameter and include _Password in the attribute. For Perl script, you can
specify the type as Password in the Parameters Definition tab.

Example

param (

[parameter(Mandatory=%$false, HelpMessage="Specify an AD
administrator password.™)]

[Alias(""ADAdminPassword_Password™)] [string]$ADAdminPassword
)

5. In the Parameters Definition tab, perform the following steps:

a.

b.

Click Discover Parameters to populate the parameters definition table.

The parameters and their attributes are extracted from the code and displayed in the table. For
example, the Array and VolumeName parameters are extracted from the following code:

param (

[parameter(Mandatory=$true, HelpMessage="Array name or IP
address™)]

[string]$Array,

[parameter(Mandatory=%$true, HelpMessage="Volume name')]
[string]$VolumeName,

Click the description column of the parameters to edit the description.

You cannot edit any other field in this tab.

6. Inthe Parameters Mapping tab, perform the following steps for each parameter:

a.

b.

From the Type column, select the appropriate dictionary object.

In the Attribute column, enter or select the appropriate attributes for the dictionary object
from the list.

After entering an attribute, you can enter a period (.) and include another attribute of that
object.

Example

Enter cm_storage.volume as type and aggregate . name as the attribute for the
AggregateName parameter.

In the Object Name column, enter an object name.

The object name is used for grouping the parameters under a tab in the Parameters for
<command> dialog box when you are specifying the command details in a workflow.

The unmapped parameters are displayed in the Other parameters tab of the Parameters for
<command> dialog box when you are specifying the command details in a workflow.

7. Optional: In the Reservation tab, enter a reservation script using SQL queries to reserve the
resources that are required by the command during a scheduled workflow execution:

54 | Workflow Developer's Guide

a. Inthe Reservation Representation field, enter a string representation for the reservation
using MVEL syntax.

Example

"Add rule for SnapMirror label ~' + SnapMirrorLabel + "~ to the
SnapMirror policy ~* + PolicyName + **"

The string representation is used to display the details of the resources reserved in the
Reservations window.

Note: The reservation script must not perform any operation on databases except the
cm_storage, cm_performance, storage, performance, vc, and custom schemes.

8. Optional: In the Verification tab, enter an SQL query to verify whether the command has affected
the data sources and the WFA cache as expected so that the reservation can be removed.

The SQL query that you enter can only consist of SQL SELECT statements.
a. Click Test Verification to test the verification script.
b. In the Verification dialog box, enter the required test parameters.

c. If you do not want to use the reservation data to test the verification script, clear the Use
reservation data in test field.

d. Click Test.
e. After reviewing the test result, close the dialog box.
9. Click Test to test the command.

10. In the Testing Command <command name> dialog box, click Test.
The result of the test is displayed in the Log messages section of the dialog box.

11. Click Save.

Related concepts

How commands work on page 8

How you map command parameters on page 23
What functions are on page 10

What finders are on page 10

What filters are on page 10

Howv user inputs are defined on page 20

How you map command parameters on page 23

Related tasks

Creating a filter on page 56

Creating a finder on page 55

Creating a function on page 58

Testing the reservation script for commands on page 55

Related references

References to learning material on page 91

Creating building blocks for workflows | 55

Testing the reservation script for commands

You can test the reservation scripts you have written for OnCommand Workflow Automation (WFA)
commands on the playground database to ensure that the scripts are working fine and not affecting
the WFA database tables.

About this task

The default WFA installation path is used in this procedure. If you changed the default location
during installation, you must use the changed WFA installation path.

Steps

1. Open a command prompt on the WFA server and change directories to the following location: c:
\ Program Fi | es\ NetApp\WFA\mysqgl\bin

2. Create a dump of the WFA database using the following command:
mysqldump -u wfa -pWfal23 --single-transaction --skip-add-drop-table

dat abase_t abl es> dunp_| ocati on
Example

Command to create a dump of the cm_storage database tables:

mysgldump -u wfa -pWfal23 --single-transaction --skip-add-drop-table
cm_storage> c:\tmp\cmSt2.sql

3. Restore the dump you have created on to the WFA playground database using the following
command:

mysgql -u wfa -pWfal23 playground < dunp_l ocati on

Example

mysql -u wfa -pWfal23 playground < c:\tmp\cmSt2.sql

4. Create or edit a WFA command and write the reservation script in the Reservation tab.

You must ensure that the reservation and verification scripts use only the playground database.
5. Create or edit a workflow, include the command in the workflow, and then execute the workflow.

6. Verify that the reservation and verification scripts are working as expected.

The WFA data source acquisition process does not update the playground database. You must
remove the reservations created by the command manually.

Creating a finder

You can create a WFA finder that can search for resources if there is no predefined WFA finder that is
suitable for searching the required resources.

Before you begin

You must have created the required filters that are used in the finder.

Steps
1. Click Workflow Design > Finders.

56 | Workflow Developer's Guide

2. Click I’onthetoolbar.

3. Inthe Properties tab of the New Finder dialog box, enter or select the required details in the
Name, Type, and Description fields.

4. Inthe Filters tab, select the required filters from the Available Filters list and click lLI

You can add or remove filters based on your requirement.

5. Inthe Returned Attributes tab, select the required attributes for the filter from the Available list
and click ILI

6. Optional: Click Test to test the finder.

a. Inthe Test Finder <FinderName> dialog box, enter the required test parameters.

b. Clear the Use reservation data in test check box if you do not want to use the reservation
data for testing the finder.

c. Click Test.
The result of the test is displayed.
d. Close the dialog box.
7. Click Save.

Related concepts

What filters are on page 10
What finders are on page 10

Related tasks
Creating a filter on page 56

Creating a filter

You can create a WFA filter that can search for resources if there is no predefined WFA filter that is
suitable for the task.

Before you begin

You must know the appropriate SQL syntaxes to create the filter.

Steps
1. Click Workflow Design > Filters.

2. Click ' on the toolbar.

3. Inthe Properties tab of the New Filter dialog box, enter or select the required details in the
Name, Dictionary type, and Description fields.

4. Inthe Query tab, enter the appropriate SQL query for the filter.

You must enter a single SQL query and optionally use input parameters. You should use the
following syntax to use an input parameter: ${Par anet er Nanme}.

7.

Creating building blocks for workflows | 57

Example

SELECT
array.ip
FROM
storage.array
WHERE
array.name = "${ArrayName}"
Click Refresh to populate the Input Parameters table and the Returned Attributes list.

This information is obtained from the SQL query that you have entered. For example, if you use
the SQL query example from the previous step, ip is displayed in Returned Attributes and
ArrayName is displayed in Input Parameters. You can edit the entries in the Label and
Description columns.

Optional: Click Test to test the filter.
a. Inthe Test Filter <FilterName> dialog box, enter the required test parameters.

b. Clear the Use reservation data in test check box if you do not want to use the reservation
data for testing the filter.

c. Click Test.
The test result is displayed.

d. Close the dialog boxes.

Click Save.

Related concepts

What filters are on page 10

Related references

References to learning material on page 91

Creating a dictionary entry

You can create a WFA dictionary entry when you want to define a new object type and its
relationship in your storage environment.

Steps

1. Click Data Source Design > Dictionary.

2. Click ' on the toolbar.

3. Inthe New Dictionary Entry dialog box, enter the required details in the Name of object type
and the Description fields.

4. For the Scheme field, perform one of the following actions:
» Select one of the available scheme from the list.
e Click Add New Scheme, enter the required Scheme Name in the New Scheme dialog box,

and then click Add.
5. Click Add row, and perform the following steps to describe the attribute:

58 | Workflow Developer's Guide

a. Click the Name column and enter the name of the attribute.

b. From the Type column, select the required type.

The String Length column is populated and is editable if you selected string as the type.
Also, the Values column is editable if you selected enum as the type.

c. Select the appropriate check boxes for the attribute from the Natural Key, To be Cached,
and Can be Null columns.

If you have selected the Natural Key check box, you cannot select the Can be Null check
box.

d. Add the required attributes for the dictionary object.

e. Optional: Select the Values in natural key columns are case sensitive check box if you want
the natural keys to be case-sensitive.

6. Click Save.

Related concepts

What dictionary entries are on page 8

Creating a function

You can create a WFA function that can be used as a utility, if there is no predefined WFA function
that is suitable for your task.

Before you begin

You must know MVFLEX Expression Language (MVEL) syntaxes to create a function.

About this task

You must include the following for the function definitions:

» Name: name of the function
You must not use a reserved word in MVEL syntax. Each function must have a unique name.

e MVEL definition: a string specifying the MVEL syntax of the function definition

Steps
1. Click Workflow Design > Functions.

2. Click © on the toolbar.
3. Inthe New Function dialog box, enter or select the required details in the Function description
and Function definition fields.

Example

def actualVolumeSize(data_size, snap_pct)

if (snap_pct <0) {
snap_pct = 0;

} else if (snap_pct > 99) {
snap_pct = 99;

div = 1 - (snap_pct/100);

Creating building blocks for workflows | 59

return (int)(data_size/div);
3

The Function name field is populated from the data that is used in the MVEL syntax.
4. Optional: Click Test to test the function:

a. Inthe Expression section of the Test dialog box, enter the required expression of function.

Example
actualVolumeSize(600, 1)

b. Click Test.
The test result is displayed.

c. Close the dialog box.

5. Click Save.

Related references

Reserved words on page 89
References to learning material on page 91

Creating a template

You can create a template that can be used as a blueprint for filling up attributes in command details.

Steps
1. Click Workflow Design > Templates.

2. Click ® on the toolbar.

3. Inthe New Template dialog box, enter or select the required details in the Name, Type, and
Description fields.

The Attributes table is populated based on the dictionary object you have selected in the Type
field.

4. Click the value column of each attribute and perform one of the following:
» Enter or select the required value from the list.
» Enter a user input entry—for example, $size for size user input.

5. Click Save.

Creating a cache query

You can define a cache query when you want to cache information about a dictionary object in the
WFA database from a data source type. You can create a cache query and associate it with a
dictionary entry and one or more data source types, such as Active I1Q Unified Manager 6.1.

Before you begin

You must know the appropriate SQL syntaxes to create a cache query.

60 | Workflow Developer's Guide

Steps
1. Click Data Source Design > Cache Queries.
2. Click ~© on the toolbar.
3. Inthe Add Cache Query dialog box, select the required dictionary entry and data source type.
4. Inthe “SQL select query” section, enter the appropriate SQL query.
Example
The following SQL query caches information about the disk dictionary object from the Active 1Q
Unified Manager 6.1 data source type:
SELECT
disk.objld AS id,
disk.name AS NAME,
disk.uid AS uid,
disk.effectivelnterfaceType AS TYPE,
disk.rpm AS rpm,
disk.homeNodeld AS home_node_id,
disk.ownerNodeld AS owner_node_id,
disk.model AS model,
disk.serialNumber AS serial_number,
disk.totalBytes/1024/1024 AS size_mb,
disk.shelf AS shelf,
disk.shelfBay AS shelf_bay,
disk.pool AS pool,
disk.vendor AS vendor,
LOWER(disk.raidPosition) AS raid_position,
disk.containerTypeRaw AS container_type,
disk.clusterld AS cluster_id
FROM
netapp_model _view.disk disk
5. If you want to test the SQL query, click Test.
If you have selected more than one data source type, the Test Cache Query dialog box opens and
enables you to select the required data source type.
The test result is displayed.
6. Close the dialog box.
7. Click Save.

Related references

References to learning material on page 91

Creating recurring schedules

OnCommand Workflow Automation (WFA) provides two scheduling options for workflows. You can
either schedule a workflow to execute once at a specific time or you can create recurring schedules
and associate the schedules to workflows so that the workflows are executed routinely.

About this task

A schedule that you have created can be reused and associated with several workflows.

Creating building blocks for workflows | 61

Steps

1. Click Execution > Schedules.

2. Click ~© on the toolbar.

3. Inthe New Schedule dialog box, enter or select a name, description, and frequency for the
schedule.
For frequency, you must enter time in 24-hour format. The WFA server time is applied to the
schedules.

4. Click OK.

After you finish

You can associate the schedule to a workflow when you execute the workflow by using the
Execute recurrently option.

You can view the details of a workflow and its association with a schedule by clicking Execution
> Recurring Schedules.

The resource and execution planning for the workflows that are scheduled to execute once are
done immediately when the workflows are schedules. However, the resource and execution
planning for the workflows with recurring schedule occur at the scheduled time and not when the
schedule is associated with a workflow.

Defining filter rules

You can define a set of rules for filtering dictionary entry resources such as vFiler units, aggregates,
and virtual machines. You can customize the rules for existing workflows and for new workflows
while you are creating them.

Steps

1. Log in to WFA through a web browser as an admin.

2. Click Workflow Design > Workflows.

3. In the Workflows window, double-click the workflow that you want to modify.
The Workflow <workflow name> window is displayed.

4. Define a set of rules by choosing one of the following options:

If you want to... Then do this...

Search for resources when the

commands in a row are

repeated b. Inthe Row Repetitions dialog box, select the For every resource in
the group option from the Repeats drop-down list.

Click a row number and select Repeat row.

c. Select a resource type.

d. Click the Enter search criteria link.

62 | Workflow Developer's Guide

If you want to... Then do this...

Search for resources required
in command inputs

a. Click

b. In the Parameters for <command_name> dialog box, select the by
searching for an existing <dictionary object> option from the
Define <dictionary object> drop-down list.

c. Click the Enter search criteria link.

Search for resources
referenced by variables in
command inputs

a. Click

b. In the Parameters for <command_name> dialog box, select the by
filling in attributes option from the Define <dictionary object>
drop-down list.

c. Click [Zl for a field marked with .

Name command inputs of
String type

a. Click

b. In the Parameters for <command_name> dialog box, select the by
filling in attributes option from the Define <dictionary object>
drop-down list.

c. Click B for a string field.

5. Inthe Resource Selection dialog box, select the Define filter rules check box.

If you have selected one of the options from the Finder drop-down of Resource Selection dialog
box, the Define filter rules check box is disabled. The value for the finder must be set to “None”
for the Define filter rules to be enabled.

6. Enter the attribute, operator, and value for the rule.

The value must be provided within single quotation marks. The filter rules can contain one or
more groups.

7. Click OK.

Adding approval points

You can add an approval point as a checkpoint in a workflow to pause the workflow execution and
resume it based on your approval. You can use approval points for incremental execution of a
workflow, where sections of the workflow are executed only after a certain condition is met—for
example, when the next section has to be approved or when successful execution of the first section is
validated.

Steps
1. Log in to WFA through a web browser as an architect or an admin.

2. Click Workflow Design > Workflows.

Creating building blocks for workflows | 63

In the Workflows window, double-click the workflow that you want to modify.

In the Workflow <workflow name> window, click the icon to the left of the step for which
you want to add the approval point.

You can add approval points for one or more steps.
In the New Approval Point dialog box, provide the comment and condition details.

Click OK.

64

Coding quidelines for WFA

You should understand the general OnCommand Workflow Automation (WFA) coding guidelines,
naming conventions, and recommendations on creating various building blocks such as filters,
functions, commands, and workflows.

Guidelines for variables

You must be aware of the guidelines for PowerShell and Perl variables in OnCommand Workflow
Automation (WFA) when you create a command or a data source type.

PowerShell variables

Guidelines Example

For script input parameters: $Vol unmeNane

« Use Pascal case $Aut oDel et eQpt i ons
$Si ze

» Do not use underscores.

* Do not use abbreviations.

For script internal variables: $newvol une

« Use Camel case. $qt r eeNarre
$tine

* Do not use underscores.

* Do not use abbreviations.

For functions: Get Vol uneSi ze

e Use Pascal case.
» Do not use underscores.

* Do not use abbreviations.

Variable names are not case-sensitive. However, | $vari abl e is the same as $Vari abl e.
to improve readability, you should not use
different capitalization for the same name.

Variable names should be in plain English and Use $nane and not $a.
should be related to the functionality of the

script.

Declare the data type for each variable, [string]name
explicitly. [int]size

Do not use special characters (! @ # & %, .) None

and spaces.

Do not use PowerShell reserved keywords. None

Coding guidelines for WFA | 65

Guidelines Example
Group the input parameters by placing the
mandatory parameters first followed by the param(

optional parameters.

[parameter (Mandatory=$true)]
[string]$Type,

[parameter(Mandatory=$true)]
[string]$lp,

[parameter(Mandatory=$false)]
[string]$VolumeName

Comment all input variables using
Hel pMessage annotation with a meaningful
help message.

[parameter (Mandatory=
$false,HelpMessage="LUN to map')]
[string]$LUNName

Do not use “Filer” as a variable name; use
“Array” instead.

None

Use Val i dat eSet annotation in cases where
the argument gets enumerated values. This
automatically translates to Enum data type for
the parameter.

[parameter(Mandatory=
$false,HelpMessage=""Volume
state™)]
[vValidateSet(*'online","offline","
restricted™)]

[string]$State

Add an alias to a parameter that ends with
“_Capacity” to indicate that the parameter is of
capacity type.

The “Create Volume” command uses aliases as
follows:

[parameter (Mandatory=
$false,HelpMessage=""Volume
increment size in MB™)]
[Alias('AutosizelncrementSize_Cap
acity™)]
[int]$AutosizelncrementSize

Add an alias to a parameter that ends with
“ Password” to indicate that the parameter is of
password type.

param (

[parameter (Mandatory=%$false,
HelpMessage="In order to create
an Active Directory machine
account for the CIFS server or
setup CIFS service for Storage
Virtual Machine, you must supply
the password of a Windows
account with sufficient
privileges™)]
[Alias("'"Pwd_Password™)]
$ADAdminPassword

))

[string]l

66 | Workflow Developer's Guide

Perl variables

Guidelines

Example

For script input parameters:
» Use Pascal case.
« Do not use underscores.

* Do not use abbreviations.

$Vol umeNane
$Aut oDel et eOpt i ons
$Si ze

Do not use abbreviations for script internal
variables.

$new_vol une
$qtree_nane

$tinme

Do not use abbreviations for functions.

get _vol une_si ze

Variable names are case-sensitive.

To improve readability, you should not use
different capitalization for the same name.

$vari abl e is not the same as $Vari abl e.

should be related to the functionality of the

Variable names should be in plain English and

Use $nane and not $a.

enumerated values.

annotation for enumerated values. Use explicit
“if” statements for cases where argument gets

script.
Group the input parameters by placing the None
mandatory parameters first, followed by the
optional parameters.
In GetOptions function, explicitly declare the)
data type of each variable for input parameters. GetOptions(
"Name=s"'=>\$Name,
"Size=i"=>\$Size
)
Do not use “Filer” as a variable name; use None
“Array” instead.
Perl does not include the Val i dat eSet
if

(defined$SpaceGuarantee&&!
($SpaceGuaranteeeq™none” | |
$SpaceGuaranteeeq”volume”| |
$SpaceGuaranteeeq " file™))

die"lllegal SpaceGuarantee
argument: \"".
$SpaceGuarantee. "\"";

}

pragma to discourage the use of unsafe
constructs for variables, references, and
subroutines.

All Perl WFA commands must use the “strict”

use strict;

the above is equivalent to
use strictvars;

use strictsubs;

use strictrefs;

Coding guidelines for WFA | 67

Guidelines

Example

All Perl WFA commands must use the
following Perl modules:

* Getopt
This is used for specifying input parameters.

* WFAULIl
This is used for utility functions that are
provided for command logging, reporting
command progress, connecting to array
controllers, and so on.

use Getopt::Long;
use NaServer;
use WFAUtil;

Related references

References to learning material on page 91

Guidelines for indentation

You must be aware of the guidelines for indentation when writing a PowerShell or Perl script for

OnCommand Workflow Automation (WFA).

Guidelines

Example

A tab is equal to four empty spaces.

Use tabs and braces to show the beginning and
end of a block.

PowerShell script

if
($pair.length-ne 2)

throw "Got wrong input data"

}

Perl script

if

(defined $MaxDirectorySize)

{

convert from MBytes to Bytes
my $MaxDirectorySizeBytes =
$MaxDirectorySize *

1024 * 1024;

}

Add blank lines between sets of operations or
chunks of code.

$options=%option.trimQ);
$pair=$option._split(" ");
Get-WFAlogger -Info -messages $
("'split options: "+

$Pair)

Related references

References to learning material on page 91

68 | Workflow Developer's Guide

Guidelines for comments

You must be aware of the guidelines for PowerShell and Perl comments in your scripts for

OnCommand Workflow Automation (WFA).

PowerShell comments

Guidelines

Example

Use the # character for a single line
comment.

Single line comment
$options=$option.trimQ);

Use the # character for an end of line
comment.

$options=$option.trim(); # End of
line
comment

Use the <# and #> characters for a block
comment.

<t
This
a
block comment

#>
$options=Soption.trimQ);

is

Perl comments

Guidelines

Example

Use the # character for single line comment.

convert from MBytes to Bytes
my $MaxDirectorySizeBytes
$MaxDirectorySize *

1024 * 1024;

Use the # character for end of line comment.

my $MaxDirectorySizeBytes

$MaxDirect
orySiZe * 1024 * 1024; # convert
to Bytes
Use the # character in every line with an empty
at the beginning and end to create a comment # o
This is a multi-line comment.

border for multi-line comments.

Perl 5, unlike

Powershell, does not have
direct support for

multi-line comments. Please
use a "#"iIn every line

with an empty “#" at the
beginning and end to create
a comment border

#

Coding guidelines for WFA | 69

Guidelines Example

Do not include commented and dead code in
WFA commands.

However, for testing purposes, you can use the
Plain Old Documentation (POD) mechanism to
comment out the code.

=begin comment
Set deduplication
if(defined $Deduplication &&
$Deduplication eq "enabled™)

$wfautil-
>sendLog("'Enabling
Deduplication™);

=end comment
=cut

Related references

References to learning material on page 91

Guidelines for logging

You must be aware of the guidelines for logging when writing a PowerShell or Perl script for
OnCommand Workflow Automation (WFA).

PowerShell logging

Guidelines

Example

Use the Get-WFALogger cmdlet for logging.

Get-WFALogger -Info -message
“Creating volume”

Log every action that requires interaction with
internal packages such as Data ONTAP,
VMware, and PowerCLI.

All the log messages are available in Execution
Logs in the execution status history of
workflows.

None

Log every relevant argument that is passed to
internal packages.

None

Use appropriate log levels when using the Get-
WFALogger cmdlet, depending on the usage
context.

-Info, -Error, -Warn, and -Debug are the various
available log levels. If a log level is not
specified, then the default log level is Debug.

None

70 | Workflow Developer's Guide

Perl logging

Guidelines

Example

Use the WFAUTil sendLog for logging.

my wfa_util = WFAUtil->new();
eval {

$wfa_util->sendLog(" INFO*,
"Connecting to the

cluster: $DestinationCluster™);

}

Log every action that requires interaction with
anything external to the command such as Data
ONTAP, VMware, and WFA.

All the log messages that you create using the
WEFAULil sendLog routine are stored in the
WHFA database. These log messages are
available for the executed workflow and
command.

None

Log every relevant argument passed to the
routine that was called.

None

Use appropriate log levels.

-Info, -Error, -Warn, and -Debug are the various
available log levels.

None

When logging at the -Info level, be precise and
concise. Do not specify implementation details
such as class name and function name in log
messages. Describe the exact step or the exact
error in plain English.

The following code snippet shows an example
of a good message and a bad message:

$wfa_util->sendLog("WARN",
""Removing volume:

" _$VolumeName) ;

Good Message

$wfa_util->sendLog("WARN",
"Invoking volume-

destroy ZAPI: " _$VolumeName);
Bad message

Related references

References to learning material on page 91

Coding guidelines for WFA | 71

Guidelines for error handling

You must be aware of the guidelines for error handling when writing a PowerShell or Perl script for

OnCommand Workflow Automation (WFA).

PowerShell error handling

Guidelines

Example

Common parameters added to cmdlets by
PowerShell runtime include error handling
parameters such as ErrorAction and
WarningAction:

e The ErrorAction parameter determines how a
cmdlet should react to a non-terminating error
from the command.

» The WarningAction parameter determines how
a cmdlet should react to a warning from the
command.

» Stop, SilentlyContinue, Inquire, and Continue
are the valid values for the ErrorAction and
WarningAction parameters.

For more information, you can use the Get-Help
about_CommonParameters command in
PowerShell CLI.

ErrorAction: the following example shows
how to handle a non-terminating error as a
terminating error:

New-Nclgroup-Name $lgroupName-
Protocol $Protocol-Type$0SType-
ErrorActionstop

WarningAction

New-VM-Name $VMName-VM
$SourceVM-DataStore
$DataStoreName-VMHost$VMHost-
WarningActionSilentlyContinue

Use the general “try/catch” statement if the type of
the incoming exception is unknown.

try

"In Try/catch block"
}

catch

"Got exception"

}

Use the specific “try/catch” statement if the type
of the incoming exception is known.

try

{

"In Try/catch block™

}
catch[System._Net.WebExceptional
1., [System.10.

10Exception]

"'Got exception”

}

72 | Workflow Developer's Guide

Guidelines Example

Use the “finally” statement to release resources.
try

{
"In Try/catch block"
catch

"Got exception"

1S
finally
{
""Release resources"
s
Use PowerShell automatic variables to access
information about exceptions. try

{

Get-WFALogger -Info -message $
(""Creating

Ipspace: " + $lpspace)
New-NaNetlpspace-Name $lpspace

catch
Throw "Failed to create

Ipspace. Message:
" + $__Exception.Message;

bs
Perl error handling
Guidelines Example
Perl does not include native language support
for try/catch blocks. Use eval blocks for eval {
chechngandhgndhngenom.Keepevalmocks $wfa_util->sendLog(" INFO* ,
as small as possible. "Quiescing the relationship :
$DestinationCluster://
$DestinationVserver
/$DestinationVolume™
);

$server->snapmirror_quiesce(
"destination-vserver® =>
$DestinationVserver,
"destination-volume® =>
$DestinationVolume

$Wfa_atiI—>sendLog('INFO',
"Quiesce operation
started successfully.");

}:

$wfa_util->checkEvalFai lure(
"Failed to quiesce the
SnapMirror relationship
$DestinationCluster://
$DestinationVserver
/$DestinationVolume",

$@
)

Coding guidelines for WFA | 73

Related references

References to learning material on page 91

General PowerShell and Perl conventions for WFA

You must understand certain PowerShell and Perl conventions that are used in WFA to create scripts
that are consistent with existing scripts.

» Use variables that help to clarify what you want the script to do.
» Write readable code that can be understood without comments.
» Keep the scripts and commands as simple as possible.
» For PowerShell scripts:

o Use cmdlets whenever possible.

o Invoke .NET code when there is no cmdlet available.
» For Perl scripts:

o Always end “die” statements with newline characters.
In the absence of a newline character, the script line number is printed, which is not useful for
debugging Perl commands executed by WFA.

o In the “GetOpt” module, make the string arguments to a command mandatory.

Related references

References to learning material on page 91

Perl modules bundled with Windows

Some Perl modules are bundled with the Windows Active state Perl distribution for OnCommand
Workflow Automation (WFA). You can use these Perl modules in your Perl code for writing
commands, only if they are bundled with Windows.

The following table lists the Perl database modules that are bundled with Windows for WFA.

Database module Description

DBD::mysql Perl5 database interface driver that enables you
to connect to the MySQL database.

Try::Tiny Minimizes common mistakes with evaluation
blocks.

XML::LibXML Interface to libxml2 that provides XML and

HTML parsers with DOM, SAX, and
XMLReader interfaces.

DBD::Cassandra Perl5 database interface driver for Cassandra
that uses the CQL3 query language.

74 | Workflow Developer's Guide

Considerations for adding custom PowerShell and Perl
modules

You must be aware of certain considerations before adding custom PowerShell and Perl modules to
OnCommand Workflow Automation (WFA). Custom PowerShell and Perl modules enable you to use
custom commands for creating workflows.

» During the execution of WFA commands, all custom PowerShell modules are added to the WFA
install directory /Posh/modules are automatically imported.

« All custom Perl modules added to the WFA/per1 directory are included in the @ NC library.
» Custom PowerShell and Perl modules are not backed up as part of the WFA backup operation.
e Custom PowerShell and Perl modules are not restored as part of the WFA restore operation.

You must manually back up custom PowerShell and Perl modules in order to copy them to a new
WEFA installation.

The folder name in modules' directory must be same as that of the module name.

WEFA cmdlets and functions

OnCommand Workflow Automation (WFA) provides several PowerShell cmdlets as well as
PowerShell and Perl functions that you can use in your WFA commands.

You can view all the PowerShell cmdlets and functions provided by the WFA server using the
following PowerShell commands:

* Get-Command -Module WFAWrapper
* Get-Command -Module WFA

You can view all the Perl functions provided by the WFA server in the WFAUti I .pm module. The
help sections, WFA PowerShell cmdlets help and WFA Perl methods help, of the WFA Help module
Support Links enables access to all the PowerShell cmdlets and functions and the Perl functions.

Related references

References to learning material on page 91

PowerShell and Perl WFA modules

You must be aware of the PowerShell or Perl modules for OnCommand Workflow Automation
(WFA) to write scripts for your workflows.

PowerShell modules

Guidelines Example

Use the Data ONTAP PS Toolkit to invoke APIs | The Add VLAN command uses the toolkit as
whenever the toolKkit is available. follows:

Add-NaNetVlan-Interface $Interface-
Vlans$VlaniD

Coding guidelines for WFA | 75

Guidelines

Example

If there are no cmdlets available in the Data
ONTAP PS Toolkit, use the Invoke-SSH
command to invoke the CLI on Data ONTAP.

Invoke-NaSsh-Name $ArrayName-
Command "ifconfig -a"-Credential
$Credentials

Perl modules

The NaServer module is used in WFA commands. The NaServer module allows the invocation of
Data ONTAP APIs, which are used in active management of Data ONTAP systems.

Guidelines

Example

Use the NaServer module
to invoke APIs whenever
the NetApp Manageability
SDK is available.

The following example shows how the NaServer module is used for
a resume SnapMirror operation:

eval {

$wfa_util->sendLog(" INFO",
"Connecting to the cluster:
$DestinationCluster”
)
my $server
= $wfa_util-
>connect($DestinationClusterlp,
$DestinationVserver);

my $sm_info = $server->snapmirror_get(
"destination-vserver® =>
$DestinationVserver,
"destination-volume® =>
$DestinationVolume

):

my $sm_state = $sm_info->{"attributes”}-
>{"snapmirror-info"}->{"mirror-state”};

my $sm_status = $sm_info->{"attributes”}-
>{"snapmirror-info*}->{"relationship-status”};

$wfa_util->sendLog(" INFO",
"SnapMirror relationship is $sm_state
($sm_status)');

if ($sm_status ne "quiesced”) {
$wfa_util->sendLog(" INFO",
"The status needs to be quiesced to
resume transfer.");
} else {
my $result = $server->snapmirror_resume(
"destination-vserver® =>
$DestinationVserver,
"destination-volume®™ =>
$DestinationVolume

):

$wfa_util->sendLog("INFO", "Result of
$result™);
$wfa_util->sendLog("INFO", "Resume
operation started successfully_");

}
}

resume:

76 | Workflow Developer's Guide

Guidelines

Example

If a Data ONTAP APl is
not available, invoke the
Data ONTAP CLI using the
executeSystemCli utility
method.

Note: executeSystemCli
is not supported and is
currently available only
for Data ONTAP
operating in 7-Mode.

None

Related references

References to learning material on page 91

Considerations while converting PowerShell commands to

Perl

You must be aware of certain important considerations when you convert PowerShell commands to
Perl because PowerShell and Perl have different capabilities.

Command input types

OnCommand Workflow Automation (WFA) allows workflow designers to use arrays and hash as
input for the command when defining a command. These input types cannot be used when the
command is defined using Perl. If you want a Perl command to accept array and hash inputs, you can
define the input as a string in the designer. The command definition can then parse the input, which is
passed to create an array or hash as required. The description for the input describes the format in

which the input is expected.

my @input_as_array

split(™,", $InputString); #Parse the input

string of format vall,val2 into an array

my %input_as_hash = split /[;=]/, $lnputString; #Parse the input
string of format keyl=vall;key2=val2 into a hash.

The following examples show how an array input can be passed into PowerShell and Perl. The
examples describe the input CronMonth, which specifies the month when the cron job is
scheduled to run. The valid values are integers -1 to 11. A value of -1 indicates that the
schedule executes every month. Any other value denotes a specific month, with 0 being
January and 11 being December.

PowerShell statement

[parameter(Mandatory=$false, HelpMessage="Months in which the
schedule executes. This Is a comma separated list of values from O
through 11. Value -1 means all months.")]

[ValidateRange(-1, 11)]

[array]$CronMonths,

Coding guidelines for WFA | 77

Perl statement

GetOptions(
"Cluster=s" => \$Cluster,
"'ScheduleName=s"" => \$ScheduleName,
"Type=s" => \$Type,
""CronMonths=s" => \$CronMonths,

) or die "lllegal command parameters\n”;

sub get_cron_months {
return get_cron_input_hash("CronMonths®™, $CronMonths, "cron-
month*®, -1,
11);
}

sub get_cron_input_hash {
my $input_name shift;

my $input_value = shift;
my $zapi_element = shift;
my $low = shift;
my $high = shift;
my $exclude = shift;

if (Ydefined $input_value) {
return undef;
3

my @values = split(",", $input_value);

foreach my $val (@values) {
if (Bval '~ /A[+-]12\d+$/) {
die
“Invalid value "S$input_value® for $input_name: $val
must be an integer.\n";

}
it ($val < $low || $val > $high) {
die
"Invalid value "$input_value® for $input_name: $val
must be from $low to $high.\n";

}
if (defined $exclude && $val == $exclude) {
die
"Invalid value "$input_value® for $input_name: $val
is not valid.\n";

}

3
do something
}

Command definition

A one-line expression in PowerShell using a pipe operator might have to be expanded into multiple
blocks of statements in Perl in order to achieve the same functionality. An example from one of the
wait commands is shown in the following table.

78 | Workflow Developer's Guide

PowerShell statement

Perl statement

Get the latest job which moves
the specified volume to the
specified

my $result = $server-
>job_get_iter(
“"query® => {"job-type* =>

aggregate. "VOL_CLONE_SPLIT"},
$job = Get-NcJob -Query $query | "desired-attributes” => {
where "job-type® => "",

{$_.JobDescription -eq "Split" +
$VolumeCloneName} | Select-
Object -First 1

"job-description® => **°,
"job-progress® => "*°,
"job-state® => *"*

}

);

my @jobarray;

for my $job (@{ $result-
>{"attributes-list"}})

{

my $description = $job-
>{" job-description®};

if($description =~ /
$VolumeCloneName/)

push(@jobarray, $job)

Related references

References to learning material on page 91

Guidelines for WFA building blocks

You must be aware of the guidelines for using Workflow Automation building blocks.

Guidelines for SQL in WFA

You must be aware of the guidelines for using SQL in OnCommand Workflow Automation (WFA) to
write SQL queries for WFA.

SQL is used in the following places in WFA:

e SQL queries to populate user inputs for selection

» SQL queries for creating filters to filter objects of a specific dictionary entry type
» Static data in tables in the playground database

» A custom data source type of SQL type where the data has to be extracted from an external data
source such as a custom configuration management database (CMDB).

» SQL queries for reservation and verification scripts

Guidelines Example
SQL reserved keywords must be in uppercase
characters. SELECT
vserver .name
FROM
cm_storage.vserver vserver

Coding guidelines for WFA | 79

Guidelines

Example

Table and column names must be in lowercase
characters.

Table: aggregate
Column: used_space_mb

Separate words with an underscore ()
character. Spaces are not allowed.

array_performance

Table name is defined in singular. A table is a
collection of one or more entries.

“function”, not “functions”

Use table aliases with meaningful names in
SELECT queries.

SELECT
vserver .name
FROM
cm_storage.cluster
cm_storage.vserver
WHERE
vserver.cluster_id =
cluster.id
AND cluster.name = "$
{ClusterName}"
AND vserver .type
ORDER BY
vserver.name ASC

cluster,
vserver

"cluster-”

If you have to refer to a filter input parameter or
user input parameter in a filter query or user
query, use the syntax as ‘${inputVariableName}.

You can also use the syntax to refer to a
command definition parameter in reservation
scripts and verification scripts.

SELECT
volume.name AS Name,
aggregate.name as Aggregate,
volume.size mb AS "Total
Size (MB)",
voulme.used_size_mb AS "Used
Size (MB)*",
volume.space_guarantee AS
"Space Guarantee®
FROM
cm_storage.cluster,
cm_storage.aggregate,
cm_storage.vserver,
cm_storage.volume
WHERE
cluster.id =
vserver .cluster_id
AND aggregate.id
volume.aggregate_id
AND vserver.id =
voulme.vserver_id
AND vserver.name = "$
{VserverName}"
AND cluster.name = "$
{ClusterName}"
ORDER BY
volume.name ASC

80 | Workflow Developer's Guide

hyphen in this comment style.
* From a “#” character until the end of the line

* Froma “/*” to the following “*/”sequence

Guidelines Example
Use comments for complex queries. Some of
the supported comment styles in queries are as /o
follows: multi-line
’ comment
13 ” H H */
o - untll_ the end of the line e e
A space is mandatory after the second SELECT

ip as ip, # comment till end
of this line
NAME as name
FROM --end of line comment
storage.array

Related references

References to learning material on page 91

Guidelines for WFA functions

You can create functions to encapsulate commonly used and more complex logic in a named
function, and then reuse the function as command parameter values or filter parameters values in

OnCommand Workflow Automation (WFA).

Guidelines

Example

Use Camel case for a function name.

calculateVolumeSize

Variable names should be in plain English and
related to the functionality of the function.

splitByDelimiter

Do not use abbreviations.

calculateVolumeSize, not calc\VolSize

according to the official Java Programming
Language guidelines.

Functions are defined using MVFLEX None
Expression Language (MVEL).
The function definition should be specified None

Related references

References to learning material on page 91

Guidelines for WFA dictionary entries

You must be aware of the guidelines for creating dictionary entries in OnCommand Workflow

Automation (WFA).

Guidelines

Example

Dictionary entry names must contain only
alphanumeric characters and underscores.

Cluster_License
Switch_23

Dictionary entry names must start with an
uppercase character.

Begin every word in the name with an
uppercase character and separate each word
with an underscore ().

Volume
Array_License

Coding guidelines for WFA | 81

Guidelines

Example

Dictionary entry attribute names should not
include the name of the dictionary entry.

None

Attributes and references in a dictionary entry
must be in lowercase characters.

aggregate, size_mb

Separate words with an underscore. Spaces are
not allowed.

resource_pool

Dictionary entries cannot include references
that are from a different scheme.

When a dictionary entry requires cross-
reference to an object in a different scheme,
ensure that all the natural keys of the object
being referred to are present in the dictionary
entry.

Array_Performance dictionary entry requires all
the natural keys of the Array dictionary entry as
direct attributes in it.

Use appropriate data types for attributes.

None

Use Long data type for size or space-related
attributes.

size_mb and available_size_mb in
storage.Volume dictionary entry

Use Enum when an attribute has a fixed set of
values.

raid_type in storage.Volume dictionary entry

Set “To be Cached” as true for an attribute or
reference when a data source provides value for
that attribute or reference.

For Active 1Q Unified Manager data source, add
cacheable attributes if the data source can
provide the value to it.

None

Set “Can be Null” as true if the data source
providing the value for this attribute or
reference can return NULL.

None

Provide a meaningful description to each
attribute and reference.

The description is displayed in command details
when designing a workflow.

None

Do not use “id” as the name of an attribute in
dictionary entries.

It is reserved for internal WFA usage.

None

Related references

References to learning material on page 91

Guidelines for commands

You must be aware of the guidelines for creating commands in OnCommand Workflow Automation

(WFA).

Guidelines

Example

Use an easily identifiable name for commands.

Create Qtree

82 | Workflow Developer's Guide

Guidelines

Example

Use spaces to delimit words and each word
must start with an uppercase character.

Create Volume

Provide a description to explain the
functionality of the command, including the
expected outcome of the optional parameters.

None

By default, the timeout for standard commands
is 600 seconds. The default timeout is set while
creating the command. Change the default value
only if the command might take a longer time to
complete.

Create Volume command

In case of long-running operations, create two
commands—one to invoke the long-running
operation and another to report the progress of
the operation periodically. The first command
should be a Standard Execution command
type and the second should be Wait for
Condition command type.

Create VSMand Wait for VSM commands

Prefix the Wait for condition command
names with “Wait” for easy identification.

Wait for CM Volume Move

Use an appropriate waiting interval for the
“Wait for condition” commands. The specified
value governs the interval at which the polling
command gets executed to check if the long-
running operation is complete.

60s sampling interval for the Wait for VSM
command

For the Wait for condition commands, use
an appropriate timeout based on the expected
time for the long-running operation to complete.
The expected time might be considerably longer
if the operation involves data transfer over a
network.

A VSM baseline transfer can take many days to
complete. Therefore, the specified timeout is 6
days.

String representation

The string representation for a command displays the details of a command in a workflow design
during planning and execution. Only the command parameters can be used in the string

representation for a command.

Guidelines

Example

Avoid using attributes that do not have any
value. An attribute without a value is displayed
as NA.

VoIName 10.68.66.212[NA]Jaggrl/test\Vol7

Separate different entries in the string
representation using the following delimiters:

[1./:

ArrayNane[Arrayl p]

Provide meaningful labels to every value in
string representation.

Vol ume nanme=VouneNane

Command definition language

Commands can be written using the following supported scripting languages:

Coding guidelines for WFA | 83

* PowerShell

e Perl

Command parameter definition

The command parameters are described by Name, Description, Type, a default value for the
parameter, and whether the parameter is mandatory. The parameter type can be String, Boolean,
Integer, Long, Double, Enum, DateTime, Capacity, Array, Hashtable, Password, or an
XmlDocument. While the values for most of the types are intuitive, the values for Array and
Hashtable should be in a particular format as described in the following table:

Guidelines Example

Ensure that the value for an Array input type is
a list of values, separated by comma. [parameter(Mandatory=$false,
HelpMessage=""Months in which the
schedule executes.')]
[array]$CronMonths

Input is passed as following: 0,3,6,9

Ensure that the value for a Hashtable input type

is a list of key=value pairs, separated by [parameter(Mandatory=$false,

semicolon HelpMessage="Volume names and
) size (in MB)'™)]

[hashtable]$VolumeNamesAndSize

Input is passed as following:
Volume1=100;Volume2=250;Volume3=50

Related concepts

How you map command parameters on page 23

Related references

References to learning material on page 91

Guidelines for workflows

You must be aware of the guidelines for creating or modifying a predefined workflow for
OnCommand Workflow Automation (WFA).

General guidelines

Guidelines Example
Name the workflow such that it reflects the Create a CIFS Share
operation that is executed by the storage
operator.
For workflow names, capitalize the initial letter | Volume
of the first word and every word that is an Qtree
object. Capitalize letters for abbreviations and Create a Clustered Data ONTAP Qtree CIFS
acronyms.
Share
For workflow descriptions, include all of the See the description of the sample workflow
important steps of the workflow, including any | Create VMware NFS Datastore on
prerequisites, result of the workflow, or Clustered Data ONTAP Storage, which

conditional aspects of execution. includes the prerequisites.

84 | Workflow Developer's Guide

true.

When previewing a workflow for execution, the
WFA planner considers all of the objects that
are reserved along with the existing objects in
the cache database. Effects of other scheduled
workflows or workflows executing in parallel
are considered when planning a specific
workflow if this option is set to true.

Guidelines Example

Set “Ready For Production” to true only when | None

the workflow is ready for production and can be

displayed in the portal page.

By default, set “Consider reserved elements”to | | ¢ .. 0

Workflow 1 creates a volume, and is
scheduled to execute one week later.
Workflow 2 creates gtrees or LUNSs in
volumes that are searched for, and if
workflow 2 is executed within a day or so,
you should turn off “Consider reserved
elements” for workflow 2 to prevent it from
considering the volume that is to be created
in a week.

e Scenario 2
Workflow 1 uses the Create Volume
command. If there is a scheduled workflow
2 that consumes 100 GB from an aggregate,
then workflow 1 must consider the
requirements for workflow 2 during
planning.

By default, “Enable element existence
validation” is set to true.

e Scenario 1
If you create a workflow that first removes a
volume by name using the command
Remove Volume only if the volume exists,
and the re-creates it using another command
such as Create Volume or Clone
Volume, then the workflow should not use
this flag. The effect of removing the volume
will not be available to the Create volume
command, thereby causing the workflow to
fail.

+ Scenario 2
The Create Volume command is used in a
workflow with a specific name as “vol198”.
If this option is set to true, WFA planner
checks during planning to see if a volume by
that name exists in the given array. If the
volume exists, the workflow fails during
planning.

When the same command is selected more than
once in a workflow, provide appropriate display
names for the command instances.

The “Create, map, and protect LUNs with
SnapVault” sample workflow uses the Create
Volume command twice. However, it uses the
display names as Create Primary Volume
and Create Secondary Volume
appropriately for the primary volume and the
mirrored destination volume.

Coding guidelines for WFA | 85

User inputs
Guidelines Example
Names: $Array
$VolumeName

» Start the name with the “$” character.

» Use an uppercase letter at the beginning of
each word.

« Use uppercase letters for all terms and
abbreviations.

* Do not use underscores.

Display names:

» Use an uppercase letter at the beginning of
each word.

« Separate words with spaces.

« If inputs have specific units, specify the unit
in brackets in the display name directly.

Volume Name
Volume Size (MB)

Descriptions:

» Provide a meaningful description for each
user input.

» Provide examples when required.

You should do this especially when the user
input is expected to be in a specific format.

The user input descriptions are displayed as
tooltips for the user inputs during workflow
execution.

Initiators to be added to an “iGroup”. For
example, IQN or WWPN of the initiator.

Type: Select Enum as the type if you want to
restrict the input to a specific set of values.

Protocol: “ iscsi”, “fcp”, “mixed”

Type: Select Query as the type when the user
can select from values available in the WFA
cache.

$Array: QUERY type with query as follows:

SELECT
ip, name

FROM
storage.array

Type: Mark the user input as locked when the
user input should be restricted to the values that
are obtained from a query or should be restricted
to only the supported Enum types.

$Array: Locked Query type: Only arrays in the
cache can be selected.

$Protocol: Locked Enum type with valid values
as iscsi, fcp, mixed. No other value than the
valid value is supported.

Type: Query Type

Add additional columns as return values in the
query when it helps the storage operator to make
the right choice of user input.

$Aggregate: Provide name, total size, available
size so that the operator knows the attributes
before selecting the aggregate.

86 | Workflow Developer's Guide

Guidelines

Example

Type: Query Type

SQL query for user inputs can refer to any other
user inputs preceding it. This can be used to
limit the results from a query based on other
user inputs such as vFiler units of an array,
volumes of an aggregate, LUNSs in a storage
virtual machine (SVM).

In the sample workflow Create a
Clustered Data ONTAP Volume, the query
for VserverName is as follows:

SELECT
Vvserver .name
FROM
cm_storage.cluster
cm_storage.vserver
WHERE
vserver.cluster_id =
cluster.id
AND cluster.name = "$
{ClusterName}"
AND vserver.type =
ORDER BY
vserver.name ASC

cluster,
vserver

"cluster”

The query refers to ${ClusterName}, where
$ClusterName is the name of the user input
preceding the $VserverName user input.

Type:

Use Boolean type with values as “true, false” for
user inputs that are Boolean in nature. This
helps in writing internal expressions in the
workflow design using the user input directly.
For example, $UserlnputName rather than
$UserlnputName == “Yes'.

$CreateClIFSShare: Boolean type with valid
values as “true” or “false”

Type:

For string and number type, use regular
expressions in the values column when you
want to validate the value with specific formats.

Use regular expressions for IP address and
network mask inputs.

Location-specific user input can be expressed as
“IA-Z][A-Z]\-0[1-9]". This user input accepts
values such as “US-01”, “NB-02”, but not
“nb-00".

Type:
For number type, a range-based validation can
be specified in the values column.

For Number of LUNS to be created, the entry in
the Values column is 1-20.

Group:

Group related user inputs into appropriate
buckets and name the group.

“Storage Details” for all storage-related user
inputs.

“Datastore Details” for all VMware-related user
inputs.

Mandatory:

If the value of any user input is necessary for the
workflow to execute, mark the user input as
mandatory. This ensures that the user input
screen mandatorily accepts that input from the
user.

“$VolumeName” in the “Create NFS Volume”
workflow.

Coding guidelines for WFA | 87

Guidelines

Example

Default value:

If a user input has a default value that can work
for most of the workflow executions, provide
the values. This helps in allowing the user to
provide fewer inputs during execution, if the
default serves the purpose.

None

Constants, variables, and returns parameters

Guidelines

Example

Constants: Define constants when using a
common value for defining parameters to
multiple commands.

AGGREGATE OVERCOMMITMENT THRE
SHOLD in the Create, map, and protect
LUNs with SnapVvault sample workflow.

Constants: Names

AGGREGATE_USED SPACE THRESHOLD

« Use an uppercase letter at the beginning of ActualVolumeSizeInMB
each word.
» Use uppercase letters for all terms and
abbreviations.
» Do not use underscores.
« Use uppercase letters for all letters of
constant names.
Variables: Provide a name to an object defined | None
in one of the command parameter boxes.
Variables are automatically generated names
and can be changed.
Variables: Names volumel
Use lowercase characters for variable names. cifs_share

Return parameters: Use return parameters when
the workflow planning and execution should
return some calculated or selected values during
planning. The values are made available in the
preview mode when the workflow is executed
from a web service as well.

Aggregate: If the aggregate is selected using the
resource selection logic, then the actual selected
aggregate can be defined as a return parameter.

Related references

References to learning material on page 91

Guidelines for creating validation scripts for remote system types

You must be aware of the guidelines for creating validation scripts that are used to test the remote
system types that you define in OnCommand Workflow Automation (WFA).

» The Perl script that you create must be similar to the sample script provided in the Validation

Script window.

» The output of your validation script must be similar to that of the sample script.

88 | Workflow Developer's Guide

Sample validation script

Check connectivity.

Return 1 on success.

Return 0 on failure and set $message

sub checkCredentials {

my ($host, $user, $passwd, $protocol, $port, $timeout) = @ ;
#

Please add the code to check connectivity to $host using $protocol
here.

#

return 1;

}

Guidelines for creating data source types

You must be aware of the guidelines for creating data source types that are used to define custom data
sources for OnCommand Workflow Automation (WFA).

You can define a data source type by using one of the following methods:

SQL: You can use the WFA SQL guidelines to define select queries from data sources based on
an external database.

SCRIPT: You can write a PowerShell script that provides the data for a specific scheme of
dictionary entries.

The guidelines for creating data source types are as follows:

You should use PowerShell language must be used to create script.

The PowerShell script should provide the output for each dictionary entry in its current working
directory.

The data files should be named di ct i onary_ent ry .csv, where the name of the dictionary
entry should be in lower-case characters.

The predefined data source type that collects information from Performance Advisor uses a
SCRIPT-based data source type. The output files are named array_performance.csv and
aggregate_performance.csv.

The .csv file should include the content in the exact order as that of the dictionary entry
attributes.

A dictionary entry includes attributes in the following order: array_ip, date, day, hour, cpu_busy,
total_ops_per_sec, disk_throughput_per_sec.

The PowerShell script adds data to the . csv file in the same order.

$values = get-Array-CounterValueString ([REF]$data)
Add-Content $arrayFile ([byte[1]1[char[1] "\N t$arraylP"t$date"t$day"t
$hour - t$values™n™)

You should use Encoding to ensure that the data output from the script is loaded into the WFA
cache accurately.

You should use \N while entering a Null value in the .csuv file.

Related references

References to learning material on page 91

Reserved words

OnCommand Workflow Automation (WFA) includes some reserved words. You must not use the
reserved words in workflows for any attribute or parameters such as variable names, user input,
constants, and return parameters.

The following is a list of the reserved words in WFA:

e and e Float e proto

e Array e float e return

* assert o for e Runtime

e Boolean « foreach e SecurityManager
* boolean » function e Short

* Byte o if e short

e byte e import e soundslike

e char e import_static e StrictMath

» Character e in e String

e CharSequence instanceof e StringBuffer
e Class e int e StringBuilder
» ClassLoader e Integer e strsim

e Compiler e s e switch

e contains e isdef e System

» convertable_to e Long e Thread

o def « long e ThreadLocal
e do « Math e true

* Double * new e until

* double o null e var

o else e Number * Void

e empty e Object e while

+ false ° or e with

90

How you use REST APIs

You can use REST APIs provided by Workflow Automation (WFA) to invoke workflows from
external portals and the data center orchestration software. WFA supports XML and JSON content
types for all REST APIs.

WFA allows external services to access various resource collections, such as workflows, users, filters,
and finders, through URI paths. The external services can use HTTP methods, such as GET, PUT,
POST, and DELETE, on these URIs to perform CRUD operations on the resources.

You can perform several actions through the WFA REST APIs, including the following:
» Access workflow definitions and metadata.

» Execute workflows and monitor their execution.

» View users and roles, and change passwords.

» Execute and test resource selection filters.

» Execute and test resource finders.

» Manage credentials of storage or other data center objects.

» View data sources and data source types.

REST documentation has more information about REST APIs:

https://wf a_ser ver _i p:por t /rest/docs

wf a_ser ver _i p is the IP address of your WFA server and por t is the TCP port number you have
used for the WFA server during installation.

Related references

Related documentation for OnCommand Workflow Automation on page 93

91

References to learning material

You should be aware of certain scripting and programming practices to create advanced Workflow
Automation (WFA) workflows. You can use reference material to learn about the required options
before creating WFA building blocks or workflows.

Windows PowerShell

WEFA uses PowerShell scripts for workflow operations. The following table includes references to
learning material for PowerShell:

Getting Started with Windows PowerShell http.//msdn.microsoft.com/en-us/library/
windows/desktop/aa973757(v=vs.85).aspx

PowerShell Development — Integrated Scripting | Attp.//technet. microsoft.com/en-us/library/

Environment (ISE) ad315244.aspx

.NET Framework Naming Guidelines http.//msdn.microsoft.com/en-us/library/
Xzf533w0%28v=vs. 71%29.aspx

PowerShell code style http.//get-powershell.com/post/2011/04/13/
Extra-Points-for-Style-when-writing-
PowerShell-Code.aspx

PowerShell Try/Catch Finally http.//technet. microsoft.com/en-us/library/
ad315350.aspx

PowerShell Automatic Variables http.//technet. microsoft.com/en-us/library/
ad347675.aspx

PowerShell Error Reporting http.7//msdn.microsoft.com/en-us/library/
windows/desktop/da878251(v=vs.85).aspx

PowerShell Common Parameters http.//msdn.microsoft.com/en-us/library/
windows/desktop/dad901844(v=vs.85).aspx

Data ONTAP PowerShell toolkit

The Data ONTAP PowerShell toolkit is bundled along with WFA. You can use the PowerShell toolkit
cmdlets to invoke Data ONTAP commands from a PowerShell script. For more information, see the
Data ONTAP PowerShell Toolkit Help, which you can access from the following location:

WFA i nstal | _I ocat i on\WFA\PoSH\Modules\DataONTAP\webhelp\index_html.

WFA i nstal | _| ocati on is the WFA installation directory, and C:\Program Files\NetApp is
the default installation directory.

The following table includes references to information about the Data ONTAP PowerShell toolkit:

ONTAP PowerShell Toolkit Articles https://community.netapp.com/t5/Tech-OnT1ap-
Articles/The-Data-ONTAP-PowerShell-
Toolkit/ta-p/85933

ONTAP PowerShell Toolkit NetApp https://communities.netapp.com/community/

Community products_and_solutions/microsoft/powershell?
view=all

http://msdn.microsoft.com/en-us/library/windows/desktop/aa973757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa973757(v=vs.85).aspx
http://technet.microsoft.com/en-us/library/dd315244.aspx
http://technet.microsoft.com/en-us/library/dd315244.aspx
http://msdn.microsoft.com/en-us/library/xzf533w0%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/xzf533w0%28v=vs.71%29.aspx
http://get-powershell.com/post/2011/04/13/Extra-Points-for-Style-when-writing-PowerShell-Code.aspx
http://get-powershell.com/post/2011/04/13/Extra-Points-for-Style-when-writing-PowerShell-Code.aspx
http://get-powershell.com/post/2011/04/13/Extra-Points-for-Style-when-writing-PowerShell-Code.aspx
http://technet.microsoft.com/en-us/library/dd315350.aspx
http://technet.microsoft.com/en-us/library/dd315350.aspx
http://technet.microsoft.com/en-us/library/dd347675.aspx
http://technet.microsoft.com/en-us/library/dd347675.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd878251(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd878251(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd901844(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd901844(v=vs.85).aspx
https://community.netapp.com/t5/Tech-OnTap-Articles/The-Data-ONTAP-PowerShell-Toolkit/ta-p/85933
https://community.netapp.com/t5/Tech-OnTap-Articles/The-Data-ONTAP-PowerShell-Toolkit/ta-p/85933
https://community.netapp.com/t5/Tech-OnTap-Articles/The-Data-ONTAP-PowerShell-Toolkit/ta-p/85933
https://communities.netapp.com/community/products_and_solutions/microsoft/powershell?view=all
https://communities.netapp.com/community/products_and_solutions/microsoft/powershell?view=all
https://communities.netapp.com/community/products_and_solutions/microsoft/powershell?view=all

92 | Workflow Developer's Guide

Perl

WEFA supports Perl commands for workflow operations. When you install WFA, the required Perl
and Perl modules are installed on the WFA server.

ActivePerl User Guide

You can also access the ActivePerl User Guide from the following location:
WFA i nstal | _I ocati on\WFA\Perl64\htmI\index._html.

WFA_i nst al | _| ocat i on is the WFA installation directory, and C:\Program Files\NetApp is
the default installation directory.

WEFA uses Perl scripts for workflow operations. The following table includes references to learning
material for Perl:

Modern Perl: 2014 http://modernperlbooks.com/books/
modern_perl_2014/index.html

Perl programming documentation http.//perldoc.perl.org/

Perl programming language http./f'wwwi.perl.org/

NetApp Manageability SDK

The required Perl modules of the NetApp Manageability SDK are bundled along with WFA. These
Perl modules are required for using the Perl commands in WFA. For more information, see the
NetApp Manageability SDK documentation, which you can access from the following location:
WFA_i nstal | _| ocati on\WFA\per I\NMSDK\html.

WFA_ i nst al | _| ocat i on is the WFA installation directory, and C:\Program Files\NetApp is
the default installation directory.

Structured Query Language (SQL)
The SQL SELECT syntax is used in filters and to populate user inputs.
MySQL SELECT syntax

MVFLEX Expression Language (MVEL)

You can use MVEL expression syntaxes in WFA workflows—for example, in functions and
variables.

For more information, see the MVEL Language Guide.

Regular expressions
You can use regular expression (regex) in WFA.

ActionScript 3.0 Using regular expressions

http://docs.activestate.com/activeperl/5.16/
http://modernperlbooks.com/books/modern_perl_2014/index.html
http://modernperlbooks.com/books/modern_perl_2014/index.html
http://perldoc.perl.org/
http://www.perl.org/
http://dev.mysql.com/doc/refman/5.1/en/select.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/RegExp.html

93

Related documentation for OnCommand Workflow
Automation

There are additional documents and tools to help you learn to perform more advanced configuration
of your OnCommand Workflow Automation (WFA) server.

Other references

The Workflow Automation space within the NetApp community provides additional learning
resources, including the following:

NetApp community
NetApp community: Workflow Automation (WFA)

Tool references
Interoperability Matrix
Lists supported combinations of hardware components and software versions.

Interoperability Matrix

http://community.netapp.com/t5/OnCommand-Storage-Management-Software-Articles-and-Resources/tkb-p/oncommand-storage-management-software-articles-and-resources/label-name/workflow%20automation%20%28wfa%29?labels=workflow+automation+%28wfa%29
http://mysupport.netapp.com/matrix/

94

Copyright

Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any means—
graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
electronic retrieval system—uwithout prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and
disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein,
except as expressly agreed to in writing by NetApp. The use or purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property rights of
NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents,
or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable,
worldwide, limited irrevocable license to use the Data only in connection with and in support of the
U.S. Government contract under which the Data was delivered. Except as provided herein, the Data
may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written
approval of NetApp, Inc. United States Government license rights for the Department of Defense are
limited to those rights identified in DFARS clause 252.227-7015(b).

95

Trademark

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http.//wwwi.netapp.comy/us/legal/netapptmlist.aspx

http://www.netapp.com/us/legal/netapptmlist.aspx

96

How to send comments about documentation and
receive update notifications

You can help us to improve the quality of our documentation by sending us your feedback. You can
receive automatic notification when production-level (GA/FCS) documentation is initially released or
important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.
doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name,
version, and operating system.

If you want to be notified automatically when production-level documentation is released or
important changes are made to existing production-level documents, follow Twitter account
@NetAppDoc.

You can also contact us in the following ways:

e NetApp, Inc., 1395 Crossman Ave., Sunnyvale, CA 94089 U.S.
» Telephone: +1 (408) 822-6000

« Fax: +1 (408) 822-4501

e Support telephone: +1 (888) 463-8277

mailto:doccomments@netapp.com

