

SnapCenter® Software 4.3

Developer’s Guide

For Creating Custom Plug-ins

December 2019 | 215-14671_A0
doccomments@netapp.com

2

Contents
Introduction .. 4

Generic plug-in handling in all API calls .. 4

Using plug-in parameters .. 4

Using exit codes .. 5

Logging error messages .. 6

Preserving data consistency .. 7

PERL-based development ... 7

General plug-in handling ... 7

Using results object ... 7

Preserving data consistency .. 8

Logging error messages .. 8

Using plug-in stubs .. 9

Plug-in package information ... 12

Operations .. 12

setENV operation .. 12

Version operation ... 13

Quiesce operation ... 13

Unquiesce operation ... 13

NATIVE style .. 14

General plug-in handling ... 14

Logging error messages .. 14

Using plug-in stubs .. 15

Examples ... 16

Windows PowerShell .. 16

Windows BATCH ... 17

UNIX Shell Script ... 17

Java style ... 18

Limitations .. 18

Supported methods .. 19

Tutorial .. 21

Setting up eclipse .. 21

3

Implementing the required methods ... 22

Using result object .. 23

Using the Context Object .. 25

Exporting the plug-in... 26

Custom plug-in in SnapCenter .. 27

Creating a plug-in description file ... 27

Using plug-in descriptor file attributes and its significance .. 27

Creating a ZIP file .. 29

Uploading the plug-in ZIP file .. 30

Deploying the custom plug-ins ... 30

Copyright information... 32

Trademark information ... 33

How to send comments about documentation and receive update notifications 34

4

Introduction
The SnapCenter Server enables you to deploy and manage your applications as plug-ins to SnapCenter.

Applications of your choice can be plugged into the SnapCenter Server for data protection and

management capabilities.

SnapCenter enables you to develop custom plug-ins using different programming languages. You can

develop a custom plug-in using Perl, Java, BATCH, or other Scripting languages.

To use custom plug-ins in SnapCenter, you must perform the following tasks:

• Create a plug-in for your application using the instructions in this guide

• Create a description file

• Export the custom plug-in to install it on the SnapCenter host

• Upload the plug-in zip file into SnapCenter Server

Generic plug-in handling in all API calls
For every API call, use the following information:

• Plug-in parameters

• Exit codes

• Log messages

• Data consistency

Using plug-in parameters

A set of parameters are passed to the plug-in as part of every API call made. The following table lists the

specific information for the parameters.

Parameter Purpose

ACTION

Determines the workflow name. For example,

discover, backup, fileOrVolRestore or

cloneVolAndLun

RESOURCES
Lists resources to be protected. A resource is

identified by UID and Type. The list is presented

to plug-in in the following format:

5

Parameter Purpose

“<UID>,<TYPE>;<UID>,<TYPE>”. For example,

“Instance1,Instance;Instance2\\DB1,Database”

APP_NAME

Determines which plug-in is being used. For

example, DB2, MYSQL. SnapCenter Server has

built-in support for the listed applications. This

parameter is case sensitive.

APP_IGNORE_ERROR

(Y or N) This causes SnapCenter to exit or not

exit when an application error is encountered.

This is useful when you are backing up multiple

databases and do not want a single failure to

stop the backup operation.

<RESOURCE_NAME>__APP_INSTANCE_USERNAME SnapCenter credential is set for the resource.

<RESOURCE_NAME>_APP_INSTANCE_PASSWORD SnapCenter credential is set for the resource.

<RESOURCE_NAME>_<CUSTOM_PARAM>

Every Resource level custom key value is

available to plug-ins prefixed with

“<RESOURCE_NAME>_”. For example, if a

custom key is “MASTER_SLAVE” for a resource

named “MySQLDB”, then it will be available as

MySQLDB_MASTER_SLAVE

Using exit codes

The plug-in returns the status of the operation back to the host by means of exit codes. Each

code has a specific meaning and the plug-in uses the right exit code to indicate the same.

6

The following table depicts error codes and their meaning.

Exit Code Purpose

0 Successful operation

99 Requested operation is not supported or implemented

100 Failed operation, skip unquiesce, and exit. Unquiesce is by default.

101 Failed operation, continue with backup operation

other Failed operation, run unquiesce, and exit

Logging error messages

The error messages are passed from the plug-in to the SnapCenter Server. The message

includes the message, log level, and time stamp.

The following table lists levels and their purposes.

Parameter Purpose

INFO informational message

WARN warning message

ERROR error message

DEBUG debug message

TRACE trace message

7

Preserving data consistency

Custom plug-ins preserve data between operations of the same workflow execution. For

example, a plug-in can store data at the end of quiesce, which can be used during unquiesce

operation.

The data to be preserved is set as part of result object by plug-in. It follows a specific format

and is described in detail under each style of plug-in development.

PERL-based development
You must follow certain conventions while developing the plug-in using PERL.

• Contents must be readable

• Must implement mandatory operations setENV, quiesce, and unquiesce

• Must use a specific syntax to pass results back to the agent

• The contents should be saved as <PLUGIN_NAME>.pm file

Available operations are

• setENV

• version

• quiesce

• unquiesce

• clone_pre, clone_post

• restore_pre, restore

• cleanup

General plug-in handling

Using results object

Every custom plug-in operation must define the results object. This object sends messages, exit

code, stdout, and stderr back to the host agent.

Results object:

 my $result = {

8

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

Returning the results object:

return $result;

Preserving data consistency

It is possible to preserve data between operations (except cleanup) as part of same workflow

execution. This is done using key-value pairs. The key-value pairs of data are set as part of result

object and are retained and available in the subsequent operations of same workflow.

The following code sample sets the data to be preserved:

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 $result->{env}->{‘key1’} = ‘value1’;

 $result->{env}->{‘key2’} = ‘value2’;

 ….

 return $result

The above code sets two key-value pairs, which are available as input in the subsequent

operation. The two key-value pairs are accessible using the following code:

 sub setENV {

 my ($self, $config) = @_;

 my $first_value = $config->{‘key1’};

 my $second_value = $config->{‘key2’};

 …

}

Logging error messages

Each operation can send messages back to the host agent, which displays and stores the

content. A message contains the message level, a timestamp, and a message text. Multiline

messages are supported.

Load the SnapCreator::Event Class:

9

my $msgObj = new SnapCreator::Event();

my @message_a = ();

Use the msgObj to capture a message by using the collect method.

$msgObj->collect(\@message_a, INFO, "My INFO Message");

$msgObj->collect(\@message_a, WARN, "My WARN Message");

$msgObj->collect(\@message_a, ERROR, "My ERROR Message");

$msgObj->collect(\@message_a, DEBUG, "My DEBUG Message");

$msgObj->collect(\@message_a, TRACE, "My TRACE Message");

Apply messages to the results object:

$result->{message} = \@message_a;

Using plug-in stubs

Custom plug-ins must expose plug-in stubs. These are methods that the SnapCenter Server

calls, based on a workflow.

Plug-in Stub Optional/Required Purpose

setENV required

This stub sets the environment and the configuration

object. Any environment parsing or handling should be

done here. Each time a stub is called, the setENV stub is

called just before. It is only required for PERL-style plug-

ins.

Version Optional This stub is used to get application version.

Discover Optional

This stub is used to discover application objects like

instance or database hosted on the agent or host. The

plug-in is expected to return discovered application

objects in specific format as part of the response. This

stub is only used in case the application is integrated

with SnapDrive for Unix.

10

Plug-in Stub Optional/Required Purpose

Note: Linux file system (Linux Flavors) is supported.

AIX/Solaris (Unix Flavors) are not supported.

discovery_complete Optional

This stub is used to discover application objects like

instance or database hosted on the agent or host. The

plug-in is expected to return discovered application

objects in specific format as part of the response. This

stub is only used in case the application is integrated

with SnapDrive for Unix.

Note: Linux file system (Linux flavors) is supported. AIX and

Solaris (Unix flavors) are not supported.

Quiesce required

This stub is responsible for performing a quiesce, which

means placing application into a state where you can

create a Snapshot copy. This is called before Snapshot

copy operation. The metadata of application to be

retained should be set as part of response, which shall

be returned during subsequent clone or restore

operations on corresponding storage Snapshot copy in

the form of configuration parameters.

Unquiesce required

This stub is responsible for performing a unquiesce,

which means placing application into a normal state.

This is called after you create a Snapshot copy.

clone_pre optional

This stub is responsible for performing preclone tasks.

This assumes you are using the built-in SnapCenter

Server cloning interface and is triggered when

performing clone operation.

11

Plug-in Stub Optional/Required Purpose

clone_post optional

This stub is responsible for performing post clone tasks.

This assumes you are using the built-in SnapCenter

Server cloning interface and is triggered only when

performing clone operation.

restore_pre optional

This stub is responsible for performing prerestore tasks.

This assumes you are using the built-in SnapCenter

Server restore interface and is triggered while

performing restore operation.

Restore optional

This stub is responsible for performing application

restore tasks. This assumes you are using the built-in

SnapCenter Server restore interface and is only

triggered when performing restore operation.

Cleanup optional

This stub is responsible for performing cleanup after

backup, restore, or clone operations. Cleanup can be

during normal workflow execution or in the event of a

workflow failure. You can infer the workflow name

under which cleanup is called by referring to

configuration parameter ACTION, which can be backup,

cloneVolAndLun, or fileOrVolRestore. The configuration

parameter ERROR_MESSAGE indicates if there was any

error while executing the workflow. If ERROR_MESSAGE

is defined and NOT NULL, then cleanup is called during

workflow failure execution.

app_version Optional
This stub is used by SnapCenter to get application

version detail managed by the plug-in.

12

Plug-in package information

Every plug-in must have following information:

package MOCK;

our @ISA = qw(SnapCreator::Mod);

=head1 NAME

 MOCK - class which represents a MOCK module.

=cut

=head1 DESCRIPTION

 MOCK implements methods which only log requests.

=cut

use strict;

use warnings;

use diagnostics;

use SnapCreator::Util::Generic qw (trim isEmpty);

use SnapCreator::Util::OS qw (isWindows isUnix getUid

createTmpFile);

use SnapCreator::Event qw (INFO ERROR WARN DEBUG COMMENT ASUP

CMD DUMP);

my $msgObj = new SnapCreator::Event();

my %config_h = ();

Operations

You can code various operations like setENV, Version, Quiesce, and Unquiesce, which are

supported by the custom plug-ins.

setENV operation

The setENV operation is required for plug-ins created using PERL. You can set the ENV and can

easily access plug-in parameters.

sub setENV {

 my ($self, $obj) = @_;

 %config_h = %{$obj};

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 return $result;

}

13

Version operation

The version operation returns the application version information.

sub version {

 my $version_result = {

 major => 1,

 minor => 2,

 patch => 1,

 build => 0

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $version_result->{message} = \@message_a;

 return $version_result;

}

Quiesce operation

Quiesce operation performs application quiesce operation on resources listed in the

RESOURCES parameter.

sub quiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $result->{message} = \@message_a;

 return $result;

}

Unquiesce operation

14

Unquiesce operation is required to unquiesce the application. The list of resources is available

in the RESOURCES parameter.

sub unquiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::unquiesce");

 $result->{message} = \@message_a;

 return $result;

}

NATIVE style

SnapCenter supports non-PERL programming or scripting languages to create plug-ins. This is

known as NATIVE style programming, which can be script or BATCH file.

The NATIVE-style plug-ins must follow certain conventions given below:

• The plug-in must be executable

• For Unix systems, the user who runs the agent must have execute privileges on the plug-

in

• For Windows systems, PowerShell plug-ins must have the suffix .ps1, other windows

scripts must have either .cmd or .bat suffix and must be executable by the user

• The plug-ins must react to command-line argument like "-quiesce", "-unquiesce"

• The plug-ins must return exit code 99 incase an operation or function is not

implemented

• The plug-ins must use a specific syntax to pass results back to the server

General plug-in handling

Logging error messages

15

Each operation can send messages back to the server, which displays and stores the content. A

message contains the message level, a timestamp, and a message text. Multiline messages are

supported.

Format:

SC_MSG#<level>#<timestamp>#<message>

SC_MESSAGE#<level>#<timestamp>#<message>

As level, the following values should be used

Using plug-in stubs

SnapCenter plug-ins must implement plug-in stubs. These are methods that the SnapCenter

Server calls based on a specific workflow.

Plug-in

Stub
Optional/Required Purpose

quiesce required

This stub is responsible for performing a quiesce. It places the

application into a state where we can create a Snapshot copy.

This is called before storage Snapshot copy operation.

unquiesce required

This stub is responsible for performing a unquiesce. It places

the application in a normal state. This is called after storage

Snapshot copy operation.

clone_pre optional

This stub is responsible for performing pre clone tasks. This

assumes that you are using the built-in SnapCenter cloning

interface and also is only triggered while performing action

"clone_vol or clone_lun".

clone_post Optional This stub is responsible for performing post clone tasks. This

assumes you are using the built-in SnapCenter cloning interface

16

Plug-in

Stub
Optional/Required Purpose

and also is only triggered while performing "clone_vol or

clone_lun" operations.

restore_pre Optional

This stub is responsible for performing pre restore tasks. This

assumes you are using the built-in SnapCenter restore interface

and is only triggered while performing restore operation.

restore optional

This stub is responsible for performing all restore actions. This

assumes you are not using built-in restore interface. It is

triggered while performing restore operation.

Examples

Windows PowerShell

Check if the script can be executed on your system. If you cannot execute the script, set Set-

ExecutionPolicy bypass for the script and retry the operation.

if ($args.length -ne 1) {

 write-warning "You must specify a method";

 break;

 }

 function log ($level, $message) {

 $d = get-date

 echo "SC_MSG#$level#$d#$message"

 }

 function quiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Quiescing application using script $app_name";

 log "INFO" "Quiescing application finished successfully"

 }

 function unquiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Unquiescing application using script $app_name";

 log "INFO" "Unquiescing application finished successfully"

17

 }

 switch ($args[0]) {

 "-quiesce" {

 quiesce;

 }

 "-unquiesce" {

 unquiesce;

 }

 default {

 write-error "Function $args[0] is not implemented";

 exit 99;

 }

 }

 exit 0;

Windows BATCH

 @echo off

 set /a EXIT=0

if /i "%1" == "-quiesce" goto :quiesce

if /i "%1" == "-unquiesce" goto :unquiesce

 :usage

 echo usage: %0 ^{ ^| -quiesce ^| -unquiesce }

 set /a EXIT=99

 goto :exit

 :quiesce

 set /a EXIT=0

 goto :exit

 :unquiesce

 set /a EXIT=0

 goto :exit

 :exit

 exit /b %EXIT%

UNIX Shell Script

#!/bin/bash

 case "$1" in

 "-quiesce")

 echo "SC_MSG#INFO#23.02.2010#Quiescing database"

 echo "SC_MSG#INFO#23.02.2010#Executing command dbmcli"

 echo "SC_MSG#DEBUG#23.02.2010#Command dbmcli returned"

 echo "version abc.123.xyz"

 echo "dbstate online"

18

 echo "DATA_VOLUME_0001=abc123"

 echo "SC_MSG#INFO#23.02.2010#Quiescing database finished

successfully"

 echo "SC_PRESERVE#DB007#VOL_01#/sapdb/DB007/sapdata1"

 echo "SC_PRESERVE#DB007#VOL_02#/sapdb/DB007/sapdata2"

 echo "SC_PRESERVE#DB007#VOL_03#/sapdb/DB007/sapdata3"

 ;;

 "-unquiesce")

 echo "SC_MSG#INFO#23.02.2010#Unquiescing"

 echo "SC_MSG#DEBUG#23.02.2010#Command dbmcli returned"

 echo "invalid parameter"

 echo "SC_MSG#ERROR#23.02.2010#Unquiescing database

failed"

 exit 1

 ;;

 *)

 echo "not implemented";

 exit 99

 ;;

 esac

 exit 0;

Java style
A Java custom plug-in interacts directly with an application like database, instance and so on.

Limitations

There are certain limitations that you should be aware of while developing a plug-in using Java

programing language.

Plug-in characteristic Java plug-in

Complexity Low to Medium

Memory footprint Up to 10-20 MB

Dependencies on other libraries Libraries for application communication

19

Plug-in characteristic Java plug-in

Number of threads 1

Thread runtime Less than an hour

Why do we have those limits?

The goal of the SnapCenter Agent is to ensure continuous, safe, and robust application

integration. By supporting Java plug-ins, it is possible for plug-ins to introduce memory leaks

and other unwanted issues. Those issues are hard to tackle, especially when the goal is to keep

things simple to use. If a plug-in's complexity is not too complex, it is much less likely that the

developer(s) would have introduced the errors. The danger of Java plug-in is that they are

running in the same JVM as the SnapCenter Agent itself. When the plug-in crashes or leaks

memory, it may also impact the Agent negatively.

Supported methods

Method Required Description Called when and by whom?

Version Yes
Needs to return the version of the

plug-in.

By the SnapCenter Server or

agent to request the version of

the plug-in.

Quiesce Yes

Needs to perform a quiesce on the

application. In most cases, this means

putting the application into a state

where the SnapCenter Server can

create a backup (for example, a

Snapshot copy).

Before the SnapCenter Server

creates a Snapshot(s) copy or

performs a backup in general.

20

Method Required Description Called when and by whom?

Unquiesce Yes

Needs to perform an unquiesce on

the application. In most cases, this

means putting the application back

into a normal operation state.

After the SnapCenter Server has

created a Snapshot copy or has

performed a backup in general.

Cleanup No
Responsible for cleaning up anything

that the plug-in needs to clean up.

When a workflow on the

SnapCenter Server finish

(successfully or with a failure).

clonePre No

Should perform actions that need to

happen before a clone operation is

performed.

When a user triggers a

"cloneVol" or "cloneLun" action

and uses the built-in cloning

wizard (GUI/CLI).

clonePost No

Should perform actions that need to

happen after a clone operation was

performed.

When a user triggers a

"cloneVol" or "cloneLun" action

and uses the built-in cloning

wizard (GUI/CLI).

restorePre No

Should perform actions that need to

happen before the restore operation

is called.

When a user triggers a restore

operation.

Restore No
Responsible for performing a

restore/recovery of application.

When a user triggers a restore

operation.

appVersion No
To retrieve application version

managed by the plug-in.

As part of ASUP data collection

in every workflow like

Backup/Restore/Clone.

21

Tutorial

This section describes how to create a custom plug-in using the Java programming language.

Setting up eclipse

1. Create a new Java Project "TutorialPlugin" in Eclipse

2. Click Finish

3. Right click the new project -> Properties -> Java Build Path -> Libraries -> Add External

JARs

4. Navigate to the ../lib/ folder of host Agent and select jars scAgent-5.0-core.jar and

common-5.0.jar

5. Select the project and right click the src folder -> New -> Package and create a new

package with the name com.netapp.snapcreator.agent.plugin.TutorialPlugin

6. Right-click on the new package and select New -> Java Class.

o Enter name as TutorialPlugin.

o Click the superclass browse button and search for "*AbstractPlugin". Only one

result should show up: "AbstractPlugin -

com.netapp.snapcreator.agent.nextgen.plugin".

o Click Finish

o Java class:

package com.netapp.snapcreator.agent.plugin.TutorialPlugin;

import

com.netapp.snapcreator.agent.nextgen.common.result.Describe

Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.VersionR

esult;

import

com.netapp.snapcreator.agent.nextgen.context.Context;

import

com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;

public class TutorialPlugin extends AbstractPlugin {

 @Override

 public DescribeResult describe(Context context) {

22

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result quiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result unquiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public VersionResult version() {

 // TODO Auto-generated method stub

 return null;

 }

}

Implementing the required methods

Quiesce, unquiesce, and version are mandatory methods that each custom Java plug-in must

implement.

The following is a version method to return the version of the plug-in.

 @Override
 public VersionResult version() {

 VersionResult versionResult = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

 return versionResult;

 }

Below is the implementation of quiesce and unquiesce method. These will be interacting with

the application, which is being protected by SnapCenter Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the functionality that SnapCenter

Agent provides the following to the plug-in developers:

 @Override
 public Result quiesce(Context context) {

23

 final Logger logger = context.getLogger();

 /*

 * TODO: Add application interaction here

 */

 logger.error("Something bad happened.");

 logger.info("Successfully handled application");

 Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

 return result;

 }

The method gets passed in a Context object. This contains multiple helpers, for example a

Logger and a Context Store, and also the information about the current operation (workflow-ID,

job-ID). We can get the logger by calling final Logger logger = context.getLogger();. The logger

object provides similar methods known from other logging frameworks, for example, logback.

In the result object, you can also specify the exit code. In this example, zero is returned, since

there was no issue. Other exit codes can map to different failure scenarios.

Using result object

The Result object contains the following parameters:

Parameter Default Description

Config
Empty

config

This parameter can be used to send config parameters back to the server. It

can be parameters that the plug-in wants to update. Whether this change is

actually reflected in the config on the SnapCenter Server is dependent on

the APP_CONF_PERSISTENCY=Y or N parameter in the config.

exitCode 0
Indicates the status of the operation. A "0" means the operation was

executed successfully. Other values indicate errors or warnings.

Stdout
Empty

List

This can be used to transmit stdout messages back to the SnapCenter

Server.

24

Parameter Default Description

Stderr
Empty

List

This can be used to transmit stderr messages back to the SnapCenter

Server.

Messages
Empty

List

This list contains all the messages that a plug-in wants to return to the

server. The SnapCenter Server displays those messages in the CLI or GUI.

The SnapCenter Agent provides Builders (https://en.wikipedia.org/wiki/Builder_pattern) for all

its result types. This makes using them very straightforward:

Result result = Result.builder()

 .withExitCode(0)

 .withStdout(stdout)

 .withStderr(stderr)

 .withConfig(config)

 .withMessages(logger.getMessages())

 .build();

For example, set exit code to 0, set lists for Stdout and Stderr, set config parameters and also

append the log messages that will be sent back to the server. If you do not need all the

parameters, send only the ones that are needed. As each parameter has a default value, if you

remove .withExitCode(0) from the code below, the result is unaffected:

Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

VersionResult

The VersionResult informs the SnapCenter Server the plug-in version. As it also inherits

from Result, it contains the config, exitCode, stdout, stderr, and messages parameters.

Parameter Default Description

Major 0 Major version field of the plug-in.

https://en.wikipedia.org/wiki/Builder_pattern

25

Parameter Default Description

Minor 0 Minor version field of the plug-in.

Patch 0 Patch version field of the plug-in.

Build 0 Build version field of the plug-in.

For example:

VersionResult result = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

Using the Context Object

The context object provides the following methods:

Context method Purpose

String

getWorkflowId();

Returns the workflow id that is being used by the SnapCenter Server for the

current workflow.

Config getConfig();
Returns the config that is being send from the SnapCenter Server to the

Agent.

Workflow-ID

The workflow-ID is the id that the SnapCenter Server uses to refer to a specific running

workflow.

Config

26

This object contains (most) of the parameters that a user can set in the config on the

SnapCenter Server. However, due to security reasons, some of those parameters may get

filtered on the server side. Following is an example on how to access to the Config and retrieve

a parameter:

final Config config = context.getConfig();

String myParameter =

config.getParameter("PLUGIN_MANDATORY_PARAMETER");

// myParameter now contains the parameter read from the config on the SnapCenter Server

If a config parameter key doesn't exist, it will return an empty String ("").

Exporting the plug-in

You must export the plug-in to install it on the SnapCenter host.

In Eclipse perform the following tasks:

1. Right click on the base package of the plug-in (in our example

com.netapp.snapcreator.agent.plugin.TutorialPlugin).

2. Select Export -> Java -> Jar File

3. Click Next.

4. In the following window, specify the destination jar file path: tutorial_plugin.jar

The plug-in's base class is named TutorialPlugin.class, the plug-in must be added to a folder

with the same name.

If your plug-in depends on additional libraries, you can create the following folder: lib/

You can add jar files, on which the plug-in is dependent (for example, a database driver). When

SnapCenter loads the plug-in, it automatically associates all the jar files in this folder with it and

adds them to the classpath.

27

Custom plug-in in SnapCenter
The custom plug-in created using Java, PERL, or NATIVE style can be installed on the host using

SnapCenter Server to enable data protection of your application. You must have exported the

plug-in to install it on the SnapCenter host using the procedure provided in this tutorial.

Creating a plug-in description file

For every plug-in created, you must have a description file. The description file describes the

details of the plug-in. The name of the file must be Plugin_descriptor.xml.

Using plug-in descriptor file attributes and its significance

Attribute Description

Name Name of the plug-in. Alpha numeric

characters are allowed. For example, DB2,

MYSQL, MongoDB

For plug-ins created in NATIVE style, ensure

that you do not provide the extension of the

file. For example, if the plug-in name is

MongoDB.sh, specify the name as MongoDB.

Version Plug-in version. Can include both major and

minor version. For example, 1.0, 1.1, 2.0, 2.1.

DisplayName The plug-in name to be displayed in

SnapCenter Server. If multiple versions of

the same plug-in are written, ensure that the

display name is the same across all versions.

PluginType Language used to create the plug-in.

Supported values are Perl, Java and Native.

Native plug-in type includes Unix/Linux shell

28

scripts, Windows scripts, Python or any other

scripting language.

OSName The host OS name where the plug-in is

installed. Valid values are Windows and

Linux. It is possible for a single plug-in to be

available for deployment on multiple OS

types, like PERL type plug-in.

OSVersion The host OS version where plug-in is

installed.

ResourceName Name of resource type that the plug-in can

support. For example, database, instance,

collections

Parent In case, the ResourceName is hierarchically

dependent on another Resource type, then

Parent determines the parent ResourceType.

For instance, DB2 plug-in, the ResourceName

“Database” has a parent “Instance”

RequireFileSystemPlugin Yes or No. Determines if the plug-in requires

FileSystem plug-in integration.

SupportsApplicationRecovery Yes or No. Determines if the recovery tab is

displayed in the restore wizard.

ResourceRequiresAuthentication Yes or No. Determines if the resources,

which are auto discovered or have not been

auto discovered need credentials to perform

the data protection operations after

discovering the storage.

RequireFileSystemClone Yes or No. Determines if the plug-in requires
FileSystem plug-in integration for clone
workflow.

29

An example of the Plugin_descriptor.xml file for custom plug-in DB2 is as follows:

<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>

<SupportedOS>

<OS>

<OSName>windows</OSName>

<OSVersion>2012</OSVersion>

</OS>

<OS>

<OSName>Linux</OSName>

<OSVersion>7</OSVersion>

</OS>

</SupportedOS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>

<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>

<RequireFileSystemPlugin>no</RequireFileSystemPlugin>

<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>

<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>

</Plugin>

Creating a ZIP file

After a plug-in is developed and a descriptor file is created, you must add the plug-in files and

the Plugin_descriptor.xml file to a folder and zip it.

You must consider the following before creating a ZIP file:

• The script name must be same as the plug-in name.

• For PERL plug-in, the ZIP folder must contain a folder with the script file and the

descriptor file must be outside this folder. The folder name must be the same as the

plug-in name.

30

• For plug-ins other than the PERL plug-in, the ZIP folder must contain the descriptor and

the script files.

• The OS version must be a number.

Examples:

• DB2 plug-in: add DB2.pm and Plugin_descriptor.xml file to “DB2.zip”.

• Plug-in developed using Java: add jar files, dependent jar files, and

Plugin_descriptor.xml file to a folder and zip it.

Uploading the plug-in ZIP file

You must upload the plug-in ZIP file to SnapCenter Server so that the plug-in is available for

deployment on the desired host.

You can upload the plug-in using the UI or cmdlets.

UI:

• Upload the plug-in ZIP file as part of Add or Modify Host workflow wizard

• Click “Select to upload custom plug-in”

PowerShell:

1. Upload-SmPluginPackage cmdlet

For example, PS> Upload-SmPluginPackage -AbsolutePath c:\DB2_1.zip

For detailed information about PowerShell cmdlets, use the SnapCenter cmdlet help or

see the cmdlet reference information.

Deploying the custom plug-ins

The uploaded custom plug-in is now available for deployment on the desired host as part of the

Add and Modify Host workflow. You can have multiple version of plug-ins uploaded to the

SnapCenter Server and you can select the desired version to deploy on a specific host.

31

For more information on how to upload the plug-in see, SnapCenter Software Installation and

Setup Guide.

32

Copyright information
Copyright © 2019 NetApp, Inc. All rights reserved. Printed in the U.S.

No part of this document covered by copyright may be reproduced in any form or by any
means— graphic, electronic, or mechanical, including photocopying, recording, taping, or
storage in an electronic retrieval system—without prior written permission of the copyright
owner.

Software derived from copyrighted NetApp material is subject to the following license and
disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without
notice. NetApp assumes no responsibility or liability arising from the use of products described
herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product
does not convey a license under any patent rights, trademark rights, or any other intellectual
property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is
proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-
sublicensable, worldwide, limited irrevocable license to use the Data only in connection with
and in support of the U.S. Government contract under which the Data was delivered. Except as
provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or
displayed without the prior written approval of NetApp, Inc. United States Government license
rights for the Department of Defense are limited to those rights identified in DFARS clause
252.227-7015(b).

33

Trademark information
NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are
trademarks of NetApp, Inc. Other company and product names may be trademarks of their
respective owners.

http://www.netapp.com/us/legal/netapptmlist.aspx

http://www.netapp.com/us/legal/netapptmlist.aspx

34

How to send comments about documentation and

receive update notifications
You can help us to improve the quality of our documentation by sending us your feedback. You can
receive automatic notification when production-level (GA/FCS) documentation is initially released or
important changes are made to existing production-level documents.

If you have suggestions for improving this document, send us your comments by email.

doccomments@netapp.com

To help us direct your comments to the correct division, include in the subject line the product name,
version, and operating system.

If you want to be notified automatically when production-level documentation is released or
important changes are made to existing production-level documents, follow Twitter account
@NetAppDoc.

You can also contact us in the following ways:

• NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089 U.S.

• Telephone: +1 (408) 822-6000

• Fax: +1 (408) 822-4501

• Support telephone: +1 (888) 463-8277

mailto:doccomments@netapp.com
mailto:doccomments@netapp.com

