

Recuperar de um desastre

ONTAP MetroCluster

NetApp January 10, 2025

This PDF was generated from https://docs.netapp.com/pt-br/ontap-metrocluster/disasterrecovery/concept_dr_workflow.html on January 10, 2025. Always check docs.netapp.com for the latest.

Índice

Recuperar de um desastre	1
Fluxo de trabalho para recuperação de desastres.	1
Realizar um switchover forçado após um desastre	1
Escolher o procedimento de recuperação correto	4
Recuperar de uma falha de vários controladores ou armazenamento	0
Recuperando-se de uma falha não controladora 112	2

Recuperar de um desastre

Fluxo de trabalho para recuperação de desastres

Use o fluxo de trabalho para executar a recuperação de desastres.

Realizar um switchover forçado após um desastre

Se ocorrer um desastre, há etapas que você deve executar no cluster de desastre e no cluster sobrevivente após o switchover para garantir um serviço de dados seguro e contínuo.

Determinar se ocorreu um desastre é feito por:

- Um administrador
- · O software tiebreaker do MetroCluster, se estiver configurado
- O software Mediador ONTAP, se estiver configurado

Esgrima fora do local do desastre

Após o desastre, se os nós do local de desastre precisarem ser substituídos, é preciso impedi-los de retomar o serviço. Caso contrário, você arrisca a possibilidade de corrupção de dados se os clientes começarem a acessar os nós antes que o procedimento de substituição seja concluído.

Passo

1. Interrompa os nós no local de desastre e mantenha-os desligados ou no prompt DO Loader até que sejam direcionados para inicializar o ONTAP:

system node halt -node disaster-site-node-name

Se os nós do local de desastre tiverem sido destruídos ou não puderem ser interrompidos, desligue a energia dos nós e não inicialize os nós de substituição até que sejam direcionados para o procedimento de recuperação.

Realizar uma comutação forçada

O processo de switchover, além de fornecer operações ininterruptas durante o teste e a manutenção, permite que você se recupere de uma falha no local com um único comando.

Antes de começar

- Pelo menos um dos nós do local sobreviventes deve estar ativo e em execução antes de executar o switchover.
- Todas as alterações de configuração anteriores devem ser concluídas antes de executar uma operação de switchback.

Isto destina-se a evitar a concorrência com a operação de comutação negociada ou de comutação.

As configurações do SnapMirror e do SnapVault são excluídas automaticamente.

Sobre esta tarefa

O metrocluster switchover comando alterna entre os nós em todos os grupos de DR na configuração MetroCluster. Por exemplo, em uma configuração de MetroCluster de oito nós, ele alterna entre os nós em ambos os grupos de DR.

Passos

1. Execute o switchover executando o seguinte comando no local sobrevivente:

metrocluster switchover -forced-on-disaster true

A operação pode demorar um período de minutos para ser concluída. Você pode verificar o progresso usando o metrocluster operation show comando.

- 2. Responda y quando solicitado para continuar com o switchover.
- 3. Verifique se o switchover foi concluído com sucesso executando o metrocluster operation show comando.

```
mcclA::> metrocluster operation show
Operation: switchover
Start time: 10/4/2012 19:04:13
State: in-progress
End time: -
Errors:
mcclA::> metrocluster operation show
Operation: switchover
Start time: 10/4/2012 19:04:13
State: successful
End time: 10/4/2012 19:04:22
Errors: -
```

Se o switchover for vetado, você tem a opção de reemitir o metrocluster switchover-forced-ondisaster true comando com --override-vetoes a opção. Se você usar esse parâmetro opcional, o sistema substituirá quaisquer vetos virtuais que impediram o switchover.

Depois de terminar

Os relacionamentos do SnapMirror precisam ser restabelecidos após o switchover.

A saída para o comando storage Aggregate plex show é indeterminada após um switchover do MetroCluster

Quando você executa o storage aggregate plex show comando após um switchover MetroCluster, o status de plex0 do agregado raiz comutada é indeterminado e é exibido como falhou. Durante este tempo, a raiz comutada não é atualizada. O estado real deste Plex só pode ser determinado após a fase de cicatrização do MetroCluster.

Acessar volumes no estado NVFAIL após um switchover

Após um switchover, você deve limpar o estado NVFAIL redefinindo o -in-nvfailed-state parâmetro volume modify do comando para remover a restrição de clientes para acessar dados.

Antes de começar

O banco de dados ou o sistema de arquivos não deve estar em execução ou tentando acessar o volume afetado.

Sobre esta tarefa

A definição -in-nvfailed-state do parâmetro requer privilégios de nível avançado.

Passo

1. Recupere o volume usando o volume modify comando com o -in-nvfailed-state parâmetro definido como false.

Depois de terminar

Para obter instruções sobre como examinar a validade do arquivo de banco de dados, consulte a documentação do seu software de banco de dados específico.

Se o banco de dados usar LUNs, revise as etapas para tornar os LUNs acessíveis ao host após uma falha do NVRAM.

Informações relacionadas

"Monitoramento e proteção da validade do banco de dados usando NVFAIL"

Escolher o procedimento de recuperação correto

Após uma falha em uma configuração do MetroCluster, você deve selecionar o procedimento de recuperação correto. Use a tabela a seguir e os exemplos para selecionar o procedimento de recuperação apropriado.

Esta informação nesta tabela pressupõe que a instalação ou transição está concluída, o que significa que o metrocluster configure comando foi executado com sucesso.

Escopo das falhas no local de desastre	Procedimento
Sem falha de hardware	"Recuperando-se de uma falha não controladora"
Nenhuma falha no módulo do controladorOutro hardware falhou	"Recuperando-se de uma falha não controladora"
 Falha ou falha de um único módulo de controlador de componentes FRU dentro do módulo do controlador As unidades não falharam 	Se uma falha for limitada a um único módulo de controlador, você deve usar o procedimento de substituição FRU do módulo de controlador para o modelo de plataforma. Em uma configuração de MetroCluster de quatro ou oito nós, essa falha é isolada para o par de HA local. Nota: o procedimento de substituição FRU do módulo do controlador pode ser usado em uma configuração MetroCluster de dois nós se não houver falhas de unidade ou outras falhas de hardware. "Documentação dos sistemas de hardware da ONTAP"
 Falha ou falha de um único módulo de controlador de componentes FRU dentro do módulo do controlador As unidades falharam 	"Recuperando-se de uma falha de vários controladores ou de armazenamento"
 Falha ou falha de um único módulo de controlador de componentes FRU dentro do módulo do controlador As unidades não falharam O hardware adicional fora do módulo do controlador falhou 	"Recuperando-se de uma falha de vários controladores ou de armazenamento" Você deve ignorar todas as etapas para atribuição de unidade.

Cenários de falha do módulo do controlador durante a instalação do MetroCluster

Responder a uma falha do módulo do controlador durante o procedimento de configuração do MetroCluster depende se o metrocluster configure comando foi concluído com êxito.

• Se o metrocluster configure comando ainda não foi executado ou falhou, você deve reiniciar o procedimento de configuração do software MetroCluster desde o início com um módulo de controlador de substituição.

Você deve ter certeza de executar as etapas em em "Restaurar padrões do sistema em um módulo do controlador"cada controlador (incluindo o controlador de substituição) para verificar se a configuração anterior foi removida.

• Se o metrocluster configure comando tiver sido concluído com êxito e o módulo do controlador falhar, utilize a tabela anterior para determinar o procedimento de recuperação correto.

Cenários de falha do módulo do controlador durante a transição MetroCluster FC para IP

O procedimento de recuperação pode ser usado se ocorrer uma falha no local durante a transição. No entanto, ela só pode ser usada se a configuração for uma configuração mista estável, com o grupo de DR FC e o grupo de DR IP totalmente configurados. A saída metrocluster node show do comando deve mostrar ambos os grupos de DR com todos os oito nós.

Se a falha ocorreu durante a transição quando os nós estão em processo de serem adicionados ou removidos, você deve entrar em Contato com o suporte técnico.

Cenários de falha do módulo do controlador em configurações de MetroCluster de oito nós

Cenários de falha:

- Falhas de módulo único de controladora em um único grupo de DR
- Duas falhas no módulo de controladora em um único grupo de DR
- Falhas de módulo único de controladora em grupos de DR separados
- Três falhas no módulo do controlador distribuídas pelos grupos de DR

Falhas de módulo único de controladora em um único grupo de DR

Nesse caso, a falha é limitada a um par de HA.

• Se nenhum armazenamento exigir substituição, você pode usar o procedimento de substituição FRU do módulo do controlador para o modelo da plataforma.

"Documentação dos sistemas de hardware da ONTAP"

 Se o armazenamento necessitar de substituição, pode utilizar o procedimento de recuperação do módulo multi-controlador.

"Recuperando-se de uma falha de vários controladores ou de armazenamento"

Esse cenário também se aplica a configurações de MetroCluster de quatro nós.

Duas falhas no módulo de controladora em um único grupo de DR

Neste caso, a falha requer uma mudança. Pode utilizar o procedimento de recuperação de falhas do módulo multi-controlador.

"Recuperando-se de uma falha de vários controladores ou de armazenamento"

Esse cenário também se aplica a configurações de MetroCluster de quatro nós.

Falhas de módulo único de controladora em grupos de DR separados

Nesse caso, a falha é limitada a pares de HA separados.

• Se nenhum armazenamento exigir substituição, você pode usar o procedimento de substituição FRU do módulo do controlador para o modelo da plataforma.

O procedimento de substituição da FRU é realizado duas vezes, uma para cada módulo do controlador com falha.

"Documentação dos sistemas de hardware da ONTAP"

• Se o armazenamento necessitar de substituição, pode utilizar o procedimento de recuperação do módulo multi-controlador.

"Recuperando-se de uma falha de vários controladores ou de armazenamento"

Três falhas no módulo do controlador distribuídas pelos grupos de DR

Neste caso, a falha requer uma mudança. Você pode usar o procedimento de recuperação de falha do módulo de vários controladores para o Grupo de RD 1.

"Recuperando-se de uma falha de vários controladores ou de armazenamento"

Você pode usar o procedimento de substituição FRU do módulo do controlador específico da plataforma para o Grupo dois de RD.

"Documentação dos sistemas de hardware da ONTAP"

Cenários de falha do módulo do controlador em configurações de MetroCluster de dois nós

O procedimento utilizado depende da extensão da falha.

• Se nenhum armazenamento exigir substituição, você pode usar o procedimento de substituição FRU do módulo do controlador para o modelo da plataforma.

"Documentação dos sistemas de hardware da ONTAP"

 Se o armazenamento necessitar de substituição, pode utilizar o procedimento de recuperação do módulo multi-controlador.

"Recuperando-se de uma falha de vários controladores ou de armazenamento"

Recuperar de uma falha de vários controladores ou armazenamento

Recuperando-se de uma falha de vários controladores ou de armazenamento

Se a falha da controladora se estender a todos os módulos de controladora de um lado de um grupo de DR em uma configuração MetroCluster (incluindo um único controlador em uma configuração de MetroCluster de dois nós) ou o storage tiver sido substituído, você precisará substituir o equipamento e reatribuir a propriedade das unidades para recuperação do desastre.

Verifique se você verificou e executou as seguintes tarefas antes de usar este procedimento:

• Reveja os procedimentos de recuperação disponíveis antes de decidir utilizar este procedimento.

"Escolher o procedimento de recuperação correto"

• Confirme se o registo da consola está ativado nos seus dispositivos.

"Ativar o registo da consola"

• Certifique-se de que o local do desastre esteja vedado.

"Esgrima fora do local do desastre".

• Verifique se o switchover foi realizado.

"Realizar uma comutação forçada".

- Verifique se as unidades de substituição e os módulos do controlador são novos e não devem ter sido atribuídos propriedade anteriormente.
- Os exemplos deste procedimento mostram configurações de dois ou quatro nós. Se você tiver uma configuração de oito nós (dois grupos de DR), terá que levar em conta todas as falhas e executar a tarefa de recuperação necessária nos módulos adicionais da controladora.

Este procedimento utiliza o seguinte fluxo de trabalho:

Este procedimento pode ser usado ao executar a recuperação em um sistema que estava em transição intermediária quando a falha ocorreu. Nesse caso, você deve executar as etapas apropriadas ao se preparar para o switchback, como indicado no procedimento.

Ativar o registo da consola

Ative o log do console em seus dispositivos antes de continuar a substituir o hardware e inicializar novos controladores.

O NetApp recomenda fortemente que você ative o log do console nos dispositivos que você está usando e execute as seguintes ações ao executar este procedimento:

- Deixe o AutoSupport ativado durante a manutenção.
- Acione uma mensagem de manutenção do AutoSupport antes e depois da manutenção para desativar a criação de casos durante a atividade de manutenção.

Consulte o artigo da base de dados de Conhecimento "Como suprimir a criação automática de casos durante as janelas de manutenção programada".

 Ative o registo de sessão para qualquer sessão CLI. Para obter instruções sobre como ativar o registo de sessão, consulte a secção "saída de sessão de registo" no artigo da base de dados de conhecimento "Como configurar o PuTTY para uma conetividade ideal aos sistemas ONTAP".

Substitua o hardware e inicialize novos controladores

Se os componentes de hardware tiverem de ser substituídos, tem de os substituir utilizando os respetivos guias de instalação e substituição de hardware individuais.

Substitua o hardware no local de desastre

Antes de começar

Os controladores de armazenamento devem ser desligados ou permanecer parados (mostrando o prompt Loader).

Passos

1. Substitua os componentes conforme necessário.

Nesta etapa, você substitui e faz o cabeamento dos componentes exatamente como eles foram cabeados antes do desastre. Não deve ligar os componentes.

Se você está substituindo	Execute estas etapas	Usando estes guias
Switches FC em uma configuração MetroCluster FC	 a. Instale os novos interrutores. b. Faça o cabo das ligações ISL. Não ligue os switches FC no momento. 	"Mantenha os componentes do MetroCluster"
Switches IP em uma configuração IP MetroCluster	 a. Instale os novos interrutores. b. Faça o cabo das ligações ISL. Não ligue os interrutores IP neste momento. 	"Instalação e configuração do IP MetroCluster: Diferenças entre as configurações do ONTAP MetroCluster"
Compartimentos de disco	 a. Instale as gavetas de disco e os discos. As pilhas de compartimentos de disco devem ser a mesma configuração que no local que sobreviveu. Os discos podem ser do mesmo tamanho ou maiores, mas devem ser do mesmo tipo (SAS ou SATA). b. Faça o cabeamento das gavetas de disco para gavetas adjacentes na stack e para a ponte FC para SAS. Não ligue as gavetas de disco no momento. 	"Documentação dos sistemas de hardware da ONTAP"
Cabos SAS	a. Instale os novos cabos. Não ligue as gavetas de disco no momento.	"Documentação dos sistemas de hardware da ONTAP"

Pontes FC para SAS em uma configuração de MetroCluster FC	a. Instalar as pontes FC para SAS.	"Instalação e configuração do MetroCluster conectado à malha"
	 Faça cabos das pontes FC para SAS. 	"Instalação e configuração do Stretch MetroCluster"
	Vincule-os aos switches FC ou aos módulos do controlador, dependendo do tipo de configuração do MetroCluster. Não ligue as pontes FC para SAS no momento.	

Módulos do controlador	a. Instale os novos módulos do controlador:	"Documentação dos sistemas de hardware da ONTAP"
	 Os módulos do controlador têm de ser o mesmo modelo que os que estão a ser substituídos. 	
	Por exemplo, os módulos do controlador 8080 devem ser substituídos por módulos do controlador 8080.	
	 Os módulos do controlador não devem ter sido anteriormente parte de qualquer cluster dentro da configuração do MetroCluster ou de qualquer configuração de cluster existente anteriormente. 	
	Se eles fossem, você deve definir padrões e executar um processo de wipeconfig	
	 Certifique-se de que todas as placas de interface de rede (como Ethernet ou FC) estejam nos mesmos slots usados nos módulos de controladora antigos. 	
	 Faça o cabo dos novos módulos de controlador exatamente o mesmo que os antigos. 	
	As portas que conetam o módulo da controladora ao storage (por conexões com os switches IP ou FC, pontes FC para SAS ou diretamente) devem ser as mesmas que as usadas antes do desastre.	
	Não ligue os módulos do controlador neste momento.	

2. Verifique se todos os componentes estão cabeados corretamente para sua configuração.

- "Configuração IP do MetroCluster"
- "Configuração conectado à malha do MetroCluster"

Determine as IDs do sistema e as IDs de VLAN dos módulos antigos do controlador

Depois de substituir todo o hardware no local de desastre, você deve determinar as IDs do sistema dos módulos do controlador substituídos. Você precisa dos IDs de sistema antigos quando reatribuir discos aos novos módulos do controlador. Se os sistemas forem modelos AFF A220, AFF A250, AFF A400, AFF A800, FAS2750, FAS500f, FAS8300 ou FAS8700, você também deverá determinar as IDs de VLAN usadas pelas interfaces IP do MetroCluster.

Antes de começar

Todos os equipamentos no local de desastre devem ser desligados.

Sobre esta tarefa

Esta discussão fornece exemplos para configurações de dois e quatro nós. Para configurações de oito nós, você precisa levar em conta todas as falhas nos nós adicionais no segundo grupo de DR.

Para uma configuração de MetroCluster de dois nós, você pode ignorar referências ao segundo módulo de controlador em cada local.

Os exemplos deste procedimento baseiam-se nas seguintes premissas:

- O local A é o local do desastre.
- Node_A_1 falhou e está sendo completamente substituído.
- Node_A_2 falhou e está sendo completamente substituído.

O nó _A_2 está presente apenas em uma configuração MetroCluster de quatro nós.

- O local B é o local sobrevivente.
- Node_B_1 está em bom estado.
- Node_B_2 está em bom estado.

Node_B_2 está presente apenas em uma configuração MetroCluster de quatro nós.

Os módulos do controlador têm as seguintes IDs de sistema originais:

Número de nós na configuração do MetroCluster	Nó	ID do sistema original
Quatro	node_A_1	4068741258
node_A_2	4068741260	node_B_1
4068741254	node_B_2	4068741256
Dois	node_A_1	4068741258

Passos

1. No site sobrevivente, exiba as IDs do sistema dos nós na configuração do MetroCluster.

Número de nós na configuração do MetroCluster	Use este comando
Quatro ou oito	<pre>metrocluster node show -fields node- systemid,ha-partner-systemid,dr- partner-systemid,dr-auxiliary-systemid</pre>
Dois	<pre>metrocluster node show -fields node- systemid,dr-partner-systemid</pre>

Neste exemplo para uma configuração de MetroCluster de quatro nós, as seguintes IDs de sistema antigas são recuperadas:

- Node_A_1: 4068741258
- Node_A_2: 4068741260

Os discos pertencentes aos módulos de controladora antigos ainda são de propriedade desses IDs de sistema.

```
metrocluster node show -fields node-systemid, ha-partner-systemid, dr-
partner-systemid, dr-auxiliary-systemid
dr-group-id cluster node node-systemid ha-partner-systemid
dr-partner-systemid dr-auxiliary-systemid
_____ ____
   Cluster A Node A 1 4068741258 4068741260
1
4068741254
              4068741256
       Cluster A Node A 2 4068741260 4068741258
1
4068741256
              4068741254
1
       Cluster B Node B 1 -
_
        Cluster B Node B 2 -
1
4 entries were displayed.
```

Neste exemplo para uma configuração de MetroCluster de dois nós, o seguinte ID de sistema antigo é recuperado:

Node_A_1: 4068741258

Os discos pertencentes ao antigo módulo do controlador ainda são propriedade desta ID do sistema.

2. Para configurações IP do MetroCluster usando o serviço Mediador ONTAP, obtenha o endereço IP do serviço Mediador ONTAP:

storage iscsi-initiator show -node * -label mediator

3. Se os sistemas forem modelos AFF A220, AFF A400, FAS2750, FAS8300 ou FAS8700, determine as IDs de VLAN:

metrocluster interconnect show

Os IDs de VLAN estão incluídos no nome do adaptador mostrado na coluna adaptador da saída.

Neste exemplo, os IDs de VLAN são 120 e 130:

metrocluster interconnec	t show	
	Mirror	Mirror
Partne	r Admin	Oper
Node Partner Name Type	Status	Status Adapter Type Status
Node A 1 Node A 2 HA	 enabled	online
		eQa-120 iWARP Up
		elb-130 iWARP Up
Node B 1 DR	enabled	online
		e0a-120 iWARP Up
		eOb-130 iWARP Up
Node_B_2 AUX	enabled	offline
		e0a-120 iWARP Up
		e0b-130 iWARP Up
Node_A_2 Node_A_1 HA	enabled	online
		e0a-120 iWARP Up
		e0b-130 iWARP Up
Node B 2 DR	enabled	online
		e0a-120 iWARP Up
		eOb-130 iWARP Up
Node B 1 AUX	enabled	offline
		e0a-120 iWARP Up
		e0b-130 iWARP Up
12 entries were displaye	d.	±

Isolar unidades de substituição do local sobrevivente (configurações IP do MetroCluster)

Você deve isolar quaisquer unidades de substituição retirando as conexões do iniciador iSCSI da MetroCluster dos nós sobreviventes.

Sobre esta tarefa

Este procedimento só é necessário nas configurações IP do MetroCluster.

Passos

1. A partir do prompt de qualquer nó sobrevivente, altere para o nível de privilégio avançado:

```
set -privilege advanced
```

Você precisa responder com y quando solicitado para continuar no modo avançado e ver o prompt do modo avançado (*>).

2. Desconete os iniciadores iSCSI em ambos os nós sobreviventes no grupo DR:

```
storage iscsi-initiator disconnect -node surviving-node -label *
```

Este comando deve ser emitido duas vezes, uma para cada um dos nós sobreviventes.

O exemplo a seguir mostra os comandos para desconetar os iniciadores no local B:

```
site_B::*> storage iscsi-initiator disconnect -node node_B_1 -label *
site B::*> storage iscsi-initiator disconnect -node node B 2 -label *
```

3. Voltar ao nível de privilégio de administrador:

```
set -privilege admin
```

Limpe a configuração de um módulo do controlador

Antes de usar um novo módulo de controlador na configuração do MetroCluster, você deve limpar a configuração existente.

Passos

1. Se necessário, interrompa o nó para exibir o prompt Loader:

halt

2. No prompt Loader, defina as variáveis ambientais como valores padrão:

set-defaults

3. Salvar o ambiente:

saveenv

4. No prompt DO Loader, inicie o menu de inicialização:

boot_ontap menu

5. No prompt do menu de inicialização, desmarque a configuração:

wipeconfig

Responda yes ao prompt de confirmação.

O nó reinicializa e o menu de inicialização é exibido novamente.

6. No menu de inicialização, selecione a opção 5 para inicializar o sistema no modo Manutenção.

Responda yes ao prompt de confirmação.

Netboot os novos módulos do controlador

Se os novos módulos do controlador tiverem uma versão diferente do ONTAP da versão nos módulos do controlador sobreviventes, você deverá inicializar os novos módulos do controlador.

Antes de começar

- · Você deve ter acesso a um servidor HTTP.
- Você deve ter acesso ao site de suporte da NetApp para baixar os arquivos de sistema necessários para sua plataforma e versão do software ONTAP que está sendo executado nele.

"Suporte à NetApp"

Passos

- 1. Acesse o "Site de suporte da NetApp" para baixar os arquivos usados para executar o netboot do sistema.
- 2. Transfira o software ONTAP adequado a partir da secção de transferência de software do site de suporte da NetApp e guarde o ficheiro ONTAP-version_image.tgz num diretório acessível à Web.
- 3. Vá para o diretório acessível pela Web e verifique se os arquivos que você precisa estão disponíveis.

Se o modelo da plataforma for	Então
Sistemas da série FAS/AFF8000	Extraia o conteúdo do arquivo ONTAP- version_image.tgzfile para o diretório de destino: Tar -zxvf ONTAP-version_image.tgz NOTA: Se você estiver extraindo o conteúdo no Windows, use 7-Zip ou WinRAR para extrair a imagem netboot. Sua lista de diretórios deve conter uma pasta netboot com um arquivo do kernel:netboot/kernel
Todos os outros sistemas	Sua lista de diretórios deve conter uma pasta netboot com um arquivo do kernel: ONTAP- version_image.tgz você não precisa extrair o arquivo ONTAP-version_image.tgz.

- 4. No prompt Loader, configure a conexão netboot para um LIF de gerenciamento:
 - Se o endereçamento IP for DHCP, configure a conexão automática:

ifconfig eOM -auto

· Se o endereçamento IP for estático, configure a conexão manual:

ifconfig eOM -addr=ip addr -mask=netmask-gw=gateway

- 5. Execute o netboot.
 - Se a plataforma for um sistema da série 80xx, use este comando:

netboot http://web server ip/path to web-accessible directory/netboot/kernel

• Se a plataforma for qualquer outro sistema, use o seguinte comando:

```
netboot http://web_server_ip/path_to_web-accessible_directory/ontap-
version image.tgz
```

6. No menu de arranque, selecione a opção (7) Instalar primeiro o novo software para transferir e instalar a nova imagem de software no dispositivo de arranque.

Disregard the following message: "This procedure is not supported for Non-Disruptive Upgrade on an HA pair". It applies to nondisruptive upgrades of software, not to upgrades of controllers. . Se você for solicitado a continuar o procedimento, digite `y` e, quando solicitado a fornecer o pacote, digite o URL do arquivo de imagem: `\http://web_server_ip/path_to_web-accessible_directory/ontapversion image.tgz`

Enter username/password if applicable, or press Enter to continue.

 Certifique-se de entrar n para ignorar a recuperação de backup quando você vir um prompt semelhante ao seguinte:

Do you want to restore the backup configuration now? {y|n}

8. Reinicie entrando y quando você vir um prompt semelhante ao seguinte:

```
The node must be rebooted to start using the newly installed software. Do you want to reboot now? \{y|n\}
```

- 9. No menu Boot (Inicialização), selecione opção 5 para entrar no modo Maintenance (Manutenção).
- 10. Se tiver uma configuração de MetroCluster de quatro nós, repita este procedimento no outro novo módulo do controlador.

Determine as IDs do sistema dos módulos do controlador de substituição

Depois de substituir todo o hardware no local de desastre, você deve determinar a ID do sistema do módulo ou módulos do controlador de armazenamento recém-instalados.

Sobre esta tarefa

Deve executar este procedimento com os módulos do controlador de substituição no modo de manutenção.

Esta seção fornece exemplos para configurações de dois e quatro nós. Para configurações de dois nós, você pode ignorar referências ao segundo nó em cada local. Para configurações de oito nós, você deve ter em conta os nós adicionais no segundo grupo de DR. Os exemplos fazem as seguintes suposições:

- O local A é o local do desastre.
- O nó_A_1 foi substituído.
- O nó_A_2 foi substituído.

Presente apenas em configurações de MetroCluster de quatro nós.

- O local B é o local sobrevivente.
- Node_B_1 está em bom estado.
- Node_B_2 está em bom estado.

Presente apenas em configurações de MetroCluster de quatro nós.

Os exemplos neste procedimento usam controladores com as seguintes IDs de sistema:

Número de nós na configuração do MetroCluster	Nó	ID do sistema original	Nova ID do sistema	O parecerá com esse nó como parceiro de recuperação de desastres
Quatro	node_A_1	4068741258	1574774970	node_B_1
node_A_2	4068741260	1574774991	node_B_2	node_B_1
4068741254	inalterado	node_A_1	node_B_2	4068741256
inalterado	node_A_2	Dois	node_A_1	4068741258
1574774970	node_B_1	node_B_1	4068741254	inalterado

Em uma configuração de MetroCluster de quatro nós, o sistema determina as parcerias de DR emparelhando o nó com o ID de sistema mais baixo no site_A e o nó com o ID de sistema mais baixo no site_B. Como as IDs do sistema mudam, os pares de DR podem ser diferentes após a conclusão das substituições do controlador do que eram antes do desastre.

No exemplo anterior:

- Node_A_1 (1574774970) será emparelhado com node_B_1 (4068741254)
- Node_A_2 (1574774991) será emparelhado com node_B_2 (4068741256)

Passos

1. Com o nó no modo Manutenção, exiba a ID do sistema local do nó de cada nó: disk show

No exemplo a seguir, o novo ID do sistema local é 1574774970:

```
*> disk show
Local System ID: 1574774970
...
```

2. No segundo nó, repita a etapa anterior.

Esta etapa não é necessária em uma configuração de MetroCluster de dois nós.

No exemplo a seguir, o novo ID do sistema local é 1574774991:

```
*> disk show
Local System ID: 1574774991
...
```

Verifique o estado ha-config dos componentes

Em uma configuração MetroCluster, o estado ha-config do módulo do controlador e dos componentes do chassi deve ser definido como "mcc" ou "MCC-2n" para que eles iniciem corretamente.

Antes de começar

O sistema tem de estar no modo de manutenção.

Sobre esta tarefa

Esta tarefa deve ser executada em cada novo módulo do controlador.

Passos

1. No modo de manutenção, apresentar o estado HA do módulo do controlador e do chassis:

ha-config show

O estado de HA correto depende da configuração do MetroCluster.

Número de controladores na configuração MetroCluster	O estado HA para todos os componentes deve ser
Configuração de FC MetroCluster de oito ou quatro nós	mcc
Configuração de FC MetroCluster de dois nós	mcc-2n
Configuração IP do MetroCluster	mccip

2. Se o estado do sistema apresentado do controlador não estiver correto, defina o estado HA para o módulo

do controlador:

Número de controladores na configuração MetroCluster	Comando
Configuração de FC MetroCluster de oito ou quatro nós	ha-config modify controller mcc
Configuração de FC MetroCluster de dois nós	ha-config modify controller mcc-2n
Configuração IP do MetroCluster	ha-config modify controller mccip

3. Se o estado do sistema apresentado do chassis não estiver correto, defina o estado HA para o chassis:

Número de controladores na configuração MetroCluster	Comando
Configuração de FC MetroCluster de oito ou quatro nós	ha-config modify chassis mcc
Configuração de FC MetroCluster de dois nós	ha-config modify chassis mcc-2n
Configuração IP do MetroCluster	ha-config modify chassis mccip

4. Repita estas etapas no outro nó de substituição.

Determine se a criptografia de ponta a ponta foi ativada nos sistemas originais

Você deve verificar se os sistemas originais foram configurados para criptografia de ponta a ponta.

Passo

1. Execute o seguinte comando a partir do site sobrevivente:

metrocluster node show -fields is-encryption-enabled

Se a encriptação estiver ativada, é apresentada a seguinte saída:

```
1 cluster_A node_A_1 true
1 cluster_A node_A_2 true
1 cluster_B node_B_1 true
1 cluster_B node_B_2 true
4 entries were displayed.
```


"Configurar criptografia de ponta a ponta"Consulte para obter informações sobre os sistemas suportados.

Prepare-se para switchback em uma configuração IP MetroCluster

Prepare-se para switchback em uma configuração IP MetroCluster

Você deve executar certas tarefas para preparar a configuração IP do MetroCluster para a operação de switchback.

Sobre esta tarefa

Definição das variáveis ambientais necessárias nas configurações IP do MetroCluster

Nas configurações IP do MetroCluster, você deve recuperar o endereço IP das interfaces MetroCluster nas portas Ethernet e usá-las para configurar as interfaces nos módulos de controladora de substituição.

Sobre esta tarefa

- Esta tarefa é necessária apenas nas configurações IP do MetroCluster.
- Os comandos nesta tarefa são executados a partir do prompt de cluster do local sobrevivente e do prompt Loader dos nós no local de desastre.
- Certas plataformas usam uma VLAN para a interface IP do MetroCluster. Por padrão, cada uma das duas portas usa uma VLAN diferente: 10 e 20.

Se suportado, você também pode especificar uma VLAN diferente (não padrão) maior que 100 (entre 101 e 4095) usando o vlan-id parâmetro.

As seguintes plataformas não suportam o vlan-id parâmetro:

- FAS8200 e AFF A300
- AFF A320
- FAS9000 e AFF A700

• AFF C800, ASA C800, AFF A800 e ASA A800

Todas as outras plataformas suportam o vlan-id parâmetro.

• Os nós nestes exemplos têm os seguintes endereços IP para suas conexões IP MetroCluster:

Estes exemplos são para um sistema AFF A700 ou FAS9000. As interfaces variam de acordo com o modelo da plataforma.

Nó	Porta	Endereço IP
node_A_1	e5a	172.17.26.10
e5b	172.17.27.10	node_A_2
e5a	172.17.26.11	e5b
172.17.27.11	node_B_1	e5a
172.17.26.13	e5b	172.17.27.13
node_B_2	e5a	172.17.26.12

A tabela a seguir resume as relações entre os nós e os endereços IP MetroCluster de cada nó.

Nó	Parceiro DE HA	Parceiro de DR	Parceiro auxiliar DR
node_A_1	node_A_2	node_B_1	node_B_2
• e5a: 172.17.26.10	• e5a: 172.17.26.11	• e5a: 172.17.26.13	• e5a: 172.17.26.12
• e5b: 172.17.27.10	• e5b: 172.17.27.11	• e5b: 172.17.27.13	• e5b: 172.17.27.12
node_A_2	node_A_1	node_B_2	node_B_1
• e5a: 172.17.26.11	• e5a: 172.17.26.10	• e5a: 172.17.26.12	• e5a: 172.17.26.13
• e5b: 172.17.27.11	• e5b: 172.17.27.10	• e5b: 172.17.27.12	• e5b: 172.17.27.13
node_B_1	node_B_2	node_A_1	node_A_2
• e5a: 172.17.26.13	• e5a: 172.17.26.12	• e5a: 172.17.26.10	• e5a: 172.17.26.11
• e5b: 172.17.27.13	• e5b: 172.17.27.12	• e5b: 172.17.27.10	• e5b: 172.17.27.11
node_B_2	node_B_1	node_A_2	node_A_1
• e5a: 172.17.26.12	• e5a: 172.17.26.13	• e5a: 172.17.26.11	• e5a: 172.17.26.10
• e5b: 172.17.27.12	• e5b: 172.17.27.13	• e5b: 172.17.27.11	• e5b: 172.17.27.10

Passos

1. A partir do site sobrevivente, reúna os endereços IP das interfaces MetroCluster no local de desastre:

metrocluster configuration-settings connection show

Os endereços necessários são os endereços do parceiro DR mostrados na coluna **Endereço de rede de destino**.

A saída do comando varia dependendo do modelo da plataforma.

Sistemas introduzidos no ONTAP 9.15,1 ou posterior

Os sistemas introduzidos no ONTAP 9.15,1 ou posterior (AFF A70, AFF A90 e AFF A1K) têm portas separadas para HA e DR, como mostrado na saída de exemplo a seguir:

cluster B::*> metrocluster configuration-settings connection show DR Source Destination Destination DR Source Network Address Network Address Partner Type Group Cluster Node Config State _____ _____ _____ 1 cluster B node B 1 Home Port: e5a 172.17.26.13 172.17.26.10 DR Partner completed Home Port: e5a 172.17.26.13 172.17.26.11 DR Auxiliary completed Home Port: e5b 172.17.27.13 172.17.27.10 DR Partner completed Home Port: e5b 172.17.27.13 172.17.27.11 DR Auxiliary completed node B 2 Home Port: e5a 172.17.26.12 172.17.26.11 DR Partner completed Home Port: e5a 172.17.26.12 172.17.26.10 DR Auxiliary completed Home Port: e5b 172.17.27.12 DR Partner 172.17.27.11 completed Home Port: e5b 172.17.27.12 172.17.27.10 DR Auxiliary completed 12 entries were displayed.

Todos os outros sistemas

A saída a seguir mostra os endereços IP de uma configuração com sistemas AFF A700 e FAS9000 com as interfaces IP MetroCluster nas portas E5A e e5b. As interfaces podem variar dependendo do tipo de plataforma.

cluster_B::*>	metroclu	uster configurat:	ion-settings com	nection show
DR		Source	Destination	
DR		Source	Destination	
Group Cluster	Node	Network Address	Network Address	Partner Type
Config State				
1 cluster	В			
-	node B 1	1		
	Home	Port: e5a		
		172.17.26.13	172.17.26.12	HA Partner
completed				
-	Home	Port: e5a		
		172.17.26.13	172.17.26.10	DR Partner
completed				
-	Home	Port: e5a		
		172.17.26.13	172.17.26.11	DR Auxiliary
completed				-
-	Home	Port: e5b		
		172.17.27.13	172.17.27.12	HA Partner
completed				
1 1 1 1 1 1	Home	Port: e5b		
		172.17.27.13	172.17.27.10	DR Partner
completed				
	Home	Port: e5b		
		172.17.27.13	172.17.27.11	DR Auxiliarv
completed				
1 1 1 1 1 1	node B 2	2		
	Home	Port: e5a		
		172.17.26.12	172.17.26.13	HA Partner
completed				
÷	Home	Port: e5a		
		172.17.26.12	172.17.26.11	DR Partner
completed				
1	Home	Port: e5a		
		172.17.26.12	172.17.26.10	DR Auxiliarv
completed				- 1
÷	Home	Port: e5b		
		172.17.27.12	172.17.27.13	HA Partner
completed				
÷	Home	Port: e5b		
		172.17.27.12	172.17.27.11	DR Partner
completed				
1	Home	Port: e5b		
		172.17.27.12	172.17.27.10	DR Auxiliarv
completed				
1				

12 entries were displayed.

 Se você precisar determinar o ID da VLAN ou o endereço de gateway para a interface, determine os IDs da VLAN do local sobrevivente:

```
metrocluster configuration-settings interface show
```

- Você precisa determinar a ID da VLAN se os modelos da plataforma suportarem IDs de VLAN (consulte a lista acima) e se você não estiver usando os IDs de VLAN padrão.
- · Você precisa do endereço de gateway se estiver usando "Redes de área ampla da camada 3"o .

Os IDs de VLAN estão incluídos na coluna **Endereço de rede** da saída. A coluna **Gateway** mostra o endereço IP do gateway.

Neste exemplo, as interfaces são e0a com a VLAN ID 120 e e0b com a VLAN ID 130:

```
Cluster-A::*> metrocluster configuration-settings interface show
DR
Config
Group Cluster Node Network Address Netmask
                                              Gateway
State
____
             _____ _____
_____
1
     cluster A
            node A 1
               Home Port: e0a-120
                      172.17.26.10 255.255.255.0 -
completed
               Home Port: e0b-130
                      172.17.27.10 255.255.255.0 -
completed
```

3. No prompt DO Loader para cada um dos nós do local de desastre, defina o valor do bootarg dependendo do modelo da plataforma:

- Se as interfaces estiverem usando as VLANs padrão ou o modelo de plataforma não usar um ID de VLAN (consulte a lista acima), o *vlan-id* não será necessário.
- Se a configuração não estiver usando "Layer3 redes de grande área", o valor para *gateway-IP-address* será **0** (zero).

Sistemas introduzidos no ONTAP 9.15,1 ou posterior

O valor para *HA-Partner-IP-address* deve ser definido como **0** (zero) em sistemas introduzidos no ONTAP 9.15,1 ou posterior porque eles têm portas separadas para DR e HA.

Defina o seguinte bootarg:

```
setenv bootarg.mcc.port_a_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-
address,DR-aux-partnerIP-address,vlan-id
```

```
setenv bootarg.mcc.port_b_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-
address,DR-aux-partnerIP-address,vlan-id
```

Os comandos a seguir definem os valores para node_A_1 usando VLAN 120 para a primeira rede e VLAN 130 para a segunda rede:

setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,0,172.17.26.13,172.17.26.12,120

```
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,0,172.17.27.13,172.17.27.12,130
```

O exemplo a seguir mostra os comandos para node_A_1 sem um ID de VLAN:

setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,0,172.17.26.13,172.17.26.12

setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,0,172.17.27.13,172.17.27.12

Todos os outros sistemas

Defina o seguinte bootarg:

```
setenv bootarg.mcc.port_a_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-
address,DR-aux-partnerIP-address,vlan-id
```

```
setenv bootarg.mcc.port_b_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-
address,DR-aux-partnerIP-address,vlan-id
```

Os comandos a seguir definem os valores para node_A_1 usando VLAN 120 para a primeira rede e

VLAN 130 para a segunda rede:

```
setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,172.17.26.11,172.17.26.13,172.17.26.12,120
```

```
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,172.17.27.11,172.17.27.13,172.17.27.12,130
```

O exemplo a seguir mostra os comandos para node_A_1 sem um ID de VLAN:

```
setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,172.17.26.11,172.17.26.13,172.17.26.12
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,172.17.27.11,172.17.27.13,172.17.27.12
```

4. A partir do local sobrevivente, reúna os UUIDs para o local de desastre:

metrocluster node show -fields node-cluster-uuid, node-uuid

```
cluster B::> metrocluster node show -fields node-cluster-uuid, node-uuid
  (metrocluster node show)
dr-group-id cluster node node-uuid
node-cluster-uuid
_____ ____
_____
         cluster A node A 1 f03cb63c-9a7e-11e7-b68b-00a098908039
1
ee7db9d5-9a82-11e7-b68b-00a098
908039
1
        cluster_A node_A_2 aa9a7a7a-9a81-11e7-a4e9-00a098908c35
ee7db9d5-9a82-11e7-b68b-00a098
908039
1
        cluster B node B 1 f37b240b-9ac1-11e7-9b42-00a098c9e55d
07958819-9ac6-11e7-9b42-00a098
c9e55d
  cluster_B node_B_2 bf8e3f8f-9ac4-11e7-bd4e-00a098ca379f
1
07958819-9ac6-11e7-9b42-00a098
c9e55d
4 entries were displayed.
cluster A::*>
```

Nó	UUID
Cluster_B	07958819-9ac6-11e7-9b42-00a098c9e55d
node_B_1	f37b240b-9ac1-11e7-9b42-00a098c9e55d
node_B_2	bf8e3f8f-9ac4-11e7-bd4e-00a098ca379f
Cluster_A	ee7db9d5-9a82-11e7-b68b-00a098908039
node_A_1	f03cb63c-9a7e-11e7-b68b-00a098908039
node_A_2	a9a7a7a-9a81-11e7-a4e9-00a098908c35

5. No prompt Loader dos nós de substituição, defina os UUIDs:

```
setenv bootarg.mgwd.partner_cluster_uuid partner-cluster-UUID
setenv bootarg.mgwd.cluster_uuid local-cluster-UUID
setenv bootarg.mcc.pri_partner_uuid DR-partner-node-UUID
setenv bootarg.mcc.aux_partner_uuid DR-aux-partner-node-UUID
setenv bootarg.mcc_iscsi.node_uuid local-node-UUID`
```

a. Defina os UUIDs em node_A_1.

O exemplo a seguir mostra os comandos para definir os UUIDs em node_A_1:

```
setenv bootarg.mgwd.cluster_uuid ee7db9d5-9a82-11e7-b68b-00a098908039
setenv bootarg.mgwd.partner_cluster_uuid 07958819-9ac6-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.pri_partner_uuid f37b240b-9ac1-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.aux_partner_uuid bf8e3f8f-9ac4-11e7-bd4e-
00a098ca379f
setenv bootarg.mcc_iscsi.node_uuid f03cb63c-9a7e-11e7-b68b-
00a098908039
```

b. Defina os UUIDs em node_A_2:

O exemplo a seguir mostra os comandos para definir os UUIDs em node_A_2:

```
setenv bootarg.mgwd.cluster_uuid ee7db9d5-9a82-11e7-b68b-00a098908039
setenv bootarg.mgwd.partner_cluster_uuid 07958819-9ac6-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.pri_partner_uuid bf8e3f8f-9ac4-11e7-bd4e-00a098ca379f
setenv bootarg.mcc.aux_partner_uuid f37b240b-9ac1-11e7-9b42-00a098c9e55d
setenv bootarg.mcc_iscsi.node_uuid aa9a7a7a-9a81-11e7-a4e9-00a098908c35
```

6. Se os sistemas originais foram configurados para ADP, em cada prompt DO Loader dos nós de

substituição, ative o ADP:

setenv bootarg.mcc.adp_enabled true

 Se estiver executando o ONTAP 9.5, 9,6 ou 9,7, em cada prompt do Loader dos nós de substituição, ative a seguinte variável:

setenv bootarg.mcc.lun part true

a. Defina as variáveis em node A 1.

O exemplo a seguir mostra os comandos para definir os valores em node_A_1 ao executar o ONTAP 9.6:

setenv bootarg.mcc.lun part true

b. Defina as variáveis em node A 2.

O exemplo a seguir mostra os comandos para definir os valores em node_A_2 ao executar o ONTAP 9.6:

setenv bootarg.mcc.lun part true

8. Se os sistemas originais foram configurados para criptografia de ponta a ponta, em cada prompt DO Loader dos nós de substituição, defina o seguinte bootarg:

setenv bootarg.mccip.encryption enabled 1

 Se os sistemas originais foram configurados para ADP, em cada um dos prompt Loader dos nós de substituição, defina o ID do sistema original (**not** a ID do sistema do módulo do controlador de substituição) e o ID do sistema do parceiro DR do nó:

setenv bootarg.mcc.local config id original-sysID

setenv bootarg.mcc.dr partner dr partner-sysID

"Determine as IDs do sistema dos módulos do controlador antigos"

a. Defina as variáveis em node_A_1.

O exemplo a seguir mostra os comandos para definir as IDs do sistema em node A 1:

- O ID do sistema antigo de node A 1 é 4068741258.
- A ID do sistema do node_B_1 é 4068741254.

setenv bootarg.mcc.local_config_id 4068741258
setenv bootarg.mcc.dr partner 4068741254

b. Defina as variáveis em node_A_2.
O exemplo a seguir mostra os comandos para definir as IDs do sistema em node_A_2:

- O ID do sistema antigo de node_A_1 é 4068741260.
- A ID do sistema do node_B_1 é 4068741256.

setenv bootarg.mcc.local_config_id 4068741260
setenv bootarg.mcc.dr partner 4068741256

Ligar o equipamento no local de desastre (configurações IP do MetroCluster)

É necessário ligar os componentes dos compartimentos de disco e dos switches IP MetroCluster no local de desastre. Os módulos do controlador no local de desastre permanecem no prompt DO Loader.

Sobre esta tarefa

Os exemplos deste procedimento assumem o seguinte:

- O local A é o local do desastre.
- O local B é o local sobrevivente.

Passos

- 1. Ligue as gavetas de disco no local de desastre e verifique se todos os discos estão em execução.
- 2. Ligue os switches IP MetroCluster se eles ainda não estiverem ligados.

Configurar os switches IP (configurações IP do MetroCluster)

Você deve configurar todos os switches IP que foram substituídos.

Sobre esta tarefa

Esta tarefa aplica-se apenas às configurações IP do MetroCluster.

Isso deve ser feito em ambos os interrutores. Depois de configurar o primeiro switch, verifique se o acesso ao armazenamento no site sobrevivente não é afetado.

Você não deve prosseguir com o segundo switch se o acesso ao armazenamento no site sobrevivente for afetado.

Passos

 "Instalação e configuração IP do MetroCluster: Diferenças entre as configurações do ONTAP MetroCluster"Consulte para obter os procedimentos de cabeamento e configuração de um switch de substituição.

Você pode usar os procedimentos nas seções a seguir:

- · Cabeamento dos switches IP
- · Configurar os switches IP
- 2. Se os ISLs foram desativados no site sobrevivente, ative os ISLs e verifique se os ISLs estão online.

- a. Ative as interfaces ISL no primeiro interrutor:
 - no shutdown

Os exemplos a seguir mostram os comandos de um switch IP Broadcom ou de um switch IP Cisco.

Fornecedor de switch	Comandos
Broadcom	<pre>(IP_Switch_A_1)> enable (IP_switch_A_1) # configure (IP_switch_A_1) (Config) # interface 0/13-0/16 (IP_switch_A_1) (Interface 0/13- 0/16) # no shutdown (IP_switch_A_1) (Interface 0/13- 0/16) # exit (IP_switch_A_1) (Config) # exit</pre>
Cisco	<pre>IP_switch_A_1# conf t IP_switch_A_1(config)# int eth1/15-eth1/20 IP_switch_A_1(config)# no shutdown IP_switch_A_1(config)# copy running startup IP_switch_A_1(config)# show interface brief</pre>

b. Ative as interfaces ISL no switch parceiro:

no shutdown

Os exemplos a seguir mostram os comandos de um switch IP Broadcom ou de um switch IP Cisco.

Fornecedor de switch	Comandos

Broadcom	<pre>(IP_Switch_A_2)> enable (IP_switch_A_2)# configure (IP_switch_A_2) (Config)# interface 0/13-0/16 (IP_switch_A_2) (Interface 0/13- 0/16)# no shutdown (IP_switch_A_2) (Interface 0/13- 0/16)# exit (IP_switch_A_2) (Config)# exit</pre>
Cisco	<pre>IP_switch_A_2# conf t IP_switch_A_2(config)# int eth1/15-eth1/20 IP_switch_A_2(config)# no shutdown IP_switch_A_2(config)# copy running startup IP_switch_A_2(config)# show interface brief</pre>

c. Verifique se as interfaces estão ativadas:

show interface brief

O exemplo a seguir mostra a saída de um switch Cisco.

```
IP switch A 2(config) # show interface brief
_____
Port VRF Status IP Address Speed MTU
_____
mt0 -- up 10.10.99.10 100 1500
_____
Ethernet
       VLAN Type Mode Status Reason Speed Port
Interface
                                 Ch
#
 _____
.
Eth1/15
      10 eth access up
                       none 40G(D) --
Eth1/16
      10 eth access up
                       none 40G(D)
                                 ___
Eth1/17
      10 eth access down none auto(D) --
Eth1/18
       10 eth access down none auto(D) --
Eth1/19
       10
          eth access down none auto(D) --
Eth1/20
       10
          eth access down none auto(D) --
IP switch A 2#
```

Verificar a conetividade do armazenamento ao local remoto (configurações IP do MetroCluster)

Você precisa confirmar se os nós substituídos têm conectividade com as gavetas de disco no local que sobreviveu.

Sobre esta tarefa

Essa tarefa é realizada nos nós de substituição no local de desastre.

Esta tarefa é executada no modo Manutenção.

Passos

1. Exiba os discos que são de propriedade da ID do sistema original.

```
disk show -s old-system-ID
```

Os discos remotos podem ser reconhecidos pelo dispositivo 0m. 0m indica que o disco está ligado através da ligação iSCSI MetroCluster. Esses discos devem ser reatribuídos posteriormente no procedimento de recuperação.

```
*> disk show -s 4068741256
Local System ID: 1574774970
         OWNER
                             POOL SERIAL NUMBER
 DISK
                                                HOME
DR HOME
_____ _ ___
_____
Om.i0.0L11 node A 2 (4068741256) Pool1 S396NA0HA02128
                                                node A 2
(4068741256) node A 2 (4068741256)
Om.i0.1L38 node A 2 (4068741256) Pool1 S396NA0J148778
                                                node A 2
(4068741256) node A 2 (4068741256)
Om.i0.0L52 node A 2 (4068741256) Pool1 S396NA0J148777
                                                node A 2
(4068741256) node A 2 (4068741256)
. . .
. . .
NOTE: Currently 49 disks are unowned. Use 'disk show -n' for additional
information.
*>
```

2. Repita esta etapa nos outros nós de substituição

Reatribuir a propriedade do disco para discos do pool 1 no local de desastre (configurações IP do MetroCluster)

Se um ou ambos os módulos da controladora ou placas NVRAM tiverem sido substituídos no local de desastre, o ID do sistema foi alterado e você deve reatribuir discos pertencentes aos agregados raiz aos módulos da controladora de substituição.

Sobre esta tarefa

Como os nós estão no modo de switchover, apenas os discos que contêm os agregados raiz de pool1 do local de desastre serão reatribuídos nesta tarefa. Eles são os únicos discos ainda possuídos pelo ID do sistema antigo neste momento.

Essa tarefa é realizada nos nós de substituição no local de desastre.

Esta tarefa é executada no modo Manutenção.

Os exemplos fazem as seguintes suposições:

- O local A é o local do desastre.
- O nó_A_1 foi substituído.
- O nó_A_2 foi substituído.
- O local B é o local sobrevivente.
- Node_B_1 está em bom estado.
- Node_B_2 está em bom estado.

Os IDs de sistema antigo e novo foram identificados no "Substitua o hardware e inicialize novos

controladores".

Os exemplos neste procedimento usam controladores com as seguintes IDs de sistema:

Nó	ID do sistema original	Nova ID do sistema
node_A_1	4068741258	1574774970
node_A_2	4068741260	1574774991
node_B_1	4068741254	inalterado
node_B_2	4068741256	inalterado

Passos

1. Com o nó de substituição no modo Manutenção, reatribua os discos agregados raiz, usando o comando correto, dependendo se o sistema está configurado com ADP e a versão do ONTAP.

Você pode prosseguir com a reatribuição quando solicitado.

Se o sistema estiver usando ADP	Use este comando para reatribuição de disco
Sim (ONTAP 9.8)	disk reassign -s old-system-ID -d new- system-ID -r dr-partner-system-ID
Sim (ONTAP 9.7.x e anterior)	disk reassign -s old-system-ID -d new- system-ID -p old-partner-system-ID
Não	disk reassign -s old-system-ID -d new- system-ID

O exemplo a seguir mostra a reatribuição de unidades em um sistema que não seja ADP:

*> disk reassign -s 4068741256 -d 1574774970 Partner node must not be in Takeover mode during disk reassignment from maintenance mode. Serious problems could result !! Do not proceed with reassignment if the partner is in takeover mode. Abort reassignment (y/n)? n After the node becomes operational, you must perform a takeover and giveback of the HA partner node to ensure disk reassignment is successful. Do you want to continue (y/n)? y Disk ownership will be updated on all disks previously belonging to Filer with sysid 537037643. Do you want to continue (y/n)? y disk reassign parameters: new home owner id 537070473 , new home owner name Disk Om.i0.3L14 will be reassigned. Disk Om.iO.1L6 will be reassigned. Disk Om.i0.1L8 will be reassigned. Number of disks to be reassigned: 3

2. Destruir o conteúdo dos discos da caixa de correio:

mailbox destroy local

Você pode prosseguir com a operação destruir quando solicitado.

O exemplo a seguir mostra a saída para o comando local destruir caixa de correio:

- 3. Se os discos tiverem sido substituídos, haverá falha nos plexes locais que devem ser excluídos.
 - a. Exibir o status agregado:

aggr status

No exemplo a seguir, o Plex node_A_1_aggr0/plex0 falhou.

```
*> aggr status
Aug 18 15:00:07 [node B 1:raid.vol.mirror.degraded:ALERT]: Aggregate
node A 1 aggr0 is
   mirrored and one plex has failed. It is no longer protected by
mirroring.
Aug 18 15:00:07 [node B 1:raid.debug:info]: Mirrored aggregate
node A 1 aggr0 has plex0
   clean(-1), online(0)
Aug 18 15:00:07 [node B 1:raid.debug:info]: Mirrored aggregate
node A 1 aggr0 has plex2
   clean(0), online(1)
Aug 18 15:00:07 [node B 1:raid.mirror.vote.noRecord1Plex:error]:
WARNING: Only one plex
   in aggregate node A 1 aggr0 is available. Aggregate might contain
stale data.
Aug 18 15:00:07 [node B 1:raid.debug:info]:
volobj mark sb recovery aggrs: tree:
   node A 1 aggr0 vol state:1 mcc dr opstate: unknown
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0 (VOL):
   raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1_aggr0 (MIRROR):
   raid state change UNINITD -> DEGRADED
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex0
   (PLEX): raid state change UNINITD -> FAILED
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex2
   (PLEX): raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex2/rg0
   (GROUP): raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.debug:info]: Topology updated for
aggregate node A 1 aggr0
  to plex plex2
*>
```

b. Eliminar o Plex com falha:

aggr destroy plex-id

*> aggr destroy node A_1_aggr0/plex0

4. Interrompa o nó para exibir o prompt DO Loader:

halt

5. Repita essas etapas no outro nó no local do desastre.

Inicializando no ONTAP em módulos de controlador de substituição em configurações IP do MetroCluster

Você precisa inicializar os nós de substituição no local de desastre para o sistema operacional ONTAP.

Sobre esta tarefa

Esta tarefa começa com os nós no local de desastre no modo Manutenção.

Passos

- 1. Em um dos nós de substituição, saia para o prompt Loader: halt
- 2. Apresentar o menu de arranque: boot_ontap menu
- 3. No menu de inicialização, selecione a opção 6, Atualizar flash a partir da configuração de backup.

O sistema arranca duas vezes. Você deve responder yes quando solicitado a continuar. Após a segunda inicialização, você deve responder y quando solicitado sobre a incompatibilidade da ID do sistema.

Se você não tiver limpado o conteúdo do NVRAM de um módulo de controlador de substituição usado, poderá ver a seguinte mensagem de pânico: PANIC: NVRAM contents are invalid.... Se isso ocorrer, inicialize o sistema no prompt do ONTAP novamente (boot_ontap menu). Então você precisa Redefina os bootargs boot_recovery e rdb_corrupt

· Confirmação para continuar prompt:

```
Selection (1-9)? 6
This will replace all flash-based configuration with the last backup
to
disks. Are you sure you want to continue?: yes
```

· Aviso de incompatibilidade da ID do sistema:

```
WARNING: System ID mismatch. This usually occurs when replacing a boot device or NVRAM cards! Override system ID? \{y|n\} y
```

4. No local que sobreviveu, verifique se as IDs de sistema do parceiro corretas foram aplicadas aos nós:

```
metrocluster node show -fields node-systemid,ha-partner-systemid,dr-partner-
systemid,dr-auxiliary-systemid
```

Neste exemplo, os seguintes novos IDs de sistema devem aparecer na saída:

- Node A 1: 1574774970
- Node_A_2: 1574774991

A coluna "ha-Partner-systemid" deve mostrar os novos IDs do sistema.

```
metrocluster node show -fields node-systemid, ha-partner-systemid, dr-
partner-systemid, dr-auxiliary-systemid
dr-group-id cluster node node-systemid ha-partner-systemid dr-
partner-systemid dr-auxiliary-systemid
_____ ____
 Cluster A Node A 1 1574774970 1574774991
1
4068741254 4068741256
        Cluster A Node A 2 1574774991 1574774970
1
4068741256
              4068741254
1
         Cluster B Node B 1 -
_
1
         Cluster B Node B 2 -
4 entries were displayed.
```

- Se as IDs do sistema do parceiro não foram definidas corretamente, você deve definir manualmente o valor correto:
 - a. Interrompa e exiba o prompt Loader no nó.
 - b. Verifique o valor atual do bootarg do Partner-sysID:

printenv

c. Defina o valor para a ID correta do sistema do parceiro:

setenv partner-sysid partner-sysID

d. Inicialize o nó:

boot_ontap

- e. Repita essas subetapas no outro nó, se necessário.
- 6. Confirme se os nós de substituição no local de desastre estão prontos para o switchback:

metrocluster node show

Os nós de substituição devem estar aguardando o modo de recuperação de switchback. Se eles estiverem no modo normal, você pode reinicializar os nós de substituição. Após essa inicialização, os nós devem estar aguardando o modo de recuperação de switchback.

O exemplo a seguir mostra que os nós de substituição estão prontos para switchback:

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ 1 cluster B node B 1 configured enabled switchover completed node B 2 configured enabled switchover completed cluster A configured enabled waiting for node A 1 switchback recovery configured enabled waiting for node A 2 switchback recovery 4 entries were displayed. cluster B::>

7. Verifique as configurações da conexão MetroCluster:

metrocluster configuration-settings connection show

O estado de configuração deve indicar Concluído.

```
cluster B::*> metrocluster configuration-settings connection show
                 Source Destination
DR
Group Cluster Node Network Address Network Address Partner Type
Config State
_____ _____
_____
1 cluster B
           node B 2
             Home Port: e5a
                 172.17.26.13 172.17.26.12 HA Partner
completed
             Home Port: e5a
                 172.17.26.13 172.17.26.10 DR Partner
completed
             Home Port: e5a
                 172.17.26.13 172.17.26.11 DR Auxiliary
completed
             Home Port: e5b
                 172.17.27.13 172.17.27.12 HA Partner
```

completed			
Home	e Port: e5b		
	172.17.27.13	172.17.27.10	DR Partner
completed			
Home	e Port: e5b		
	172.17.27.13	172.17.27.11	DR Auxiliary
completed			-
node B	1		
Home	- ⁺ Port·e5a		
110110	172 17 26 12	170 17 06 13	UN Partnor
completed	1/2.1/.20.12	1/2.1/.20.15	NA FAICHEI
Compreted			
HOIII	e Port: esa		
	1/2.1/.20.12	1/2.1/.26.11	DR Partner
completed			
Home	e Port: e5a		
	172.17.26.12	172.17.26.10	DR Auxiliary
completed			
Home	e Port: e5b		
	172.17.27.12	172.17.27.13	HA Partner
completed			
Home	e Port: e5b		
	172.17.27.12	172.17.27.11	DR Partner
completed			
- Home	e Port: e5b		
	172.17.27.12	172.17.27.10	DR Auxiliarv
completed			-
cluster A			
node A	2		
Home	- ⁻ Port·e5a		
	172 17 26 11	172 17 26 10	HA Partner
completed	1/2.1/.20.11	1/2.1/.20.10	IIA TATCHET
Compieced			
HOIII	e Port: esa		
	1/2.1/.20.11	1/2.1/.26.12	DR Partner
completed			
Home	e Port: e5a		
	172.17.26.11	172.17.26.13	DR Auxiliary
completed			
Home	e Port: e5b		
	172.17.27.11	172.17.27.10	HA Partner
completed			
Home	e Port: e5b		
	172.17.27.11	172.17.27.12	DR Partner
completed			
- Home	e Port: e5b		
	172.17.27.11	172.17.27.13	DR Auxiliarv
completed			2
-			

node A 1 Home Port: e5a 172.17.26.10 172.17.26.11 HA Partner completed Home Port: e5a 172.17.26.10 172.17.26.13 DR Partner completed Home Port: e5a 172.17.26.10 172.17.26.12 DR Auxiliary completed Home Port: e5b 172.17.27.10 172.17.27.11 HA Partner completed Home Port: e5b 172.17.27.10 172.17.27.13 DR Partner completed Home Port: e5b 172.17.27.10 DR Auxiliary 172.17.27.12 completed 24 entries were displayed. cluster B::*>

8. Repita as etapas anteriores no outro nó no local do desastre.

Reponha os bootargs boot_recovery e rdb_corrupt

Se necessário, você pode redefinir o boot_recovery e o rdb_corrupt_bootargs

Passos

1. Interrompa o nó de volta ao prompt DO Loader:

node_A_1::*> halt -node _node-name_

2. Verifique se os seguintes bootargs foram definidos:

```
LOADER> printenv bootarg.init.boot_recovery
LOADER> printenv bootarg.rdb corrupt
```

3. Se qualquer bootarg tiver sido definido como um valor, desconfigure-o e inicie o ONTAP:

```
LOADER> unsetenv bootarg.init.boot_recovery
LOADER> unsetenv bootarg.rdb_corrupt
LOADER> saveenv
LOADER> bye
```

Restaurar a conetividade dos nós sobreviventes para o local de desastre (configurações IP do MetroCluster)

Você deve restaurar as conexões do iniciador iSCSI MetroCluster dos nós sobreviventes.

Sobre esta tarefa

Este procedimento só é necessário nas configurações IP do MetroCluster.

Passos

1. A partir do prompt de qualquer nó sobrevivente, altere para o nível de privilégio avançado:

set -privilege advanced

Você precisa responder com y quando solicitado para continuar no modo avançado e ver o prompt do modo avançado (*>).

2. Conete os iniciadores iSCSI em ambos os nós sobreviventes no grupo DR:

storage iscsi-initiator connect -node surviving-node -label *

O exemplo a seguir mostra os comandos para conetar os iniciadores no local B:

```
site_B::*> storage iscsi-initiator connect -node node_B_1 -label *
site B::*> storage iscsi-initiator connect -node node B 2 -label *
```

3. Voltar ao nível de privilégio de administrador:

set -privilege admin

Verificando a atribuição automática ou atribuindo manualmente unidades de pool 0

Em sistemas configurados para ADP, você deve verificar se as unidades do pool 0 foram atribuídas automaticamente. Em sistemas que não estão configurados para ADP, você deve atribuir manualmente as unidades 0 do pool.

Verificar a atribuição de unidades de pool 0 em sistemas ADP no local de desastre (sistemas IP MetroCluster)

Se as unidades tiverem sido substituídas no local de desastre e o sistema estiver configurado para ADP, você deverá verificar se as unidades remotas estão visíveis para os nós e foram atribuídas corretamente.

Passo

1. Verifique se as unidades do pool 0 são atribuídas automaticamente:

No exemplo a seguir para um sistema AFF A800 sem compartimentos externos, um quarto (8 unidades) foi atribuído automaticamente ao node_A_1 e um quarto foi atribuído automaticamente ao node_A_2. As unidades restantes serão unidades remotas (pool1) para node_B_1 e node_B_2.

cluster_A::*> disk show						
	Usable	Disk		Containe	er	Container
Disk	Size	Shelf	Bay	Туре	Туре	Name
Owner						
node_A_1:0n.12	1.75TB	0	12	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.13	1.75TB	0	13	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.14	1.75TB	0	14	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.15	1.75TB	0	15	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.16	1.75TB	0	16	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.17	1.75TB	0	17	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.18	1.75TB	0	18	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.19	1.75TB	0	19	SSD-NVM	shared	-
node_A_1						
node_A_2:0n.0	1.75TB	0	0	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.1	1.75TB	0	1	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.2	1.75TB	0	2	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.3	1.75TB	0	3	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.4	1.75TB	0	4	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.5	1.75TB	0	5	SSD-NVM	shared	
aggr0_node A 2 0	node_A_2					
node_A_2:0n.6	1.75TB	0	6	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node A 2:0n.7	1.75TB	0	7	SSD-NVM	shared	-
node A 2						
node A 2:0n.24	_	0	24	SSD-NVM	unassigned	
node A 2:0n.25	-	0	25	SSD-NVM	unassigned	
					2	

node_A_2:0n.26	_	0	26	SSD-NVM unassigned	-	_
node_A_2:0n.27	-	0	27	SSD-NVM unassigned	-	-
node_A_2:0n.28	-	0	28	SSD-NVM unassigned	-	-
node_A_2:0n.29	-	0	29	SSD-NVM unassigned	_	-
node_A_2:0n.30	-	0	30	SSD-NVM unassigned	_	-
node_A_2:0n.31	-	0	31	SSD-NVM unassigned	_	-
node_A_2:0n.36	-	0	36	SSD-NVM unassigned	_	-
node_A_2:0n.37	-	0	37	SSD-NVM unassigned	_	-
node_A_2:0n.38	-	0	38	SSD-NVM unassigned	_	-
node_A_2:0n.39	-	0	39	SSD-NVM unassigned	-	-
node_A_2:0n.40	-	0	40	SSD-NVM unassigned	_	-
node_A_2:0n.41	-	0	41	SSD-NVM unassigned	-	-
node_A_2:0n.42	-	0	42	SSD-NVM unassigned	-	-
node_A_2:0n.43	-	0	43	SSD-NVM unassigned	-	-
32 entries were	displayed.					

Atribuição de unidades de pool 0 em sistemas não ADP no local de desastre (configurações IP MetroCluster)

Se as unidades tiverem sido substituídas no local de desastre e o sistema não estiver configurado para ADP, será necessário atribuir manualmente novas unidades ao pool 0.

Sobre esta tarefa

Para sistemas ADP, as unidades são atribuídas automaticamente.

Passos

1. Em um dos nós de substituição no local de desastre, reatribua as unidades 0 do pool de nós:

```
storage disk assign -n number-of-replacement disks -p 0
```

Este comando atribui as unidades recém-adicionadas (e não possuídas) no local de desastre. Você deve atribuir o mesmo número e tamanho (ou maior) de unidades que o nó teve antes do desastre. A storage disk assign página man contém mais informações sobre a execução de atribuição de unidade mais granular.

2. Repita a etapa no outro nó de substituição no local de desastre.

Atribuição de unidades de pool 1 no local sobrevivente (configurações IP do MetroCluster)

Se as unidades tiverem sido substituídas no local de desastre e o sistema não estiver configurado para ADP, no local sobrevivente, você precisará atribuir manualmente unidades remotas localizadas no local de desastre ao pool de nós sobreviventes 1. Você deve identificar o número de unidades a serem atribuídas.

Sobre esta tarefa

Para sistemas ADP, as unidades são atribuídas automaticamente.

Passo

1. No local sobrevivente, atribua as unidades 1 (remotas) do primeiro nó: storage disk assign -n number-of-replacement disks -p 1 0m*

Este comando atribui as unidades recém-adicionadas e não possuídas no local de desastre.

O seguinte comando atribui 22 unidades:

```
cluster B::> storage disk assign -n 22 -p 1 0m*
```

Exclusão de plexes com falha de propriedade do site sobrevivente (configurações IP do MetroCluster)

Depois de substituir o hardware e atribuir discos, você deve excluir plexes remotos com falha que são de propriedade dos nós do local sobreviventes, mas localizados no local de desastre.

Sobre esta tarefa

Estas etapas são executadas no cluster sobrevivente.

Passos

1. Identificar os agregados locais: storage aggregate show -is-home true

```
cluster B::> storage aggregate show -is-home true
cluster B Aggregates:
Aggregate Size Available Used% State #Vols Nodes
                                               RAID
Status
_____ _____
_____
node_B_1_aggr0 1.49TB 74.12GB 95% online 1 node_B_1
raid4,
mirror
degraded
node_B_2_aggr0 1.49TB 74.12GB 95% online 1 node_B_2
raid4,
mirror
degraded
node B 1 aggr1 2.99TB 2.88TB 3% online 15 node B 1
raid dp,
mirror
degraded
node_B_1_aggr2 2.99TB 2.91TB 3% online 14 node_B_1
raid tec,
```

```
mirror

degraded
node_B_2_aggr1 2.95TB 2.80TB 5% online 37 node_B_2
raid_dp,

mirror

degraded
node_B_2_aggr2 2.99TB 2.87TB 4% online 35 node_B_2
raid_tec,

mirror

degraded
6 entries were displayed.
cluster_B::>
```

2. Identificar os plexes remotos com falha:

storage aggregate plex show

O exemplo a seguir chama os plexes que são remotos (não plex0) e têm um status de "failed" (Falha):

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool plex status aggregate is-online pool ----- ---- ----- ----node B 1 aggr0 plex0 normal,active true 0 node B 1 aggr0 plex4 failed, inactive false - <<<<---Plex at remote site node B 2 aggr0 plex0 normal,active true 0 node B 2 aggr0 plex4 failed, inactive false - <<<---Plex at remote site node B 1 aggr1 plex0 normal,active true 0 node B 1 aggr1 plex4 failed, inactive false - <<<<---Plex at remote site node B 1 aggr2 plex0 normal, active true 0 node B 1 aggr2 plex1 failed, inactive false - <<<<---Plex at remote site</pre> node B 2 aggr1 plex0 normal,active true 0 node B 2 aggr1 plex4 failed, inactive false - <<<<---Plex at remote site node B 2 aggr2 plex0 normal, active true 0 node B 2 aggr2 plex1 failed, inactive false - <<<<---Plex at remote site</pre> node A 1 aggr1 plex0 failed, inactive false node A 1 aggr1 plex4 normal, active true 1 node A 1 aggr2 plex0 failed, inactive false _ node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false node A 2 aggr1 plex4 normal,active true 1 node A 2 aggr2 plex0 failed, inactive false node A 2 aggr2 plex1 normal, active true 1 20 entries were displayed. cluster B::>

- 3. Fique offline cada um dos plexes com falha e, em seguida, exclua-os:
 - a. Fique offline os plexes com falha:

```
storage aggregate plex offline -aggregate aggregate-name -plex plex-id
```

O exemplo a seguir mostra o agregado "node_B_2_aggr1/plex1" sendo colocado offline:

```
cluster_B::> storage aggregate plex offline -aggregate node_B_1_aggr0
-plex plex4
```

Plex offline successful on plex: node B 1 aggr0/plex4

b. Eliminar o Plex com falha:

```
storage aggregate plex delete -aggregate aggregate-name -plex plex-id
```

Você pode destruir o Plex quando solicitado.

O exemplo a seguir mostra o Plex node_B_2_aggr1/plex1 sendo excluído.

```
cluster B::> storage aggregate plex delete -aggregate node B 1 aggr0
-plex plex4
Warning: Aggregate "node B 1 aggr0" is being used for the local
management root
        volume or HA partner management root volume, or has been
marked as
        the aggregate to be used for the management root volume
after a
        reboot operation. Deleting plex "plex4" for this aggregate
could lead
        to unavailability of the root volume after a disaster
recovery
        procedure. Use the "storage aggregate show -fields
        has-mroot, has-partner-mroot, root" command to view such
aggregates.
Warning: Deleting plex "plex4" of mirrored aggregate "node B 1 aggr0"
on node
         "node B 1" in a MetroCluster configuration will disable its
        synchronous disaster recovery protection. Are you sure you
want to
        destroy this plex? {y|n}: y
[Job 633] Job succeeded: DONE
cluster B::>
```

Você deve repetir estas etapas para cada um dos plexos com falha.

4. Confirme se os plexos foram removidos:

storage aggregate plex show -fields aggregate, status, is-online, plex, pool

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool aggregate plex status is-online pool ----- ---- ----- ----node B 1 aggr0 plex0 normal, active true 0 node B 2 aggr0 plex0 normal, active true 0 node B 1 aggr1 plex0 normal, active true 0 node B 1 aggr2 plex0 normal, active true 0 node B 2 aggr1 plex0 normal, active true 0 node B 2 aggr2 plex0 normal, active true 0 node A 1 aggr1 plex0 failed, inactive false _ node A 1 aggr1 plex4 normal, active true 1 node A 1 aggr2 plex0 failed, inactive false _ node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false _ node A 2 aggr1 plex4 normal, active true 1 node A 2 aggr2 plex0 failed, inactive false _ node A 2 aggr2 plex1 normal, active true 1 14 entries were displayed. cluster B::>

5. Identificar os agregados comutados:

storage aggregate show -is-home false

Você também pode usar o storage aggregate plex show -fields aggregate, status, isonline, plex, pool comando para identificar agregados comutados do Plex O. Eles terão um status de "falhou, inativo".

Os comandos a seguir mostram quatro agregados comutados:

- o node_A_1_aggr1
- node_A_1_aggr2
- node_A_2_aggr1
- node_A_2_aggr2

cluster B::> storage aggregate show -is-home false cluster A Switched Over Aggregates: Aggregate Size Available Used% State #Vols Nodes RAID Status _____ _____ _____ node A 1 aggr1 2.12TB 1.88TB 11% online 91 node B 1 raid dp, mirror degraded node A 1 aggr2 2.89TB 2.64TB 9% online 90 node B 1 raid tec, mirror degraded node A 2 aggr1 2.12TB 1.86TB 12% online 91 node B 2 raid dp, mirror degraded node A 2 aggr2 2.89TB 2.64TB 9% online 90 node B 2 raid tec, mirror degraded 4 entries were displayed. cluster B::>

6. Identificar plexos comutados:

storage aggregate plex show -fields aggregate, status, is-online, Plex, pool

Você deseja identificar os plexes com um status de "falhou, inativo".

Os comandos a seguir mostram quatro agregados comutados:

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool aggregate plex status is-online pool ----- ----- ----node B 1 aggr0 plex0 normal, active true 0 node B 2 aggr0 plex0 normal, active true 0 node B 1 aggr1 plex0 normal,active true 0 node B 1 aggr2 plex0 normal, active true 0 node B 2 aggr1 plex0 normal, active true 0 node B 2 aggr2 plex0 normal, active true 0 node A 1 aggr1 plex0 failed, inactive false - <<<-- Switched over aggr/Plex0 node A 1 aggr1 plex4 normal,active true 1 node A 1 aggr2 plex0 failed, inactive false - <<<-- Switched over aggr/Plex0 node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false - <<<<-- Switched over aggr/Plex0 node A 2 aggr1 plex4 normal, active true 1 node A 2 aggr2 plex0 failed, inactive false - <<<<-- Switched over aggr/Plex0 node A 2 aggr2 plex1 normal, active true 1 14 entries were displayed. cluster B::>

7. Eliminar o Plex com falha:

storage aggregate plex delete -aggregate node_A_1_aggr1 -plex plex0

Você pode destruir o Plex quando solicitado.

O exemplo a seguir mostra o nó Plex_A_1_aggr1/plex0 sendo excluído:

```
cluster B::> storage aggregate plex delete -aggregate node A 1 aggr1
-plex plex0
Warning: Aggregate "node A_1_aggr1" hosts MetroCluster metadata volume
         "MDV CRS e8457659b8a711e78b3b00a0988fe74b A". Deleting plex
"plex0"
         for this aggregate can lead to the failure of configuration
         replication across the two DR sites. Use the "volume show
-vserver
         <admin-vserver> -volume MDV_CRS*" command to verify the
location of
        such volumes.
Warning: Deleting plex "plex0" of mirrored aggregate "node A 1 aggr1" on
node
         "node A 1" in a MetroCluster configuration will disable its
         synchronous disaster recovery protection. Are you sure you want
to
         destroy this plex? {y|n}: y
[Job 639] Job succeeded: DONE
cluster B::>
```

Você deve repetir essas etapas para cada um dos agregados com falha.

8. Verifique se não há plexo com falha restante no local sobrevivente.

A saída a seguir mostra que todos os plexes são normais, ativos e online.

```
cluster B::> storage aggregate plex show -fields aggregate, status, is-
online, Plex, pool
aggregate
                                 is-online pool
          plex status
   ----- ----- ------ ------
node B 1 aggr0 plex0 normal,active true
                                            0
node B 2 aggr0 plex0 normal, active true
                                            0
node B 1 aggr1 plex0 normal, active true
                                            0
node B 2 aggr2 plex0 normal, active true
                                            0
node B 1 aggr1 plex0 normal, active true
                                            0
node B 2 aggr2 plex0 normal, active true
                                            0
node A 1 aggr1 plex4 normal, active true
                                            1
node A 1 aggr2 plex1 normal, active true
                                            1
node A 2 aggr1 plex4 normal, active true
                                            1
node A 2 aggr2 plex1 normal, active true
                                            1
10 entries were displayed.
cluster B::>
```

Executar a recuperação de agregados e restaurar espelhos (configurações IP do MetroCluster)

Depois de substituir o hardware e atribuir discos, em sistemas que executam o ONTAP 9.5 ou anterior, você pode executar as operações de recuperação do MetroCluster. Em todas as versões do ONTAP, você deve confirmar se os agregados estão espelhados e, se necessário, reiniciar o espelhamento.

Sobre esta tarefa

A partir do ONTAP 9.6, as operações de recuperação são executadas automaticamente quando os nós do local de desastre são inicializados. Os comandos de cura não são necessários.

Estas etapas são executadas no cluster sobrevivente.

Passos

- 1. Se você estiver usando o ONTAP 9.6 ou posterior, verifique se a recuperação automática foi concluída com sucesso:
 - a. Confirme se as operações heal-aggr-auto e heal-root-aggr-auto foram concluídas:

metrocluster operation history show

A saída a seguir mostra que as operações foram concluídas com êxito no cluster_A.

b. Confirme se o local de desastre está pronto para o switchback:

metrocluster node show

A saída a seguir mostra que as operações foram concluídas com êxito no cluster_A.

```
cluster B::*> metrocluster node show
                    Configuration DR
DR
Group Cluster Node
                   State Mirroring Mode
_____ ____
_____
1 cluster A
         node A 1 configured enabled heal roots
completed
         node A 2 configured enabled heal roots
completed
    cluster B
         node B 1 configured enabled waiting for
switchback recovery
          node B 2 configured enabled waiting for
switchback recovery
4 entries were displayed.
```

- 2. Se você estiver usando o ONTAP 9.5 ou anterior, será necessário executar a recuperação agregada:
 - a. Verifique o estado dos nós:

metrocluster node show

A saída a seguir mostra que o switchover foi concluído, de modo que a recuperação pode ser executada.

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ _____ 1 cluster B node_B_1 configured enabled switchover completed node B 2 configured enabled switchover completed cluster A node_A_1 configured enabled waiting for switchback recovery configured enabled waiting for node A 2 switchback recovery 4 entries were displayed. cluster B::>

b. Execute a fase de cicatrização de agregados:

metrocluster heal -phase aggregates

A saída a seguir mostra uma operação típica de recuperação de agregados.

```
cluster_B::*> metrocluster heal -phase aggregates
[Job 647] Job succeeded: Heal Aggregates is successful.
cluster_B::*> metrocluster operation show
Operation: heal-aggregates
    State: successful
Start Time: 10/26/2017 12:01:15
End Time: 10/26/2017 12:01:17
Errors: -
cluster_B::*>
```

c. Verifique se a recuperação agregada foi concluída e o local de desastre está pronto para o switchback:

metrocluster node show

A saída a seguir mostra que a fase "heal agreements" foi concluída no cluster_A.

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ ------1 cluster A node_A_1 configured enabled heal aggregates completed configured enabled heal node A 2 aggregates completed cluster B configured enabled waiting for node_B_1 switchback recovery configured enabled waiting for node_B_2 switchback recovery 4 entries were displayed. cluster B::>

- 3. Se os discos tiverem sido substituídos, você deve espelhar os agregados locais e comutados:
 - a. Exibir os agregados:

storage aggregate show

```
cluster B::> storage aggregate show
cluster_B Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
_____ ____
_____
node B 1 aggr0 1.49TB 74.12GB 95% online 1 node B 1
raid4,
normal
node_B_2_aggr0 1.49TB 74.12GB 95% online 1 node_B_2
raid4,
normal
node_B_1_aggr1 3.14TB 3.04TB 3% online 15 node_B_1
raid dp,
normal
node_B_1_aggr2 3.14TB 3.06TB 3% online 14 node_B_1
raid tec,
```

```
normal
node B 1 aggr1 3.14TB 2.99TB 5% online 37 node B 2
raid dp,
normal
node B 1 aggr2 3.14TB 3.02TB 4% online 35 node B 2
raid tec,
normal
cluster A Switched Over Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
----- ----- ------ ----- ------ ------
_____
node_A_1_aggr1 2.36TB 2.12TB 10% online 91 node_B_1
raid dp,
normal
node A 1 aggr2 3.14TB 2.90TB 8% online 90 node B 1
raid tec,
normal
node_A_2_aggr1 2.36TB 2.10TB 11% online 91 node B 2
raid_dp,
normal
node A 2 aggr2 3.14TB 2.89TB 8% online 90 node B 2
raid tec,
normal
12 entries were displayed.
```

```
cluster_B::>
```

b. Espelhar o agregado:

storage aggregate mirror -aggregate aggregate-name

A saída a seguir mostra uma operação de espelhamento típica.

cluster B::> storage aggregate mirror -aggregate node B 1 aggr1 Info: Disks would be added to aggregate "node B 1 aggr1" on node "node B 1" in the following manner: Second Plex RAID Group rg0, 6 disks (block checksum, raid dp) Position Disk Type Size _____ dparity 5.20.6 SSD parity 5.20.14 SSD data 5.21.1 SSD 894.0GB data 5.21.3 SSD 894.0GB data 5.22.3 SSD 894.0GB data 5.21.13 SSD 894.0GB Aggregate capacity available for volume use would be 2.99TB. Do you want to continue? {y|n}: y

- c. Repita o passo anterior para cada um dos agregados do local sobrevivente.
- d. Aguarde que os agregados sejam ressincronizados; você pode verificar o status com o storage aggregate show comando.

A saída a seguir mostra que vários agregados estão ressincronizando.

```
mirrored,
normal
node_B_2_aggr0 1.49TB 74.12GB 95% online 1 node_B_2
raid4,
mirrored,
normal
node B 1 aggr1 2.86TB 2.76TB 4% online 15 node B 1
raid dp,
resyncing
node_B_1_aggr2 2.89TB 2.81TB 3% online 14 node_B_1
raid tec,
resyncing
node B 2 aggr1 2.73TB 2.58TB 6% online 37 node B 2
raid dp,
resyncing
node B-2 aggr2 2.83TB 2.71TB 4% online 35 node B 2
raid tec,
resyncing
cluster A Switched Over Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
_____ _____
_____
node A 1 aggr1 1.86TB 1.62TB 13% online 91 node B 1
raid_dp,
resyncing
node A 1 aggr2 2.58TB 2.33TB 10% online 90 node B 1
raid tec,
resyncing
node A 2 aggr1 1.79TB 1.53TB 14% online 91 node B 2
raid_dp,
resyncing
node_A_2_aggr2 2.64TB 2.39TB 9% online 90 node_B_2
raid_tec,
```

```
resyncing
12 entries were displayed.
```

e. Confirme se todos os agregados estão online e ressincronizados:

storage aggregate plex show

A saída a seguir mostra que todos os agregados foram ressincronizados.

```
cluster A::> storage aggregate plex show
  ()
                   Is
                           Is
                                     Resyncing
Aggregate Plex
                   Online Resyncing Percent Status
                      ____ ___
node B 1 aggr0 plex0 true
                           false
                                              - normal, active
node B 1 aggr0 plex8 true false
                                              - normal, active
node B 2 aggr0 plex0 true
                                              - normal, active
                           false
node B 2 aggr0 plex8 true
                          false
                                              - normal, active
node B 1 aggr1 plex0 true
                           false
                                              - normal, active
                                              - normal, active
node B 1 aggr1 plex9 true
                           false
node B 1 aggr2 plex0 true
                           false
                                              - normal, active
node B 1 aggr2 plex5 true
                                              - normal, active
                           false
node B 2 aggr1 plex0 true
                           false
                                              - normal, active
node B 2 aggr1 plex9 true
                                              - normal, active
                            false
node B 2 aggr2 plex0 true
                           false
                                              - normal, active
node B 2 aggr2 plex5 true
                           false
                                              - normal, active
node A 1 aggr1 plex4 true
                           false
                                              - normal, active
node A 1 aggr1 plex8 true
                           false
                                              - normal, active
node A 1 aggr2 plex1 true
                                              - normal, active
                           false
node A 1 aggr2 plex5 true
                                              - normal, active
                            false
node A 2 aggr1 plex4 true
                                              - normal, active
                            false
node A 2 aggr1 plex8 true
                                              - normal, active
                            false
node A 2 aggr2 plex1 true
                                              - normal, active
                            false
node A 2 aggr2 plex5 true
                                              - normal, active
                            false
20 entries were displayed.
```

 Em sistemas que executam o ONTAP 9.5 e versões anteriores, execute a fase de recuperação de agregados raiz:

metrocluster heal -phase root-aggregates

```
cluster_B::> metrocluster heal -phase root-aggregates
[Job 651] Job is queued: MetroCluster Heal Root Aggregates Job.Oct 26
13:05:00
[Job 651] Job succeeded: Heal Root Aggregates is successful.
```

5. Verifique se a fase "heal Roots" foi concluída e o local de desastre está pronto para o switchback:

A saída a seguir mostra que a fase "heal Roots" foi concluída no cluster_A.

```
cluster B::> metrocluster node show
DR
                         Configuration DR
Group Cluster Node
                         State
                                     Mirroring Mode
_____ _____
  _____
1
    cluster A
          node A 1 configured enabled heal roots
completed
          node A 2
                     configured
                                     enabled heal roots
completed
    cluster B
          node B 1
                         configured
                                     enabled
                                             waiting for
switchback recovery
          node B 2
                      configured enabled waiting for
switchback recovery
4 entries were displayed.
cluster B::>
```

Prossiga para verificar as licenças nos nós substituídos.

"Verificando licenças nos nós substituídos"

Prepare-se para o switchback em uma configuração MetroCluster FC

Verificação da configuração da porta (somente configurações MetroCluster FC)

Você deve definir as variáveis ambientais no nó e desligá-lo para prepará-lo para a configuração do MetroCluster.

Sobre esta tarefa

Este procedimento é executado com os módulos do controlador de substituição no modo de manutenção.

As etapas para verificar a configuração das portas são necessárias somente em sistemas nos quais as portas FC ou CNA são usadas no modo iniciador.

Passos

1. No modo Manutenção, restaure a configuração da porta FC:

ucadmin modify -m fc -t initiatoradapter_name

Se você quiser usar apenas um de um par de portas na configuração do iniciador, insira um nome preciso do adaptador.

2. Execute uma das seguintes ações, dependendo da configuração:

Se a configuração da porta FC for…	Então
O mesmo para ambas as portas	Responda "y" quando solicitado pelo sistema, porque modificar uma porta em um par de portas também modifica a outra porta.
Diferente	 a. Responda "n" quando solicitado pelo sistema. b. Restaure a configuração da porta FC: `ucadmin modify -m fc -t initiator

3. Sair do modo de manutenção:

halt

Depois de emitir o comando, aguarde até que o sistema pare no prompt DO Loader.

4. Inicialize o nó novamente no modo Manutenção para que as alterações de configuração entrem em vigor:

boot_ontap maint

5. Verifique os valores das variáveis:

ucadmin show

6. Saia do modo de manutenção e exiba o prompt Loader:

halt

Configuração de pontes FC para SAS (somente configurações de MetroCluster FC)

Se você substituiu as pontes FC para SAS, será necessário configurá-las ao restaurar a configuração do MetroCluster. O procedimento é idêntico à configuração inicial de uma ponte FC-para-SAS.

Passos

- 1. Ligue as pontes FC para SAS.
- 2. Defina o endereço IP nas portas Ethernet utilizando o set IPAddress port ipaddress comando.
 - ° port Pode ser "MP1" ou "MP2".
 - ipaddress Pode ser um endereço IP no formato xxx.xxx.xxx.

No exemplo a seguir, o endereço IP é 10.10.10.55 na porta Ethernet 1:

```
Ready.
set IPAddress MP1 10.10.10.55
Ready. *
```

- 3. Defina a máscara de sub-rede IP nas portas Ethernet utilizando o set IPSubnetMask port mask comando.
 - ° port Pode ser "MP1" ou "MP2".
 - ° mask pode ser uma máscara de sub-rede no formato xxx.xxx.xxx.

No exemplo a seguir, a máscara de sub-rede IP é 255.255.255.0 na porta Ethernet 1:

```
Ready.
set IPSubnetMask MP1 255.255.255.0
Ready. *
```

- 4. Defina a velocidade nas portas Ethernet utilizando o set EthernetSpeed port speed comando.
 - ° port Pode ser "MP1" ou "MP2".
 - ° speed pode ser "100" ou "1000".

No exemplo a seguir, a velocidade Ethernet é definida como 1000 na porta Ethernet 1.

```
Ready.
set EthernetSpeed MP1 1000
Ready. *
```

5. Salve a configuração usando o saveConfiguration comando e reinicie a ponte quando solicitado a fazê-lo.

Guardar a configuração depois de configurar as portas Ethernet permite-lhe prosseguir com a configuração da ponte utilizando Telnet e permite-lhe aceder à ponte utilizando FTP para efetuar atualizações de firmware.

O exemplo a seguir mostra o saveConfiguration comando e o prompt para reiniciar a ponte.

```
Ready.
SaveConfiguration
  Restart is necessary....
  Do you wish to restart (y/n) ?
Confirm with 'y'. The bridge will save and restart with the new
settings.
```

- 6. Após a reinicialização da ponte FC-para-SAS, efetue login novamente.
- 7. Defina a velocidade nas portas FC usando o set fcdatarate port speed comando.
 - ° port pode ser "1" ou "2".
 - ° speed Pode ser "2 GB", "4 GB", "8 GB" ou "16 GB", dependendo da ponte do modelo.

No exemplo a seguir, a velocidade da porta FC1 é definida como "8 GB".

```
Ready.
set fcdatarate 1 8Gb
Ready. *
```

- 8. Defina a topologia nas portas FC usando o set FCConnMode port mode comando.
 - ° port pode ser "1" ou "2".
 - ° mode pode ser "ptp", "loop", "ptp-loop" ou "auto".

No exemplo a seguir, a topologia da porta FC1 é definida como "ptp".

```
Ready.
set FCConnMode 1 ptp
Ready. *
```

9. Salve a configuração usando o saveConfiguration comando e reinicie a ponte quando solicitado a fazê-lo.

O exemplo a seguir mostra o saveConfiguration comando e o prompt para reiniciar a ponte.
```
Ready.
SaveConfiguration
    Restart is necessary....
    Do you wish to restart (y/n) ?
    Confirm with 'y'. The bridge will save and restart with the new
settings.
```

- 10. Após a reinicialização da ponte FC-para-SAS, efetue login novamente.
- 11. Se a ponte FC para SAS estiver executando o firmware 1,60 ou posterior, ative o SNMP.

```
Ready.
set snmp enabled
Ready. *
saveconfiguration
Restart is necessary....
Do you wish to restart (y/n) ?
Verify with 'y' to restart the FibreBridge.
```

12. Desligue as pontes FC para SAS.

Configuração dos switches FC (somente configurações MetroCluster FC)

Se você tiver substituído os switches FC no local de desastre, será necessário configurálos usando os procedimentos específicos do fornecedor. Você deve configurar um switch, verificar se o acesso ao armazenamento no site sobrevivente não é afetado e, em seguida, configurar o segundo switch.

Tarefas relacionadas

"Atribuições de portas para switches FC ao usar o ONTAP 9.1 e posterior"

Configuração de um switch Brocade FC após um desastre no local

Deve utilizar este procedimento específico do Brocade para configurar o comutador de substituição e ativar as portas ISL.

Sobre esta tarefa

Os exemplos deste procedimento baseiam-se nas seguintes premissas:

- O local A é o local do desastre.
- FC_switch_A_1 foi substituído.
- FC_switch_A_2 foi substituído.
- O local B é o local sobrevivente.

- FC_switch_B_1 está em bom estado.
- FC_switch_B_2 está em bom estado.

Você deve verificar se está usando as atribuições de portas especificadas quando você faz o cabo dos switches FC:

• "Atribuições de portas para switches FC ao usar o ONTAP 9.1 e posterior"

Os exemplos mostram duas pontes FC-para-SAS. Se tiver mais bridges, tem de desativar e, posteriormente, ativar as portas adicionais.

Passos

- 1. Arranque e pré-configure o novo interrutor:
 - a. Ligue o novo interrutor e deixe-o arrancar.
 - b. Verifique a versão do firmware no switch para confirmar que corresponde à versão dos outros switches FC:

firmwareShow

c. Configure o novo switch conforme descrito nos tópicos a seguir, ignorando as etapas para configurar o zoneamento no switch.

"Instalação e configuração do MetroCluster conectado à malha"

"Instalação e configuração do Stretch MetroCluster"

d. Desative o interrutor persistentemente:

switchcfgpersistentdisable

O switch permanecerá desativado após uma reinicialização ou fastboot. Se este comando não estiver disponível, você deve usar o switchdisable comando.

O exemplo a seguir mostra o comando no BrocadeSwitchA:

BrocadeSwitchA:admin> switchcfgpersistentdisable

O exemplo a seguir mostra o comando no BrocadeSwitchB:

BrocadeSwitchA:admin> switchcfgpersistentdisable

- 2. Configuração completa do novo switch:
 - a. Ative as ISLs no site sobrevivente:

```
portcfgpersistentenable port-number
```

```
FC_switch_B_1:admin> portcfgpersistentenable 10
FC_switch_B_1:admin> portcfgpersistentenable 11
```

b. Ative as ISLs nos interrutores de substituição:

```
portcfgpersistentenable port-number
```

```
FC_switch_A_1:admin> portcfgpersistentenable 10
FC switch A 1:admin> portcfgpersistentenable 11
```

c. No interrutor de substituição (FC_switch_A_1 neste exemplo) verifique se os ISL estão online:

switchshow

```
FC switch A 1:admin> switchshow
switchName: FC switch A 1
switchType: 71.2
switchState:Online
switchMode: Native
switchRole: Principal
switchDomain:
               4
switchId: fffc03
switchWwn: 10:00:00:05:33:8c:2e:9a
zoning:
                OFF
switchBeacon:
                OFF
Index Port Address Media Speed State Proto
_____
. . .
10 10
        030A00 id 16G Online FC E-Port 10:00:00:05:33:86:89:cb
"FC switch A 1"
                          Online FC E-Port 10:00:00:05:33:86:89:cb
11 11 030B00 id
                    16G
"FC switch A_1" (downstream)
. . .
```

3. Ativar persistentemente o interrutor:

switchcfgpersistentenable

4. Verifique se as portas estão online:

switchshow

Configuração de um switch Cisco FC após um desastre no local

Você deve usar o procedimento específico do Cisco para configurar o switch de substituição e ativar as portas ISL.

Sobre esta tarefa

Os exemplos deste procedimento baseiam-se nas seguintes premissas:

- O local A é o local do desastre.
- FC_switch_A_1 foi substituído.
- FC_switch_A_2 foi substituído.
- O local B é o local sobrevivente.
- FC_switch_B_1 está em bom estado.
- FC_switch_B_2 está em bom estado.

Passos

- 1. Configure o interrutor:
 - a. Consulte "Instalação e configuração do MetroCluster conectado à malha"
 - b. Siga as etapas para configurar o switch "Configuração dos switches Cisco FC"na seção excepto para a seção "Configurando zoneamento em um switch Cisco FC":

O zoneamento é configurado posteriormente neste procedimento.

2. No interrutor de integridade (neste exemplo, FC_switch_B_1), ative as portas ISL.

O exemplo a seguir mostra os comandos para ativar as portas:

```
FC_switch_B_1# conf t
FC_switch_B_1(config) # int fc1/14-15
FC_switch_B_1(config) # no shut
FC_switch_B_1(config) # end
FC_switch_B_1# copy running-config startup-config
FC_switch_B_1#
```

- 3. Verifique se as portas ISL estão ativas usando o comando show interface brief.
- 4. Recupere as informações de zoneamento do tecido.

O exemplo a seguir mostra os comandos para distribuir a configuração de zoneamento:

```
FC_switch_B_1(config-zone) # zoneset distribute full vsan 10
FC_switch_B_1(config-zone) # zoneset distribute full vsan 20
FC_switch_B_1(config-zone) # end
```

FC_switch_B_1 é distribuído para todos os outros switches na malha para "vsan 10" e "vsan 20", e as informações de zoneamento são recuperadas de FC_switch_A_1.

 No interrutor de integridade, verifique se as informações de zoneamento estão corretamente recuperadas do switch de parceiro:

show zone

```
FC switch B 1# show zone
zone name FC-VI Zone 1 10 vsan 10
 interface fc1/1 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/2 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/1 swwn 20:00:54:7f:ee:b8:24:c0
  interface fc1/2 swwn 20:00:54:7f:ee:b8:24:c0
zone name STOR Zone 1 20 25A vsan 20
  interface fc1/5 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/8 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/9 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/10 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/11 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/8 swwn 20:00:54:7f:ee:b8:24:c0
 interface fc1/9 swwn 20:00:54:7f:ee:b8:24:c0
  interface fc1/10 swwn 20:00:54:7f:ee:b8:24:c0
  interface fc1/11 swwn 20:00:54:7f:ee:b8:24:c0
zone name STOR Zone 1 20 25B vsan 20
  interface fc1/8 swwn 20:00:54:7f:ee:e3:86:50
  interface fc1/9 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/10 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/11 swwn 20:00:54:7f:ee:e3:86:50
 interface fc1/5 swwn 20:00:54:7f:ee:b8:24:c0
 interface fc1/8 swwn 20:00:54:7f:ee:b8:24:c0
 interface fc1/9 swwn 20:00:54:7f:ee:b8:24:c0
 interface fc1/10 swwn 20:00:54:7f:ee:b8:24:c0
  interface fc1/11 swwn 20:00:54:7f:ee:b8:24:c0
FC switch B 1#
```

6. Determine os nomes mundiais (WWNs) dos switches na malha do switch.

Neste exemplo, as duas WWNs de switch são as seguintes:

- FC_switch_A_1: 20:00:54:7f:EE:B8:24:C0
- FC_switch_B_1: 20:00:54:7f:EE:C6:80:78

```
FC_switch_B_1# show wwn switch
Switch WWN is 20:00:54:7f:ee:c6:80:78
FC_switch_B_1#
FC_switch_A_1# show wwn switch
Switch WWN is 20:00:54:7f:ee:b8:24:c0
FC_switch_A_1#
```

7. Entre no modo de configuração para a zona e remova os membros da zona que não pertencem ao switch WWNs dos dois switches:

no member interface interface-ide swwn wwn

Neste exemplo, os seguintes membros não estão associados à WWN de nenhum dos switches na malha e devem ser removidos:

- Nome da zona FC-VI_Zone_1_10 vsan 10
 - A interface FC1/1 oscila 20:00:54:7f:EE:e3:86:50
 - A interface FC1/2 oscila 20:00:54:7f:EE:e3:86:50

Os sistemas AFF A700 e FAS9000 são compatíveis com quatro portas FC-VI. É necessário remover todas as quatro portas da zona FC-VI.

Nome de zona STOR_Zone_1_20_25A vsan 20

- A interface FC1/5 oscila 20:00:54:7f:EE:e3:86:50
- A interface FC1/8 oscila 20:00:54:7f:EE:e3:86:50
- A interface FC1/9 oscila 20:00:54:7f:EE:e3:86:50
- A interface FC1/10 oscila 20:00:54:7f:EE:e3:86:50
- A interface FC1/11 oscila 20:00:54:7f:EE:e3:86:50
- Nome de zona STOR_Zone_1_20_25B vsan 20
 - A interface FC1/8 oscila 20:00:54:7f:EE:e3:86:50
 - A interface FC1/9 oscila 20:00:54:7f:EE:e3:86:50
 - A interface FC1/10 oscila 20:00:54:7f:EE:e3:86:50
 - A interface FC1/11 oscila 20:00:54:7f:EE:e3:86:50

O exemplo a seguir mostra a remoção dessas interfaces:

```
FC switch B 1# conf t
 FC switch B 1(config) # zone name FC-VI Zone 1 10 vsan 10
 FC switch B 1(config-zone) # no member interface fc1/1 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/2 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # zone name STOR Zone_1 20 25A vsan 20
 FC switch B 1(config-zone) # no member interface fc1/5 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/8 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/9 swwn
20:00:54:7f:ee:e3:86:50
FC switch B 1(config-zone) # no member interface fc1/10 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/11 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # zone name STOR Zone 1 20 25B vsan 20
 FC switch B 1(config-zone) # no member interface fc1/8 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/9 swwn
20:00:54:7f:ee:e3:86:50
FC switch B 1(config-zone) # no member interface fc1/10 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # no member interface fc1/11 swwn
20:00:54:7f:ee:e3:86:50
 FC switch B 1(config-zone) # save running-config startup-config
 FC switch B 1(config-zone) # zoneset distribute full 10
 FC switch B 1(config-zone) # zoneset distribute full 20
 FC switch B 1(config-zone) # end
 FC switch B 1# copy running-config startup-config
```

8. Adicione as portas do novo switch às zonas.

O exemplo a seguir pressupõe que o cabeamento no switch de substituição é o mesmo que no switch antigo:

```
FC switch B 1# conf t
 FC switch B 1(config) # zone name FC-VI Zone 1 10 vsan 10
 FC switch B 1(config-zone) # member interface fc1/1 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/2 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # zone name STOR Zone 1 20 25A vsan 20
 FC switch B 1(config-zone) # member interface fc1/5 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/8 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/9 swwn
20:00:54:7f:ee:c6:80:78
FC switch B 1(config-zone) # member interface fc1/10 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/11 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # zone name STOR Zone 1 20 25B vsan 20
 FC switch B 1(config-zone) # member interface fc1/8 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/9 swwn
20:00:54:7f:ee:c6:80:78
FC switch B 1(config-zone) # member interface fc1/10 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # member interface fc1/11 swwn
20:00:54:7f:ee:c6:80:78
 FC switch B 1(config-zone) # save running-config startup-config
 FC switch B 1(config-zone) # zoneset distribute full 10
 FC switch B 1(config-zone) # zoneset distribute full 20
 FC switch B 1(config-zone) # end
 FC switch B 1# copy running-config startup-config
```

9. Verifique se o zoneamento está configurado corretamente: show zone

A saída de exemplo a seguir mostra as três zonas:

```
FC switch B 1# show zone
  zone name FC-VI Zone 1 10 vsan 10
    interface fc1/1 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/2 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/1 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/2 swwn 20:00:54:7f:ee:b8:24:c0
  zone name STOR Zone 1 20 25A vsan 20
    interface fc1/5 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/8 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/9 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/10 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/11 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/8 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/9 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/10 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/11 swwn 20:00:54:7f:ee:b8:24:c0
  zone name STOR Zone 1 20 25B vsan 20
    interface fc1/8 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/9 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/10 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/11 swwn 20:00:54:7f:ee:c6:80:78
    interface fc1/5 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/8 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/9 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/10 swwn 20:00:54:7f:ee:b8:24:c0
    interface fc1/11 swwn 20:00:54:7f:ee:b8:24:c0
FC switch B 1#
```

Verificando a configuração do armazenamento

Você precisa confirmar se todo o storage está visível nos nós sobreviventes.

Passos

1. Confirme se todos os componentes de storage no local de desastre são os mesmos em quantidade e tipo no local sobrevivente.

O local sobrevivente e o local de desastre devem ter o mesmo número de stacks de gaveta de disco, gavetas de disco e discos. Em uma configuração MetroCluster conectada a uma ponte ou conetada a malha, os locais devem ter o mesmo número de pontes FC para SAS.

2. Confirme se todos os discos que foram substituídos no local de desastre não são de propriedade:

run local disk show-n

Os discos devem aparecer como sendo não possuídos.

3. Se nenhum disco tiver sido substituído, confirme se todos os discos estão presentes:

disk show

Ligar o equipamento no local de desastre

Você precisa ligar os componentes do MetroCluster no local de desastre quando estiver pronto para se preparar para o switchback. Além disso, você também precisa reabilitar as conexões de armazenamento SAS em configurações MetroCluster de conexão direta e habilitar portas de conexão não inter-switch em configurações MetroCluster conetadas à malha.

Antes de começar

Você já deve ter substituído e cabeado os componentes do MetroCluster exatamente como os antigos.

"Instalação e configuração do MetroCluster conectado à malha"

"Instalação e configuração do Stretch MetroCluster"

Sobre esta tarefa

Os exemplos deste procedimento assumem o seguinte:

- O local A é o local do desastre.
 - FC_switch_A_1 foi substituído.
 - FC_switch_A_2 foi substituído.
- O local B é o local sobrevivente.
 - FC_switch_B_1 está em bom estado.
 - FC_switch_B_2 está em bom estado.

Os switches FC estão presentes apenas nas configurações MetroCluster conectadas à malha.

Passos

1. Em uma configuração MetroCluster estendida usando cabeamento SAS (e sem malha de switch FC ou pontes FC para SAS), conecte todo o storage, incluindo o storage remoto, em ambos os locais.

O controlador no local de desastre deve permanecer desligado ou no prompt DO Loader.

2. No site sobrevivente, desative a atribuição automática do disco:

```
storage disk option modify -autoassign off *
```

```
cluster_B::> storage disk option modify -autoassign off *
2 entries were modified.
```

3. No site sobrevivente, confirme se a atribuição automática do disco está desativada:

```
storage disk option show
```

- 4. Ligue as gavetas de disco no local de desastre e verifique se todos os discos estão em execução.
- 5. Em uma configuração MetroCluster conectada a uma ponte ou conetada a malha, ative todas as pontes FC para SAS no local do desastre.
- 6. Se algum disco tiver sido substituído, deixe os controladores desligados ou no prompt DO Loader.
- 7. Em uma configuração MetroCluster conetada à malha, habilite as portas não ISL nos switches FC.

Se o fornecedor do switch for	Em seguida, utilize estes passos para ativar as
	portas

```
a. Habilite persistentemente as portas conetadas
  às bridges FC-para-SAS:
  portpersistentenable port-number
  No exemplo a seguir, as portas 6 e 7 estão
  ativadas:
    FC_switch A_1:admin>
    portpersistentenable 6
    FC switch A 1:admin>
    portpersistentenable 7
    FC switch A 1:admin>
b. Habilite persistentemente as portas conetadas
  aos HBAs e adaptadores FC-VI:
  portpersistentenable port-number
  No exemplo a seguir, as portas 6 e 7 estão
  ativadas:
    FC switch A 1:admin>
    portpersistentenable 1
    FC switch A 1:admin>
    portpersistentenable 2
    FC switch A 1:admin>
    portpersistentenable 4
    FC switch A 1:admin>
    portpersistentenable 5
    FC switch A 1:admin>
            Para sistemas AFF A700 e
            FAS9000, você deve ativar
            persistentemente todas as quatro
     portas FC-VI usando o comando
            switchcfgpersistentemente.
c. Repita os subpassos a e b para o segundo
  switch FC no local sobrevivente.
```

Brocade

Cisco	 a. Entre no modo de configuração para a interface e, em seguida, ative as portas com o comando no shut.
	No exemplo a seguir, a porta FC1/36 está desativada:
	<pre>FC_switch_A_1# conf t FC_switch_A_1(config)# interface fc1/36 FC_switch_A_1(config)# no shut FC_switch_A_1(config-if)# end FC_switch_A_1# copy running- config startup-config</pre>
	 b. Verifique se a porta do switch está ativada: show interface brief
	 c. Repita as subetapas a e b nas outras portas conectadas às pontes FC-para-SAS, HBAs e adaptadores FC-VI.
	d. Repita os subpassos a, b e c para o segundo switch FC no local sobrevivente.

Atribuição de propriedade para unidades substituídas

Se você substituiu unidades ao restaurar o hardware no local de desastre ou se você tivesse que zero unidades ou remover a propriedade, você deverá atribuir propriedade às unidades afetadas.

Antes de começar

O local de desastre deve ter pelo menos quantas unidades disponíveis antes do desastre.

O arranjo de compartimentos e unidades de unidades deve atender aos requisitos "Componente IP do MetroCluster necessário e convenções de nomenclatura" da "Instalação e configuração IP do MetroCluster"seção do .

Sobre esta tarefa

Essas etapas são executadas no cluster no local do desastre.

Este procedimento mostra a reatribuição de todas as unidades e a criação de novos plexos no local de desastre. Os novos plexos são plexos remotos do local sobrevivente e dos plexos locais do local do desastre.

Esta seção fornece exemplos para configurações de dois e quatro nós. Para configurações de dois nós, você pode ignorar referências ao segundo nó em cada local. Para configurações de oito nós, você deve ter em conta os nós adicionais no segundo grupo de DR. Os exemplos fazem as seguintes suposições:

• O local A é o local do desastre.

- O nó_A_1 foi substituído.
- O nó_A_2 foi substituído.

Presente apenas em configurações de MetroCluster de quatro nós.

- O local B é o local sobrevivente.
 - Node_B_1 está em bom estado.
 - Node_B_2 está em bom estado.

Presente apenas em configurações de MetroCluster de quatro nós.

Os módulos do controlador têm as seguintes IDs de sistema originais:

Número de nós na configuração do MetroCluster	Nó	ID do sistema original
Quatro	node_A_1	4068741258
node_A_2	4068741260	node_B_1
4068741254	node_B_2	4068741256
Dois	node_A_1	4068741258

Você deve ter em mente os seguintes pontos ao atribuir as unidades:

• A contagem antiga de discos deve ter pelo menos o mesmo número de discos para cada nó que estava presente antes do desastre.

Se um número menor de discos for especificado ou presente, as operações de recuperação podem não ser concluídas devido a espaço insuficiente.

- Os novos plexos a serem criados são plexos remotos pertencentes ao local sobrevivente (node_B_x pool1) e plexos locais pertencentes ao local de desastre (node_B_x pool0).
- O número total de unidades necessárias não deve incluir os discos raiz aggrr.

Se n discos forem atribuídos a pool1 do local sobrevivente, os discos n-3 devem ser atribuídos ao local de desastre com a suposição de que o agregado raiz usa três discos.

- Nenhum dos discos pode ser atribuído a um pool que é diferente daquele ao qual todos os outros discos na mesma pilha são atribuídos.
- Os discos pertencentes ao local sobrevivente são atribuídos ao pool 1 e os discos pertencentes ao local de desastre são atribuídos ao pool 0.

Passos

- 1. Atribua as novas unidades sem propriedade com base se você tem uma configuração de MetroCluster de quatro nós ou dois nós:
 - Para configurações de MetroCluster de quatro nós, atribua os novos discos não possuídos aos pools de discos apropriados usando a seguinte série de comandos nos nós de substituição:

i. Atribua sistematicamente os discos substituídos para cada nó aos respetivos pools de discos:

disk assign -s sysid -n old-count-of-disks -p pool

No site sobrevivente, você emite um comando de atribuição de disco para cada nó:

```
cluster_B::> disk assign -s node_B_1-sysid -n old-count-of-disks
-p 1 **\(remote pool of surviving site\)**
cluster_B::> disk assign -s node_B_2-sysid -n old-count-of-disks
-p 1 **\(remote pool of surviving site\)**
cluster_B::> disk assign -s node_A_1-old-sysid -n old-count-of-
disks -p 0 **\(local pool of disaster site\)**
cluster_B::> disk assign -s node_A_2-old-sysid -n old-count-of-
disks -p 0 **\(local pool of disaster site\)**
```

O exemplo a seguir mostra os comandos com as IDs do sistema:

```
cluster_B::> disk assign -s 4068741254 -n 21 -p 1
cluster_B::> disk assign -s 4068741256 -n 21 -p 1
cluster_B::> disk assign -s 4068741258 -n 21 -p 0
cluster_B::> disk assign -s 4068741260 -n 21 -p 0
```

i. Confirme a propriedade dos discos:

storage disk show -fields owner, pool

```
storage disk show -fields owner, pool
cluster A::> storage disk show -fields owner, pool
disk
       owner
                   pool
----- ----- -----
0c.00.1 node A 1
                   PoolO
Oc.00.2 node A 1 Pool0
.
0c.00.8 node A 1
                   Pool1
0c.00.9 node_A_1 Pool1
.
.
                 PoolO
0c.00.15 node A 2
0c.00.16 node A 2
                   PoolO
Oc.00.22 node A 2 Pool1
0c.00.23 node A 2
                   Pool1
•
```

- Para configurações de MetroCluster de dois nós, atribua os novos discos não possuídos aos pools de discos apropriados usando a seguinte série de comandos no nó de substituição:
 - i. Exibir as IDs de gaveta locais:

run local storage show shelf

ii. Atribua os discos substituídos para o nó íntegro ao pool 1:

```
run local disk assign -shelf shelf-id -n old-count-of-disks -p 1 -s node_B_1-sysid -f
```

iii. Atribua os discos substituídos para o nó de substituição ao pool 0:

```
run local disk assign -shelf shelf-id -n old-count-of-disks -p 0 -s
node A 1-sysid -f
```

2. No site sobrevivente, ative novamente a atribuição automática de disco:

storage disk option modify -autoassign on *

```
cluster_B::> storage disk option modify -autoassign on *
2 entries were modified.
```

3. No site sobrevivente, confirme se a atribuição automática de disco está em:

```
storage disk option show
```

Informações relacionadas

"Gerenciamento de disco e agregado"

"Como as configurações do MetroCluster usam o SyncMirror para fornecer redundância de dados"

Executando recuperação de agregados e restauração de espelhos (configurações MetroCluster FC)

Depois de substituir o hardware e atribuir discos, você pode executar as operações de recuperação do MetroCluster. Em seguida, você deve confirmar se os agregados estão espelhados e, se necessário, reiniciar o espelhamento.

Passos

1. Execute as duas fases de cura (cura agregada e recuperação de raiz) no local de desastre:

```
cluster_B::> metrocluster heal -phase aggregates
cluster_B::> metrocluster heal -phase root-aggregates
```

2. Monitore a recuperação e verifique se os agregados estão no estado ressincronizado ou espelhado:

storage aggregate show -node local

Se o agregado mostrar este estado	Então
ressincronização	Nenhuma ação é necessária. Deixe o agregado concluir a ressincronização.

espelho degradado	Prossiga para Se um ou mais plexes permanecerem offline, etapas adicionais serão necessárias para reconstruir o espelho.
espelhado, normal	Nenhuma ação é necessária.
desconhecido, offline	O agregado raiz mostra esse estado se todos os discos nos locais de desastre foram substituídos.

```
cluster B::> storage aggregate show -node local
Aggregate Size Available Used% State #Vols Nodes RAID
Status
_____
node B 1 aggr1
        227.1GB 11.00GB 95% online
                                     1 node B 1 raid dp,
                                                resyncing
NodeA 1 aggr2
         430.3GB 28.02GB 93% online
                                      2 node B 1 raid dp,
                                                mirror
                                                degraded
node_B_1_aggr3
         812.8GB 85.37GB 89% online
                                      5 node B 1 raid dp,
                                                mirrored,
                                                normal
3 entries were displayed.
cluster B::>
```

Nos exemplos a seguir, os três agregados estão cada um em um estado diferente:

Nó	Estado
node_B_1_aggr1	ressincronização
node_B_1_aggr2	espelho degradado
node_B_1_aggr3	espelhado, normal

3. se um ou mais plexes permanecerem off-line, etapas adicionais serão necessárias para reconstruir o espelho.

Na tabela anterior, o espelho para node_B_1_aggr2 deve ser reconstruído.

a. Veja os detalhes do agregado para identificar quaisquer plexos com falha:

storage aggregate show -r -aggregate node_B_1_aggr2

No exemplo a seguir, Plex /node B_1_aggr2/plex0 está em um estado com falha:

```
cluster_B::> storage aggregate show -r -aggregate node_B_1_aggr2
Owner Node: node B 1
 Aggregate: node B 1 aggr2 (online, raid dp, mirror degraded) (block
checksums)
  Plex: /node B 1 aggr2/plex0 (offline, failed, inactive, pool0)
   RAID Group /node B 1 aggr2/plex0/rg0 (partial)
                                                    Usable
Physical
    Position Disk
                          Pool Type RPM Size
Size Status
    ----- ---- ----- ---- ----- -----
_____ ___
  Plex: /node B 1 aggr2/plex1 (online, normal, active, pool1)
   RAID Group /node B 1 aggr2/plex1/rg0 (normal, block checksums)
                                                    Usable
Physical
                                Pool Type RPM Size
    Position Disk
Size Status
    _____ ___ ____
_____
                                  1 SAS 15000 265.6GB
   dparity 1.44.8
273.5GB (normal)
                                  1 SAS 15000 265.6GB
   parity 1.41.11
273.5GB (normal)
   data 1.42.8
                                     SAS 15000 265.6GB
                                  1
273.5GB (normal)
                                     SAS 15000 265.6GB
    data 1.43.11
                                  1
273.5GB (normal)
    data 1.44.9
                                     SAS 15000 265.6GB
                                  1
273.5GB (normal)
    data 1.43.18
                                  1 SAS 15000 265.6GB
273.5GB (normal)
6 entries were displayed.
cluster B::>
```

a. Eliminar o Plex com falha:

storage aggregate plex delete -aggregate aggregate-name -plex plex

b. Restabelecer o espelho:

storage aggregate mirror -aggregate aggregate-name

c. Monitore o status de ressincronização e espelhamento do Plex até que todos os espelhos sejam restabelecidos e todos os agregados mostrem espelhado status normal:

storage aggregate show

Reatribuir a propriedade do disco para agregados raiz a módulos de controladora de substituição (configurações MetroCluster FC)

Se um ou ambos os módulos da controladora ou placas NVRAM tiverem sido substituídos no local de desastre, o ID do sistema foi alterado e você deve reatribuir discos pertencentes aos agregados raiz aos módulos da controladora de substituição.

Sobre esta tarefa

Como os nós estão no modo de switchover e a recuperação foi feita, apenas os discos que contêm os agregados raiz de pool1 do local de desastre serão reatribuídos nesta seção. Eles são os únicos discos ainda possuídos pelo ID do sistema antigo neste momento.

Esta seção fornece exemplos para configurações de dois e quatro nós. Para configurações de dois nós, você pode ignorar referências ao segundo nó em cada local. Para configurações de oito nós, você deve ter em conta os nós adicionais no segundo grupo de DR. Os exemplos fazem as seguintes suposições:

- O local A é o local do desastre.
 - O nó_A_1 foi substituído.
 - O nó_A_2 foi substituído.

Presente apenas em configurações de MetroCluster de quatro nós.

- O local B é o local sobrevivente.
 - Node_B_1 está em bom estado.
 - Node_B_2 está em bom estado.

Presente apenas em configurações de MetroCluster de quatro nós.

Os IDs de sistema antigo e novo foram identificados no "Substitua o hardware e inicialize novos controladores".

Os exemplos neste procedimento usam controladores com as seguintes IDs de sistema:

Número de nós	Nó	ID do sistema original	Nova ID do sistema

Quatro	node_A_1	4068741258	1574774970
	node_A_2	4068741260	1574774991
	node_B_1	4068741254	inalterado
	node_B_2	4068741256	inalterado
Dois	node_A_1	4068741258	1574774970

Passos

1. Com o nó de substituição no modo Manutenção, reatribua os discos agregados raiz:

```
disk reassign -s old-system-ID -d new-system-ID
```

*> disk reassign -s 4068741258 -d 1574774970

2. Visualize os discos para confirmar a alteração de propriedade dos discos de pool1 raiz aggr do local de desastre para o nó de substituição:

disk show

A saída pode mostrar mais ou menos discos, dependendo de quantos discos estão no agregado raiz e se algum desses discos falhou e foi substituído. Se os discos foram substituídos, então Pool0 discos não aparecerão na saída.

Os discos agregados de raiz pool1 do local de desastre agora devem ser atribuídos ao nó de substituição.

*> disk show Local System ID: 1574774970 OWNER POOL DISK SERIAL NUMBER HOME DR HOME _____ _____ ____ _____ _____ _____ sw A 1:6.126L19 node A 1(1574774970) Pool0 serial-number node A 1(1574774970) sw A 1:6.126L3 node A 1(1574774970) Pool0 serial-number node A 1(1574774970) node A 1(1574774970) Pool0 serial-number sw A 1:6.126L7 node A 1(1574774970) node A 1(1574774970) Pool1 serial-number sw B 1:6.126L8 node A 1(1574774970) sw B_1:6.126L24 node A 1(1574774970) Pool1 serial-number node A 1(1574774970) sw B 1:6.126L2 node A 1(1574774970) Pool1 serial-number node A 1(1574774970) *> aggr status Aggr State Status node A 1 root online raid dp, aggr mirror degraded 64-bit *>

3. Exibir o status agregado:

aggr status

A saída pode mostrar mais ou menos discos, dependendo de quantos discos estão no agregado raiz e se algum desses discos falhou e foi substituído. Se os discos tiverem sido substituídos, os discos Pool0 não aparecerão na saída.

```
*> aggr status
        Aggr State Status
        node_A_1_root online raid_dp, aggr
        mirror degraded
        64-bit
*>
```

4. Elimine o conteúdo dos discos da caixa de correio:

```
mailbox destroy local
```

5. Se o agregado não estiver online, coloque-o online:

aggr online aggr_name

6. Interrompa o nó para exibir o prompt DO Loader:

halt

Iniciar os novos módulos de controladores (configurações MetroCluster FC)

Após a conclusão da recuperação de agregado para os agregados de dados e raiz, você precisa inicializar o nó ou nós no local de desastre.

Sobre esta tarefa

Esta tarefa começa com os nós mostrando o prompt Loader.

Passos

1. Apresentar o menu de arranque:

boot_ontap menu

- a partir do menu de arranque, selecione a opção 6, Atualizar flash a partir da configuração de cópia de segurança.
- 3. Responda y ao seguinte aviso:

This will replace all flash-based configuration with the last backup to disks. Are you sure you want to continue?: y

O sistema será inicializado duas vezes, a segunda vez para carregar a nova configuração.

Se você não limpar o conteúdo do NVRAM de um controlador de substituição usado, poderá ver um pânico com a seguinte mensagem: PANIC: NVRAM contents are invalid... Se isso ocorrer, repita No menu de inicialização, selecione a opção 6, Atualizar flash a partir da configuração de backup. para inicializar o sistema no prompt do ONTAP. Então você precisa Redefina a recuperação de inicialização e os bootargs rdb_corrupt

- 4. Espelhar o agregado de raiz no Plex 0:
 - a. Atribua três discos pool0 ao novo módulo do controlador.
 - b. Espelhar o agregado de raiz pool1 Plex:

aggr mirror root-aggr-name

- c. Atribua discos não possuídos a pool0 no nó local
- 5. Se você tiver uma configuração de quatro nós, repita as etapas anteriores no outro nó no local de desastre.
- 6. Atualize a configuração do MetroCluster:
 - a. Entrar no modo de privilégio avançado:

set -privilege advanced

b. Atualizar a configuração:

metrocluster configure -refresh true

c. Voltar ao modo de privilégios de administrador:

set -privilege admin

7. Confirme se os nós de substituição no local de desastre estão prontos para o switchback:

metrocluster node show

Os nós de substituição devem estar no modo "aguardando a recuperação de switchback". Se eles estiverem no modo "normal", você pode reinicializar os nós de substituição. Após essa inicialização, os nós devem estar no modo "aguardando a recuperação de switchback".

O exemplo a seguir mostra que os nós de substituição estão prontos para switchback:

O que fazer a seguir

Prossiga para "Conclua o processo de recuperação de desastres".

Reponha os bootargs boot_recovery e rdb_corrupt

Se necessário, você pode redefinir o boot_recovery e o rdb_corrupt_bootargs

Passos

1. Interrompa o nó de volta ao prompt DO Loader:

node A 1::*> halt -node _node-name

2. Verifique se os seguintes bootargs foram definidos:

```
LOADER> printenv bootarg.init.boot_recovery
LOADER> printenv bootarg.rdb_corrupt
```

3. Se qualquer bootarg tiver sido definido como um valor, desconfigure-o e inicie o ONTAP:

```
LOADER> unsetenv bootarg.init.boot_recovery
LOADER> unsetenv bootarg.rdb_corrupt
LOADER> saveenv
LOADER> bye
```

Preparando-se para switchback em uma configuração mista (recuperação durante a transição)

É necessário executar determinadas tarefas para preparar a configuração mista de IP e FC do MetroCluster para a operação de switchback. Este procedimento aplica-se apenas a configurações que encontraram uma falha durante o processo de transição MetroCluster FC para IP.

Sobre esta tarefa

Este procedimento só deve ser usado quando se executa a recuperação em um sistema que estava em transição intermediária quando ocorreu a falha.

Nesse cenário, o MetroCluster é uma configuração mista:

• Um grupo de DR consiste em nós FC da MetroCluster conectados a malha.

Você deve executar as etapas de recuperação do MetroCluster FC nesses nós.

• Um grupo de DR consiste em nós IP do MetroCluster.

Você deve executar as etapas de recuperação do IP do MetroCluster nesses nós.

Passos

Execute as etapas na ordem a seguir.

- 1. Prepare os nós FC para o switchback executando as seguintes tarefas em ordem:
 - a. "Verificação da configuração da porta (somente configurações MetroCluster FC)"
 - b. "Configuração de pontes FC para SAS (somente configurações de MetroCluster FC)"
 - c. "Configuração dos switches FC (somente configurações MetroCluster FC)"
 - d. "Verificando a configuração do armazenamento" (Execute apenas estas etapas em unidades substituídas nos nós FC do MetroCluster)
 - e. "Ligar o equipamento no local de desastre" (Execute apenas estas etapas em unidades substituídas nos nós FC do MetroCluster)
 - f. "Atribuição de propriedade para unidades substituídas" (Execute apenas estas etapas em unidades substituídas nos nós FC do MetroCluster)

- g. Execute as etapas em "Reatribuir a propriedade do disco para agregados raiz a módulos de controladora de substituição (configurações MetroCluster FC)", até e incluindo a etapa para emitir o comando Mailbox Destroy.
- h. Destrua o Plex local (Plex 0) do agregado raiz:

aggr destroy plex-id

- i. Se o aggr raiz não estiver online, coloque-o online.
- 2. Inicialize os nós de MetroCluster FC.

Siga estas etapas em ambos os nós do MetroCluster FC.

a. Apresentar o menu de arranque:

boot ontap menu

- b. No menu de inicialização, selecione a opção 6, Atualizar flash a partir da configuração de backup.
- c. Responda y ao seguinte aviso:

This will replace all flash-based configuration with the last backup to disks. Are you sure you want to continue?: y

O sistema será inicializado duas vezes, a segunda vez para carregar a nova configuração.

Se você não limpar o conteúdo do NVRAM de um controlador de substituição usado, poderá ver um pânico com a seguinte mensagem: PANIC: NVRAM contents are invalid... Se isso ocorrer, repita estas subetapas para inicializar o sistema no prompt do ONTAP. Então você precisa Redefina a recuperação de inicialização e os bootargs rdb_corrupt

3. Espelhar o agregado de raiz no Plex 0:

Siga estas etapas em ambos os nós do MetroCluster FC.

- a. Atribua três discos pool0 ao novo módulo do controlador.
- b. Espelhar o agregado de raiz pool1 Plex:

aggr mirror root-aggr-name

- c. Atribua discos não possuídos a pool0 no nó local
- 4. Regressar ao modo de manutenção.

Siga estas etapas em ambos os nós do MetroCluster FC.

a. Parar o nó:

halt

b. Inicialize o nó para Manutenção:

mode:boot ontap maint

5. Elimine o conteúdo dos discos da caixa de correio:

mailbox destroy local

Siga estas etapas em ambos os nós do MetroCluster FC.

- 6. Parar os nós: Mais halt
- 7. Após a inicialização dos nós, verifique o status do nó:

metrocluster node show

<pre>siteA::*> met</pre>	crocluster node show		22	
DR		Configuration	DR	
Group Cluster	Node	State	Mirroring	Mode
1 siteA				
	wmc66-a1	configured	enabled	waiting for
switchback re	ecovery			
	wmc66-a2	configured	enabled	waiting for
switchback re	ecovery			
siteB				
	wmc66-b1	configured	enabled	switchover
completed				
	wmc66-b2	configured	enabled	switchover
completed				
2 siteA				
	wmc55-a1	-	-	-
	wmc55-a2	unreachable	_	-
siteB				
	wmc55-b1	configured	enabled	switchover
completed				
	wmc55-b2	configured		

- Prepare os nós IP do MetroCluster para o switchback executando as tarefas em "Preparando-se para switchback em uma configuração IP MetroCluster" até e incluindo "Exclusão de plexes com falha de propriedade do site sobrevivente (configurações IP do MetroCluster)".
- 9. Nos nós de FC do MetroCluster, execute as etapas em "Executando recuperação de agregados e restauração de espelhos (configurações MetroCluster FC)".
- Nos nós IP do MetroCluster, execute as etapas em "Executar a recuperação de agregados e restaurar espelhos (configurações IP do MetroCluster)".
- 11. Prossiga pelas tarefas restantes do processo de recuperação, começando com "Restabelecimento de armazenamentos de objetos para configurações do FabricPool".

Se necessário, você pode redefinir o boot_recovery e o rdb_corrupt_bootargs

Passos

1. Interrompa o nó de volta ao prompt DO Loader:

```
node A 1::*> halt -node node-name
```

2. Verifique se os seguintes bootargs foram definidos:

```
LOADER> printenv bootarg.init.boot_recovery
LOADER> printenv bootarg.rdb_corrupt
```

3. Se qualquer bootarg tiver sido definido como um valor, desconfigure-o e inicie o ONTAP:

```
LOADER> unsetenv bootarg.init.boot_recovery
LOADER> unsetenv bootarg.rdb_corrupt
LOADER> saveenv
LOADER> bye
```

A concluir a recuperação

Execute as tarefas necessárias para concluir a recuperação de uma falha de vários controladores ou armazenamento.

Restabelecimento de armazenamentos de objetos para configurações do FabricPool

Se um dos armazenamentos de objetos em um espelho do FabricPool foi co-localizado com o local de desastre do MetroCluster e foi destruído, você deve restabelecer o armazenamento de objetos e o espelho do FabricPool.

Sobre esta tarefa

- Se os armazenamentos de objetos forem remotos e um site MetroCluster for destruído, você não precisará reconstruir o armazenamento de objetos e as configurações originais do armazenamento de objetos, bem como o conteúdo de dados inativos serão retidos.
- Para obter mais informações sobre configurações do FabricPool, consulte "Gerenciamento de disco e agregados".

Passo

1. Seguir o procedimento "Substituição de um espelho FabricPool numa configuração MetroCluster" no "Gerenciamento de disco e agregados".

Verificando licenças nos nós substituídos

Você deve instalar novas licenças para os nós de substituição se os nós deficientes estiverem usando

recursos do ONTAP que exigem uma licença padrão (node-locked). Para recursos com licenças padrão, cada nó no cluster deve ter sua própria chave para o recurso.

Sobre esta tarefa

Até instalar chaves de licença, os recursos que exigem licenças padrão continuam disponíveis para o nó de substituição. No entanto, se o nó prejudicado for o único nó no cluster com uma licença para o recurso, nenhuma alteração de configuração será permitida. Além disso, o uso de recursos não licenciados no nó pode deixá-lo fora de conformidade com o contrato de licença, portanto, você deve instalar a chave de licença de substituição ou as chaves no nó de substituição o mais rápido possível.

As chaves de licença devem estar no formato de 28 carateres.

Você tem um período de carência de 90 dias para instalar as chaves de licença. Após o período de carência, todas as licenças antigas são invalidadas. Depois que uma chave de licença válida é instalada, você tem 24 horas para instalar todas as chaves antes que o período de carência termine.

Se todos os nós de um local tiverem sido substituídos (um único nó no caso de uma configuração de MetroCluster de dois nós), as chaves de licença devem ser instaladas no nó ou nós de substituição antes do switchback.

Passos

- 1. Identifique as licenças no nó:
 - license show

O exemplo a seguir exibe as informações sobre licenças no sistema:

```
cluster B::> license show
        (system license show)
Serial Number: 1-80-00050
Owner: site1-01
Package
                          Description
                                                Expiration
                Type
                           _____
_____
               _____
                                                 _____
                          Cluster Base License
Base
               license
NFS
               site
                          NFS License
CIFS
               site
                          CIFS License
                          iSCSI License
iscsi
               site
FCP
               site
                          FCP License
                                                     _
FlexClone
               site
                          FlexClone License
6 entries were displayed.
```

2. Verifique se as licenças são boas para o nó após o switchback:

metrocluster check license show

O exemplo a seguir exibe as licenças que são boas para o nó:

cluster_B::> metrocluster check license show		
Cluster	Check	Result
Cluster_B	negotiated-switchover-ready	not-applicable
NFS	switchback-ready	not-applicable
CIFS	job-schedules	ok
iscsi	licenses	ok
FCP	periodic-check-enabled	ok

3. Se você precisar de novas chaves de licença, obtenha chaves de licença de substituição no site de suporte da NetApp na seção meu suporte em licenças de software.

As novas chaves de licença que você precisa são geradas automaticamente e enviadas para o endereço de e-mail em arquivo. Se não receber o e-mail com as chaves de licença no prazo de 30 dias, consulte a secção "*Quem contactar se tiver problemas com as minhas licenças*?" no artigo da base de dados de Conhecimento "Pós-processo de substituição da placa-mãe para atualizar o licenciamento em um sistema AFF/FAS."

4. Instale cada chave de licença:

system license add -license-code license-key, license-key...+

- 5. Remova as licenças antigas, se desejar:
 - a. Verifique se há licenças não utilizadas:

license clean-up -unused -simulate

b. Se a lista estiver correta, remova as licenças não utilizadas:

license clean-up -unused

Restaurar o gerenciamento de chaves

Se os volumes de dados estiverem criptografados, você precisará restaurar o gerenciamento de chaves. Se o volume raiz estiver criptografado, você deverá recuperar o gerenciamento de chaves.

Passos

1. Se os volumes de dados estiverem criptografados, restaure as chaves usando o comando correto para a configuração de gerenciamento de chaves.

Se você estiver usando	Use este comando
Gestão de chaves a bordo	security key-manager onboard sync
	Para obter mais informações, "Restaurar chaves de criptografia integradas de gerenciamento de chaves"consulte .

Gerenciamento de chaves externas	security key-manager key query -node node-name
	Para obter mais informações, "Restaurar chaves de criptografia de gerenciamento de chaves externas"consulte .

2. Se o volume raiz estiver encriptado, utilize o procedimento em "Recuperar o gerenciamento de chaves se o volume raiz for criptografado".

Executando um switchback

Depois de curar a configuração do MetroCluster, você pode executar a operação MetroCluster switchback. A operação de switchback do MetroCluster retorna a configuração ao seu estado operacional normal, com as máquinas virtuais de armazenamento de origem sincronizada (SVMs) no local de desastre ativas e fornecendo dados dos pools de discos locais.

Antes de começar

- O cluster de desastres deve ter mudado com sucesso para o cluster sobrevivente.
- A recuperação deve ter sido realizada nos agregados de dados e raiz.
- Os nós de cluster sobreviventes não devem estar no estado de failover de HA (todos os nós precisam estar ativos e em execução para cada par de HA).
- Os módulos do controlador do local de desastre devem ser completamente inicializados e não no modo de aquisição de HA.
- O agregado raiz deve ser espelhado.
- Os links interswitches (ISLs) devem estar online.
- Todas as licenças necessárias devem ser instaladas no sistema.

Passos

1. Confirme se todos os nós estão no estado ativado:

metrocluster node show

O exemplo a seguir exibe os nós que estão no estado habilitado:

```
cluster B::> metrocluster node show
                     Configuration DR
DR
                     State Mirroring Mode
Group Cluster Node
     ----- ------ ------- ------- -------
                                             ------
1 cluster A
           node_A_1 configured enabled heal roots completed
           node_A_2 configured enabled heal roots completed
     cluster B
           node_B_1 configured enabled waiting for
switchback recovery
           node_B_2 configured enabled waiting for
switchback recovery
4 entries were displayed.
```

2. Confirme se a ressincronização está concluída em todos os SVMs:

metrocluster vserver show

 Verifique se todas as migrações automáticas de LIF que estão sendo executadas pelas operações de recuperação foram concluídas com sucesso:

metrocluster check lif show

- 4. Execute o switchback executando o metrocluster switchback comando de qualquer nó no cluster sobrevivente.
- 5. Verifique o progresso do funcionamento do interrutor de comutação:

metrocluster show

A operação de switchback ainda está em andamento quando a saída exibe "Waiting-for-switchback":

```
cluster_B::> metrocluster show

Cluster Entry Name State

Local: cluster_B Configuration state configured

Mode switchover

AUSO Failure Domain -

Remote: cluster_A Configuration state configured

Mode aviting-for-switchback

AUSO Failure Domain -
```

A operação de comutação está concluída quando a saída exibe "normal":

cluster_B::> metro Cluster	cluster show Entry Name	State
Local: cluster_B	Configuration s Mode AUSO Failure Do	tate configured normal main -
Remote: cluster_A	Configuration s Mode AUSO Failure Do	tate configured normal main -

Se um switchback levar muito tempo para terminar, você pode verificar o status das linhas de base em andamento usando o seguinte comando no nível avançado de privilégio:

metrocluster config-replication resync-status show

6. Restabelecer qualquer configuração SnapMirror ou SnapVault.

No ONTAP 8,3, você precisa restabelecer manualmente uma configuração de SnapMirror perdida após uma operação de switchback MetroCluster. No ONTAP 9.0 e mais tarde, o relacionamento é restabelecido automaticamente.

Verificando um switchback bem-sucedido

Depois de executar o switchback, você deseja confirmar que todos os agregados e máquinas virtuais de storage (SVMs) são trocados de volta e on-line.

Passos

1. Verifique se os agregados de dados comutados estão invertidos:

storage aggregate show

No exemplo a seguir, aggr_B2 no nó B2 mudou de volta:

```
node B 1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
                                     RAID
Status
_____
. . .
aggr b2 227.1GB 227.1GB 0% online 0 node B 2 raid dp,
mirrored,
normal
node A_1::> aggr show
Aggregate Size Available Used% State #Vols Nodes
                                        RAID
Status
 _____
. . .
aggr b2
          - - - unknown - node A 1
```

Se o local de desastre incluiu agregados sem espelhamento e os agregados sem espelhamento não estiverem mais presentes, o agregado pode aparecer com um estado de "desconhecido" na saída do comando storage Aggregate show. Para remover as entradas desatualizadas para os agregados sem espelhamento, consulte o artigo da base de dados de Conhecimento "Como remover entradas agregadas sem espelhamento obsoletas em um MetroCluster após desastre em que o armazenamento foi perdido."

 Verifique se todos os SVMs de destino de sincronização no cluster sobrevivente estão inativos (mostrando um estado de administrador "coberto") e os SVMs de origem de sincronização no cluster de desastres estão ativos e em execução:

vserver show -subtype sync-source

node B 1::> vserver show -subtype sync-source Admin Root Name Name Vserver Type Subtype State Volume Aggregate Service Mapping _____ _____ _____ ____ . . . vsla data sync-source running vsla vol node B 2 file file aggr b2 node A 1::> vserver show -subtype sync-destination Admin Root Name Name Vserver Type Subtype State Volume Aggregate Service Mapping _____ _____ _ _____ _____ _____ _____ ____ . . . cluster A-vsla-mc data sync-destination stopped vsla vol sosb file file aggr_b2

Os agregados de destino de sincronização na configuração do MetroCluster têm o sufixo "-mc" automaticamente anexado ao seu nome para ajudar a identificá-los.

3. Confirme se as operações de switchback foram bem-sucedidas usando o metrocluster operation show comando.

Se o comando output mostrar	Então
Que o estado de operação de comutação é bem- sucedido.	O processo de switchback está concluído e você pode prosseguir com a operação do sistema.
Que a operação de switchback ou switchback- continuation-Agent é parcialmente bem-sucedida.	Execute a correção sugerida fornecida na saída do comando MetroCluster operation show.

Depois de terminar

Você deve repetir as seções anteriores para executar o switchback na direção oposta. Se o site_A fez um switchover do site_B, faça um switchover do site_A.

Espelhando os agregados de raiz dos nós de substituição

Se os discos tiverem sido substituídos, você precisará espelhar os agregados raiz dos novos nós no local de desastre.

Passos

1. No local do desastre, identifique os agregados que não são espelhados:

```
storage aggregate show
```

```
cluster A::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
                                            RAID
Status
_____ _____
_____
node A 1 aggr0
     1.49TB 74.12GB 95% online 1 node_A_1
raid4,
normal
node A_2_aggr0
      1.49TB 74.12GB 95% online 1 node A 2
raid4,
normal
node A 1 aggr1
       1.49TB 74.12GB 95% online 1 node_A_1 raid
4, normal
mirrored
node A 2 aggr1
        1.49TB 74.12GB 95% online 1 node A 2
                                                  raid
4, normal
mirrored
4 entries were displayed.
cluster A::>
```

2. Espelhar um dos agregados de raiz:

storage aggregate mirror -aggregate root-aggregate

O exemplo a seguir mostra como o comando seleciona discos e solicita confirmação ao espelhar o agregado.
```
cluster A::> storage aggregate mirror -aggregate node A 2 aggr0
Info: Disks would be added to aggregate "node_A_2_aggr0" on node
"node A 2" in
    the following manner:
     Second Plex
      RAID Group rg0, 3 disks (block checksum, raid4)
        Position Disk
                                        Туре
Size
        _____
        parity 2.10.0
                                        SSD
_
        data 1.11.19
                                        SSD
894.0GB
       data 2.10.2
                                        SSD
894.0GB
     Aggregate capacity available for volume use would be 1.49TB.
Do you want to continue? \{y|n\}: y
cluster A::>
```

3. Verifique se o espelhamento do agregado raiz está concluído:

storage aggregate show

O exemplo a seguir mostra que os agregados raiz são espelhados.

cluster A::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status _____ __ ____ _____ node A 1 aggr0 1.49TB 74.12GB 95% online 1 node A 1 raid4, mirrored, normal node A 2 aggr0 2.24TB 838.5GB 63% online 1 node A 2 raid4, mirrored, normal node A 1 aggr1 1.49TB 74.12GB 95% online 1 node A 1 raid4, mirrored, normal node_A_2_aggr1 1.49TB 74.12GB 95% online 1 node A 2 raid4 mirrored, normal 4 entries were displayed. cluster A::>

4. Repita estas etapas para os outros agregados de raiz.

Qualquer agregado de raiz que não tenha o status espelhado deve ser espelhado.

Reconfigurar o serviço do Mediador ONTAP (configurações IP do MetroCluster)

Se você tiver uma configuração IP do MetroCluster configurada com o serviço Mediador do ONTAP, remova e reconfigure a associação com o mediador.

Antes de começar

- Você deve ter o endereço IP, o nome de usuário e a senha para o serviço do Mediador ONTAP.
- O serviço Mediador ONTAP deve ser configurado e operar no host Linux.

Passos

1. Remova a configuração do Mediador ONTAP existente:

metrocluster configuration-settings mediator remove

2. Reconfigure a configuração do Mediador ONTAP:

metrocluster configuration-settings mediator add -mediator-address mediator-

Verificando a integridade da configuração do MetroCluster

Você deve verificar a integridade da configuração do MetroCluster para verificar o funcionamento correto.

Passos

1. Verifique se o MetroCluster está configurado e no modo normal em cada cluster:

```
metrocluster show
```

```
cluster_A::> metroclustershowClusterEntry NameState-------------------Local: cluster_AConfiguration stateconfiguredModenormalAUSO Failure Domainauso-on-cluster-disasterConfiguration stateconfiguredModenormalAUSO Failure Domainauso-on-cluster-disasterAUSO Failure Domainauso-on-cluster-disaster
```

2. Verifique se o espelhamento está ativado em cada nó:

metrocluster node show

3. Verifique se os componentes do MetroCluster estão em bom estado:

metrocluster check run

```
cluster A::> metrocluster check run
Last Checked On: 10/1/2014 16:03:37
Component
                  Result
_____ _
nodes
                   ok
lifs
                   ok
config-replication ok
aggregates
                   ok
4 entries were displayed.
Command completed. Use the `metrocluster check show -instance` command
or sub-commands in `metrocluster check` directory for detailed results.
To check if the nodes are ready to do a switchover or switchback
operation, run `metrocluster switchover -simulate` or `metrocluster
```

4. Verifique se não existem alertas de saúde:

switchback -simulate`, respectively.

system health alert show

- 5. Simular uma operação de comutação:
 - a. A partir do prompt de qualquer nó, altere para o nível de privilégio avançado:

set -privilege advanced

Você precisa responder com y quando solicitado para continuar no modo avançado e ver o prompt do modo avançado (*>).

a. Efectuar a operação de comutação com o -simulate parâmetro:

metrocluster switchover -simulate

b. Voltar ao nível de privilégio de administrador:

set -privilege admin

- Para configurações IP do MetroCluster usando o serviço Mediador ONTAP, confirme se o serviço Mediador está funcionando.
 - a. Verifique se os discos Mediator estão visíveis para o sistema:

storage failover mailbox-disk show

O exemplo a seguir mostra que os discos da caixa de correio foram reconhecidos.

```
node A 1::*> storage failover mailbox-disk show
               Mailbox
               Owner Disk Name
                                          Disk UUID
Node
                _____ ____
                                ____
_____
                                             _____
still3-vsim-ucs626g
    local Om.i2.3L26
7BBA77C9:AD702D14:831B3E7E:0B0730EE:00000000:0000000:0000000:000000
00:0000000:0000000
    local
              Om.i2.3L27
928F79AE:631EA9F9:4DCB5DE6:3402AC48:0000000:0000000:000000:0000000:000000
00:0000000:0000000
    local
              Om.i1.0L60
B7BCDB3C:297A4459:318C2748:181565A3:00000000:0000000:0000000:0000000
00:0000000:0000000
    partner Om.i1.0L14
EA71F260:D4DD5F22:E3422387:61D475B2:00000000:0000000:0000000:000000
00:0000000:0000000
    partner 0m.i2.3L64
4460F436:AAE5AB9E:D1ED414E:ABF811F7:00000000:0000000:0000000:000000
00:0000000:0000000
28 entries were displayed.
```

b. Mude para o nível de privilégio avançado:

set -privilege advanced

c. Verifique se os LUNs da caixa de correio estão visíveis para o sistema:

storage iscsi-initiator show

A saída mostrará a presença dos LUNs da caixa de correio:

a. Voltar ao nível de privilégio administrativo:

set -privilege admin

Recuperando-se de uma falha não controladora

Depois que o equipamento no local de desastre tiver sido submetido a qualquer manutenção ou substituição necessária, mas nenhum controlador tiver sido substituído, você poderá iniciar o processo de devolução da configuração do MetroCluster para um estado totalmente redundante. Isso inclui a recuperação da configuração (primeiro os agregados de dados e depois os agregados raiz) e a execução da operação de switchback.

Antes de começar

- Todo o hardware do MetroCluster no cluster de desastre deve estar funcional.
- A configuração geral do MetroCluster deve estar em switchover.
- Em uma configuração de MetroCluster conetada à malha, o ISL deve estar ativo e operar entre os locais do MetroCluster.

Ativar o registo da consola

O NetApp recomenda fortemente que você ative o log do console nos dispositivos que você está usando e execute as seguintes ações ao executar este procedimento:

- Deixe o AutoSupport ativado durante a manutenção.
- Acione uma mensagem de manutenção do AutoSupport antes e depois da manutenção para desativar a criação de casos durante a atividade de manutenção.

Consulte o artigo da base de dados de Conhecimento "Como suprimir a criação automática de casos durante as janelas de manutenção programada".

 Ative o registo de sessão para qualquer sessão CLI. Para obter instruções sobre como ativar o registo de sessão, consulte a secção "saída de sessão de registo" no artigo da base de dados de conhecimento "Como configurar o PuTTY para uma conetividade ideal aos sistemas ONTAP".

Recuperação da configuração em uma configuração do MetroCluster

Nas configurações do MetroCluster FC, você realiza as operações de recuperação em uma ordem específica para restaurar o recurso MetroCluster após um switchover.

Nas configurações do MetroCluster IP, as operações de recuperação devem começar automaticamente após um switchover. Se eles não fizerem isso, você pode executar as operações de cura manualmente.

Antes de começar

- O switchover deve ter sido realizado e o local sobrevivente deve estar fornecendo dados.
- Os nós no local de desastre devem ser interrompidos ou permanecer desligados.

Eles não devem ser totalmente inicializados durante o processo de cura.

- O storage no local de desastre deve estar acessível (as prateleiras são ativadas, funcionais e acessíveis).
- Nas configurações MetroCluster conetadas à malha, os links entre switches (ISLs) devem estar ativos e operacionais.
- Em configurações de MetroCluster de quatro nós, os nós do local que sobrevive não devem estar no estado de failover de HA (todos os nós precisam estar ativos e em execução para cada par de HA).

Sobre esta tarefa

A operação de recuperação deve primeiro ser realizada nos agregados de dados e, em seguida, nos agregados de raiz.

Recuperação dos agregados de dados

Você deve curar os agregados de dados após reparar e substituir qualquer hardware no local de desastre. Esse processo ressincroniza os agregados de dados e prepara o local de desastre (agora reparado) para operação normal. Você precisa curar os agregados de dados antes de curar os agregados de raiz.

Sobre esta tarefa

O exemplo a seguir mostra um switchover forçado, onde você coloca o agregado comutado on-line. Todas as atualizações de configuração no cluster remoto replicam com sucesso para o cluster local. Você liga o storage no local de desastre como parte deste procedimento, mas não deve nem ligar os módulos do controlador no local de desastre.

Passos

1. Verifique se o switchover foi concluído:

```
metrocluster operation show
```

```
controller_A_1::> metrocluster operation show
Operation: switchover
State: successful
Start Time: 7/25/2014 20:01:48
End Time: 7/25/2014 20:02:14
Errors: -
```

2. Ressincronize os agregados de dados executando o seguinte comando do cluster sobrevivente:

```
metrocluster heal -phase aggregates
```

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

Se a cura for vetada, você tem a opção de reemitir o metrocluster heal comando com o --override-vetoes parâmetro. Se você usar esse parâmetro opcional, o sistema substituirá quaisquer vetos de software que impeçam a operação de recuperação.

3. Verifique se a operação foi concluída:

```
metrocluster operation show
```

```
controller_A_1::> metrocluster operation show
    Operation: heal-aggregates
        State: successful
Start Time: 7/25/2014 18:45:55
    End Time: 7/25/2014 18:45:56
    Errors: -
```

4. Verifique o estado dos agregados:

storage aggregate show comando.

 Se o storage tiver sido substituído no local de desastre, talvez seja necessário espelhar novamente os agregados.

Cura dos agregados de raiz após um desastre

Depois que os agregados de dados tiverem sido curados, você deve curar os agregados de raiz em preparação para a operação de switchback.

Antes de começar

A fase de agregados de dados do processo de recuperação do MetroCluster deve ter sido concluída com sucesso.

Passos

1. Volte a alternar os agregados espelhados:

```
metrocluster heal -phase root-aggregates
```

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

Se a cura for vetada, você tem a opção de reemitir o metrocluster heal comando com o --override-vetoes parâmetro. Se você usar esse parâmetro opcional, o sistema substituirá quaisquer vetos de software que impeçam a operação de recuperação.

 Certifique-se de que a operação de cura está concluída executando o seguinte comando no cluster de destino:

metrocluster operation show

```
mcclA::> metrocluster operation show
Operation: heal-root-aggregates
State: successful
Start Time: 7/29/2014 20:54:41
End Time: 7/29/2014 20:54:42
Errors: -
```

Verificando se o sistema está pronto para um switchback

Se o seu sistema já estiver no estado de comutação, você pode usar a -simulate opção para visualizar os resultados de uma operação de switchback.

Passos

1. Ligue cada módulo do controlador no local de desastre.

Se os nós estiverem desligados: Ligue os nós. Se os nós estiverem no prompt Loader: Execute o comando: boot ontap 2. Após a conclusão da inicialização do nó, verifique se os agregados raiz estão espelhados.

Se ambos os plexos estiverem presentes, qualquer ressincronização será iniciada automaticamente. Se um Plex falhar, destrua-o e restabeleça a relação do espelho utilizando o seguinte comando para recriar o espelho:

storage aggregate mirror -aggregate <aggregate-name>

- 3. Simule a operação de switchback:
 - a. A partir do prompt de qualquer nó sobrevivente, altere para o nível de privilégio avançado:

set -privilege advanced

Você precisa responder com y quando solicitado para continuar no modo avançado e ver o prompt do modo avançado (*>).

a. Execute a operação de switchback com o -simulate parâmetro:

metrocluster switchback -simulate

b. Voltar ao nível de privilégio de administrador:

set -privilege admin

4. Revise a saída que é retornada.

A saída mostra se a operação de switchback seria executada em erros.

Exemplo de resultados de verificação

O exemplo a seguir mostra a verificação bem-sucedida de uma operação de switchback:

```
cluster4::*> metrocluster switchback -simulate
  (metrocluster switchback)
[Job 130] Setting up the nodes and cluster components for the switchback
operation...DBG:backup api.c:327:backup nso sb vetocheck : MetroCluster
Switch Back
[Job 130] Job succeeded: Switchback simulation is successful.
cluster4::*> metrocluster op show
  (metrocluster operation show)
 Operation: switchback-simulate
     State: successful
Start Time: 5/15/2014 16:14:34
  End Time: 5/15/2014 16:15:04
    Errors: -
cluster4::*> job show -name Me*
                         Owning
Job ID Name
                         Vserver Node
                                           State
_____ ____
130 MetroCluster Switchback
                         cluster4
                                    cluster4-01
                                                  Success
      Description: MetroCluster Switchback Job - Simulation
```

Executando um switchback

Depois de curar a configuração do MetroCluster, você pode executar a operação MetroCluster switchback. A operação de switchback do MetroCluster retorna a configuração ao seu estado operacional normal, com as máquinas virtuais de armazenamento de origem sincronizada (SVMs) no local de desastre ativas e fornecendo dados dos pools de discos locais.

Antes de começar

- O cluster de desastres deve ter mudado com sucesso para o cluster sobrevivente.
- A recuperação deve ter sido realizada nos agregados de dados e raiz.
- Os nós de cluster sobreviventes não devem estar no estado de failover de HA (todos os nós precisam estar ativos e em execução para cada par de HA).
- Os módulos do controlador do local de desastre devem ser completamente inicializados e não no modo de aquisição de HA.
- O agregado raiz deve ser espelhado.
- Os links interswitches (ISLs) devem estar online.
- Todas as licenças necessárias devem ser instaladas no sistema.

Passos

1. Confirme se todos os nós estão no estado ativado:

O exemplo a seguir exibe os nós que estão no estado "habilitado":

2. Confirme se a ressincronização está concluída em todos os SVMs:

metrocluster vserver show

3. Verifique se todas as migrações automáticas de LIF que estão sendo executadas pelas operações de recuperação foram concluídas com sucesso:

metrocluster check lif show

4. Execute o switchback executando o seguinte comando a partir de qualquer nó no cluster sobrevivente.

metrocluster switchback

5. Verifique o progresso do funcionamento do interrutor de comutação:

metrocluster show

A operação de switchback ainda está em andamento quando a saída exibe "Waiting-for-switchback":

```
cluster_B::> metrocluster show

Cluster Entry Name State

Local: cluster_B Configuration state configured

Mode switchover

AUSO Failure Domain -

Remote: cluster_A Configuration state configured

Mode waiting-for-switchback

AUSO Failure Domain -
```

A operação de comutação está concluída quando a saída exibe "normal":

```
cluster_B::> metrocluster show

Cluster Entry Name State

Local: cluster_B Configuration state configured

Mode normal

AUSO Failure Domain -

Remote: cluster_A Configuration state configured

Mode normal

AUSO Failure Domain -
```

Se um switchback levar muito tempo para terminar, você pode verificar o status das linhas de base em andamento usando o seguinte comando no nível avançado de privilégio.

metrocluster config-replication resync-status show

6. Restabelecer qualquer configuração SnapMirror ou SnapVault.

No ONTAP 8,3, você precisa restabelecer manualmente uma configuração de SnapMirror perdida após uma operação de switchback MetroCluster. No ONTAP 9.0 e mais tarde, o relacionamento é restabelecido automaticamente.

Verificando um switchback bem-sucedido

Depois de executar o switchback, você deseja confirmar que todos os agregados e máquinas virtuais de storage (SVMs) são trocados de volta e on-line.

Passos

1. Verifique se os agregados de dados comutados estão invertidos:

storage aggregate show

No exemplo a seguir, aggr_B2 no nó B2 mudou de volta:

node B 1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status _____ . . . aggr b2 227.1GB 227.1GB 0% online 0 node B 2 raid dp, mirrored, normal node A 1::> aggr show Aggregate Size Available Used% State #Vols Nodes RAID Status _____ . . . aggr b2 - - - unknown - node A 1

Se o local de desastre incluiu agregados sem espelhamento e os agregados sem espelhamento não estiverem mais presentes, o agregado pode aparecer com um estado de "desconhecido" na saída storage aggregate show do comando. Contacte o suporte técnico para remover as entradas desatualizadas para os agregados sem espelhamento e consulte o artigo da base de dados de Conhecimento "Como remover entradas agregadas sem espelhamento obsoletas em um MetroCluster após desastre em que o armazenamento foi perdido."

 Verifique se todos os SVMs de destino de sincronização no cluster sobrevivente estão inativos (mostrando um estado de administrador de "parado") e os SVMs de origem de sincronização no cluster de desastres estão ativos e em execução:

vserver show -subtype sync-source

node B 1::> vserver show -subtype sync-source Admin Root Name Name Vserver Type Subtype State Volume Aggregate Service Mapping _____ _____ _____ ____ . . . vsla data sync-source running vs1a_vol node_B_2 file file aggr b2 node A 1::> vserver show -subtype sync-destination Admin Root Name Name Vserver Type Subtype State Volume Aggregate Service Mapping _____ _____ _ _____ _____ _____ _____ ____ . . . cluster A-vs1a-mc data sync-destination stopped vsla vol sosb file file aggr_b2

Os agregados de destino de sincronização na configuração do MetroCluster têm o sufixo "-mc" automaticamente anexado ao seu nome para ajudar a identificá-los.

3. Confirme se as operações de switchback foram bem-sucedidas:

metrocluster operation show

Se o comando output mostrar	Então
Que o estado de operação de comutação é bem- sucedido.	O processo de switchback está concluído e você pode prosseguir com a operação do sistema.
Que a operação ou operação de comutação switchback-continuation-agent é parcialmente bem-sucedida.	Execute a correção sugerida fornecida na saída do metrocluster operation show comando.

Depois de terminar

Você deve repetir as seções anteriores para executar o switchback na direção oposta. Se o site_A fez um

switchover do site_B, faça um switchover do site_A.

Excluindo listagens agregadas obsoletas após o switchback

Em algumas circunstâncias após o switchback, você pode notar a presença de agregados *stale*. Agregados obsoletos são agregados que foram removidos do ONTAP, mas cujas informações permanecem registradas no disco. Agregados obsoletos são exibidos com o nodeshell aggr status -r comando, mas não com o storage aggregate show comando. Você pode excluir esses Registros para que eles não apareçam mais.

Sobre esta tarefa

Agregados obsoletos podem ocorrer se você relocou agregados enquanto a configuração do MetroCluster estava em switchover. Por exemplo:

- 1. Local A muda para local B..
- 2. Você exclui o espelhamento de um agregado e reposiciona o agregado de node_B_1 para node_B_2 para balanceamento de carga.
- 3. Você executa a recuperação agregada.

Neste ponto, um agregado obsoleto aparece em node_B_1, mesmo que o agregado real tenha sido excluído desse nó. Esse agregado aparece na saída do nodeshell aggr status -r comando. Ele não aparece na saída storage aggregate show do comando.

1. Compare a saída dos seguintes comandos:

storage aggregate show

run local aggr status -r

Agregados obsoletos aparecem na run local aggr status -r saída, mas não na storage aggregate show saída. Por exemplo, o seguinte agregado pode aparecer na run local aggr status -r saída:

```
Aggregate aggr05 (failed, raid dp, partial) (block checksums)
Plex /aggr05/plex0 (offline, failed, inactive)
 RAID group /myaggr/plex0/rg0 (partial, block checksums)
RAID Disk Device HA SHELF BAY CHAN Pool Type RPM Used (MB/blks)
Phys (MB/blks)
_____ _
                ----- ---- ---- ----- -----
_____
dparity FAILED N/A
                                             82/ -
                     - -
parity 0b.5 0b
                           SA:A 0 VMDISK N/A 82/169472
88/182040
data
                     N/A
                                             82/ -
        FAILED
data
       FAILED
                     N/A
                                             82/ -
                                             82/ -
data
        FAILED
                     N/A
      FAILED
                                             82/ -
data
                     N/A
        FAILED
                                             82/ -
data
                     N/A
                                             82/ -
data FAILED
                      N/A
Raid group is missing 7 disks.
```

- 2. Remova o agregado obsoleto:
 - a. No prompt de qualquer nó, altere para o nível de privilégio avançado:

set -privilege advanced

Você precisa responder com y quando solicitado para continuar no modo avançado e ver o prompt do modo avançado (*>).

a. Remova o agregado obsoleto:

aggregate remove-stale-record -aggregate aggregate_name

b. Voltar ao nível de privilégio de administrador:

set -privilege admin

3. Confirme que o registo agregado obsoleto foi removido:

```
run local aggr status -r
```

Informações sobre direitos autorais

Copyright © 2025 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio — gráfico, eletrônico ou mecânico, incluindo fotocópia, gravação, gravação em fita ou storage em um sistema de recuperação eletrônica — sem permissão prévia, por escrito, do proprietário dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais está sujeito à seguinte licença e isenção de responsabilidade:

ESTE SOFTWARE É FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER GARANTIAS EXPRESSAS OU IMPLÍCITAS, INCLUINDO, SEM LIMITAÇÕES, GARANTIAS IMPLÍCITAS DE COMERCIALIZAÇÃO E ADEQUAÇÃO A UM DETERMINADO PROPÓSITO, CONFORME A ISENÇÃO DE RESPONSABILIDADE DESTE DOCUMENTO. EM HIPÓTESE ALGUMA A NETAPP SERÁ RESPONSÁVEL POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU CONSEQUENCIAL (INCLUINDO, SEM LIMITAÇÕES, AQUISIÇÃO DE PRODUTOS OU SERVIÇOS SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPÇÃO DOS NEGÓCIOS), INDEPENDENTEMENTE DA CAUSA E DO PRINCÍPIO DE RESPONSABILIDADE, SEJA EM CONTRATO, POR RESPONSABILIDADE OBJETIVA OU PREJUÍZO (INCLUINDO NEGLIGÊNCIA OU DE OUTRO MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento e sem aviso. A NetApp não assume nenhuma responsabilidade nem obrigação decorrentes do uso dos produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O uso ou a compra deste produto não representam uma licença sob quaisquer direitos de patente, direitos de marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicação ou a divulgação pelo governo estão sujeitos a restrições conforme estabelecido no subparágrafo (b)(3) dos Direitos em Dados Técnicos - Itens Não Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou serviço comercial (conforme definido no FAR 2.101) e são de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp fornecidos sob este Contrato são de natureza comercial e desenvolvidos exclusivamente com despesas privadas. O Governo dos EUA tem uma licença mundial limitada, irrevogável, não exclusiva, intransferível e não sublicenciável para usar os Dados que estão relacionados apenas com o suporte e para cumprir os contratos governamentais desse país que determinam o fornecimento de tais Dados. Salvo disposição em contrário no presente documento, não é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os dados sem a aprovação prévia por escrito da NetApp, Inc. Os direitos de licença pertencentes ao governo dos Estados Unidos para o Departamento de Defesa estão limitados aos direitos identificados na cláusula 252.227-7015(b) (fevereiro de 2014) do DFARS.

Informações sobre marcas comerciais

NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM são marcas comerciais da NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos proprietários.