Automatize com REST
ONTAP Select

NetApp
February 03, 2026

This PDF was generated from https://docs.netapp.com/pt-br/ontap-select-9141/concept_api_rest.html on
February 03, 2026. Always check docs.netapp.com for the latest.

Indice

Automatize com REST
Conceitos
Base de servigos web REST
Como acessar a API Deploy
Implantar o controle de versao da API
Carateristicas operacionais basicas
Transacgéo de API de solicitagdo e resposta
Processamento assincrono usando o objeto de tarefa
Acesso com um navegador
Antes de acessar a APl com um navegador
Acesse a pagina implantar documentagao
Compreender e executar uma chamada de API
Processos de fluxo de trabalho
Antes de usar os fluxos de trabalho da API
Fluxo de trabalho 1: Crie um cluster de avaliagcao de né unico no ESXi
Acesso com Python
Antes de acessar a API usando Python
Entenda os scripts Python
Amostras de codigo Python
Script para criar um cluster
JSON para script para criar um cluster
Script para adicionar uma licenga de n6
Script para excluir um cluster
Modulo de suporte comum
Script para redimensionar nés de cluster

© 0O N B WODNDDN -2 2~

B W W WN 22 2 A A A a4 a2 a
O OO 0~ OO ©O 0O NN~ O O O ©

Automatize com REST

Conceitos

Base de servigos web REST

Representational State Transfer (REST) € um estilo para a criagdo de aplicagbes web
distribuidas. Quando aplicada ao design de uma API de servigos da Web, ela estabelece
um conjunto de tecnologias e melhores praticas para expor recursos baseados em
servidor e gerenciar seus estados. Ele usa protocolos e padrdes convencionais para
fornecer uma base flexivel para implantar e gerenciar clusters ONTAP Select.

Arquitetura e restrigdes classicas

REST foi formalmente articulado por Roy Fielding em seu doutorado "dissertagéo" na UC Irvine em 2000. Ele
define um estilo arquiteténico por meio de um conjunto de restrigbes, que coletivamente melhoraram as
aplicagbes baseadas na Web e os protocolos subjacentes. As restrigbes estabelecem um aplicativo de
servicos da Web RESTful com base em uma arquitetura cliente/servidor usando um protocolo de comunicacao
sem estado.

Recursos e representacao do Estado

Os recursos sao os componentes basicos de um sistema baseado na Web. Ao criar um aplicativo REST de
servigos da Web, as tarefas iniciais de design incluem:

* Identificacao de recursos baseados em sistema ou servidor que cada sistema usa e mantém recursos. Um
recurso pode ser um arquivo, transagao comercial, processo ou entidade administrativa. Uma das
primeiras tarefas no projeto de um aplicativo baseado em servigcos web REST ¢ identificar os recursos.

* Definigao de estados de recursos e recursos de operagdes estatais associadas estdo sempre em um de
um numero finito de estados. Os estados, bem como as operacdes associadas usadas para afetar as
mudancas de estado, devem ser claramente definidos.

As mensagens sao trocadas entre o cliente e o servidor para acessar e alterar o estado dos recursos de
acordo com o modelo genérico CRUD (criar, ler, atualizar e excluir).

Pontos de extremidade URI

Todos os recursos REST devem ser definidos e disponibilizados usando um esquema de enderecamento bem
definido. Os endpoints onde os recursos estao localizados e identificados usam um URI (Uniform Resource
Identifier). O URI fornece uma estrutura geral para criar um nome exclusivo para cada recurso na rede. O
Uniform Resource Locator (URL) € um tipo de URI usado com servigos da Web para identificar e acessar
recursos. Os recursos sdo normalmente expostos em uma estrutura hierarquica semelhante a um diretério de
arquivos.

Mensagens HTTP

O Hypertext Transfer Protocol (HTTP) € o protocolo usado pelo cliente e servidor de servigos da Web para
trocar mensagens de solicitagcao e resposta sobre os recursos. Como parte do projeto de um aplicativo de
servigos da Web, os verbos HTTP (como GET e POST) sao mapeados para 0s recursos e agdes de
gerenciamento de estado correspondentes.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

HTTP esta sem estado. Portanto, para associar um conjunto de solicitagdes e respostas relacionadas em uma
transacgéo, informagdes adicionais devem ser incluidas nos cabegalhos HTTP carregados com os fluxos de
dados de solicitacao/resposta.

Formatagao JSON

Embora as informagdes possam ser estruturadas e transferidas entre um cliente e um servidor de varias
maneiras, a opgao mais popular (e a usada com a API REST de implantagéo) € JavaScript Object Notation
(JSON). JSON é um padréao da industria para representar estruturas de dados simples em texto simples e é
usado para transferir informagdes de estado descrevendo os recursos.

Como acessar a APl Deploy

Devido a flexibilidade inerente dos servicos da Web REST, a API de implantacédo do
ONTAP Select pode ser acessada de varias maneiras diferentes.

Implantar interface de usuario nativa do utilitario

A principal maneira de acessar a API é por meio da interface de usuario da Web do ONTAP Select Deploy. O
navegador faz chamadas para a API e reformata os dados de acordo com o design da interface do usuario.
Vocé também acessa a API por meio da interface de linha de comando Deploy Utility.

Pagina de documentacao on-line do ONTAP Select Deploy

A pagina de documentagéao on-line do ONTAP Select Deploy fornece um ponto de acesso alternativo ao usar
um navegador. Além de fornecer uma maneira de executar chamadas individuais de API diretamente, a
pagina também inclui uma descrigdo detalhada da API, incluindo pardmetros de entrada e outras opgdes para
cada chamada. As chamadas de API sdo organizadas em varias areas ou categorias funcionais diferentes.

Programa personalizado

Vocé pode acessar a AP| Deploy usando qualquer uma das varias linguagens e ferramentas de programagao
diferentes. As escolhas populares incluem Python, Java e curl. Um programa, script ou ferramenta que usa a
API atua como um cliente de servigos da Web REST. O uso de uma linguagem de programacéao permite que
vocé entenda melhor a API e oferece a oportunidade de automatizar as implantagdes do ONTAP Select.

Implantar o controle de versao da API

A API REST incluida no ONTAP Select Deploy recebe um numero de versdo. O numero
da versao da API é independente do numero da versao de implantacédo. Vocé deve estar
ciente da versao da API incluida na versédo de implantacdo e como isso pode afetar o
uso da APL.

A versao atual do utilitario de administragao implantar inclui a versao 3 da APl REST. As versdes anteriores do
utilitario deploy incluem as seguintes versoes de API:

Implantar o 2,8 e posterior
O ONTAP Select Deploy 2,8 e todas as versdes posteriores incluem a versao 3 da APl REST.

Implantar o0 2.7.2 e versoes anteriores
O ONTAP Select Deploy 2.7.2 e todas as versdes anteriores incluem a versao 2 da APl REST.

As versoes 2 e 3 da APl REST nao sado compativeis. Se vocé atualizar para implantar o 2,8 ou

@ posterior a partir de uma versao anterior que inclua a versao 2 da API, vocé deve atualizar
qualquer codigo existente que acesse diretamente a API, bem como quaisquer scripts usando a
interface de linha de comando.

Carateristicas operacionais basicas

Embora O REST estabelegca um conjunto comum de tecnologias e praticas
recomendadas, os detalhes de cada APl podem variar com base nas escolhas de
design. Vocé deve estar ciente dos detalhes e das carateristicas operacionais da API de
implantacdo do ONTAP Select antes de usar a API.

Host de hipervisor versus n6 ONTAP Select

Um hypervisor host é a plataforma de hardware principal que hospeda uma maquina virtual ONTAP Select.
Quando uma maquina virtual ONTAP Select é implantada e ativa em um host de hipervisor, a maquina virtual
€ considerada um n6 ONTAP Select. Com a versao 3 da API REST de implantagéo, os objetos de host e n6
séo separados e distintos. Isso permite uma relagdo um-para-muitos, em que um ou mais nés de ONTAP
Select podem ser executados no mesmo host de hipervisor.

Identificadores de objeto

Cada instancia ou objeto de recurso recebe um identificador exclusivo quando é criado. Esses identificadores
séo globalmente exclusivos em uma instancia especifica do ONTAP Select Deploy. Depois de emitir uma
chamada de API que cria uma nova insténcia de objeto, o valor de id associado € retornado ao chamador no
location cabegalho da resposta HTTP. Vocé pode extrair o identificador e usa-lo em chamadas
subsequentes quando se refere a instancia de recurso.

O conteudo e a estrutura interna dos identificadores de objeto podem mudar a qualquer
momento. Vocé s6 deve usar os identificadores nas chamadas de API aplicaveis conforme
necessario ao se referir aos objetos associados.

Solicitar identificadores

Cada solicitacdo de APl bem-sucedida é atribuido um identificador exclusivo. O identificador é retornado no
request-id cabecalho da resposta HTTP associada. Vocé pode usar um identificador de solicitacao para se
referir coletivamente as atividades de uma uUnica transacéao de solicitacdo-resposta de API especifica. Por
exemplo, vocé pode recuperar todas as mensagens de evento de uma transagao com base no ID de
solicitagéo.

Chamadas sincronas e assincronas

Ha duas maneiras principais pelas quais um servidor executa uma solicitagdo HTTP recebida de um cliente:

» Sincrono o servidor executa a solicitagdo imediatamente e responde com um codigo de status 200, 201 ou
204.

» Assincrono o servidor aceita a solicitagdo e responde com um codigo de status 202. Isso indica que o
servidor aceitou a solicitagao do cliente e iniciou uma tarefa em segundo plano para concluir a solicitagao.
O sucesso ou falha final ndo esta disponivel imediatamente e deve ser determinado por meio de
chamadas de API adicionais.

Confirme a conclusdo de um trabalho de longa duragao

Geralmente, qualquer operagao que possa levar muito tempo para ser concluida é processada
assincronamente usando uma tarefa em segundo plano no servidor. Com a API Deploy REST, cada tarefa em
segundo plano é ancorada por um objeto Job que rastreia a tarefa e fornece informagdes, como o estado
atual. Um objeto Job, incluindo seu identificador exclusivo, é retornado na resposta HTTP depois que uma
tarefa em segundo plano é criada.

Vocé pode consultar o objeto Job diretamente para determinar o sucesso ou falha da chamada API associada.
Consulte processamento assincrono usando o objeto Job para obter informagdes adicionais.

Além de usar o objeto Job, existem outras maneiras de determinar o sucesso ou falha de uma solicitagéo,
incluindo:

» Vocé pode recuperar todas as mensagens de evento associadas a uma chamada de API especifica
usando o ID de solicitagao retornado com a resposta original. As mensagens de evento geralmente
contém uma indicagao de sucesso ou falha, e também podem ser Uteis ao depurar uma condigéo de erro.

» Estado ou status do recurso varios dos recursos mantém um estado ou valor de status que vocé pode
consultar para determinar indiretamente o sucesso ou falha de uma solicitagao.

Segurancga

A API Deploy usa as seguintes tecnologias de seguranca:

« Seguranga da camada de transporte todo o trafego enviado pela rede entre o servidor de implantagéo e o
cliente é criptografado por meio do TLS. O uso do protocolo HTTP em um canal ndo criptografado nao é
suportado. O TLS verséao 1,2 é suportado.

* Autenticacdo HTTP a autenticagcéo basica € usada para cada transag¢ao de APIl. Um cabecgalho HTTP, que
inclui o nome de usuario e senha em uma cadeia de carateres base64, é adicionado a cada solicitagao.

Transacgao de API de solicitagao e resposta

Cada chamada de API de implantacdo € executada como uma solicitacdo HTTP para a
maquina virtual de implantagdo que gera uma resposta associada ao cliente. Esse par de
solicitacao/resposta é considerado uma transacgao de API. Antes de usar a API Deploy,
vocé deve estar familiarizado com as variaveis de entrada disponiveis para controlar
uma solicitacdo e o conteudo da saida de resposta.

Variaveis de entrada que controlam uma solicitagdo de API

Vocé pode controlar como uma chamada de API é processada por meio de parametros definidos na
solicitacdo HTTP.

Cabecalhos de solicitagao

Vocé deve incluir varios cabecalhos na solicitagdo HTTP, incluindo:

« Se o corpo da solicitagcao incluir JSON, esse cabecalho deve ser definido como application/json.
* Aceitar se o corpo da resposta incluir JSON, esse cabecalho deve ser definido como application/json.

» A autenticagdo basica de autorizagdo deve ser definida com o nome de usuario e senha codificados em
uma cadeia de carateres base64.

Corpo do pedido

O conteudo do corpo da solicitagao varia de acordo com a chamada especifica. O corpo da solicitagao HTTP
consiste em um dos seguintes:

* Objeto JSON com variaveis de entrada (como o nome de um novo cluster)

* Vazio

Filtrar objetos

Ao emitir uma chamada de API que usa GET, vocé pode limitar ou filtrar os objetos retornados com base em
qualquer atributo. Por exemplo, vocé pode especificar um valor exato para corresponder:

<field>=<query value>

Além de uma correspondéncia exata, ha outros operadores disponiveis para retornar um conjunto de objetos
em uma faixa de valores. O ONTAP Select suporta os operadores de filtragem mostrados abaixo.

Operador Descrigcao
Igual a.
* Menos de
> Superior a.
O que é que eu tenho Inferior ou igual a
> Maior ou igual a
Ou

! N&o é igual a

Wildcard ganancioso

Vocé também pode retornar um conjunto de objetos com base se um campo especifico esta definido ou nao
usando a palavra-chave null ou sua negagao (!null) como parte da consulta.

Selecionar campos de objeto

Por padrao, a emissdo de uma chamada de APl usando O GET retorna apenas os atributos que identificam
exclusivamente o objeto ou objetos. Este conjunto minimo de campos atua como uma chave para cada objeto
e varia de acordo com o tipo de objeto. Vocé pode selecionar propriedades de objeto adicionais usando o
parametro de consulta campos das seguintes maneiras:

* Campos de baixo custo especificam fields=* para recuperar os campos de objeto que sdo mantidos na
memoria do servidor local ou requerem pouco processamento para acessar.

* Campos caros especificam fields=** para recuperar todos os campos de objeto, incluindo aqueles que
exigem processamento adicional de servidor para acessar.

* Selegéo de campo personalizada Use fields=FIELDNAME para especificar o campo exato desejado. Ao
solicitar varios campos, os valores devem ser separados usando virgulas sem espagos.

Como pratica recomendada, vocé deve sempre identificar os campos especificos que deseja.
Vocé s6 deve recuperar o conjunto de campos baratos ou caros quando necessario. A

classificagao barata e cara € determinada pelo NetApp com base na analise interna de

desempenho. A classificacdo de um determinado campo pode mudar a qualquer momento.

Classificar objetos no conjunto de saida

Os Registros em uma colegéo de recursos sao retornados na ordem padrao definida pelo objeto. Vocé pode
alterar a ordem usando o parametro de consulta order_by com o nome do campo e a diregdo de ordenagao da
seguinte forma:

order by=<field name> asc|desc

Por exemplo, vocé pode classificar o campo tipo em ordem decrescente seguido de id em ordem crescente:
order by=type desc, id asc

Ao incluir varios parametros, vocé deve separar 0s campos com uma virgula.

Paginagao

Ao emitir uma chamada de API usando GET para acessar uma colegao de objetos do mesmo tipo, todos os
objetos correspondentes sao retornados por padrao. Se necessario, vocé pode limitar o numero de Registros
retornados usando o parametro de consulta Max_Records com a solicitacdo. Por exemplo:

max records=20

Se necessario, vocé pode combinar este parametro com outros parametros de consulta para restringir o
conjunto de resultados. Por exemplo, o seguinte retorna até 10 eventos do sistema gerados apds o tempo
especificado:

time= 2019-04-04T15:41:29.140265Z&max records=10

Vocé pode emitir varias solicitagcdes para percorrer os eventos (ou qualquer tipo de objeto). Cada chamada de
APl subsequente deve usar um novo valor de tempo com base no evento mais recente no ultimo conjunto de
resultados.

Interpretar uma resposta da API

Cada solicitagao de API gera uma resposta de volta ao cliente. Vocé pode examinar a resposta para
determinar se ela foi bem-sucedida e recuperar dados adicionais, conforme necessario.

Codigo de status HTTP

Os codigos de status HTTP usados pela APl REST de implantagéo séo descritos abaixo.

Caodigo Significado Descrigcao
200 OK Indica sucesso para chamadas que nao criam um novo objeto.
201 Criado Um objeto é criado com sucesso; o cabegalho de resposta de

localizagao inclui o identificador exclusivo para o objeto.

202 Aceito Foi iniciado um trabalho em segundo plano de longa execugéo para
executar a solicitacdo, mas a operacao ainda nao foi concluida.

400 Pedido incorreto A entrada de solicitagdo ndo é reconhecida ou ¢ inadequada.

403 Proibido O acesso é negado devido a um erro de autorizagao.

Codigo Significado Descrigcao

404 Nao encontrado O recurso referido na solicitagdo ndo existe.

405 Método néo O verbo HTTP na solicitacdo nao é suportado para o recurso.
permitido

409 Conflito Uma tentativa de criar um objeto falhou porque o objeto ja existe.

500 Erro interno Ocorreu um erro interno geral no servidor.

501 Nao implementado O URI é conhecido, mas n&o é capaz de executar a solicitacao.

Cabecalhos de resposta

Varios cabecgalhos estao incluidos na resposta HTTP gerada pelo servidor de implantagao, incluindo:

» Cada solicitacao de APl bem-sucedida é atribuida a um identificador de solicitacao exclusivo.

* Localizagdo quando um objeto é criado, o cabegalho do local inclui o URL completo para o novo objeto,
incluindo o identificador de objeto exclusivo.

Corpo de resposta

O conteudo da resposta associada a uma solicitagdo de API difere com base no objeto, no tipo de
processamento e no sucesso ou falha da solicitagao. O corpo de resposta € renderizado em JSON.

* Um unico objeto pode ser retornado com um conjunto de campos com base na solicitagdo. Por exemplo,
vocé pode usar GET para recuperar propriedades selecionadas de um cluster usando o identificador
exclusivo.

« Varios objetos varios objetos de uma colegao de recursos podem ser retornados. Em todos os casos, ha
um formato consistente usado, com num_records a indicagéo do numero de Registros e Registros
contendo um array das instancias do objeto. Por exemplo, vocé pode recuperar todos os nos definidos em
um cluster especifico.

» Objeto de tarefa se uma chamada de API for processada de forma assincrona, um objeto Job sera
retornado que ancora a tarefa em segundo plano. Por exemplo, a solicitagdo POST usada para implantar
um cluster é processada de forma assincrona e retorna um objeto Job.

« Se ocorrer um erro, um objeto de erro é sempre retornado. Por exemplo, vocé recebera um erro ao tentar
criar um cluster com um nome que ja existe.

* Vazio em certos casos, nenhum dado é retornado e o corpo de resposta esta vazio. Por exemplo, o corpo
da resposta esta vazio depois de usar DELETE para excluir um host existente.

Processamento assincrono usando o objeto de tarefa

Algumas das chamadas da API Deploy, particularmente aquelas que criam ou modificam
um recurso, podem levar mais tempo para serem concluidas do que outras chamadas. O
ONTAP Select Deploy processa essas solicitacdes de longa duracéo de forma
assincrona.

Solicitagoes assincronas descritas usando o objeto Job

Depois de fazer uma chamada de API que € executada de forma assincrona, o codigo de resposta HTTP 202
indica que a solicitagao foi validada e aceita com sucesso, mas ainda nao foi concluida. A solicitacédo é
processada como uma tarefa em segundo plano que continua a ser executada apos a resposta HTTP inicial

ao cliente. A resposta inclui o objeto Job ancorando a solicitagao, incluindo seu identificador exclusivo.

@ Vocé deve consultar a pagina de documentagéo on-line do ONTAP Select Deploy para
determinar quais chamadas de API| operam assincronamente.

Consulte o objeto Job associado a uma solicitacdo de API

O objeto Job retornado na resposta HTTP contém varias propriedades. Vocé pode consultar a propriedade
State para determinar se a solicitagao foi concluida com sucesso. Um objeto Job pode estar num dos
seguintes estados:

* Em fila de espera

* Em execucao

» Sucesso

e Falha
Ha duas técnicas que vocé pode usar ao fazer polling de um objeto Job para detetar um estado terminal para
a tarefa, seja com sucesso ou falha:

* O estado da tarefa atual da solicitacdo de polling padréao é retornado imediatamente

* O estado da tarefa de solicitacdo de polling longa é retornado somente quando ocorre uma das seguintes
situagdes:

> O estado mudou mais recentemente do que o valor de data-hora fornecido na solicitagdo de enquete
> O valor de tempo limite expirou (1 a 120 segundos)

Polling padréo e polling longo usam a mesma chamada de API para consultar um objeto Job. No entanto, uma
solicitag&o de polling longa inclui dois parametros de consulta: poll timeout E last modified.

Vocé deve sempre usar polling longo para reduzir a carga de trabalho na maquina virtual de
implantacao.

Procedimento geral para emitir uma solicitagdo assincrona

Vocé pode usar o seguinte procedimento de alto nivel para concluir uma chamada assincrona de API:

1. Emita a chamada assincrona da API.
2. Receber uma resposta HTTP 202 indicando aceitagdo bem-sucedida da solicitagao.
3. Extraia o identificador do objeto Job do corpo de resposta.
4. Dentro de um loop, execute o seguinte em cada ciclo:
a. Obtenha o estado atual do trabalho com uma solicitagéo de poll longa

b. Se o trabalho estiver em um estado nao terminal (em fila de espera, em execugao), execute o loop
novamente.

5. Pare quando o trabalho atingir um estado terminal (sucesso, falha).

Acesso com um navegador

Antes de acessar a APl com um navegador

Ha varias coisas que vocé deve estar ciente antes de usar a pagina implantar
documentacao on-line.

Plano de implantagao

Se vocé pretende emitir chamadas de APl como parte da execucéao de tarefas administrativas ou de
implantagao especificas, considere criar um plano de implantagdo. Esses planos podem ser formais ou
informais, e geralmente contém seus objetivos e as chamadas de API a serem usadas. Consulte processos de
fluxo de trabalho usando a API REST de implantacéo para obter mais informacoes.

Exemplos JSON e definic6es de parametros

Cada chamada de API é descrita na pagina de documentagéo usando um formato consistente. O conteudo
inclui notas de implementagao, parametros de consulta e codigos de status HTTP. Além disso, vocé pode
exibir detalhes sobre o JSON usado com as solicitagdes e respostas da AP| da seguinte forma:

» Exemplo de valor se vocé clicar em exemplo de valor em uma chamada de API, uma estrutura JSON
tipica para a chamada sera exibida. Vocé pode modificar o exemplo conforme necessario e usa-lo como
entrada para sua solicitagao.

* Modelo se vocé clicar em Model, uma lista completa dos parametros JSON sera exibida, com uma
descricao para cada parametro.

Cuidado ao emitir chamadas de API

Todas as operacgdes de API que vocé executa usando a pagina de documentagao de implantagéo séo
operagoes ativas. Vocé deve ter cuidado para néo criar, atualizar ou excluir configuragdes ou outros dados por
engano.

Acesse a pagina implantar documentagao

Vocé deve acessar a pagina de documentacgao on-line do ONTAP Select Deploy para
exibir a documentagao da API, bem como para emitir manualmente uma chamada de
API.

Antes de comecgar
Vocé deve ter o seguinte:

* Endereco IP ou nome de dominio da maquina virtual ONTAP Select Deploy

* Nome de utilizador e palavra-passe do administrador

Passos
1. Digite o URL no seu navegador e pressione Enter:

https://<ip address>/api/ui
2. Inicie sessao utilizando o nome de utilizador e a palavra-passe do administrador.

Resultado

A pagina da Web implantar documentagéao € exibida com as chamadas organizadas por categoria na parte
inferior da pagina.

Compreender e executar uma chamada de API

Os detalhes de todas as chamadas de APl sdo documentados e exibidos usando um
formato comum na pagina da Web de documentacéo on-line do ONTAP Select Deploy.
Ao entender uma unica chamada de API, vocé pode acessar e interpretar os detalhes de
todas as chamadas de API.

Antes de comecar

Vocé deve estar conetado a pagina da Web de documentagéo on-line do ONTAP Select Deploy. Vocé deve ter
o identificador exclusivo atribuido ao cluster do ONTAP Select quando o cluster foi criado.

Sobre esta tarefa

Vocé pode recuperar as informagdes de configuragdo que descrevem um cluster ONTAP Select usando seu
identificador exclusivo. Neste exemplo, todos os campos classificados como baratos sdo devolvidos. No
entanto, como pratica recomendada, vocé deve solicitar apenas os campos especificos necessarios.

Passos
1. Na pagina principal, role até a parte inferior e clique em Cluster.

2. Cligue em GET /clusters/(cluster_id) para exibir os detalhes da chamada de API usada para retornar
informacgdes sobre um cluster ONTAP Select.

Processos de fluxo de trabalho

Antes de usar os fluxos de trabalho da API

Vocé deve se preparar para revisar e usar os processos de fluxo de trabalho.

Entenda as chamadas de APl usadas nos fluxos de trabalho

A pagina de documentagao on-line do ONTAP Select inclui os detalhes de cada chamada de API REST. Em
vez de repetir esses detalhes aqui, cada chamada de API usada nos exemplos de fluxo de trabalho inclui
apenas as informagbes necessarias para localizar a chamada na pagina de documentagao. Depois de
localizar uma chamada de API especifica, vocé pode revisar os detalhes completos da chamada, incluindo os
parametros de entrada, formatos de saida, codigos de status HTTP e tipo de processamento de solicitagao.

As seguintes informagdes sao incluidas para cada chamada de API dentro de um fluxo de trabalho para
ajudar a localizar a chamada na pagina de documentagao:

» Categoria as chamadas de API s&do organizadas na pagina de documentagao em areas ou categorias
funcionalmente relacionadas. Para localizar uma chamada de API especifica, role até a parte inferior da
pagina e clique na categoria de API aplicavel.

* HTTP verb o verbo HTTP identifica a agao executada em um recurso. Cada chamada de API é executada
através de um unico verbo HTTP.

« Caminho o caminho determina o recurso especifico ao qual a agédo se aplica como parte da execugao de
uma chamada. A cadeia de carateres do caminho é anexada ao URL principal para formar a URL
completa que identifica o recurso.

Crie um URL para acessar diretamente a APl REST

Além da pagina de documentagcdo do ONTAP Select, vocé também pode acessar a APl REST de implantagéo

10

diretamente por meio de uma linguagem de programagao como Python. Neste caso, o URL principal €
ligeiramente diferente do URL usado ao acessar a pagina de documentagao on-line. Ao acessar a API
diretamente, vocé deve anexar /api ao dominio e a cadeia de carateres da porta. Por exemplo:
http://deploy.mycompany.com/api

Fluxo de trabalho 1: Crie um cluster de avaliagao de né unico no ESXi

Vocé pode implantar um cluster ONTAP Select de n6 unico em um host VMware ESXi
gerenciado pelo vCenter. O cluster é criado com uma licenca de avaliagao.

O fluxo de trabalho de criagao de cluster difere nas seguintes situacoes:

* O host ESXi ndo é gerenciado pelo vCenter (host autbnomo)
 Varios nds ou hosts sdo usados dentro do cluster
* O cluster é implantado em um ambiente de produgcdo com uma licenga adquirida

* O hipervisor KVM ¢é usado em vez do VMware ESXi

1. Registre a credencial do vCenter Server

Ao implantar em um host ESXi gerenciado por um servidor vCenter, vocé deve adicionar uma credencial antes
de Registrar o host. O utilitario de administragdo implantar pode usar a credencial para autenticar no vCenter.

Categoria Verbo HTTP Caminho

Implantar POST /security/credentials

Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

Entrada JSON (step01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Tipo de processamento
Assincrono

Saida
* ID de credencial no cabecalho de resposta de localizacao

* Objeto trabalho

11

2. Registre um host de hipervisor

Vocé deve adicionar um host de hipervisor onde a maquina virtual que contém o né ONTAP Select sera
executada.

Categoria Verbo HTTP Caminho
Cluster POST /hosts

Curl

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts’

Entrada JSON (step02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo de processamento
Assincrono

Saida
* ID do host no cabecalho da resposta do local

* Objeto trabalho

3. Crie um cluster

Quando vocé cria um cluster ONTAP Select, a configuracao basica do cluster é registrada e os nomes dos nos
sdo gerados automaticamente pela implantagéo.

Categoria Verbo HTTP Caminho
Cluster POST [clusters

Curl
O parametro de consulta node_count deve ser definido como 1 para um cluster de né unico.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

12

Entrada JSON (step03)

"name": "my cluster

Tipo de processamento
Sincrono

Saida
* ID do cluster no cabecgalho de resposta do local
4. Configure o cluster

Existem varios atributos que vocé deve fornecer como parte da configuragao do cluster.

Categoria Verbo HTTP Caminho
Cluster PATCH [cluster_id]

Curl
Vocé deve fornecer o ID do cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (step04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
Y

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Tipo de processamento
Sincrono

Saida
Nenhum

5. Recupere o nome do noé

O utilitario de administragéo implantar gera automaticamente os identificadores e nomes dos nés quando um
cluster é criado. Antes de poder configurar um no, tem de recuperar a ID atribuida.

Categoria Verbo HTTP Caminho
Cluster OBTER [clusters/ _cluster_id/nds

Curl
Vocé deve fornecer o ID do cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Tipo de processamento
Sincrono

Saida
* Array Registra cada um descrevendo um unico né com o ID e o nome exclusivos

6. Configure os nés

Vocé deve fornecer a configuracao basica para o nd, que € a primeira de trés chamadas de AP| usadas para
configurar um no.

Categoria Verbo HTTP Caminho
Cluster CAMINHO [clusters/cluster_id/node/node _id

Curl
Vocé deve fornecer o ID do cluster e o ID do né.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (step06)
Vocé deve fornecer a ID do host onde o né ONTAP Select sera executado.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

14

Tipo de processamento
Sincrono

Saida
Nenhum

7. Recupere as redes de nés

Vocé deve identificar os dados e as redes de gerenciamento usadas pelo n6 no cluster de né unico. A rede
interna ndo é usada com um cluster de n6 unico.

Categoria Verbo HTTP Caminho

Cluster OBTER [clusters/cluster_id/nodes/node_id/networks

Curl
Vocé deve fornecer o ID do cluster e o ID do né.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=1id, purpose’

Tipo de processamento
Sincrono

Saida

 Array de dois Registros cada um descrevendo uma unica rede para o no, incluindo a ID e a finalidade
exclusivos

8. Configure a rede do né

Vocé deve configurar os dados e as redes de gerenciamento. A rede interna n&o € usada com um cluster de
no unico.

@ Emita a seguinte chamada de API duas vezes, uma para cada rede.

Categoria Verbo HTTP Caminho

Cluster PATCH [clusters/cluster_id/node/node_id/networks/ network_id

Curl
Vocé deve fornecer o ID do cluster, o ID do né e o ID da rede.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

15

Entrada JSON (step08)
Vocé precisa fornecer o nome da rede.

"name": "sDOT Network"

Tipo de processamento
Sincrono

Saida
Nenhum

9. Configure o pool de storage de nés

A etapa final na configuragdo de um né é anexar um pool de storage. Vocé pode determinar os pools de
storage disponiveis por meio do cliente da Web vSphere ou, opcionalmente, por meio da APl REST de
implantagao.

Categoria Verbo HTTP Caminho

Cluster PATCH [clusters/cluster_id/node/node_id/networks/ network _id

Curl
Vocé deve fornecer o ID do cluster, o ID do né e o ID da rede.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (step09)
A capacidade do pool é de 2 TB.

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo de processamento
Sincrono

16

Saida
Nenhum

10. Implante o cluster
Depois que o cluster e o n6 tiverem sido configurados, vocé podera implantar o cluster.

Categoria Verbo HTTP Caminho
Cluster POST [clusters/cluster_id/deploy

Curl
Vocé deve fornecer o ID do cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrada JSON (step10)
Vocé deve fornecer a senha para a conta de administrador do ONTAP.

"ontap credentials": {
"password": "mypassword"

Tipo de processamento
Assincrono

Saida
» Objeto trabalho

Acesso com Python

Antes de acessar a APl usando Python
Vocé deve preparar o ambiente antes de executar os scripts Python de exemplo.

Antes de executar os scripts Python, vocé deve certificar-se de que o ambiente esta configurado
corretamente:

* Averséao aplicavel mais recente do python2 deve ser instalada. Os codigos de amostra foram testados
usando python2. Eles também devem ser portateis para Python3, mas n&o foram testados para
compatibilidade.

* As solicitagdes e bibliotecas urllib3 devem ser instaladas. Vocé pode usar o pip ou outra ferramenta de
gerenciamento Python conforme apropriado para o seu ambiente.

» A estagao de trabalho cliente em que os scripts s&o executados deve ter acesso a rede a maquina virtual

17

ONTAP Select Deploy.
Além disso, vocé deve ter as seguintes informacgoes:

* Endereco IP da maquina virtual de implantacéo

* Nome de usuario e senha de uma conta de administrador de implantagao

Entenda os scripts Python

Os scripts Python de exemplo permitem que vocé execute varias tarefas diferentes. Vocé
deve entender os scripts antes de usa-los em uma instancia de implantacao ao vivo.

Carateristicas comuns do projeto

Os scripts foram projetados com as seguintes carateristicas comuns:

» Executar a partir da interface de linha de comando em uma maquina cliente vocé pode executar os scripts
Python a partir de qualquer maquina cliente configurada corretamente. Consulte antes de comegar para
obter mais informagoes.

 Aceitar parametros de entrada CLI cada script € controlado na CLI através de parametros de entrada.

* Ler arquivo de entrada cada script I&é um arquivo de entrada com base em seu propésito. Ao criar ou
excluir um cluster, vocé deve fornecer um arquivo de configuracdo JSON. Ao adicionar uma licenga de no,
vocé deve fornecer um arquivo de licenga valido.

* Use um mddulo de suporte comum o moédulo de suporte comum deploy requests.py contém uma unica
classe. Ele é importado e usado por cada um dos scripts.

Crie um cluster

Vocé pode criar um cluster ONTAP Select usando o script cluster.py. Com base nos parametros CLI e no
conteudo do arquivo de entrada JSON, vocé pode modificar o script para seu ambiente de implantagéo da
seguinte forma:

* Hypervisor vocé pode implantar no ESXI ou KVM (dependendo da versao de implantagéo). Ao implantar
no ESXi, o hypervisor pode ser gerenciado pelo vCenter ou pode ser um host auténomo.

* Tamanho do cluster vocé pode implantar um cluster de né Unico ou de varios nés.

* Avaliacao ou licenga de produgao vocé pode implantar um cluster com uma licenga de avaliagédo ou
adquirida para produgéo.

Os parametros de entrada da CLI para o script incluem:

* Nome do host ou endereco IP do servidor de implantacao
» Palavra-passe para a conta de utilizador admin
* Nome do arquivo de configuragdo JSON

« Sinalizador verboso para saida de mensagem

Adicione uma licenga de né

Se vocé optar por implantar um cluster de producgdo, sera necessario adicionar uma licenga para cada né
usando o script add_license.py. Vocé pode adicionar a licenga antes ou depois de implantar o cluster.

18

Os parametros de entrada da CLI para o script incluem:

Nome do host ou endereco IP do servidor de implantagao
Palavra-passe para a conta de utilizador admin

Nome do ficheiro de licenga

Nome de usuario do ONTAP com Privileges para adicionar a licenga

Senha para o usuario do ONTAP

Eliminar um cluster

Vocé pode excluir um cluster ONTAP Select existente usando o script delete_cluster.py.

Os parametros de entrada da CLI para o script incluem:

Nome do host ou enderecgo IP do servidor de implantagao
Palavra-passe para a conta de utilizador admin

Nome do arquivo de configuragdo JSON

Amostras de cédigo Python

Script para criar um cluster

Vocé pode usar o script a seguir para criar um cluster com base nos parametros
definidos no script e em um arquivo de entrada JSON.

#

!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

19

20

import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials (deploy, confiqg) :
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]
'hostname']) :
log _info ("Registering vcenter {} credentials".format (vcenter]|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log_debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password']}
deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):
''' Registers all hosts with the deploy server.

The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

LI |

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']) :
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log _info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host['user

log_info ("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:

deploy.post('/hosts', data, wait for job=True)

def add_cluster_attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log_debug trace ()

21

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?nodeicount:{}'.format(num_nodes),
data)
cluster id = resp.headers.get('Location').split('/"') [-1]
return cluster id
def get node ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'"''
log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format(cluster id))
node ids = [node['id'] for node in response.json().get('records')]

return node ids

def add node_attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log_debug trace ()
log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

22

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type

is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format(data))
deploy.patch('/clusters/{}/nodes/{}"'.format(cluster id, node id),
data)

def add node_ networks (deploy, cluster id, node id, node):
''"" Set the network information for a node '''

log _debug trace ()
log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node_ id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format (

23

cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):

''' Set all the storage information on a node
log _debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log _info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the Jjson
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,
node id), data)

def create_cluster_ config(deploy, config):

""" Construct a cluster config in the deploy server using the input
json data '''

log_debug trace ()

cluster id = add cluster attributes(deploy, config)

node ids = get node ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug trace ()

log _info ("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster']|

24

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def log _debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
def 1og_info(msg):
logging.getlLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getLogger ('deploy') .error (msg)
exit (1)
def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)
def main (args):

data, wait for job=True)

configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create_ cluster config(deploy, config)

25

deploy cluster (deploy, cluster id, config)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')

parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == "' main ':
args = parseArgs ()
main (args)

JSON para script para criar um cluster

Ao criar ou excluir um cluster do ONTAP Select usando as amostras de cédigo Python,
vocé deve fornecer um arquivo JSON como entrada para o script. Vocé pode copiar e

m

Cl

26

odificar a amostra JSON apropriada com base em seus planos de implantacao.

uster de n6 Unico no ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]

by

"ontap image version": "9.7",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

by

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
1,
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1,
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

27

Cluster de né unico no ESXi usando o vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1y

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
1y
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",
"username":"selectadmin"

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": [

{

"name" : "ONTAP-Management",

28

"purpose" :"mgmt",

"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

I

"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster de n6 unico no KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"

1,

"cluster": {
"dns_info": {

29

"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1,
"pools": [
{

"name": "storage-pool-1",

30

"capacity": 4802666790125

Script para adicionar uma licenca de né

Vocé pode usar o script a seguir para adicionar uma licenca para um né ONTAP Select.

#!/usr/bin/env python

S e S S S S S S S S SR S S o o

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import json

from deploy requests import DeployRequests

def post new license (deploy, license filename) :

log_info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data

deploy.post('/licensing/licenses', data={},
files={'"'license file': open(license filename, 'rb')})

31

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info ('Adding license for serial number: {}'.format (serial number))

deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
''"'" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def get serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and;gxit("The license file seems to be missing the

serialNumber")

return serialNumber

32

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license (deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post new license(deploy, args.license)

33

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()
if name == "' main ':
args = parseArgs ()
main (args)

Script para excluir um cluster

Vocé pode usar o seguinte script CLI para excluir um cluster existente.

34

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster (deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state’'.format(cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete cluster (deploy, cluster id):
log_info ("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main (args) :
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

35

log_info ("Found the cluster {} with id: {}.".format (config|
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Médulo de suporte comum

Todos os scripts Python usam uma classe Python comum em um unico moédulo.

#!/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R T T T T et

36

import json

import logging

import requests

re

quests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

L |

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/json'}

self.logger = logging.getLogger ('deploy')

def post(self, path, data, files=None, wait for job=False):
if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: $s', data)
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def patch(self, path, data, wait for job=False):
self.logger.debug('PATCH DATA: %s', data)
response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
Jjson=data,

headers=self.headers)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit_on_grrors(response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def put(self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format(data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:')
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
Jjson=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit_on_grrors(response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

38

def

self.exit_on_errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

find resource (self, path, name, value):

""" Returns the 'id' of the resource if it exists, otherwise None

resource = None
self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

response

if response.status code == 200 and response.json () .get

'num records') >= 1:

def

error ''

resource = response.json().get('records') [0].get('id")

return resource

get num records(self, path, query=None):

'"'" Returns the number of records found in a container,

resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, qu

=query_opt))

def

def

.format (

if response.status_code == 200
return response.json().get('num records')
return None

resource_exists(self, path, name, value):
return self.find resource (path, name, value) is not None

wait for job(self, response, poll timeout=120):
last modified = response['job']['last modified']
job id = response['job']['id"]

self.logger.info ('Event: ' + response['job']['message'])

while True:

response self.get('/jobs/{}?fields=state,messages’

'poll timeout={}&last modified=>

or None on

ery

={}'

job id, poll timeout, last modified))

job body = response.json().get('record', {})

Show interesting message updates

39

message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure'l]:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response.text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod

def filter headers (response):
''' Returns a filtered set of the response headers '''

return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Script para redimensionar nés de cluster

Vocé pode usar o script a seguir para redimensionar os noés em um cluster do ONTAP
Select.

#!/usr/bin/env python

e o e o S S I S =
#

File: resize nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

40

or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S e S S S S S S o

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mman

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add _argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(

'"Hostname or IP of the cluster management interface.'

41

))
parser.add_argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is

complete.'

))

parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin.'

))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=(

'A space separated list of node names for which the resize
operation'
' should be performed. The default is to apply the resize to all

nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters',6 'ip', parsed args
.cluster)
if not cluster id:
return None
return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']
def get request body(parsed args, cluster):

""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster

nodes = [node for node in cluster['nodes']]

if parsed args.nodes:

42

nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main () :
""" Set up the resize operation by gathering the necessary data and
then send

the request to the ONTAP Select Deploy server.

mman

logging.basicConfig (
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args ()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

43

Informacgoes sobre direitos autorais

Copyright © 2026 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste
documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio —
grafico, eletrbnico ou mecanico, incluindo fotocopia, gravagéo, gravagao em fita ou storage em um sistema de
recuperacao eletrobnica — sem permissao prévia, por escrito, do proprietario dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais esta sujeito a seguinte licenca e
isencao de responsabilidade:

ESTE SOFTWARE E FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER
GARANTIAS EXPRESSAS OU IMPLICITAS, INCLUINDO, SEM LIMITAGOES, GARANTIAS IMPLICITAS DE
COMERCIALIZACAO E ADEQUAGCAO A UM DETERMINADO PROPOSITO, CONFORME A ISENCAO DE
RESPONSABILIDADE DESTE DOCUMENTO. EM HIPOTESE ALGUMA A NETAPP SERA RESPONSAVEL
POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU
CONSEQUENCIAL (INCLUINDO, SEM LIMITACOES, AQUISICAO DE PRODUTOS OU SERVICOS
SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPCAO DOS NEGOCIOS),
INDEPENDENTEMENTE DA CAUSA E DO PRINCIPIO DE RESPONSABILIDADE, SEJA EM CONTRATO,
POR RESPONSABILIDADE OBJETIVA OU PREJUIZO (INCLUINDO NEGLIGENCIA OU DE OUTRO
MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE
DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento
e sem aviso. A NetApp ndo assume nenhuma responsabilidade nem obrigagédo decorrentes do uso dos
produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O
uso ou a compra deste produto ndo representam uma licenca sob quaisquer direitos de patente, direitos de
marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes
estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicagéo ou a divulgagéo pelo governo estéo sujeitos a
restricdes conforme estabelecido no subparagrafo (b)(3) dos Direitos em Dados Técnicos - Itens Nao
Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou servigo comercial (conforme definido no FAR
2.101) e sao de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp
fornecidos sob este Contrato sdo de natureza comercial e desenvolvidos exclusivamente com despesas
privadas. O Governo dos EUA tem uma licenga mundial limitada, irrevogavel, ndo exclusiva, intransferivel e
nao sublicenciavel para usar os Dados que estdo relacionados apenas com o suporte e para cumprir 0s
contratos governamentais desse pais que determinam o fornecimento de tais Dados. Salvo disposi¢ao em
contrario no presente documento, nao é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os
dados sem a aprovagao prévia por escrito da NetApp, Inc. Os direitos de licenga pertencentes ao governo dos
Estados Unidos para o Departamento de Defesa estéo limitados aos direitos identificados na clausula
252.227-7015(b) (fevereiro de 2014) do DFARS.

Informagoes sobre marcas comerciais
NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM sao marcas comerciais da

NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos
proprietarios.

44

http://www.netapp.com/TM

	Automatize com REST : ONTAP Select
	Índice
	Automatize com REST
	Conceitos
	Base de serviços web REST
	Como acessar a API Deploy
	Implantar o controle de versão da API
	Caraterísticas operacionais básicas
	Transação de API de solicitação e resposta
	Processamento assíncrono usando o objeto de tarefa

	Acesso com um navegador
	Antes de acessar a API com um navegador
	Acesse a página implantar documentação
	Compreender e executar uma chamada de API

	Processos de fluxo de trabalho
	Antes de usar os fluxos de trabalho da API
	Fluxo de trabalho 1: Crie um cluster de avaliação de nó único no ESXi

	Acesso com Python
	Antes de acessar a API usando Python
	Entenda os scripts Python

	Amostras de código Python
	Script para criar um cluster
	JSON para script para criar um cluster
	Script para adicionar uma licença de nó
	Script para excluir um cluster
	Módulo de suporte comum
	Script para redimensionar nós de cluster

