Automatize com REST
ONTAP Select

NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/pt-br/ontap-select-9161/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Indice

Automatize com REST

Conceitos
Base de servigos web REST para implantagéo e gerenciamento de clusters ONTAP Select
Como acessar a APl ONTAP Select Deploy
Versao da API de implantagao do ONTAP Select
Caracteristicas operacionais basicas da API ONTAP Select Deploy
Transagao de API de solicitagao e resposta para ONTAP Select
Processamento assincrono usando o objeto Job para ONTAP Select
Acesso com um navegador
Antes de acessar a APl ONTAP Select Deploy com um navegador
Acesse a pagina de documentagdo do ONTAP Select Deploy
Entenda e execute uma chamada de APl ONTAP Select Deploy
Processos de fluxo de trabalho
Antes de usar os fluxos de trabalho da APl ONTAP Select Deploy
Fluxo de trabalho 1: criar um cluster de avaliacdo de n6 unico ONTAP Select no ESXi
Acesso com Python
Antes de acessar o ONTAP Select Implantar APl usando Python
Entenda os scripts Python para ONTAP Select Deploy
Exemplos de cddigo Python
Script para criar um cluster ONTAP Select
JSON para script para criar um cluster ONTAP Select
Script para adicionar uma licenga de né6 ONTAP Select
Script para excluir um cluster ONTAP Select
Modulo Python de suporte comum para ONTAP Select
Script para redimensionar nés do cluster ONTAP Select

© © ©O N P WODNNDN -2 -~ -

AW W WN 22 2 A A A a4 a2 a A
-~ OO b 0 OO ©O © 0 0 0 ~ O O O

Automatize com REST

Conceitos

Base de servigos web REST para implantagao e gerenciamento de clusters ONTAP
Select

A Transferéncia de Estado Representacional (REST) € um estilo para a criagao de
aplicacbes web distribuidas. Quando aplicada ao design de uma API de servigos web,
ela estabelece um conjunto de tecnologias e praticas recomendadas para expor recursos
baseados em servidor e gerenciar seus estados. Ela utiliza protocolos e padrbes
tradicionais para fornecer uma base flexivel para a implantagdo e o gerenciamento de
clusters ONTAP Select .

Arquitetura e restricdes classicas

O REST foi formalmente articulado por Roy Fielding em seu doutorado "dissertagao” na UC Irvine em 2000.
Ela define um estilo arquitetdnico por meio de um conjunto de restricbes que, coletivamente, aprimoram
aplicacbes web e os protocolos subjacentes. As restricdes estabelecem uma aplicagao de servigos web
RESTful baseada em uma arquitetura cliente/servidor, utilizando um protocolo de comunicagao sem estado.

Recursos e representagao estatal

Os recursos sdo os componentes basicos de um sistema web. Ao criar uma aplicagao de servigos web REST,
as tarefas iniciais de design incluem:

* Identificagdo de recursos baseados em sistema ou servidor. Todo sistema utiliza e mantém recursos. Um
recurso pode ser um arquivo, uma transacé&o comercial, um processo ou uma entidade administrativa.
Uma das primeiras tarefas ao projetar uma aplicagdo baseada em servigos web REST ¢ identificar os
recursos.

* Definicdo de estados de recursos e operacoes de estado associadas. Os recursos estdao sempre em um
de um numero finito de estados. Os estados, bem como as operagdes associadas usadas para afetar as
mudangas de estado, devem ser claramente definidos.

As mensagens sao trocadas entre o cliente e o servidor para acessar e alterar o estado dos recursos de
acordo com o modelo genérico CRUD (Criar, Ler, Atualizar e Excluir).

Pontos finais de URI

Cada recurso REST deve ser definido e disponibilizado usando um esquema de enderegamento bem definido.
Os endpoints onde os recursos estao localizados e identificados usam um Identificador Uniforme de Recursos
(URI). O URI fornece uma estrutura geral para a criagdo de um nome exclusivo para cada recurso na rede. O

Localizador Uniforme de Recursos (URL) é um tipo de URI usado com servigos web para identificar e acessar
recursos. Os recursos sao normalmente expostos em uma estrutura hierarquica semelhante a um diretério de
arquivos.

Mensagens HTTP

O Protocolo de Transferéncia de Hipertexto (HTTP) é o protocolo usado pelo cliente e servidor de servigos
web para trocar mensagens de solicitacao e resposta sobre os recursos. Como parte do projeto de um
aplicativo de servigos web, verbos HTTP (como GET e POST) sdo mapeados para os recursos e as agoes de

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

gerenciamento de estado correspondentes.

O HTTP nao possui estado. Portanto, para associar um conjunto de solicitagdes e respostas relacionadas em
uma unica transacao, informacdes adicionais devem ser incluidas nos cabecalhos HTTP transmitidos com os
fluxos de dados de solicitagdo/resposta.

Formatagao JSON

Embora as informagdes possam ser estruturadas e transferidas entre um cliente e um servidor de diversas
maneiras, a opgao mais popular (e a usada com a APl REST do Deploy) é a JavaScript Object Notation
(JSON). JSON é um padrao do setor para representar estruturas de dados simples em texto simples e é
usado para transferir informagdes de estado que descrevem os recursos.

Como acessar a APl ONTAP Select Deploy

Devido a flexibilidade inerente dos servicos web REST, a APl ONTAP Select Deploy
pode ser acessada de diversas maneiras diferentes.

Implantar interface de usuario nativa do utilitario

A principal maneira de acessar a API é por meio da interface de usuario web do ONTAP Select Deploy. O
navegador faz chamadas para a API e reformata os dados de acordo com o design da interface de usuario.
Vocé também acessa a API por meio da interface de linha de comando do utilitario Deploy.

Pagina de documentagao on-line do ONTAP Select Deploy

A pagina de documentacéao online do ONTAP Select Deploy oferece um ponto de acesso alternativo ao usar
um navegador. Além de fornecer uma maneira de executar chamadas de API individuais diretamente, a
pagina também inclui uma descricdo detalhada da API, incluindo parametros de entrada e outras opgdes para
cada chamada. As chamadas de API sdo organizadas em diversas areas ou categorias funcionais.

Programa personalizado

Vocé pode acessar a API de Implantagdo usando qualquer uma das diversas linguagens de programacgao e
ferramentas. As opg¢des mais populares incluem Python, Java e cURL. Um programa, script ou ferramenta que
utiliza a APl atua como um cliente de servigos web REST. O uso de uma linguagem de programacgao permite
qgue vocé entenda melhor a API e oferece a oportunidade de automatizar as implantacées do ONTAP Select .

Versao da API de implantagcao do ONTAP Select

A API REST incluida no ONTAP Select Deploy recebe um numero de versdo. O numero
da versao da API é independente do numero da versao do Deploy. Vocé deve estar
ciente da versdo da API incluida na sua verséo do Deploy e de como isso pode afetar
seu uso da API.

A verséo atual do utilitario de administragdo Deploy inclui a versdo 3 da APl REST. Versées anteriores do
utilitario Deploy incluem as seguintes versdes da API:

Implantar 2.8 e posterior
ONTAP Select Deploy 2.8 e todas as versdes posteriores incluem a verséo 3 da APl REST.

Implantar 2.7.2 e versdes anteriores
ONTAP Select Deploy 2.7.2 e todas as versdes anteriores incluem a versao 2 da APl REST.

As versoOes 2 e 3 da API REST néo sdo compativeis. Se vocé atualizar para o Deploy 2.8 ou

@ posterior a partir de uma versao anterior que inclua a versao 2 da API, sera necessario atualizar
todo o cédigo existente que acessa diretamente a API, bem como todos os scripts que usam a
interface de linha de comando.

Caracteristicas operacionais basicas da AP| ONTAP Select Deploy

Embora o REST estabelega um conjunto comum de tecnologias e praticas
recomendadas, os detalhes de cada APl podem variar de acordo com as escolhas de
design. Vocé deve estar ciente dos detalhes e das caracteristicas operacionais da API
ONTAP Select Deploy antes de usa-la.

Host do hipervisor versus ONTAP Select

Um host hipervisor é a plataforma de hardware central que hospeda uma maquina virtual ONTAP Select .
Quando uma maquina virtual ONTAP Select é implantada e esta ativa em um host hipervisor, a maquina
virtual € considerada um n6é ONTAP Select. Com a versao 3 da API REST de Implantagao, os objetos host e
no sdo separados e distintos. Isso permite um relacionamento um-para-muitos, em que um ou mais nés
ONTAP Select podem ser executados no mesmo host hipervisor.

Identificadores de objetos

Cada instancia de recurso ou objeto recebe um identificador exclusivo quando é criado. Esses identificadores
sao globalmente exclusivos dentro de uma instancia especifica do ONTAP Select Deploy. Apos emitir uma
chamada de API que cria uma nova instancia de objeto, o valor do ID associado é retornado ao chamador no
location Cabegalho da resposta HTTP. Vocé pode extrair o identificador e usa-lo em chamadas
subsequentes ao se referir a instancia do recurso.

O conteudo e a estrutura interna dos identificadores de objeto podem mudar a qualquer
momento. Vocé deve usar os identificadores somente nas chamadas de API aplicaveis,
conforme necessario, ao se referir aos objetos associados.

Identificadores de solicitagao

Cada solicitagdo de APl bem-sucedida recebe um identificador exclusivo. O identificador é retornado no
request-id Cabecalho da resposta HTTP associada. Vocé pode usar um identificador de solicitagdo para se
referir coletivamente as atividades de uma uUnica transacéao de solicitacdo-resposta de API especifica. Por
exemplo, vocé pode recuperar todas as mensagens de eventos de uma transagdo com base no ID da
solicitagéo.

Chamadas sincronas e assincronas

Ha duas maneiras principais pelas quais um servidor executa uma solicitagdo HTTP recebida de um cliente:

» Sincrono O servidor executa a solicitagao imediatamente e responde com um cédigo de status 200, 201
ou 204.

» Assincrono: O servidor aceita a solicitacao e responde com o codigo de status 202. Isso indica que o
servidor aceitou a solicitagdo do cliente e iniciou uma tarefa em segundo plano para conclui-la. O sucesso

ou a falha final ndo sao imediatamente conhecidos e devem ser determinados por meio de chamadas de
API adicionais.

Confirmar a conclusdo de um trabalho de longa duragao

Geralmente, qualquer operagao que possa levar muito tempo para ser concluida é processada de forma
assincrona usando uma tarefa em segundo plano no servidor. Com a API REST de Implantagao, cada tarefa
em segundo plano € ancorada por um objeto Job, que rastreia a tarefa e fornece informagdes, como o estado
atual. Um objeto Job, incluindo seu identificador exclusivo, é retornado na resposta HTTP apds a criagdo de
uma tarefa em segundo plano.

Vocé pode consultar o objeto Job diretamente para determinar o sucesso ou a falha da chamada de API
associada. Consulte processamento assincrono usando o objeto Job para obter mais informacgdes.

Além de usar o objeto Job, ha outras maneiras de determinar o sucesso ou a falha de uma solicitagéo,
incluindo:

* Mensagens de evento: Vocé pode recuperar todas as mensagens de evento associadas a uma chamada
de API especifica usando o ID da solicitagdo retornado com a resposta original. As mensagens de evento
geralmente contém uma indicagao de sucesso ou falha e também podem ser uteis na depuragéo de uma
condigao de erro.

» Estado ou status do recurso Varios recursos mantém um valor de estado ou status que vocé pode
consultar para determinar indiretamente o sucesso ou a falha de uma solicitagéo.

Segurancga
A API de implantagéo usa as seguintes tecnologias de seguranca:

« Seguranca da Camada de Transporte: Todo o trafego enviado pela rede entre o servidor de implantacéo e
o cliente é criptografado por TLS. O uso do protocolo HTTP em um canal nao criptografado néo é
suportado. A versao 1.2 do TLS é suportada.

» Autenticagdo HTTP: A autenticagao basica € usada para todas as transag¢des da API. Um cabegalho
HTTP, que inclui o nome de usuario e a senha em uma string base64, € adicionado a cada solicitagao.

Transagao de API de solicitagao e resposta para ONTAP Select

Cada chamada a API de implantacéao é realizada como uma solicitacdo HTTP para a
maquina virtual de implantacdo, que gera uma resposta associada ao cliente. Esse par
solicitagao/resposta é considerado uma transacao de API. Antes de usar a API de
implantagao, vocé deve estar familiarizado com as variaveis de entrada disponiveis para
controlar uma solicitagdo e o conteudo da saida da resposta.

Variaveis de entrada que controlam uma solicitagdo de API

Vocé pode controlar como uma chamada de API é processada por meio de parametros definidos na
solicitacao HTTP.

Cabecalhos de solicitagao
Vocé deve incluir varios cabegalhos na solicitacdo HTTP, incluindo:

 content-type Se o corpo da solicitacao incluir JSON, este cabecalho devera ser definido como
application/json.

* aceitar Se o corpo da resposta incluir JSON, este cabegalho devera ser definido como application/json.

* autorizacao A autenticacdo basica deve ser definida com o nome de usuario e a senha codificados em
uma string base64.

Corpo da solicitagao

O conteudo do corpo da solicitacédo varia dependendo da chamada especifica. O corpo da solicitagdo HTTP
consiste em um dos seguintes:

» Objeto JSON com variaveis de entrada (como 0 nome de um novo cluster)
* Vazio
Filtrar objetos

Ao emitir uma chamada de API que usa GET, vocé pode limitar ou filtrar os objetos retornados com base em
qualquer atributo. Por exemplo, vocé pode especificar um valor exato para corresponder a:

<field>=<query value>

Além da correspondéncia exata, existem outros operadores disponiveis para retornar um conjunto de objetos
em um intervalo de valores. O ONTAP Select suporta os operadores de filtragem mostrados abaixo.

Operador Descrigcao

= Igual a

< Menor que

> Maior que

& Menor ou igual a

>= Maior ou igual a
Ou

! Nao é igual a

Curinga ganancioso

Vocé também pode retornar um conjunto de objetos com base em se um campo especifico esta definido ou
nao, usando a palavra-chave null ou sua negagao (!null) como parte da consulta.

Selecionando campos de objeto

Por padrao, emitir uma chamada de AP| usando GET retorna apenas os atributos que identificam
exclusivamente o(s) objeto(s). Esse conjunto minimo de campos atua como uma chave para cada objeto e
varia de acordo com o tipo de objeto. Vocé pode selecionar propriedades adicionais do objeto usando o
parametro de consulta fields das seguintes maneiras:

* Campos baratos Especificar fields=* para recuperar os campos de objeto que sdo mantidos na
memoria do servidor local ou que exigem pouco processamento para acesso.

* Campos caros Especificar fields=** para recuperar todos os campos do objeto, incluindo aqueles que
exigem processamento adicional do servidor para acesso.

* Selegédo de campo personalizado Usar fields=FIELDNAME para especificar o campo exato desejado. Ao
solicitar varios campos, os valores devem ser separados por virgulas, sem espagos.

Como pratica recomendada, vocé deve sempre identificar os campos especificos que deseja.
Vocé s6 deve recuperar o conjunto de campos de baixo custo ou alto custo quando necessario.

A classificagdo de baixo custo e alto custo é determinada pela NetApp com base em analises
internas de desempenho. A classificacdo de um determinado campo pode mudar a qualquer
momento.

Classificar objetos no conjunto de saida

Os registros em uma colegao de recursos séo retornados na ordem padrao definida pelo objeto. Vocé pode
alterar a ordem usando o parédmetro de consulta order_by com o nome do campo e a diregédo de classificacao
da seguinte maneira:

order by=<field name> asc|desc

Por exemplo, vocé pode classificar o campo tipo em ordem decrescente seguido pelo id em ordem crescente:
order by=type desc, id asc

Ao incluir varios parametros, vocé deve separar 0s campos com uma virgula.

Paginagao

Ao emitir uma chamada de API usando GET para acessar uma colegao de objetos do mesmo tipo, todos os
objetos correspondentes sao retornados por padrao. Se necessario, vocé pode limitar o nimero de registros
retornados usando o parametro de consulta max_records na solicitacdo. Por exemplo:

max records=20

Se necessario, vocé pode combinar este parametro com outros parametros de consulta para restringir o
conjunto de resultados. Por exemplo, o seguinte retorna até 10 eventos do sistema gerados apos o tempo
especificado:

time= 2019-04-04T15:41:29.140265Z&max _records=10

Vocé pode emitir varias solicitagcdes para navegar pelos eventos (ou qualquer tipo de objeto). Cada chamada
de API subsequente deve usar um novo valor de tempo com base no evento mais recente no ultimo conjunto
de resultados.

Interpretar uma resposta de API

Cada solicitagdo de APl gera uma resposta ao cliente. Vocé pode examinar a resposta para determinar se foi
bem-sucedida e recuperar dados adicionais, se necessario.

Codigo de status HTTP

Os codigos de status HTTP usados pela APl REST de implantagéo sdo descritos abaixo.

Caddigo Significado Descrigcao
200 OK Indica sucesso para chamadas que nao criam um novo objeto.
201 Criado Um objeto foi criado com sucesso; o cabegalho de resposta de

localizagao inclui o identificador exclusivo do objeto.

202 Aceito Um trabalho em segundo plano de longa execugao foi iniciado para
executar a solicitacdo, mas a operacdo ainda nao foi concluida.

400 Pedido ruim A entrada solicitada ndo € reconhecida ou € inadequada.

Codigo Significado Descrigcao

403 Proibido Acesso negado devido a um erro de autorizagao.

404 Nao encontrado O recurso mencionado na solicitacao nao existe.

405 Método nao O verbo HTTP na solicitagdo ndo é suportado para o recurso.
permitido

409 Conflito Uma tentativa de criar um objeto falhou porque o objeto ja existe.

500 Erro interno Ocorreu um erro interno geral no servidor.

501 Nao implementado O URI é conhecido, mas n&o é capaz de executar a solicitagao.

Cabecalhos de resposta

Varios cabecalhos s&o incluidos na resposta HTTP gerada pelo servidor de implantagéo, incluindo:

* request-id Cada solicitagdo de APl bem-sucedida recebe um identificador de solicitagdo exclusivo.

* localizagdo Quando um objeto é criado, o cabegalho de localizagao inclui o URL completo para o novo
objeto, incluindo o identificador exclusivo do objeto.

Corpo de resposta

O conteudo da resposta associada a uma solicitagao de API varia de acordo com o objeto, o tipo de
processamento e o sucesso ou falha da solicitagdo. O corpo da resposta é renderizado em JSON.

» Objeto unico: Um unico objeto pode ser retornado com um conjunto de campos com base na solicitagao.
Por exemplo, vocé pode usar GET para recuperar propriedades selecionadas de um cluster usando o
identificador exclusivo.

« Varios objetos Varios objetos de uma colecao de recursos podem ser retornados. Em todos os casos, ha
um formato consistente usado, com num_records indicando o numero de registros e registros contendo
uma matriz de instancias do objeto. Por exemplo, vocé pode recuperar todos os nos definidos em um
cluster especifico.

* Objeto Job: Se uma chamada de API for processada de forma assincrona, um objeto Job sera retornado,
ancorando a tarefa em segundo plano. Por exemplo, a solicitagao POST usada para implantar um cluster
€ processada de forma assincrona e retorna um objeto Job.

* Objeto de erro: Se ocorrer um erro, um objeto de erro sempre sera retornado. Por exemplo, vocé recebera
um erro ao tentar criar um cluster com um nome que ja existe.

» Vazio Em certos casos, nenhum dado é retornado e o corpo da resposta fica vazio. Por exemplo, o corpo
da resposta fica vazio apos usar DELETE para excluir um host existente.

Processamento assincrono usando o objeto Job para ONTAP Select

Algumas chamadas da API de implantacao, especialmente aquelas que criam ou
modificam um recurso, podem levar mais tempo para serem concluidas do que outras
chamadas. O ONTAP Select Deploy processa essas solicitagbes de longa duragdo de
forma assincrona.

Solicitagées assincronas descritas usando o objeto Job

Apos realizar uma chamada de API executada de forma assincrona, o cédigo de resposta HTTP 202 indica

que a solicitagao foi validada e aceita com sucesso, mas ainda nao foi concluida. A solicitagéo € processada
como uma tarefa em segundo plano que continua em execugéo apos a resposta HTTP inicial ao cliente. A
resposta inclui o objeto Job que ancora a solicitagcéo, incluindo seu identificador exclusivo.

@ Vocé deve consultar a pagina de documentagao on-line do ONTAP Select Deploy para
determinar quais chamadas de API operam de forma assincrona.

Consultar o objeto Job associado a uma solicitagdao de API

O objeto Job retornado na resposta HTTP contém diversas propriedades. Vocé pode consultar a propriedade
state para determinar se a solicitagéo foi concluida com sucesso. Um objeto Job pode estar em um dos
seguintes estados:

* Nafila

» Correndo

* Sucesso

* Falha
Ha duas técnicas que vocé pode usar ao pesquisar um objeto Job para detectar um estado terminal para a
tarefa, seja sucesso ou falha:

« Solicitagdo de pesquisa padrao O estado do trabalho atual é retornado imediatamente

+ Solicitagdo de pesquisa longa O estado do trabalho € retornado somente quando ocorre uma das
seguintes situagoes:

o O estado mudou mais recentemente do que o valor de data e hora fornecido na solicitacdo de
pesquisa

> O valor de tempo limite expirou (1 a 120 segundos)

A pesquisa padrao e a pesquisa longa usam a mesma chamada de API para consultar um objeto Job. No
entanto, uma solicitagéo de pesquisa longa inclui dois pardmetros de consulta: poll timeout e
last modified.

Vocé deve sempre usar long polling para reduzir a carga de trabalho na maquina virtual Deploy.

Procedimento geral para emissao de uma solicitagdo assincrona
Vocé pode usar o seguinte procedimento de alto nivel para concluir uma chamada de API assincrona:

1. Emita a chamada de API assincrona.
Receba uma resposta HTTP 202 indicando aceitacao bem-sucedida da solicitagao.

Extraia o identificador do objeto Job do corpo da resposta.

> w N

Dentro de um loop, execute o seguinte em cada ciclo:
a. Obtenha o estado atual do trabalho com uma solicitagdo de pesquisa longa
b. Se o trabalho estiver em um estado nao terminal (na fila, em execugao), execute o loop novamente.

5. Pare quando o trabalho atingir um estado terminal (sucesso, falha).

Acesso com um navegador

Antes de acessar a API ONTAP Select Deploy com um navegador

Ha varias coisas que vocé deve saber antes de usar a pagina de documentagao on-line
do Deploy.

Plano de implantagao

Se vocé pretende emitir chamadas de APl como parte da execucao de tarefas administrativas ou de
implantacao especificas, considere criar um plano de implantacéo. Esses planos podem ser formais ou
informais e geralmente contém seus objetivos e as chamadas de APl a serem utilizadas. Consulte Processos
de fluxo de trabalho usando a APl REST de implantacdo para obter mais informagoes.

Exemplos JSON e definic6es de parametros

Cada chamada de API ¢é descrita na pagina de documentag¢ao usando um formato consistente. O conteudo
inclui notas de implementacao, pardmetros de consulta e codigos de status HTTP. Além disso, vocé pode
exibir detalhes sobre o JSON usado com as solicitagdes e respostas da API da seguinte forma:

 Valor de Exemplo: Se vocé clicar em Valor de Exemplo em uma chamada de API, uma estrutura JSON
tipica para a chamada sera exibida. Vocé pode modificar o exemplo conforme necessario e usa-lo como
entrada para sua solicitagao.

* Modelo Se vocé clicar em Modelo, uma lista completa dos parametros JSON sera exibida, com uma
descri¢cao para cada parametro.

Cuidado ao emitir chamadas de API

Todas as operagdes de API que vocé realiza usando a pagina de documentacao de Implantagcéo sédo
operagoes ativas. Tome cuidado para néo criar, atualizar ou excluir configuragdes ou outros dados por
engano.

Acesse a pagina de documentacao do ONTAP Select Deploy

Vocé deve acessar a pagina de documentacao on-line do ONTAP Select Deploy para
exibir a documentagéao da API, bem como para emitir manualmente uma chamada de
APL.

Antes de comecgar
Vocé deve ter o seguinte:

* Endereco IP ou nome de dominio da maquina virtual ONTAP Select Deploy

* Nome de usuario e senha do administrador

Passos
1. Digite a URL no seu navegador e pressione Enter:

https://<ip address>/api/ui

2. Sign in usando o nome de usuario e a senha do administrador.

Resultado

A pagina da documentagao do Deploy é exibida com as chamadas organizadas por categoria na parte inferior
da pagina.

Entenda e execute uma chamada de APl ONTAP Select Deploy

Os detalhes de todas as chamadas de APl sdo documentados e exibidos em um formato
comum na pagina de documentacgao online do ONTAP Select Deploy. Ao compreender
uma unica chamada de API, vocé pode acessar e interpretar os detalhes de todas as
chamadas de API.

Antes de comecar

Vocé precisa estar conectado a pagina de documentagao online do ONTAP Select Deploy. Vocé precisa ter o
identificador exclusivo atribuido ao seu cluster ONTAP Select quando ele foi criado.

Sobre esta tarefa

Vocé pode recuperar as informacdes de configuragdo que descrevem um cluster ONTAP Select usando seu
identificador exclusivo. Neste exemplo, todos os campos classificados como baratos séo retornados. No
entanto, como pratica recomendada, vocé deve solicitar apenas os campos especificos necessarios.

Passos
1. Na pagina principal, role até o final e clique em Cluster.

2. Clique em GET /clusters/{cluster_id} para exibir os detalhes da chamada de API usada para retornar
informacdes sobre um cluster ONTAP Select .

Processos de fluxo de trabalho

Antes de usar os fluxos de trabalho da API ONTAP Select Deploy

Vocé deve se preparar para revisar e usar os processos de fluxo de trabalho.

Entenda as chamadas de APl usadas nos fluxos de trabalho

A pagina de documentacéao online do ONTAP Select inclui os detalhes de cada chamada de APl REST. Em
vez de repetir esses detalhes aqui, cada chamada de API usada nos exemplos de fluxo de trabalho inclui
apenas as informagbes necessarias para localiza-la na pagina de documentagao. Apods localizar uma
chamada de API especifica, vocé pode revisar os detalhes completos da chamada, incluindo os parametros
de entrada, formatos de saida, cédigos de status HTTP e tipo de processamento da solicitagao.

As seguintes informacgdes sdo incluidas para cada chamada de APl em um fluxo de trabalho para ajudar a
localizar a chamada na pagina de documentacéo:

» Categoria As chamadas de API sao organizadas na pagina de documentagédo em areas ou categorias
funcionalmente relacionadas. Para localizar uma chamada de API especifica, role até o final da pagina e
clique na categoria de API aplicavel.

* Verbo HTTP O verbo HTTP identifica a agao realizada em um recurso. Cada chamada de API é executada
por meio de um unico verbo HTTP.

« Caminho O caminho determina o recurso especifico ao qual a agdo se aplica como parte da execugéao de
uma chamada. A string do caminho é anexada a URL principal para formar a URL completa que identifica
0 recurso.

10

Crie uma URL para acessar diretamente a API REST

Além da pagina de documentacao do ONTAP Select , vocé também pode acessar a APl REST de
Implantagao diretamente por meio de uma linguagem de programagao como Python. Nesse caso, a URL
principal é ligeiramente diferente da URL usada para acessar a pagina de documentagao online. Ao acessar a
API diretamente, vocé deve anexar /api a string de dominio e porta. Por exemplo:
http://deploy.mycompany.com/api

Fluxo de trabalho 1: criar um cluster de avaliagao de né unico ONTAP Select no
ESXi

Vocé pode implantar um cluster ONTAP Select de n6 unico em um host VMware ESXi
gerenciado pelo vCenter. O cluster é criado com uma licenga de avaliagao.

O fluxo de trabalho de criagao de cluster difere nas seguintes situacoes:

* O host ESXi ndo é gerenciado pelo vCenter (host autbnomo)
« Varios nos ou hosts sdo usados dentro do cluster
* O cluster é implantado em um ambiente de producdo com uma licenca adquirida

* O hipervisor KVM é usado em vez do VMware ESXi

1. Registre a credencial do servidor vCenter

Ao implantar em um host ESXi gerenciado por um servidor vCenter, vocé deve adicionar uma credencial antes
de registrar o host. O utilitario de administragéo de implantagdo pode entdo usar a credencial para autenticar
no vCenter.

Categoria verbo HTTP Caminho
Implantar PUBLICAR /segurangal/credenciais

Cachos

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials'

Entrada JSON (etapa 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Tipo de processamento
Assincrono

11

Saida
* ID da credencial no cabegalho de resposta de localizagéo

* Objeto de trabalho

2. Registre um host do hipervisor

Vocé deve adicionar um host do hipervisor onde a maquina virtual que contém o n6 ONTAP Select sera
executada.

Categoria verbo HTTP Caminho
Conjunto PUBLICAR /anfitrides

Cachos

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts"

Entrada JSON (etapa 02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo de processamento
Assincrono

Saida
* ID do host no cabecalho de resposta de localizacao

* Objeto de trabalho

3. Crie um cluster

Quando vocé cria um cluster ONTAP Select , a configuracédo basica do cluster é registrada e os nomes dos
nos séo gerados automaticamente pelo Deploy.

Categoria verbo HTTP Caminho
Conjunto PUBLICAR [clusters

Cachos
O parametro de consulta node_count deve ser definido como 1 para um cluster de né unico.

12

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

Entrada JSON (etapa 03)

"name": "my cluster"

Tipo de processamento
Sincrono

Saida
¢ ID do cluster no cabecalho de resposta de localizagao

4. Configurar o cluster

Ha varios atributos que vocé deve fornecer como parte da configuragédo do cluster.

Categoria verbo HTTP Caminho
Conjunto CORRECAO /clusters/{id_do_cluster}

Cachos
Vocé deve fornecer o ID do cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (etapa 04)

"dns_info": ({
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
by
"ontap image version": "9.5",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Tipo de processamento
Sincrono

13

Saida
Nenhum

5. Recupere o nome do né

O utilitario de administragao Deploy gera automaticamente os identificadores e nomes dos nés quando um
cluster é criado. Antes de configurar um no, vocé precisa recuperar o |ID atribuido.

Categoria verbo HTTP Caminho
Conjunto PEGAR [clusters/{cluster_id}/nds

Cachos
Vocé deve fornecer o ID do cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Tipo de processamento
Sincrono

Saida
» A matriz registra cada um descrevendo um unico né com ID e nome exclusivos

6. Configurar os nés

Vocé deve fornecer a configuragdo basica para o nd, que € a primeira das trés chamadas de API usadas para
configurar um no.

Categoria verbo HTTP Caminho
Conjunto CAMINHO [clusters/{id_do_cluster}/nés/{id_do_no}

Cachos
Vocé deve fornecer o ID do cluster e o ID do né.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (etapa 06)
Vocé deve fornecer o ID do host onde o né6 ONTAP Select sera executado.

14

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Tipo de processamento
Sincrono

Saida
Nenhum

7. Recupere as redes de nés

Vocé deve identificar as redes de dados e gerenciamento usadas pelo n6 no cluster de n6 unico. A rede
interna ndo é usada com um cluster de n6 unico.

Categoria verbo HTTP Caminho
Conjunto PEGAR [clusters/{id_do_cluster}/nés/{id_do_nd}/redes

Cachos
Vocé deve fornecer o ID do cluster e o ID do né.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Tipo de processamento
Sincrono

Saida

* Matriz de dois registros, cada um descrevendo uma unica rede para o né, incluindo o ID exclusivo e a
finalidade

8. Configurar a rede do né

Vocé deve configurar as redes de dados e gerenciamento. A rede interna ndo € usada com um cluster de n6
unico.

(D Emita a seguinte chamada de API duas vezes, uma para cada rede.

Categoria verbo HTTP Caminho
Conjunto CORRECAO /clusters/{id_do_cluster}/nés/{id_do_no}/redes/{id_da_rede}

15

Cachos
Vocé deve fornecer o ID do cluster, o ID do né e o ID da rede.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrada JSON (etapa 08)
Vocé precisa fornecer o nome da rede.

"name": "sDOT Network"

Tipo de processamento
Sincrono

Saida
Nenhum

9. Configurar o pool de armazenamento de nés

A etapa final na configuragdo de um né é anexar um pool de armazenamento. Vocé pode determinar os pools
de armazenamento disponiveis por meio do cliente web do vSphere ou, opcionalmente, por meio da API
REST de implantagao.

Categoria verbo HTTP Caminho
Conjunto CORRECAO /clusters/{id_do_cluster}/nés/{id_do_no}redes/{id_da_rede}

Cachos
Vocé deve fornecer o ID do cluster, o ID do n6 e o ID da rede.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (etapa 09)
A capacidade do pool € de 2 TB.

16

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo de processamento
Sincrono

Saida
Nenhum

10. Implante o cluster
Depois que o cluster e o n6 forem configurados, vocé podera implantar o cluster.

Categoria verbo HTTP Caminho
Conjunto PUBLICAR [clusters/{cluster_id}/implantar

Cachos
Vocé deve fornecer o ID do cluster.

curl -1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrada JSON (etapa 10)
Vocé deve fornecer a senha para a conta de administrador do ONTAP .

"ontap credentials": {

"password": "mypassword"

Tipo de processamento
Assincrono

Saida
* Objeto de trabalho

Informacgodes relacionadas

17

"Implantar uma instancia de avaliacdo de 90 dias de um cluster ONTAP Select"

Acesso com Python

Antes de acessar o ONTAP Select Implantar APl usando Python
Vocé deve preparar o ambiente antes de executar os scripts Python de exemplo.

Antes de executar os scripts Python, vocé deve certificar-se de que o ambiente esteja configurado
corretamente:

» A versao mais recente aplicavel do Python2 deve estar instalada. Os cddigos de exemplo foram testados
com Python2. Eles também devem ser portaveis para Python3, mas nao foram testados quanto a
compatibilidade.

* As bibliotecas Requests e urllib3 devem estar instaladas. Vocé pode usar o pip ou outra ferramenta de
gerenciamento Python, conforme apropriado para o seu ambiente.

» A estagao de trabalho cliente onde os scripts sdo executados deve ter acesso de rede a maquina virtual
ONTAP Select Deploy.

Além disso, vocé deve ter as seguintes informacoes:

* Endereco IP da maquina virtual de implantacéo

* Nome de usuario e senha de uma conta de administrador do Deploy

Entenda os scripts Python para ONTAP Select Deploy

Os scripts Python de exemplo permitem que vocé execute diversas tarefas diferentes.
Vocé deve entender os scripts antes de usa-los em uma instancia de implantacéo ativa.

Caracteristicas comuns de design

Os scripts foram projetados com as seguintes caracteristicas comuns:

» Executar a partir da interface de linha de comando em uma maquina cliente. Vocé pode executar os
scripts Python em qualquer maquina cliente configurada corretamente. Consulte Antes de comegar para
obter mais informacdes.

* Aceitar parametros de entrada da CLI Cada script € controlado na CLI por meio de parametros de entrada.

* Ler arquivo de entrada: Cada script 16 um arquivo de entrada com base em sua finalidade. Ao criar ou
excluir um cluster, vocé deve fornecer um arquivo de configuragdo JSON. Ao adicionar uma licenga de no,
vocé deve fornecer um arquivo de licenca valido.

* Use um médulo de suporte comum. O médulo de suporte comum deploy _requests.py contém uma unica
classe. Ele é importado e usado por cada um dos scripts.

Criar um cluster

Vocé pode criar um cluster ONTAP Select usando o script cluster.py. Com base nos parametros da CLI € no
conteudo do arquivo de entrada JSON, vocé pode modificar o script para o seu ambiente de implantacéo da
seguinte maneira:

* Hipervisor: vocé pode implantar no ESXI ou KVM (dependendo da versao de implantacéo). Ao implantar

18

https://docs.netapp.com/pt-br/ontap-select-9161/deploy-evaluation-ontap-select-ovf-template.html

no ESXi, o hipervisor pode ser gerenciado pelo vCenter ou pode ser um host auténomo.
» Tamanho do cluster Vocé pode implantar um cluster de né Unico ou de varios nés.

* Licenca de avaliagao ou producgao Vocé pode implantar um cluster com uma licenca de avaliagcéo ou
adquirida para producéo.

Os parametros de entrada da CLI para o script incluem:

* Nome do host ou endereco IP do servidor de implantagéo
» Senha para a conta de usuario administrador
* Nome do arquivo de configuragdo JSON

» Sinalizador detalhado para saida de mensagem

Adicionar uma licenga de né

Se optar por implantar um cluster de producéao, vocé devera adicionar uma licenga para cada né usando o
script add_license.py. Vocé pode adicionar a licenga antes ou depois de implantar o cluster.

Os parametros de entrada da CLI para o script incluem:

* Nome do host ou endereco IP do servidor de implantagao
* Senha para a conta de usuario administrador
* Nome do arquivo de licenca
* Nome de usuario ONTAP com privilégios para adicionar a licenca
» Senha para o usuario ONTAP
Excluir um cluster
Vocé pode excluir um cluster ONTAP Select existente usando o script delete_cluster.py.

Os parametros de entrada da CLI para o script incluem:

* Nome do host ou endereco IP do servidor de implantagao
» Senha para a conta de usuario administrador

* Nome do arquivo de configuragdo JSON

Exemplos de cédigo Python

Script para criar um cluster ONTAP Select

Vocé pode usar o script a seguir para criar um cluster com base nos parametros
definidos no script e em um arquivo de entrada JSON.

#!/usr/bin/env python

File: cluster.py
#

19

20

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R T T

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log_debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]|
'hostname']) :
log_info ("Registering vcenter {} credentials".format (vcenter|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log _debug trace ()

hosts = config.get('hosts', [])
for host in hosts:

The presense of the 'password' will be used only for standalone
hosts.

If this host is managed by a vcenter, it should not have a host
'password' in the json.

if 'password' in host and not deploy.resource exists (
'/security/credentials’,

'hostname',
host['name']) :

log_info ("Registering host {} credentials".format (host['name

1))
data = {'hostname': host['name'], 'type': 'host',

'username': host['username'], 'password': host][
'password']}

deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):
""" Registers all hosts with the deploy server.

The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

log debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host['user

21

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

log _debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster config[k] for k in [

'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),
data)
cluster id = resp.headers.get('Location').split('/"') [-1]
return cluster id
def get node ids(deploy, cluster id):
'"'" Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''

log _debug trace()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))

22

node ids = [node['id'] for node in response.json().get('records')]
return node ids

def add node_attributes(deploy, cluster id, node id, node):
''' Set all the needed properties on a node '''

log_debug_ trace ()
log_info ("Adding node '({}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:

log_and exit("Host names must match in the 'hosts' array, and the

nodes.host name property")
data['host'] = {'id': host id}

Set the correct raid type

is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format(data))
deploy.patch('/clusters/{}/nodes/{}'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node_ id, node):

Set the network information for a node '''
log _debug trace ()

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

24

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.£format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''

log_debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log_info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post(
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,
node id), data)

def create cluster config(deploy, config):
''"'" Construct a cluster config in the deploy server using the input
json data '''

log debug trace ()
cluster id = add cluster_ attributes(deploy, config)

node ids = get node ids (deploy, cluster id)

def

node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_ attributes (deploy, cluster id, node id, node config)
add node_ networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug trace ()

log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def log debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
def log _info (msg) :
logging.getlLogger ('deploy') .info (msg)
def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)
def configure logging (verbose) :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

data, wait for job=True)

logging.WARNING)

25

def main(args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add standalone host credentials (deploy, config)
register_unkown_hosts(deploy, configqg)
cluster id = create cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')

parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON para script para criar um cluster ONTAP Select

Ao criar ou excluir um cluster ONTAP Select usando os exemplos de cddigo Python,
vocé deve fornecer um arquivo JSON como entrada para o script. Vocé pode copiar e
modificar o exemplo JSON apropriado de acordo com seus planos de implantacao.

Cluster de né unico no ESXi

26

"hosts": [

{

"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]

by

"ontap image version": "9.7",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

by

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian": 1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

"

com",

27

}

I
"host name": "host-1234",

"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Cluster de n6 unico no ESXi usando vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
I

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
1y
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

28

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username" :"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan":null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster de n6 unico em KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",
"username" :"root"
}
1,

"cluster": {

"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlian":1234

by

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

30

com",

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Script para adicionar uma licenga de né ONTAP Select

Vocé pode usar o seguinte script para adicionar uma licenga para um né ONTAP Select .

#!/usr/bin/env python

H= o S S S S e SR S S S S S ok e

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

31

32

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_license (deploy, license filename) :
log _info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"'license file': open (license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

id files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}
put_license (deploy, serial number, data, files)
def put free license (deploy, serial number, license filename) :
data = {}

files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :

''"" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:

log and exit("The license file seems to be missing the

serialNumber")

def

def

def

return serialNumber

1og_info(msg):
logging.getlLogger ('deploy') .info (msqg)

log _and exit (msqg):
logging.getLogger ('deploy') .error (msg)
exit (1)

configure logging() :

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .

setLevel (logging.WARNING)

def main(args):

configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-

number

its

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
used

if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to

33

the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put _free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use
post new license (deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'"Hostname or IP address of ONTAP Select Deploy')
parser.add _argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()
if name == ' main ':
args = parseArgs ()
main (args)

Script para excluir um cluster ONTAP Select

Vocé pode usar o seguinte script CLI para excluir um cluster existente.

#!/usr/bin/env python

File: delete cluster.py

34

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S S S S S SR S S SR S S oE

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch ('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_ cluster (deploy, cluster id):
log _info("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msg)

def configure logging() :

35

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]|
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Moédulo Python de suporte comum para ONTAP Select

Todos os scripts Python usam uma classe Python comum em um unico moédulo.

#!/usr/bin/env python

36

R T TR

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json

import logging

import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

37

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

def

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

patch (self, path, data, wait for job=False):

self.logger.debug('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

def

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

put (self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format (data))

response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def get(self, path):

38

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def find resource(self, path, name, value):
''"'" Returns the 'id' of the resource if it exists, otherwise None

None
self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

resource

response

if response.status_code == 200 and response.json() .get (
'num_records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

LI |

error
resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, query
=query opt))
if response.status_code == 200
return response.json().get('num records')

return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):
last modified = response['job']['last modified']

40

job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})
Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job_body.get('last modified')
Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response. text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod
def filter headers (response):

'''" Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Script para redimensionar nés do cluster ONTAP Select

Vocé pode usar o seguinte script para redimensionar os nds em um cluster ONTAP
Select .

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing
this
script and returns the resulting namespace. If all required
arguments
are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'

' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'
' should be performed. The default is to apply the resize to all
nodes in'
' the cluster. If a list of nodes is provided, it must be provided
in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_args ()
def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args

.cluster)
if not cluster id:

42

return None
o

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for

node 1in nodes]

return changes

def main () :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig (
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=

logging.INFO,)

logging.getLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)
return 1

43

44

changes = _get request body (parsed args,

deploy.patch('/clusters/%s'
=True)
if name == ' main ':

sys.exit (main())

o
°

cluster['id'],

cluster)

changes, wait for job

Informacgoes sobre direitos autorais

Copyright © 2026 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste
documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio —
grafico, eletrbnico ou mecanico, incluindo fotocopia, gravagéo, gravagao em fita ou storage em um sistema de
recuperacao eletrobnica — sem permissao prévia, por escrito, do proprietario dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais esta sujeito a seguinte licenca e
isencao de responsabilidade:

ESTE SOFTWARE E FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER
GARANTIAS EXPRESSAS OU IMPLICITAS, INCLUINDO, SEM LIMITAGOES, GARANTIAS IMPLICITAS DE
COMERCIALIZACAO E ADEQUAGCAO A UM DETERMINADO PROPOSITO, CONFORME A ISENCAO DE
RESPONSABILIDADE DESTE DOCUMENTO. EM HIPOTESE ALGUMA A NETAPP SERA RESPONSAVEL
POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU
CONSEQUENCIAL (INCLUINDO, SEM LIMITACOES, AQUISICAO DE PRODUTOS OU SERVICOS
SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPCAO DOS NEGOCIOS),
INDEPENDENTEMENTE DA CAUSA E DO PRINCIPIO DE RESPONSABILIDADE, SEJA EM CONTRATO,
POR RESPONSABILIDADE OBJETIVA OU PREJUIZO (INCLUINDO NEGLIGENCIA OU DE OUTRO
MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE
DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento
e sem aviso. A NetApp ndo assume nenhuma responsabilidade nem obrigagédo decorrentes do uso dos
produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O
uso ou a compra deste produto ndo representam uma licenca sob quaisquer direitos de patente, direitos de
marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes
estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicagéo ou a divulgagéo pelo governo estéo sujeitos a
restricdes conforme estabelecido no subparagrafo (b)(3) dos Direitos em Dados Técnicos - Itens Nao
Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou servigo comercial (conforme definido no FAR
2.101) e sao de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp
fornecidos sob este Contrato sdo de natureza comercial e desenvolvidos exclusivamente com despesas
privadas. O Governo dos EUA tem uma licenga mundial limitada, irrevogavel, ndo exclusiva, intransferivel e
nao sublicenciavel para usar os Dados que estdo relacionados apenas com o suporte e para cumprir 0s
contratos governamentais desse pais que determinam o fornecimento de tais Dados. Salvo disposi¢ao em
contrario no presente documento, nao é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os
dados sem a aprovagao prévia por escrito da NetApp, Inc. Os direitos de licenga pertencentes ao governo dos
Estados Unidos para o Departamento de Defesa estéo limitados aos direitos identificados na clausula
252.227-7015(b) (fevereiro de 2014) do DFARS.

Informagoes sobre marcas comerciais
NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM sao marcas comerciais da

NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos
proprietarios.

45

http://www.netapp.com/TM

	Automatize com REST : ONTAP Select
	Índice
	Automatize com REST
	Conceitos
	Base de serviços web REST para implantação e gerenciamento de clusters ONTAP Select
	Como acessar a API ONTAP Select Deploy
	Versão da API de implantação do ONTAP Select
	Características operacionais básicas da API ONTAP Select Deploy
	Transação de API de solicitação e resposta para ONTAP Select
	Processamento assíncrono usando o objeto Job para ONTAP Select

	Acesso com um navegador
	Antes de acessar a API ONTAP Select Deploy com um navegador
	Acesse a página de documentação do ONTAP Select Deploy
	Entenda e execute uma chamada de API ONTAP Select Deploy

	Processos de fluxo de trabalho
	Antes de usar os fluxos de trabalho da API ONTAP Select Deploy
	Fluxo de trabalho 1: criar um cluster de avaliação de nó único ONTAP Select no ESXi

	Acesso com Python
	Antes de acessar o ONTAP Select Implantar API usando Python
	Entenda os scripts Python para ONTAP Select Deploy

	Exemplos de código Python
	Script para criar um cluster ONTAP Select
	JSON para script para criar um cluster ONTAP Select
	Script para adicionar uma licença de nó ONTAP Select
	Script para excluir um cluster ONTAP Select
	Módulo Python de suporte comum para ONTAP Select
	Script para redimensionar nós do cluster ONTAP Select

