
Automatize com REST

ONTAP Select
NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/pt-br/ontap-select-9161/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Índice
Automatize com REST . 1

Conceitos . 1

Base de serviços web REST para implantação e gerenciamento de clusters ONTAP Select 1

Como acessar a API ONTAP Select Deploy . 2

Versão da API de implantação do ONTAP Select . 2

Características operacionais básicas da API ONTAP Select Deploy . 3

Transação de API de solicitação e resposta para ONTAP Select . 4

Processamento assíncrono usando o objeto Job para ONTAP Select . 7

Acesso com um navegador . 9

Antes de acessar a API ONTAP Select Deploy com um navegador . 9

Acesse a página de documentação do ONTAP Select Deploy . 9

Entenda e execute uma chamada de API ONTAP Select Deploy . 10

Processos de fluxo de trabalho . 10

Antes de usar os fluxos de trabalho da API ONTAP Select Deploy. 10

Fluxo de trabalho 1: criar um cluster de avaliação de nó único ONTAP Select no ESXi 11

Acesso com Python . 18

Antes de acessar o ONTAP Select Implantar API usando Python. 18

Entenda os scripts Python para ONTAP Select Deploy. 18

Exemplos de código Python. 19

Script para criar um cluster ONTAP Select . 19

JSON para script para criar um cluster ONTAP Select . 26

Script para adicionar uma licença de nó ONTAP Select . 31

Script para excluir um cluster ONTAP Select. 34

Módulo Python de suporte comum para ONTAP Select . 36

Script para redimensionar nós do cluster ONTAP Select . 41

Automatize com REST

Conceitos

Base de serviços web REST para implantação e gerenciamento de clusters ONTAP
Select

A Transferência de Estado Representacional (REST) é um estilo para a criação de
aplicações web distribuídas. Quando aplicada ao design de uma API de serviços web,
ela estabelece um conjunto de tecnologias e práticas recomendadas para expor recursos
baseados em servidor e gerenciar seus estados. Ela utiliza protocolos e padrões
tradicionais para fornecer uma base flexível para a implantação e o gerenciamento de
clusters ONTAP Select .

Arquitetura e restrições clássicas

O REST foi formalmente articulado por Roy Fielding em seu doutorado "dissertação" na UC Irvine em 2000.
Ela define um estilo arquitetônico por meio de um conjunto de restrições que, coletivamente, aprimoram
aplicações web e os protocolos subjacentes. As restrições estabelecem uma aplicação de serviços web
RESTful baseada em uma arquitetura cliente/servidor, utilizando um protocolo de comunicação sem estado.

Recursos e representação estatal

Os recursos são os componentes básicos de um sistema web. Ao criar uma aplicação de serviços web REST,
as tarefas iniciais de design incluem:

• Identificação de recursos baseados em sistema ou servidor. Todo sistema utiliza e mantém recursos. Um
recurso pode ser um arquivo, uma transação comercial, um processo ou uma entidade administrativa.
Uma das primeiras tarefas ao projetar uma aplicação baseada em serviços web REST é identificar os
recursos.

• Definição de estados de recursos e operações de estado associadas. Os recursos estão sempre em um
de um número finito de estados. Os estados, bem como as operações associadas usadas para afetar as
mudanças de estado, devem ser claramente definidos.

As mensagens são trocadas entre o cliente e o servidor para acessar e alterar o estado dos recursos de
acordo com o modelo genérico CRUD (Criar, Ler, Atualizar e Excluir).

Pontos finais de URI

Cada recurso REST deve ser definido e disponibilizado usando um esquema de endereçamento bem definido.
Os endpoints onde os recursos estão localizados e identificados usam um Identificador Uniforme de Recursos
(URI). O URI fornece uma estrutura geral para a criação de um nome exclusivo para cada recurso na rede. O
Localizador Uniforme de Recursos (URL) é um tipo de URI usado com serviços web para identificar e acessar
recursos. Os recursos são normalmente expostos em uma estrutura hierárquica semelhante a um diretório de
arquivos.

Mensagens HTTP

O Protocolo de Transferência de Hipertexto (HTTP) é o protocolo usado pelo cliente e servidor de serviços
web para trocar mensagens de solicitação e resposta sobre os recursos. Como parte do projeto de um
aplicativo de serviços web, verbos HTTP (como GET e POST) são mapeados para os recursos e as ações de

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

gerenciamento de estado correspondentes.

O HTTP não possui estado. Portanto, para associar um conjunto de solicitações e respostas relacionadas em
uma única transação, informações adicionais devem ser incluídas nos cabeçalhos HTTP transmitidos com os
fluxos de dados de solicitação/resposta.

Formatação JSON

Embora as informações possam ser estruturadas e transferidas entre um cliente e um servidor de diversas
maneiras, a opção mais popular (e a usada com a API REST do Deploy) é a JavaScript Object Notation
(JSON). JSON é um padrão do setor para representar estruturas de dados simples em texto simples e é
usado para transferir informações de estado que descrevem os recursos.

Como acessar a API ONTAP Select Deploy

Devido à flexibilidade inerente dos serviços web REST, a API ONTAP Select Deploy
pode ser acessada de diversas maneiras diferentes.

Implantar interface de usuário nativa do utilitário

A principal maneira de acessar a API é por meio da interface de usuário web do ONTAP Select Deploy. O
navegador faz chamadas para a API e reformata os dados de acordo com o design da interface de usuário.
Você também acessa a API por meio da interface de linha de comando do utilitário Deploy.

Página de documentação on-line do ONTAP Select Deploy

A página de documentação online do ONTAP Select Deploy oferece um ponto de acesso alternativo ao usar
um navegador. Além de fornecer uma maneira de executar chamadas de API individuais diretamente, a
página também inclui uma descrição detalhada da API, incluindo parâmetros de entrada e outras opções para
cada chamada. As chamadas de API são organizadas em diversas áreas ou categorias funcionais.

Programa personalizado

Você pode acessar a API de Implantação usando qualquer uma das diversas linguagens de programação e
ferramentas. As opções mais populares incluem Python, Java e cURL. Um programa, script ou ferramenta que
utiliza a API atua como um cliente de serviços web REST. O uso de uma linguagem de programação permite
que você entenda melhor a API e oferece a oportunidade de automatizar as implantações do ONTAP Select .

Versão da API de implantação do ONTAP Select

A API REST incluída no ONTAP Select Deploy recebe um número de versão. O número
da versão da API é independente do número da versão do Deploy. Você deve estar
ciente da versão da API incluída na sua versão do Deploy e de como isso pode afetar
seu uso da API.

A versão atual do utilitário de administração Deploy inclui a versão 3 da API REST. Versões anteriores do
utilitário Deploy incluem as seguintes versões da API:

Implantar 2.8 e posterior

ONTAP Select Deploy 2.8 e todas as versões posteriores incluem a versão 3 da API REST.

2

Implantar 2.7.2 e versões anteriores

ONTAP Select Deploy 2.7.2 e todas as versões anteriores incluem a versão 2 da API REST.

As versões 2 e 3 da API REST não são compatíveis. Se você atualizar para o Deploy 2.8 ou
posterior a partir de uma versão anterior que inclua a versão 2 da API, será necessário atualizar
todo o código existente que acessa diretamente a API, bem como todos os scripts que usam a
interface de linha de comando.

Características operacionais básicas da API ONTAP Select Deploy

Embora o REST estabeleça um conjunto comum de tecnologias e práticas
recomendadas, os detalhes de cada API podem variar de acordo com as escolhas de
design. Você deve estar ciente dos detalhes e das características operacionais da API
ONTAP Select Deploy antes de usá-la.

Host do hipervisor versus ONTAP Select

Um host hipervisor é a plataforma de hardware central que hospeda uma máquina virtual ONTAP Select .
Quando uma máquina virtual ONTAP Select é implantada e está ativa em um host hipervisor, a máquina
virtual é considerada um nó ONTAP Select. Com a versão 3 da API REST de Implantação, os objetos host e
nó são separados e distintos. Isso permite um relacionamento um-para-muitos, em que um ou mais nós
ONTAP Select podem ser executados no mesmo host hipervisor.

Identificadores de objetos

Cada instância de recurso ou objeto recebe um identificador exclusivo quando é criado. Esses identificadores
são globalmente exclusivos dentro de uma instância específica do ONTAP Select Deploy. Após emitir uma
chamada de API que cria uma nova instância de objeto, o valor do ID associado é retornado ao chamador no
location Cabeçalho da resposta HTTP. Você pode extrair o identificador e usá-lo em chamadas
subsequentes ao se referir à instância do recurso.

O conteúdo e a estrutura interna dos identificadores de objeto podem mudar a qualquer
momento. Você deve usar os identificadores somente nas chamadas de API aplicáveis,
conforme necessário, ao se referir aos objetos associados.

Identificadores de solicitação

Cada solicitação de API bem-sucedida recebe um identificador exclusivo. O identificador é retornado no
request-id Cabeçalho da resposta HTTP associada. Você pode usar um identificador de solicitação para se
referir coletivamente às atividades de uma única transação de solicitação-resposta de API específica. Por
exemplo, você pode recuperar todas as mensagens de eventos de uma transação com base no ID da
solicitação.

Chamadas síncronas e assíncronas

Há duas maneiras principais pelas quais um servidor executa uma solicitação HTTP recebida de um cliente:

• Síncrono O servidor executa a solicitação imediatamente e responde com um código de status 200, 201
ou 204.

• Assíncrono: O servidor aceita a solicitação e responde com o código de status 202. Isso indica que o
servidor aceitou a solicitação do cliente e iniciou uma tarefa em segundo plano para concluí-la. O sucesso

3

ou a falha final não são imediatamente conhecidos e devem ser determinados por meio de chamadas de
API adicionais.

Confirmar a conclusão de um trabalho de longa duração

Geralmente, qualquer operação que possa levar muito tempo para ser concluída é processada de forma
assíncrona usando uma tarefa em segundo plano no servidor. Com a API REST de Implantação, cada tarefa
em segundo plano é ancorada por um objeto Job, que rastreia a tarefa e fornece informações, como o estado
atual. Um objeto Job, incluindo seu identificador exclusivo, é retornado na resposta HTTP após a criação de
uma tarefa em segundo plano.

Você pode consultar o objeto Job diretamente para determinar o sucesso ou a falha da chamada de API
associada. Consulte processamento assíncrono usando o objeto Job para obter mais informações.

Além de usar o objeto Job, há outras maneiras de determinar o sucesso ou a falha de uma solicitação,
incluindo:

• Mensagens de evento: Você pode recuperar todas as mensagens de evento associadas a uma chamada
de API específica usando o ID da solicitação retornado com a resposta original. As mensagens de evento
geralmente contêm uma indicação de sucesso ou falha e também podem ser úteis na depuração de uma
condição de erro.

• Estado ou status do recurso Vários recursos mantêm um valor de estado ou status que você pode
consultar para determinar indiretamente o sucesso ou a falha de uma solicitação.

Segurança

A API de implantação usa as seguintes tecnologias de segurança:

• Segurança da Camada de Transporte: Todo o tráfego enviado pela rede entre o servidor de implantação e
o cliente é criptografado por TLS. O uso do protocolo HTTP em um canal não criptografado não é
suportado. A versão 1.2 do TLS é suportada.

• Autenticação HTTP: A autenticação básica é usada para todas as transações da API. Um cabeçalho
HTTP, que inclui o nome de usuário e a senha em uma string base64, é adicionado a cada solicitação.

Transação de API de solicitação e resposta para ONTAP Select

Cada chamada à API de implantação é realizada como uma solicitação HTTP para a
máquina virtual de implantação, que gera uma resposta associada ao cliente. Esse par
solicitação/resposta é considerado uma transação de API. Antes de usar a API de
implantação, você deve estar familiarizado com as variáveis de entrada disponíveis para
controlar uma solicitação e o conteúdo da saída da resposta.

Variáveis de entrada que controlam uma solicitação de API

Você pode controlar como uma chamada de API é processada por meio de parâmetros definidos na
solicitação HTTP.

Cabeçalhos de solicitação

Você deve incluir vários cabeçalhos na solicitação HTTP, incluindo:

• content-type Se o corpo da solicitação incluir JSON, este cabeçalho deverá ser definido como
application/json.

4

• aceitar Se o corpo da resposta incluir JSON, este cabeçalho deverá ser definido como application/json.

• autorização A autenticação básica deve ser definida com o nome de usuário e a senha codificados em
uma string base64.

Corpo da solicitação

O conteúdo do corpo da solicitação varia dependendo da chamada específica. O corpo da solicitação HTTP
consiste em um dos seguintes:

• Objeto JSON com variáveis de entrada (como o nome de um novo cluster)

• Vazio

Filtrar objetos

Ao emitir uma chamada de API que usa GET, você pode limitar ou filtrar os objetos retornados com base em
qualquer atributo. Por exemplo, você pode especificar um valor exato para corresponder a:

<field>=<query value>

Além da correspondência exata, existem outros operadores disponíveis para retornar um conjunto de objetos
em um intervalo de valores. O ONTAP Select suporta os operadores de filtragem mostrados abaixo.

Operador Descrição

= Igual a

< Menor que

> Maior que

⇐ Menor ou igual a

>= Maior ou igual a

Ou

! Não é igual a

* Curinga ganancioso

Você também pode retornar um conjunto de objetos com base em se um campo específico está definido ou
não, usando a palavra-chave null ou sua negação (!null) como parte da consulta.

Selecionando campos de objeto

Por padrão, emitir uma chamada de API usando GET retorna apenas os atributos que identificam
exclusivamente o(s) objeto(s). Esse conjunto mínimo de campos atua como uma chave para cada objeto e
varia de acordo com o tipo de objeto. Você pode selecionar propriedades adicionais do objeto usando o
parâmetro de consulta fields das seguintes maneiras:

• Campos baratos Especificar fields=* para recuperar os campos de objeto que são mantidos na
memória do servidor local ou que exigem pouco processamento para acesso.

• Campos caros Especificar fields=** para recuperar todos os campos do objeto, incluindo aqueles que
exigem processamento adicional do servidor para acesso.

• Seleção de campo personalizado Usar fields=FIELDNAME para especificar o campo exato desejado. Ao
solicitar vários campos, os valores devem ser separados por vírgulas, sem espaços.

5

Como prática recomendada, você deve sempre identificar os campos específicos que deseja.
Você só deve recuperar o conjunto de campos de baixo custo ou alto custo quando necessário.
A classificação de baixo custo e alto custo é determinada pela NetApp com base em análises
internas de desempenho. A classificação de um determinado campo pode mudar a qualquer
momento.

Classificar objetos no conjunto de saída

Os registros em uma coleção de recursos são retornados na ordem padrão definida pelo objeto. Você pode
alterar a ordem usando o parâmetro de consulta order_by com o nome do campo e a direção de classificação
da seguinte maneira:
order_by=<field name> asc|desc

Por exemplo, você pode classificar o campo tipo em ordem decrescente seguido pelo id em ordem crescente:
order_by=type desc, id asc

Ao incluir vários parâmetros, você deve separar os campos com uma vírgula.

Paginação

Ao emitir uma chamada de API usando GET para acessar uma coleção de objetos do mesmo tipo, todos os
objetos correspondentes são retornados por padrão. Se necessário, você pode limitar o número de registros
retornados usando o parâmetro de consulta max_records na solicitação. Por exemplo:
max_records=20

Se necessário, você pode combinar este parâmetro com outros parâmetros de consulta para restringir o
conjunto de resultados. Por exemplo, o seguinte retorna até 10 eventos do sistema gerados após o tempo
especificado:
time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

Você pode emitir várias solicitações para navegar pelos eventos (ou qualquer tipo de objeto). Cada chamada
de API subsequente deve usar um novo valor de tempo com base no evento mais recente no último conjunto
de resultados.

Interpretar uma resposta de API

Cada solicitação de API gera uma resposta ao cliente. Você pode examinar a resposta para determinar se foi
bem-sucedida e recuperar dados adicionais, se necessário.

Código de status HTTP

Os códigos de status HTTP usados pela API REST de implantação são descritos abaixo.

Código Significado Descrição

200 OK Indica sucesso para chamadas que não criam um novo objeto.

201 Criado Um objeto foi criado com sucesso; o cabeçalho de resposta de
localização inclui o identificador exclusivo do objeto.

202 Aceito Um trabalho em segundo plano de longa execução foi iniciado para
executar a solicitação, mas a operação ainda não foi concluída.

400 Pedido ruim A entrada solicitada não é reconhecida ou é inadequada.

6

Código Significado Descrição

403 Proibido Acesso negado devido a um erro de autorização.

404 Não encontrado O recurso mencionado na solicitação não existe.

405 Método não
permitido

O verbo HTTP na solicitação não é suportado para o recurso.

409 Conflito Uma tentativa de criar um objeto falhou porque o objeto já existe.

500 Erro interno Ocorreu um erro interno geral no servidor.

501 Não implementado O URI é conhecido, mas não é capaz de executar a solicitação.

Cabeçalhos de resposta

Vários cabeçalhos são incluídos na resposta HTTP gerada pelo servidor de implantação, incluindo:

• request-id Cada solicitação de API bem-sucedida recebe um identificador de solicitação exclusivo.

• localização Quando um objeto é criado, o cabeçalho de localização inclui o URL completo para o novo
objeto, incluindo o identificador exclusivo do objeto.

Corpo de resposta

O conteúdo da resposta associada a uma solicitação de API varia de acordo com o objeto, o tipo de
processamento e o sucesso ou falha da solicitação. O corpo da resposta é renderizado em JSON.

• Objeto único: Um único objeto pode ser retornado com um conjunto de campos com base na solicitação.
Por exemplo, você pode usar GET para recuperar propriedades selecionadas de um cluster usando o
identificador exclusivo.

• Vários objetos Vários objetos de uma coleção de recursos podem ser retornados. Em todos os casos, há
um formato consistente usado, com num_records indicando o número de registros e registros contendo
uma matriz de instâncias do objeto. Por exemplo, você pode recuperar todos os nós definidos em um
cluster específico.

• Objeto Job: Se uma chamada de API for processada de forma assíncrona, um objeto Job será retornado,
ancorando a tarefa em segundo plano. Por exemplo, a solicitação POST usada para implantar um cluster
é processada de forma assíncrona e retorna um objeto Job.

• Objeto de erro: Se ocorrer um erro, um objeto de erro sempre será retornado. Por exemplo, você receberá
um erro ao tentar criar um cluster com um nome que já existe.

• Vazio Em certos casos, nenhum dado é retornado e o corpo da resposta fica vazio. Por exemplo, o corpo
da resposta fica vazio após usar DELETE para excluir um host existente.

Processamento assíncrono usando o objeto Job para ONTAP Select

Algumas chamadas da API de implantação, especialmente aquelas que criam ou
modificam um recurso, podem levar mais tempo para serem concluídas do que outras
chamadas. O ONTAP Select Deploy processa essas solicitações de longa duração de
forma assíncrona.

Solicitações assíncronas descritas usando o objeto Job

Após realizar uma chamada de API executada de forma assíncrona, o código de resposta HTTP 202 indica

7

que a solicitação foi validada e aceita com sucesso, mas ainda não foi concluída. A solicitação é processada
como uma tarefa em segundo plano que continua em execução após a resposta HTTP inicial ao cliente. A
resposta inclui o objeto Job que ancora a solicitação, incluindo seu identificador exclusivo.

Você deve consultar a página de documentação on-line do ONTAP Select Deploy para
determinar quais chamadas de API operam de forma assíncrona.

Consultar o objeto Job associado a uma solicitação de API

O objeto Job retornado na resposta HTTP contém diversas propriedades. Você pode consultar a propriedade
state para determinar se a solicitação foi concluída com sucesso. Um objeto Job pode estar em um dos
seguintes estados:

• Na fila

• Correndo

• Sucesso

• Falha

Há duas técnicas que você pode usar ao pesquisar um objeto Job para detectar um estado terminal para a
tarefa, seja sucesso ou falha:

• Solicitação de pesquisa padrão O estado do trabalho atual é retornado imediatamente

• Solicitação de pesquisa longa O estado do trabalho é retornado somente quando ocorre uma das
seguintes situações:

◦ O estado mudou mais recentemente do que o valor de data e hora fornecido na solicitação de
pesquisa

◦ O valor de tempo limite expirou (1 a 120 segundos)

A pesquisa padrão e a pesquisa longa usam a mesma chamada de API para consultar um objeto Job. No
entanto, uma solicitação de pesquisa longa inclui dois parâmetros de consulta: poll_timeout e
last_modified .

Você deve sempre usar long polling para reduzir a carga de trabalho na máquina virtual Deploy.

Procedimento geral para emissão de uma solicitação assíncrona

Você pode usar o seguinte procedimento de alto nível para concluir uma chamada de API assíncrona:

1. Emita a chamada de API assíncrona.

2. Receba uma resposta HTTP 202 indicando aceitação bem-sucedida da solicitação.

3. Extraia o identificador do objeto Job do corpo da resposta.

4. Dentro de um loop, execute o seguinte em cada ciclo:

a. Obtenha o estado atual do trabalho com uma solicitação de pesquisa longa

b. Se o trabalho estiver em um estado não terminal (na fila, em execução), execute o loop novamente.

5. Pare quando o trabalho atingir um estado terminal (sucesso, falha).

8

Acesso com um navegador

Antes de acessar a API ONTAP Select Deploy com um navegador

Há várias coisas que você deve saber antes de usar a página de documentação on-line
do Deploy.

Plano de implantação

Se você pretende emitir chamadas de API como parte da execução de tarefas administrativas ou de
implantação específicas, considere criar um plano de implantação. Esses planos podem ser formais ou
informais e geralmente contêm seus objetivos e as chamadas de API a serem utilizadas. Consulte Processos
de fluxo de trabalho usando a API REST de implantação para obter mais informações.

Exemplos JSON e definições de parâmetros

Cada chamada de API é descrita na página de documentação usando um formato consistente. O conteúdo
inclui notas de implementação, parâmetros de consulta e códigos de status HTTP. Além disso, você pode
exibir detalhes sobre o JSON usado com as solicitações e respostas da API da seguinte forma:

• Valor de Exemplo: Se você clicar em Valor de Exemplo em uma chamada de API, uma estrutura JSON
típica para a chamada será exibida. Você pode modificar o exemplo conforme necessário e usá-lo como
entrada para sua solicitação.

• Modelo Se você clicar em Modelo, uma lista completa dos parâmetros JSON será exibida, com uma
descrição para cada parâmetro.

Cuidado ao emitir chamadas de API

Todas as operações de API que você realiza usando a página de documentação de Implantação são
operações ativas. Tome cuidado para não criar, atualizar ou excluir configurações ou outros dados por
engano.

Acesse a página de documentação do ONTAP Select Deploy

Você deve acessar a página de documentação on-line do ONTAP Select Deploy para
exibir a documentação da API, bem como para emitir manualmente uma chamada de
API.

Antes de começar

Você deve ter o seguinte:

• Endereço IP ou nome de domínio da máquina virtual ONTAP Select Deploy

• Nome de usuário e senha do administrador

Passos

1. Digite a URL no seu navegador e pressione Enter:

https://<ip_address>/api/ui

2. Sign in usando o nome de usuário e a senha do administrador.

9

Resultado

A página da documentação do Deploy é exibida com as chamadas organizadas por categoria na parte inferior
da página.

Entenda e execute uma chamada de API ONTAP Select Deploy

Os detalhes de todas as chamadas de API são documentados e exibidos em um formato
comum na página de documentação online do ONTAP Select Deploy. Ao compreender
uma única chamada de API, você pode acessar e interpretar os detalhes de todas as
chamadas de API.

Antes de começar

Você precisa estar conectado à página de documentação online do ONTAP Select Deploy. Você precisa ter o
identificador exclusivo atribuído ao seu cluster ONTAP Select quando ele foi criado.

Sobre esta tarefa

Você pode recuperar as informações de configuração que descrevem um cluster ONTAP Select usando seu
identificador exclusivo. Neste exemplo, todos os campos classificados como baratos são retornados. No
entanto, como prática recomendada, você deve solicitar apenas os campos específicos necessários.

Passos

1. Na página principal, role até o final e clique em Cluster.

2. Clique em GET /clusters/{cluster_id} para exibir os detalhes da chamada de API usada para retornar
informações sobre um cluster ONTAP Select .

Processos de fluxo de trabalho

Antes de usar os fluxos de trabalho da API ONTAP Select Deploy

Você deve se preparar para revisar e usar os processos de fluxo de trabalho.

Entenda as chamadas de API usadas nos fluxos de trabalho

A página de documentação online do ONTAP Select inclui os detalhes de cada chamada de API REST. Em
vez de repetir esses detalhes aqui, cada chamada de API usada nos exemplos de fluxo de trabalho inclui
apenas as informações necessárias para localizá-la na página de documentação. Após localizar uma
chamada de API específica, você pode revisar os detalhes completos da chamada, incluindo os parâmetros
de entrada, formatos de saída, códigos de status HTTP e tipo de processamento da solicitação.

As seguintes informações são incluídas para cada chamada de API em um fluxo de trabalho para ajudar a
localizar a chamada na página de documentação:

• Categoria As chamadas de API são organizadas na página de documentação em áreas ou categorias
funcionalmente relacionadas. Para localizar uma chamada de API específica, role até o final da página e
clique na categoria de API aplicável.

• Verbo HTTP O verbo HTTP identifica a ação realizada em um recurso. Cada chamada de API é executada
por meio de um único verbo HTTP.

• Caminho O caminho determina o recurso específico ao qual a ação se aplica como parte da execução de
uma chamada. A string do caminho é anexada à URL principal para formar a URL completa que identifica
o recurso.

10

Crie uma URL para acessar diretamente a API REST

Além da página de documentação do ONTAP Select , você também pode acessar a API REST de
Implantação diretamente por meio de uma linguagem de programação como Python. Nesse caso, a URL
principal é ligeiramente diferente da URL usada para acessar a página de documentação online. Ao acessar a
API diretamente, você deve anexar /api à string de domínio e porta. Por exemplo:
http://deploy.mycompany.com/api

Fluxo de trabalho 1: criar um cluster de avaliação de nó único ONTAP Select no
ESXi

Você pode implantar um cluster ONTAP Select de nó único em um host VMware ESXi
gerenciado pelo vCenter. O cluster é criado com uma licença de avaliação.

O fluxo de trabalho de criação de cluster difere nas seguintes situações:

• O host ESXi não é gerenciado pelo vCenter (host autônomo)

• Vários nós ou hosts são usados dentro do cluster

• O cluster é implantado em um ambiente de produção com uma licença adquirida

• O hipervisor KVM é usado em vez do VMware ESXi

1. Registre a credencial do servidor vCenter

Ao implantar em um host ESXi gerenciado por um servidor vCenter, você deve adicionar uma credencial antes
de registrar o host. O utilitário de administração de implantação pode então usar a credencial para autenticar
no vCenter.

Categoria verbo HTTP Caminho

Implantar PUBLICAR /segurança/credenciais

Cachos

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

Entrada JSON (etapa 01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Tipo de processamento

Assíncrono

11

Saída

• ID da credencial no cabeçalho de resposta de localização

• Objeto de trabalho

2. Registre um host do hipervisor

Você deve adicionar um host do hipervisor onde a máquina virtual que contém o nó ONTAP Select será
executada.

Categoria verbo HTTP Caminho

Conjunto PUBLICAR /anfitriões

Cachos

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

Entrada JSON (etapa 02)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Tipo de processamento

Assíncrono

Saída

• ID do host no cabeçalho de resposta de localização

• Objeto de trabalho

3. Crie um cluster

Quando você cria um cluster ONTAP Select , a configuração básica do cluster é registrada e os nomes dos
nós são gerados automaticamente pelo Deploy.

Categoria verbo HTTP Caminho

Conjunto PUBLICAR /clusters

Cachos

O parâmetro de consulta node_count deve ser definido como 1 para um cluster de nó único.

12

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

Entrada JSON (etapa 03)

{

 "name": "my_cluster"

}

Tipo de processamento

Síncrono

Saída

• ID do cluster no cabeçalho de resposta de localização

4. Configurar o cluster

Há vários atributos que você deve fornecer como parte da configuração do cluster.

Categoria verbo HTTP Caminho

Conjunto CORREÇÃO /clusters/{id_do_cluster}

Cachos

Você deve fornecer o ID do cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (etapa 04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Tipo de processamento

Síncrono

13

Saída

Nenhum

5. Recupere o nome do nó

O utilitário de administração Deploy gera automaticamente os identificadores e nomes dos nós quando um
cluster é criado. Antes de configurar um nó, você precisa recuperar o ID atribuído.

Categoria verbo HTTP Caminho

Conjunto PEGAR /clusters/{cluster_id}/nós

Cachos

Você deve fornecer o ID do cluster.

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Tipo de processamento

Síncrono

Saída

• A matriz registra cada um descrevendo um único nó com ID e nome exclusivos

6. Configurar os nós

Você deve fornecer a configuração básica para o nó, que é a primeira das três chamadas de API usadas para
configurar um nó.

Categoria verbo HTTP Caminho

Conjunto CAMINHO /clusters/{id_do_cluster}/nós/{id_do_nó}

Cachos

Você deve fornecer o ID do cluster e o ID do nó.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (etapa 06)

Você deve fornecer o ID do host onde o nó ONTAP Select será executado.

14

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

Tipo de processamento

Síncrono

Saída

Nenhum

7. Recupere as redes de nós

Você deve identificar as redes de dados e gerenciamento usadas pelo nó no cluster de nó único. A rede
interna não é usada com um cluster de nó único.

Categoria verbo HTTP Caminho

Conjunto PEGAR /clusters/{id_do_cluster}/nós/{id_do_nó}/redes

Cachos

Você deve fornecer o ID do cluster e o ID do nó.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Tipo de processamento

Síncrono

Saída

• Matriz de dois registros, cada um descrevendo uma única rede para o nó, incluindo o ID exclusivo e a
finalidade

8. Configurar a rede do nó

Você deve configurar as redes de dados e gerenciamento. A rede interna não é usada com um cluster de nó
único.

Emita a seguinte chamada de API duas vezes, uma para cada rede.

Categoria verbo HTTP Caminho

Conjunto CORREÇÃO /clusters/{id_do_cluster}/nós/{id_do_nó}/redes/{id_da_rede}

15

Cachos

Você deve fornecer o ID do cluster, o ID do nó e o ID da rede.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrada JSON (etapa 08)

Você precisa fornecer o nome da rede.

{

 "name": "sDOT_Network"

}

Tipo de processamento

Síncrono

Saída

Nenhum

9. Configurar o pool de armazenamento de nós

A etapa final na configuração de um nó é anexar um pool de armazenamento. Você pode determinar os pools
de armazenamento disponíveis por meio do cliente web do vSphere ou, opcionalmente, por meio da API
REST de implantação.

Categoria verbo HTTP Caminho

Conjunto CORREÇÃO /clusters/{id_do_cluster}/nós/{id_do_nó}/redes/{id_da_rede}

Cachos

Você deve fornecer o ID do cluster, o ID do nó e o ID da rede.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (etapa 09)

A capacidade do pool é de 2 TB.

16

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Tipo de processamento

Síncrono

Saída

Nenhum

10. Implante o cluster

Depois que o cluster e o nó forem configurados, você poderá implantar o cluster.

Categoria verbo HTTP Caminho

Conjunto PUBLICAR /clusters/{cluster_id}/implantar

Cachos

Você deve fornecer o ID do cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

Entrada JSON (etapa 10)

Você deve fornecer a senha para a conta de administrador do ONTAP .

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Tipo de processamento

Assíncrono

Saída

• Objeto de trabalho

Informações relacionadas

17

"Implantar uma instância de avaliação de 90 dias de um cluster ONTAP Select"

Acesso com Python

Antes de acessar o ONTAP Select Implantar API usando Python

Você deve preparar o ambiente antes de executar os scripts Python de exemplo.

Antes de executar os scripts Python, você deve certificar-se de que o ambiente esteja configurado
corretamente:

• A versão mais recente aplicável do Python2 deve estar instalada. Os códigos de exemplo foram testados
com Python2. Eles também devem ser portáveis para Python3, mas não foram testados quanto à
compatibilidade.

• As bibliotecas Requests e urllib3 devem estar instaladas. Você pode usar o pip ou outra ferramenta de
gerenciamento Python, conforme apropriado para o seu ambiente.

• A estação de trabalho cliente onde os scripts são executados deve ter acesso de rede à máquina virtual
ONTAP Select Deploy.

Além disso, você deve ter as seguintes informações:

• Endereço IP da máquina virtual de implantação

• Nome de usuário e senha de uma conta de administrador do Deploy

Entenda os scripts Python para ONTAP Select Deploy

Os scripts Python de exemplo permitem que você execute diversas tarefas diferentes.
Você deve entender os scripts antes de usá-los em uma instância de implantação ativa.

Características comuns de design

Os scripts foram projetados com as seguintes características comuns:

• Executar a partir da interface de linha de comando em uma máquina cliente. Você pode executar os
scripts Python em qualquer máquina cliente configurada corretamente. Consulte Antes de começar para
obter mais informações.

• Aceitar parâmetros de entrada da CLI Cada script é controlado na CLI por meio de parâmetros de entrada.

• Ler arquivo de entrada: Cada script lê um arquivo de entrada com base em sua finalidade. Ao criar ou
excluir um cluster, você deve fornecer um arquivo de configuração JSON. Ao adicionar uma licença de nó,
você deve fornecer um arquivo de licença válido.

• Use um módulo de suporte comum. O módulo de suporte comum deploy_requests.py contém uma única
classe. Ele é importado e usado por cada um dos scripts.

Criar um cluster

Você pode criar um cluster ONTAP Select usando o script cluster.py. Com base nos parâmetros da CLI e no
conteúdo do arquivo de entrada JSON, você pode modificar o script para o seu ambiente de implantação da
seguinte maneira:

• Hipervisor: você pode implantar no ESXI ou KVM (dependendo da versão de implantação). Ao implantar

18

https://docs.netapp.com/pt-br/ontap-select-9161/deploy-evaluation-ontap-select-ovf-template.html

no ESXi, o hipervisor pode ser gerenciado pelo vCenter ou pode ser um host autônomo.

• Tamanho do cluster Você pode implantar um cluster de nó único ou de vários nós.

• Licença de avaliação ou produção Você pode implantar um cluster com uma licença de avaliação ou
adquirida para produção.

Os parâmetros de entrada da CLI para o script incluem:

• Nome do host ou endereço IP do servidor de implantação

• Senha para a conta de usuário administrador

• Nome do arquivo de configuração JSON

• Sinalizador detalhado para saída de mensagem

Adicionar uma licença de nó

Se optar por implantar um cluster de produção, você deverá adicionar uma licença para cada nó usando o
script add_license.py. Você pode adicionar a licença antes ou depois de implantar o cluster.

Os parâmetros de entrada da CLI para o script incluem:

• Nome do host ou endereço IP do servidor de implantação

• Senha para a conta de usuário administrador

• Nome do arquivo de licença

• Nome de usuário ONTAP com privilégios para adicionar a licença

• Senha para o usuário ONTAP

Excluir um cluster

Você pode excluir um cluster ONTAP Select existente usando o script delete_cluster.py.

Os parâmetros de entrada da CLI para o script incluem:

• Nome do host ou endereço IP do servidor de implantação

• Senha para a conta de usuário administrador

• Nome do arquivo de configuração JSON

Exemplos de código Python

Script para criar um cluster ONTAP Select

Você pode usar o script a seguir para criar um cluster com base nos parâmetros
definidos no script e em um arquivo de entrada JSON.

#!/usr/bin/env python

##--

#

File: cluster.py

#

19

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter[

'hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter[

'hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username', 'password

']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

 hosts = config.get('hosts', [])

 for host in hosts:

20

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

 if 'password' in host and not deploy.resource_exists(

'/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host['name

']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host[

'password']}

 deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host[

'type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

 host_config['credential'] = {

 "password": host['password'], "username": host['user

21

']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

 '''

 log_debug_trace()

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

22

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

23

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource('/clusters/{}/nodes/{}/networks

'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

 node_ids = get_node_ids(deploy, cluster_id)

24

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'][

'ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

 logging.WARNING)

25

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

 cluster_id = create_cluster_config(deploy, config)

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

JSON para script para criar um cluster ONTAP Select

Ao criar ou excluir um cluster ONTAP Select usando os exemplos de código Python,
você deve fornecer um arquivo JSON como entrada para o script. Você pode copiar e
modificar o exemplo JSON apropriado de acordo com seus planos de implantação.

Cluster de nó único no ESXi

{

26

 "hosts": [

 {

 "password": "mypassword1",

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

27

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Cluster de nó único no ESXi usando vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

28

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

29

Cluster de nó único em KVM

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

30

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Script para adicionar uma licença de nó ONTAP Select

Você pode usar o seguinte script para adicionar uma licença para um nó ONTAP Select .

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

31

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

 data = {}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

32

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

its used

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

33

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help=

'Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Script para excluir um cluster ONTAP Select

Você pode usar o seguinte script CLI para excluir um cluster existente.

#!/usr/bin/env python

##--

#

File: delete_cluster.py

34

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

35

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config[

'cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Módulo Python de suporte comum para ONTAP Select

Todos os scripts Python usam uma classe Python comum em um único módulo.

#!/usr/bin/env python

##--

#

36

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

37

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

38

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get(

'num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

 def resource_exists(self, path, name, value):

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

39

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

40

Script para redimensionar nós do cluster ONTAP Select

Você pode usar o seguinte script para redimensionar os nós em um cluster ONTAP
Select .

#!/usr/bin/env python

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

41

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

 if not cluster_id:

42

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json()[

'record']

def _get_request_body(parsed_args, cluster):

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

 return 1

43

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

 sys.exit(main())

44

Informações sobre direitos autorais

Copyright © 2026 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste
documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio —
gráfico, eletrônico ou mecânico, incluindo fotocópia, gravação, gravação em fita ou storage em um sistema de
recuperação eletrônica — sem permissão prévia, por escrito, do proprietário dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais está sujeito à seguinte licença e
isenção de responsabilidade:

ESTE SOFTWARE É FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER
GARANTIAS EXPRESSAS OU IMPLÍCITAS, INCLUINDO, SEM LIMITAÇÕES, GARANTIAS IMPLÍCITAS DE
COMERCIALIZAÇÃO E ADEQUAÇÃO A UM DETERMINADO PROPÓSITO, CONFORME A ISENÇÃO DE
RESPONSABILIDADE DESTE DOCUMENTO. EM HIPÓTESE ALGUMA A NETAPP SERÁ RESPONSÁVEL
POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU
CONSEQUENCIAL (INCLUINDO, SEM LIMITAÇÕES, AQUISIÇÃO DE PRODUTOS OU SERVIÇOS
SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPÇÃO DOS NEGÓCIOS),
INDEPENDENTEMENTE DA CAUSA E DO PRINCÍPIO DE RESPONSABILIDADE, SEJA EM CONTRATO,
POR RESPONSABILIDADE OBJETIVA OU PREJUÍZO (INCLUINDO NEGLIGÊNCIA OU DE OUTRO
MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE
DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento
e sem aviso. A NetApp não assume nenhuma responsabilidade nem obrigação decorrentes do uso dos
produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O
uso ou a compra deste produto não representam uma licença sob quaisquer direitos de patente, direitos de
marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes
estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicação ou a divulgação pelo governo estão sujeitos a
restrições conforme estabelecido no subparágrafo (b)(3) dos Direitos em Dados Técnicos - Itens Não
Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou serviço comercial (conforme definido no FAR
2.101) e são de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp
fornecidos sob este Contrato são de natureza comercial e desenvolvidos exclusivamente com despesas
privadas. O Governo dos EUA tem uma licença mundial limitada, irrevogável, não exclusiva, intransferível e
não sublicenciável para usar os Dados que estão relacionados apenas com o suporte e para cumprir os
contratos governamentais desse país que determinam o fornecimento de tais Dados. Salvo disposição em
contrário no presente documento, não é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os
dados sem a aprovação prévia por escrito da NetApp, Inc. Os direitos de licença pertencentes ao governo dos
Estados Unidos para o Departamento de Defesa estão limitados aos direitos identificados na cláusula
252.227-7015(b) (fevereiro de 2014) do DFARS.

Informações sobre marcas comerciais

NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM são marcas comerciais da
NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos
proprietários.

45

http://www.netapp.com/TM

	Automatize com REST : ONTAP Select
	Índice
	Automatize com REST
	Conceitos
	Base de serviços web REST para implantação e gerenciamento de clusters ONTAP Select
	Como acessar a API ONTAP Select Deploy
	Versão da API de implantação do ONTAP Select
	Características operacionais básicas da API ONTAP Select Deploy
	Transação de API de solicitação e resposta para ONTAP Select
	Processamento assíncrono usando o objeto Job para ONTAP Select

	Acesso com um navegador
	Antes de acessar a API ONTAP Select Deploy com um navegador
	Acesse a página de documentação do ONTAP Select Deploy
	Entenda e execute uma chamada de API ONTAP Select Deploy

	Processos de fluxo de trabalho
	Antes de usar os fluxos de trabalho da API ONTAP Select Deploy
	Fluxo de trabalho 1: criar um cluster de avaliação de nó único ONTAP Select no ESXi

	Acesso com Python
	Antes de acessar o ONTAP Select Implantar API usando Python
	Entenda os scripts Python para ONTAP Select Deploy

	Exemplos de código Python
	Script para criar um cluster ONTAP Select
	JSON para script para criar um cluster ONTAP Select
	Script para adicionar uma licença de nó ONTAP Select
	Script para excluir um cluster ONTAP Select
	Módulo Python de suporte comum para ONTAP Select
	Script para redimensionar nós do cluster ONTAP Select

