■ NetApp

Segurança

Astra Trident

NetApp March 11, 2025

This PDF was generated from https://docs.netapp.com/pt-br/trident-2406/trident-reco/security-reco.html on March 11, 2025. Always check docs.netapp.com for the latest.

Índice

Segurança	1
Segurança	1
Execute o Astra Trident em seu próprio namespace	1
Use a autenticação CHAP com backends ONTAP SAN	1
Use a autenticação CHAP com backends NetApp HCI e SolidFire	1
Use o Astra Trident com NVE e NAE	1
Configuração de chave unificada do Linux (LUKS)	2
Ativar encriptação LUKS	2
Configuração de back-end para importação de volumes LUKS	4
Configuração de PVC para importação de volumes LUKS	4
Rode uma frase-passe LUKS	5
Ative a expansão de volume	7
Configurar a criptografia Kerberos em voo	7
Configurar a criptografia Kerberos em trânsito com volumes ONTAP locais	7
Configurar a criptografia Kerberos em trânsito com volumes Azure NetApp Files	12

Segurança

Segurança

Use as recomendações listadas aqui para garantir a segurança da instalação do seu Astra Trident.

Execute o Astra Trident em seu próprio namespace

É importante impedir que aplicações, administradores de aplicações, usuários e aplicações de gerenciamento acessem as definições de objetos do Astra Trident ou os pods para garantir um storage confiável e bloquear atividades maliciosas em potencial.

Para separar as outras aplicações e usuários do Astra Trident, instale sempre o Astra Trident em seu próprio namespace Kubernetes (trident). A colocação do Astra Trident em seu próprio namespace garante que apenas o pessoal administrativo do Kubernetes tenha acesso ao pod Astra Trident e aos artefatos (como segredos de back-end e CHAP, se aplicável) armazenados nos objetos CRD com namespaces. Você deve garantir que somente os administradores acessem o namespace Astra Trident e, assim, o acesso tridentctl à aplicação.

Use a autenticação CHAP com backends ONTAP SAN

O Astra Trident é compatível com autenticação baseada em CHAP para workloads SAN ONTAP (usando os ontap-san drivers e ontap-san-economy). A NetApp recomenda o uso de CHAP bidirecional com Astra Trident para autenticação entre um host e o back-end de storage.

Para backends ONTAP que usam os drivers de armazenamento SAN, o Astra Trident pode configurar CHAP bidirecional e gerenciar nomes de usuário e segredos do CHAP por meio `tridentctl`do . ""Consulte para entender como o Astra Trident configura o CHAP nos backends do ONTAP.

Use a autenticação CHAP com backends NetApp HCI e SolidFire

O NetApp recomenda a implantação de CHAP bidirecional para garantir a autenticação entre um host e os backends NetApp HCI e SolidFire. O Astra Trident usa um objeto secreto que inclui duas senhas CHAP por locatário. Quando o Astra Trident é instalado, ele gerencia os segredos CHAP e os armazena em um tridentvolume objeto CR para o respetivo PV. Quando você cria um PV, o Astra Trident usa os segredos CHAP para iniciar uma sessão iSCSI e se comunicar com o sistema NetApp HCI e SolidFire através do CHAP.

Os volumes criados pelo Astra Trident não estão associados a nenhum grupo de acesso a volume.

Use o Astra Trident com NVE e NAE

O NetApp ONTAP fornece criptografia de dados em repouso para proteger dados confidenciais caso um disco seja roubado, retornado ou reutilizado. Para obter detalhes, "Configurar a visão geral da encriptação de volume do NetApp"consulte .

- Se o NAE estiver ativado no back-end, qualquer volume provisionado no Astra Trident será habilitado para NAE.
- Se o NAE n\u00e3o estiver habilitado no back-end, qualquer volume provisionado no Astra Trident ser\u00e1

habilitado para NVE, a menos que você defina o sinalizador de criptografia NVE como false na configuração de back-end.

Os volumes criados no Astra Trident em um back-end habilitado para NAE devem ser criptografados com NVE ou NAE.

- Você pode definir o sinalizador de criptografia NVE como true na configuração de backend do Trident para substituir a criptografia NAE e usar uma chave de criptografia específica por volume.
- Definir o sinalizador de criptografia NVE como false em um back-end habilitado para NAE criará um volume habilitado para NAE. Não é possível desativar a criptografia NAE definindo o sinalizador de criptografia NVE como false.
- Você pode criar manualmente um volume NVE no Astra Trident definindo explicitamente o sinalizador de criptografia NVE como true.

Para obter mais informações sobre opções de configuração de back-end, consulte:

- "Opções de configuração de SAN ONTAP"
- "Opções de configuração do ONTAP nas"

Configuração de chave unificada do Linux (LUKS)

Você pode ativar o LUKS (configuração de chave unificada do Linux) para criptografar volumes DE ECONOMIA SAN ONTAP e SAN ONTAP no Astra Trident. O Astra Trident é compatível com rotação de frase-passe e expansão de volume para volumes criptografados por LUKS.

No Astra Trident, os volumes criptografados por LUKS usam a cifra e o modo aes-xts-plain64, conforme recomendado "NIST"pelo .

Antes de comecar

- Os nós de trabalho devem ter o cryptsetup 2,1 ou superior (mas inferior a 3,0) instalado. Para obter mais informações, visite "Gitlab: Cryptsetup".
- Por motivos de desempenho, recomendamos que os nós de trabalho suportem Advanced Encryption Standard New Instructions (AES-NI). Para verificar o suporte ao AES-NI, execute o seguinte comando:

```
grep "aes" /proc/cpuinfo
```

Se nada for devolvido, o processador não suporta AES-NI. Para obter mais informações sobre o AES-NI, visite: "Intel: Advanced Encryption Standard Instructions (AES-NI)".

Ativar encriptação LUKS

Você pode ativar a criptografia por volume no lado do host usando o LUKS (Configuração de chave unificada do Linux) para volumes ECONÔMICOS SAN ONTAP e SAN ONTAP.

Passos

 Defina atributos de criptografia LUKS na configuração de back-end. Para obter mais informações sobre opções de configuração de back-end para SAN ONTAP, "Opções de configuração de SAN ONTAP"consulte .

2. Use parameters.selector para definir os pools de armazenamento usando a criptografia LUKS. Por exemplo:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: luks
provisioner: csi.trident.netapp.io
parameters:
   selector: "luks=true"
   csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
   csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
```

3. Crie um segredo que contenha a frase-passe LUKS. Por exemplo:

```
kubectl -n trident create -f luks-pvcl.yaml
apiVersion: v1
kind: Secret
metadata:
   name: luks-pvcl
stringData:
   luks-passphrase-name: A
   luks-passphrase: secretA
```

Limitações

Os volumes criptografados com LUKS não podem aproveitar a deduplicação e a compactação do ONTAP.

Configuração de back-end para importação de volumes LUKS

Para importar um volume LUKS, você deve definir luksEncryption como(true no back-end. A luksEncryption opção informa ao Astra Trident se o volume é compatível com LUKS (true) ou não com LUKS (false), conforme mostrado no exemplo a seguir.

```
version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: trident_svm
username: admin
password: password
defaults:
   luksEncryption: 'true'
   spaceAllocation: 'false'
   snapshotPolicy: default
   snapshotReserve: '10'
```

Configuração de PVC para importação de volumes LUKS

Para importar volumes LUKS dinamicamente, defina a anotação trident.netapp.io/luksEncryption como true e inclua uma classe de armazenamento habilitada para LUKS no PVC, conforme mostrado neste exemplo.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   name: luks-pvc
   namespace: trident
   annotations:
      trident.netapp.io/luksEncryption: "true"
spec:
   accessModes:
      - ReadWriteOnce
   resources:
      requests:
       storage: 1Gi
   storageClassName: luks-sc
```

Rode uma frase-passe LUKS

Pode rodar a frase-passe LUKS e confirmar a rotação.

Não se esqueça de uma frase-passe até ter verificado que ela não é mais referenciada por qualquer volume, instantâneo ou segredo. Se uma frase-passe referenciada for perdida, talvez você não consiga montar o volume e os dados permanecerão criptografados e inacessíveis.

Sobre esta tarefa

A rotação da frase-passe LUKS ocorre quando um pod que monta o volume é criado após uma nova frasepasse LUKS ser especificada. Quando um novo pod é criado, o Astra Trident compara a frase-passe LUKS no volume com a frase-passe ativa em segredo.

- Se a frase-passe no volume não corresponder à frase-passe ativa no segredo, ocorre rotação.
- Se a frase-passe no volume corresponder à frase-passe ativa no segredo, o previous-lukspassphrase parâmetro é ignorado.

Passos

1. Adicione os node-publish-secret-name parâmetros e node-publish-secret-namespace StorageClass. Por exemplo:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: csi-san
provisioner: csi.trident.netapp.io
parameters:
    trident.netapp.io/backendType: "ontap-san"
    csi.storage.k8s.io/node-stage-secret-name: luks
    csi.storage.k8s.io/node-stage-secret-name: luks
    csi.storage.k8s.io/node-publish-secret-name: luks
    csi.storage.k8s.io/node-publish-secret-name: luks
    csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}
```

2. Identificar senhas existentes no volume ou instantâneo.

Volume

```
tridentctl -d get volume luks-pvc1
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>
...luksPassphraseNames:["A"]
```

Snapshot

```
tridentctl -d get snapshot luks-pvc1
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>
...luksPassphraseNames:["A"]
```

3. Atualize o segredo LUKS para o volume para especificar as senhas novas e anteriores. Certifique-se previous-luke-passphrase-name e previous-luks-passphrase faça a correspondência da frase-passe anterior.

```
apiVersion: v1
kind: Secret
metadata:
  name: luks-pvc1
stringData:
  luks-passphrase-name: B
  luks-passphrase: secretB
  previous-luks-passphrase-name: A
  previous-luks-passphrase: secretA
```

- 4. Crie um novo pod de montagem do volume. Isto é necessário para iniciar a rotação.
- 5. Verifique se a senha foi girada.

Volume

```
tridentctl -d get volume luks-pvc1
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>
...luksPassphraseNames:["B"]
```

Snapshot

```
tridentctl -d get snapshot luks-pvc1
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>
...luksPassphraseNames:["B"]
```

Resultados

A frase-passe foi girada quando apenas a nova frase-passe é retornada no volume e no instantâneo.

Se duas senhas forem retornadas, por luksPassphraseNames: ["B", "A"] exemplo, a rotação estará incompleta. Você pode acionar um novo pod para tentar completar a rotação.

Ative a expansão de volume

Você pode ativar a expansão de volume em um volume criptografado com LUKS.

Passos

- 1. Ative a CSINodeExpandSecret porta de recurso (beta 1,25 ou mais). "Kubernetes 1,25: Use segredos para a expansão orientada por nós de volumes CSI"Consulte para obter detalhes.
- 2. Adicione os node-expand-secret-name parâmetros e node-expand-secret-namespace StorageClass. Por exemplo:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: luks
provisioner: csi.trident.netapp.io
parameters:
    selector: "luks=true"
    csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
    csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
    csi.storage.k8s.io/node-expand-secret-name: luks-${pvc.name}
    csi.storage.k8s.io/node-expand-secret-namespace: ${pvc.namespace}
    allowVolumeExpansion: true
```

Resultados

Quando você inicia a expansão de armazenamento on-line, o kubelet passa as credenciais apropriadas para o driver.

Configurar a criptografia Kerberos em voo

Com o Astra Control Provisioner, você pode melhorar a segurança de acesso aos dados habilitando a criptografia para o tráfego entre o cluster gerenciado e o back-end de storage.

O Astra Control Provisioner oferece suporte à criptografia Kerberos em mais de NFSv3 e NFSv4 conexões de clusters do Red Hat OpenShift e upstream do Kubernetes para volumes ONTAP locais.

Você pode criar, excluir, redimensionar, snapshot, clone, clone somente leitura e importar volumes que usam criptografia NFS.

Configurar a criptografia Kerberos em trânsito com volumes ONTAP locais

Você pode ativar a criptografia Kerberos no tráfego de armazenamento entre o cluster gerenciado e um backend de armazenamento ONTAP local.

A criptografia Kerberos para tráfego NFS com backends de armazenamento ONTAP no local é suportada apenas usando o ontap-nas driver de armazenamento.

Antes de começar

- Certifique-se de que você está "Ativou o Astra Control Provisioner"no cluster gerenciado.
- Certifique-se de que tem acesso ao tridentctl utilitário.
- Verifique se você tem acesso de administrador ao back-end de storage do ONTAP.
- Certifique-se de saber o nome do volume ou volumes que você compartilhará no back-end de storage do ONTAP.
- Certifique-se de que você preparou a VM de armazenamento ONTAP para oferecer suporte à criptografia Kerberos para volumes NFS. "Ative o Kerberos em um LIF de dados"Consulte para obter instruções.
- Certifique-se de que todos os volumes NFSv4 usados com criptografia Kerberos estejam configurados corretamente. Consulte a seção Configuração de domínio do NetApp NFSv4 (página 13) do "Guia de práticas recomendadas e aprimoramentos do NetApp NFSv4".

Adicionar ou modificar políticas de exportação do ONTAP

Você precisa adicionar regras às políticas de exportação existentes do ONTAP ou criar novas políticas de exportação que suportem a criptografia Kerberos para o volume raiz da VM de armazenamento do ONTAP, bem como quaisquer volumes do ONTAP compartilhados com o cluster do Kubernetes upstream. As regras de política de exportação que você adicionar ou as novas políticas de exportação que você criar precisam oferecer suporte aos seguintes protocolos de acesso e permissões de acesso:

Protocolos de acesso

Configurar a política de exportação com protocolos de acesso NFS, NFSv3 e NFSv4.

Aceder aos detalhes

Você pode configurar uma das três versões diferentes da criptografia Kerberos, dependendo de suas necessidades para o volume:

- Kerberos 5 (autenticação e criptografia)
- Kerberos 5i (autenticação e criptografia com proteção de identidade)
- Kerberos 5P (autenticação e criptografia com proteção de identidade e privacidade)

Configure a regra de política de exportação do ONTAP com as permissões de acesso apropriadas. Por exemplo, se os clusters estiverem montando os volumes NFS com uma mistura de criptografia Kerberos 5i e kerberos 5P, use as seguintes configurações de acesso:

Tipo	Acesso somente leitura	Acesso de leitura/escrita	Acesso ao superusuário
UNIX	Ativado	Ativado	Ativado
Kerberos 5i	Ativado	Ativado	Ativado
Kerberos 5P	Ativado	Ativado	Ativado

Consulte a documentação a seguir para saber como criar políticas de exportação e regras de política de exportação do ONTAP:

- "Crie uma política de exportação"
- "Adicione uma regra a uma política de exportação"

Crie um back-end de storage

Você pode criar uma configuração de back-end de storage do Astra Control Provisioner que inclua o recurso de criptografia Kerberos.

Sobre esta tarefa

Quando você cria um arquivo de configuração de back-end de armazenamento que configura a criptografia Kerberos, você pode especificar uma das três versões diferentes da criptografia Kerberos usando o spec.nfsMountOptions parâmetro:

- spec.nfsMountOptions: sec=krb5 (autenticação e criptografia)
- spec.nfsMountOptions: sec=krb5i (autenticação e criptografia com proteção de identidade)
- spec.nfsMountOptions: sec=krb5p (autenticação e criptografia com proteção de identidade e privacidade)

Especifique apenas um nível Kerberos. Se você especificar mais de um nível de criptografia Kerberos na lista de parâmetros, somente a primeira opção será usada.

Passos

1. No cluster gerenciado, crie um arquivo de configuração de back-end de storage usando o exemplo a seguir. Substitua os valores entre parêntesis> por informações do seu ambiente:

```
apiVersion: v1
kind: Secret
metadata:
  name: backend-ontap-nas-secret
type: Opaque
stringData:
 clientID: <CLIENT ID>
  clientSecret: <CLIENT SECRET>
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
  name: backend-ontap-nas
spec:
 version: 1
  storageDriverName: "ontap-nas"
 managementLIF: <STORAGE VM MGMT LIF IP ADDRESS>
 dataLIF: <PROTOCOL LIF FQDN OR IP ADDRESS>
  svm: <STORAGE VM NAME>
  username: <STORAGE VM USERNAME CREDENTIAL>
  password: <STORAGE VM PASSWORD CREDENTIAL>
  nasType: nfs
 nfsMountOptions: ["sec=krb5i"] #can be krb5, krb5i, or krb5p
  qtreesPerFlexvol:
  credentials:
    name: backend-ontap-nas-secret
```

2. Use o arquivo de configuração que você criou na etapa anterior para criar o backend:

```
tridentctl create backend -f <backend-configuration-file>
```

Se a criação do backend falhar, algo está errado com a configuração do backend. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode executar o comando create novamente.

Crie uma classe de armazenamento

Você pode criar uma classe de armazenamento para provisionar volumes com criptografia Kerberos.

Sobre esta tarefa

Ao criar um objeto de classe de armazenamento, você pode especificar uma das três versões diferentes da criptografia Kerberos usando o mountOptions parâmetro:

- mountOptions: sec=krb5 (autenticação e criptografia)
- mountOptions: sec=krb5i (autenticação e criptografia com proteção de identidade)
- mountOptions: sec=krb5p (autenticação e criptografia com proteção de identidade e privacidade)

Especifique apenas um nível Kerberos. Se você especificar mais de um nível de criptografia Kerberos na lista de parâmetros, somente a primeira opção será usada. Se o nível de criptografia especificado na configuração de back-end de armazenamento for diferente do nível especificado no objeto de classe de armazenamento, o objeto de classe de armazenamento terá precedência.

Passos

1. Crie um objeto Kubernetes StorageClass, usando o exemplo a seguir:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: ontap-nas-sc
provisioner: csi.trident.netapp.io
mountOptions: ["sec=krb5i"] #can be krb5, krb5i, or krb5p
parameters:
    backendType: "ontap-nas"
    storagePools: "ontapnas_pool"
    trident.netapp.io/nasType: "nfs"
allowVolumeExpansion: True
```

2. Crie a classe de armazenamento:

```
kubectl create -f sample-input/storage-class-ontap-nas-sc.yaml
```

3. Certifique-se de que a classe de armazenamento foi criada:

```
kubectl get sc ontap-nas-sc
```

Você deve ver saída semelhante ao seguinte:

```
NAME PROVISIONER AGE
ontap-nas-sc csi.trident.netapp.io 15h
```

Volumes de provisionamento

Depois de criar um back-end de storage e uma classe de storage, agora é possível provisionar um volume.

Consulte estas instruções para "provisionamento de um volume".

Configurar a criptografia Kerberos em trânsito com volumes Azure NetApp Files

Você pode ativar a criptografia Kerberos no tráfego de armazenamento entre o cluster gerenciado e um único back-end de armazenamento Azure NetApp Files ou um pool virtual de backends de armazenamento Azure NetApp Files.

Antes de começar

- Certifique-se de que você ativou o Astra Control Provisioner no cluster gerenciado do Red Hat OpenShift.
 "Habilite o Astra Control Provisioner" Consulte para obter instruções.
- Certifique-se de que tem acesso ao tridentatl utilitário.
- Certifique-se de que preparou o back-end de armazenamento Azure NetApp Files para criptografia Kerberos, observando os requisitos e seguindo as instruções em "Documentação do Azure NetApp Files".
- Certifique-se de que todos os volumes NFSv4 usados com criptografia Kerberos estejam configurados corretamente. Consulte a seção Configuração de domínio do NetApp NFSv4 (página 13) do "Guia de práticas recomendadas e aprimoramentos do NetApp NFSv4".

Crie um back-end de storage

Você pode criar uma configuração de back-end de armazenamento Azure NetApp Files que inclua o recurso de criptografia Kerberos.

Sobre esta tarefa

Quando você cria um arquivo de configuração de back-end de armazenamento que configura a criptografia Kerberos, você pode defini-lo para que ele seja aplicado em um dos dois níveis possíveis:

- O nível de back-end de armazenamento usando o spec. kerberos campo
- O nível de pool virtual usando o spec.storage.kerberos campo

Quando você define a configuração no nível do pool virtual, o pool é selecionado usando o rótulo na classe de armazenamento.

Em ambos os níveis, você pode especificar uma das três versões diferentes da criptografia Kerberos:

- kerberos: sec=krb5 (autenticação e criptografia)
- kerberos: sec=krb5i (autenticação e criptografia com proteção de identidade)
- kerberos: sec=krb5p (autenticação e criptografia com proteção de identidade e privacidade)

Passos

1. No cluster gerenciado, crie um arquivo de configuração de back-end de storage usando um dos exemplos a seguir, dependendo de onde você precisa definir o back-end de storage (nível de back-end de armazenamento ou nível de pool virtual). Substitua os valores entre parêntesis> por informações do seu ambiente:

Exemplo de nível de back-end de storage

```
apiVersion: v1
kind: Secret
metadata:
 name: backend-tbc-secret
type: Opaque
stringData:
  clientID: <CLIENT ID>
 clientSecret: <CLIENT_SECRET>
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
 name: backend-tbc
spec:
 version: 1
  storageDriverName: azure-netapp-files
  subscriptionID: <SUBSCRIPTION ID>
  tenantID: <TENANT ID>
  location: <AZURE REGION LOCATION>
  serviceLevel: Standard
  networkFeatures: Standard
  capacityPools: <CAPACITY POOL>
  resourceGroups: <RESOURCE GROUP>
  netappAccounts: <NETAPP ACCOUNT>
  virtualNetwork: <VIRTUAL NETWORK>
  subnet: <SUBNET>
  nasType: nfs
  kerberos: sec=krb5i #can be krb5, krb5i, or krb5p
  credentials:
    name: backend-tbc-secret
```

Exemplo de nível de pool virtual

```
apiVersion: v1
kind: Secret
metadata:
 name: backend-tbc-secret
type: Opaque
stringData:
 clientID: <CLIENT ID>
  clientSecret: <CLIENT SECRET>
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
 name: backend-tbc
spec:
 version: 1
 storageDriverName: azure-netapp-files
  subscriptionID: <SUBSCRIPTION ID>
 tenantID: <TENANT ID>
 location: <AZURE REGION LOCATION>
  serviceLevel: Standard
  networkFeatures: Standard
  capacityPools: <CAPACITY POOL>
 resourceGroups: <RESOURCE GROUP>
  netappAccounts: <NETAPP ACCOUNT>
  virtualNetwork: <VIRTUAL NETWORK>
  subnet: <SUBNET>
  nasType: nfs
 storage:
    - labels:
       type: encryption
      kerberos: sec=krb5i #can be krb5, krb5i, or krb5p
  credentials:
    name: backend-tbc-secret
```

2. Use o arquivo de configuração que você criou na etapa anterior para criar o backend:

```
tridentctl create backend -f <backend-configuration-file>
```

Se a criação do backend falhar, algo está errado com a configuração do backend. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode executar o comando create novamente.

Crie uma classe de armazenamento

Você pode criar uma classe de armazenamento para provisionar volumes com criptografia Kerberos.

Passos

1. Crie um objeto Kubernetes StorageClass, usando o exemplo a seguir:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: sc-nfs
provisioner: csi.trident.netapp.io
parameters:
   backendType: "azure-netapp-files"
   trident.netapp.io/nasType: "nfs"
   selector: "type=encryption"
```

2. Crie a classe de armazenamento:

```
kubectl create -f sample-input/storage-class-sc-nfs.yaml
```

3. Certifique-se de que a classe de armazenamento foi criada:

```
kubectl get sc sc-nfs
```

Você deve ver saída semelhante ao seguinte:

```
NAME PROVISIONER AGE sc-nfs csi.trident.netapp.io 15h
```

Volumes de provisionamento

Depois de criar um back-end de storage e uma classe de storage, agora é possível provisionar um volume. Consulte estas instruções para "provisionamento de um volume".

Informações sobre direitos autorais

Copyright © 2025 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio — gráfico, eletrônico ou mecânico, incluindo fotocópia, gravação, gravação em fita ou storage em um sistema de recuperação eletrônica — sem permissão prévia, por escrito, do proprietário dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais está sujeito à seguinte licença e isenção de responsabilidade:

ESTE SOFTWARE É FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER GARANTIAS EXPRESSAS OU IMPLÍCITAS, INCLUINDO, SEM LIMITAÇÕES, GARANTIAS IMPLÍCITAS DE COMERCIALIZAÇÃO E ADEQUAÇÃO A UM DETERMINADO PROPÓSITO, CONFORME A ISENÇÃO DE RESPONSABILIDADE DESTE DOCUMENTO. EM HIPÓTESE ALGUMA A NETAPP SERÁ RESPONSÁVEL POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU CONSEQUENCIAL (INCLUINDO, SEM LIMITAÇÕES, AQUISIÇÃO DE PRODUTOS OU SERVIÇOS SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPÇÃO DOS NEGÓCIOS), INDEPENDENTEMENTE DA CAUSA E DO PRINCÍPIO DE RESPONSABILIDADE, SEJA EM CONTRATO, POR RESPONSABILIDADE OBJETIVA OU PREJUÍZO (INCLUINDO NEGLIGÊNCIA OU DE OUTRO MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento e sem aviso. A NetApp não assume nenhuma responsabilidade nem obrigação decorrentes do uso dos produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O uso ou a compra deste produto não representam uma licença sob quaisquer direitos de patente, direitos de marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicação ou a divulgação pelo governo estão sujeitos a restrições conforme estabelecido no subparágrafo (b)(3) dos Direitos em Dados Técnicos - Itens Não Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou serviço comercial (conforme definido no FAR 2.101) e são de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp fornecidos sob este Contrato são de natureza comercial e desenvolvidos exclusivamente com despesas privadas. O Governo dos EUA tem uma licença mundial limitada, irrevogável, não exclusiva, intransferível e não sublicenciável para usar os Dados que estão relacionados apenas com o suporte e para cumprir os contratos governamentais desse país que determinam o fornecimento de tais Dados. Salvo disposição em contrário no presente documento, não é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os dados sem a aprovação prévia por escrito da NetApp, Inc. Os direitos de licença pertencentes ao governo dos Estados Unidos para o Departamento de Defesa estão limitados aos direitos identificados na cláusula 252.227-7015(b) (fevereiro de 2014) do DFARS.

Informações sobre marcas comerciais

NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM são marcas comerciais da NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos proprietários.