REST API access and authentication in
Active IQ Unified Manager
Active 1Q Unified Manager

NetApp
January 15, 2026

This PDF was generated from https://docs.netapp.com/us-en/active-ig-unified-manager/api-
automation/reference_authentication_errors.html on January 15, 2026. Always check docs.netapp.com

for the latest.

Table of Contents

REST API access and authentication in Active IQ Unified Manager

Authentication
HTTP status codes used in Active |Q Unified Manager
Recommendations for using the APIs for Active 1Q Unified Manager
Logs for troubleshooting
Job objects asynchronous processes

Asynchronous requests described using Job object

Query the Job object associated with an API request

Steps in an asynchronous request
Hello API server

D OO OO0 W W~

REST API access and authentication in Active IQ
Unified Manager

The Active 1Q Unified Manager REST API is accessible by using any REST client or
programming platform that can issue HTTP requests with a basic HTTP authentication

mechanism.
A sample request and response:
* Request

GET

https://<IP
address/hostname>:<port number>/api/v2/datacenter/cluster/clusters

* Response
{
"records": [
{
"key": "4c6bf721-2e3f-11e9-a3e2-
00a0985badbb:type=cluster,uuid=4c6bf721-2e3f-11e9-a3e2-00a0985badbb",
"name": "fas8040-206-21",

"uuid": "4cobf721-2e3f-11e9-a3e2-00a0985badbb",

"contact": null,
"location": null,

"version": {
"full": "NetApp Release Dayblazer 9.5.0: Thu Jan 17 10:28:33
UuTC 2019",
"generation": 9,
"major": 5,
"minor": O

I

"isSanOptimized": false,
"management ip": "10.226.207.25",
"nodes": [

{
"key": "4coebf721-2e3f-11e9-a3e2-

00a0985badbb: type=cluster node,uuid=12cfO06cc-2e3a-11e9-b9b4-

00a0985badbb",
"uuid": "12cf06cc-2e3a-11e9-b9%04-00a0985badbb",

"name": "fas8040-206-21-01",
" links": {
"self": {

"href": "/api/datacenter/cluster/nodes/4c6bf721-2e3f-11e9-
a3e2-00a0985badbb:type=cluster node,uuid=12cf06cc-2e3a-11e9-b9%4-
00a0985badbb"

}
by

"location": null,

"version": {
"full": "NetApp Release Dayblazer 9.5.0: Thu Jan 17
10:28:33 UTC 2019",
"generation": 9,
"major": 5,
"minor": O
by
"model": "FAS8040",
"uptime": 13924095,
"serial number": "701424000157"

by

{
"key": "4c6bf721-2e3f-11e9-a3e2-

00a0985badbb: type=cluster node,uuid=led606ed-2e3a-11e9-a270-
00a0985bb9b7",
"uuid": "led606ed-2e3a-11e9-a270-00a0985bb9b7",

"name": "fas8040-206-21-02",
" links": {
"self": {
"href": "/api/datacenter/cluster/nodes/4c6bf721-2e3f-11e9-

a3e2-00a0985badbb:type=cluster node,uuid=led606ed-2e3a-11e9-a270-
00a0985bb9b7"
}
by

"location": null,

"version": {
"full": "NetApp Release Dayblazer 9.5.0: Thu Jan 17
10:28:33 UTC 2019",
"generation": 9,
"major": 5,
"minor": O
by
"model": "FAS8040",
"uptime": 14012386,
"serial number": "701424000564"
}
1,
" links": {
"self": {

"href": "/api/datacenter/cluster/clusters/4c6bf721-2e3f-11e9-

a3e2-00a0985badbb:type=cluster,uuid=4c6bf721-2e3f-11e9-a3e2-
00a0985badbb"
}
}
by

° TP address/hostname is the IP address or the fully qualified domain name (FQDN) of the API
server.

> Port 443
443 is the default HTTPS port. You can customize the HTTPS port, if required.

To issue HTTP requests from a web browser, you have to use REST API browser plugins. You can also
access the REST API by using scripting platforms such as cURL and Perl.

Authentication

Unified Manager supports the basic HTTP authentication scheme for APIs. For secure information flow
(request and response), the REST APIs are accessible only over HTTPS. The API server provides a self-
signed SSL certificate to all clients for server verification. This certificate can be replaced by a custom
certificate (or CA certificate).

You must configure user access to the API server for invoking the REST APIs. The users can be local users
(user profiles stored in the local database) or LDAP users (if you have configured the API server to
authenticate over LDAP). You can manage user access by logging in to the Unified Manager Administration
Console user interface.

HTTP status codes used in Active IQ Unified Manager

While running the APls or troubleshooting issues, you should be aware of the various
HTTP status codes and error codes that are used by Active IQ Unified Manager APls.

The following table lists the error codes related to authentication:

HTTP status code Status code title Description

200 OK Returned on successful execution
of synchronous API calls.

201 Created Creation of new resources by
synchronous calls, such as
configuration of Active Directory.

202 Accepted Returned on successful execution
of asynchronous calls for
provisioning functions, such as
creating LUNs and files shares.

HTTP status code
400

401

403

404

405

429

500

Status code title

Invalid request

Unauthorized request

Forbidden request

Resource not found

Method Not Allowed

Too Many Requests

Internal server error

Description

Indicates input validation failure.
User has to correct the inputs, for
example, valid keys in a request
body.

You are not authorized to view the
resource/Unauthorized.

Accessing the resource you were
trying to reach is forbidden.

The resource you were trying to
reach is not found.

Method not allowed.

Returned when the user sends too
many requests within a specific
time.

Internal server error. Failed to get
the response from server. This
internal server error may or may
not be permanent. For example, if
you run a GET or GET ALL
operation and receive this error, it
is recommended that you repeat
this operation for a minimum of five
retries. If it is a permanent error,
then the status code returned
continues to be 500. If the
operation succeeds, the status
code returned is 200.

Recommendations for using the APIs for Active 1Q Unified

Manager

When using the APlIs in Active 1Q Unified Manager, you should follow certain

recommended practices.

 All response content type must be in the following format for a valid execution:

application/json

» The API version number is not related to the product version number. You should use the latest version of
the API available for your Unified Manager instance. For more information about Unified Manager API

versions, see the “REST API versioning in Active |Q Unified Manager” section.

* While updating array values using a Unified Manager API, you must update the entire string of values. You
cannot append values to an array. You can only replace an existing array.

* You can use filter operators, such as pipe (|) and wild card (*) for all query parameters, except for double
values, for example, IOPS and performance in the metrics APls.

» Avoid querying objects by using a combination of the filter operators wild card (*) and pipe (]). It might

retrieve an incorrect number of objects.

* When using values for filter, ensure that the value does not contain any 2 character. This is to mitigate risks

of SQL injection.

* Note that the GET (all) request for any API returns a maximum of 1000 records. Even if you run the query
by setting the max_records parameter to a value higher than 1000, only 1000 records are returned.

 For performing administrative functions, it is recommended that you use the Unified Manager UI.

Logs for troubleshooting

System logs enable you to analyze the causes of failure and troubleshooting issues that

may arise while running the APIs.

Retrieve the logs from the following location for troubleshooting issues related to the API calls.

Log location

/var/log/ocie/access log.log

/var/log/ocum/ocumserver.log

/var/log/ocie/server.log

/var/log/ocie/au.log

Use

Contains all API call details, such as the user name of
the user invoking the API, start time, execution time,
status, and URL.

You can use this log file to check the frequently-used
APIs, or troubleshoot any GUI workflow. You can also
use it to scale analysis, based on the execution time.

Contains all API execution logs.

You can use this log file to troubleshoot and debug
the API calls.

Contains all Wildfly server deployments and start/stop
service related logs.

You can use this log file to find the root cause of any
issues occurring during the start, stop, or deployment
of the Wildfly server.

Contains acquisition unit related logs.

You can use this log file when you have created,
modified, or deleted any objects in ONTAP but they
do not get reflected for the Active IQ Unified Manager
REST APls.

Job objects asynchronous processes

Active IQ Unified Manager provides the jobs API that retrieves information about the
Jobs performed while running other APIs. you must know how asynchronous processing
works using the Job object.

Some of the API calls, particularly those that are used for adding or modifying resources, can take longer to
complete than other calls. Unified Manager processes these long-running requests asynchronously.

Asynchronous requests described using Job object

After making an API call that runs asynchronously, the HTTP response code 202 indicates the request has
been successfully validated and accepted, but not yet completed. The request is processed as a background
task which continues to run after the initial HTTP response to the client. The response includes the Job object
anchoring the request, including its unique identifier.

Query the Job object associated with an API request

The Job object returned in the HTTP response contains several properties. You can query the state property to
determine if the request completed successfully. A Job object can be in one of the following states:

* NORMAL
®* WARNING
®* PARTIAL FATILURES

* ERROR

There are two techniques you can use when polling a Job object to detect a terminal state for the task, either
success or failure:

« Standard polling request: The current Job state is returned immediately.

* Long polling request: When the job state moves to NORMAL, ERROR, or PARTIAL FAILURES.

Steps in an asynchronous request
You can use the following high-level procedure to complete an asynchronous API call:
1. Issue the asynchronous API call.

Receive an HTTP response 202 indicating successful acceptance of the request.

Extract the identifier for the Job object from the response body.

A 0N

Within a loop, wait for the Job object to reach the terminal state NORMAL, ERROR, or
PARTIAL FAILURES.

5. Verify the terminal state of the Job and retrieve the Job result.

Hello API server

The Hello API server is a sample program that demonstrates how to invoke a REST API
in Active 1Q Unified Manager using a simple REST client. The sample program provides

you basic details about the API server in the JSON format (the server supports only
application/json format).

The URl used is: https://<hostname>/api/datacenter/svm/svms. This sample code takes the
following input parameters:

* The API server IP address or FQDN
» Optional: Port number (default: 443)
* User name

» Password

* Response format (application/json)

To invoke REST APIs, you can also use other scripts such as Jersey and RESTEasy to write a Java REST
client for Active IQ Unified Manager. You should be aware of the following considerations about the sample
code:

» Uses an HTTPS connection to Active IQ Unified Manager to invoke the specified REST URI
* Ignores the certificate provided by Active 1Q Unified Manager
» Skips the host name verification during the handshake

* Uses javax.net.ssl.HttpsURLConnection for a URI connection

* Uses a third-party library (org.apache.commons.codec.binary.Base64) for constructing the Base64
encoded string used in the HTTP basic authentication

To compile and execute the sample code, you must use Java compiler 1.8 or later.

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.URL;

import java.security.SecureRandom;

import java.security.cert.X509Certificate;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSession;

import javax.net.ssl.TrustManager;

import javax.net.ssl.X509TrustManager;
import org.apache.commons.codec.binary.Baseb64;

public class HelloApiServer {

private static String server;

private static String user;

private static String password;

private static String response format = "json";
private static String server url;

private static String port = null;

https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms
https://<hostname>/api/datacenter/svm/svms

/*

* * The main method which takes user inputs and performs the *

necessary steps
* to invoke the REST URI and show the response
*/ public static void main(String[] args) {
if (args.length < 2 || args.length > 3) {
printUsage () ;
System.exit (1) ;
}
setUserArguments (args) ;
String serverBaseUrl = "https://" + server;
if (null != port) {
serverBaseUrl = serverBaseUrl + ":" + port;

}

server url = serverBaseUrl + "/api/datacenter/svm/svms";

try {
HttpsURLConnection connection =
getAl1lTrustingHttpsUrlConnection () ;
if (connection == null) {

System.err.println ("FATAL: Failed to create HTTPS

connection to URL: " + server url);
System.exit (1) ;
}
System.out.println ("Invoking API:

connection.setRequestMethod ("GET") ;

+ server url);

connection.setRequestProperty ("Accept", "application/" +

response format);
String authString = getAuthorizationString() ;
connection.setRequestProperty ("Authorization",
authString) ;
if (connection.getResponseCode() != 200) {
System.err.println ("API Invocation Failed
code : " + connection.getResponseCode() + " : "
+ connection.getResponseMessage ()) ;
System.exit (1) ;
}
BufferedReader br = new BufferedReader (new
InputStreamReader ((connection.getInputStream())));
String response;
System.out.println ("Response:");
while ((response = br.readLine()) != null) {
)

.
14

System.out.println (response
}
connection.disconnect () ;
} catch (Exception e) {

"Basic " +

HTTP error

e.printStackTrace () ;

/* Print the usage of this sample code */ private static void

printUsage () {
System.out
<password>\n") ;
System.out
mypassword") ;
System.out
password") ;
System.out
")
System.out
password \n");
System.out
provided,

}

/* * Set the server,

inputs. */ private

String

server

user

password
if (server
String
server

port

/*

.println ("\nUsage:\n\tHelloApiServer <hostname> <user>

.println ("\nExamples:\n\tHelloApiServer localhost admin

.println ("\tHelloApiServer 10.22.12.34:8320 admin

.println ("\tHelloApiServer 10.22.12.34 admin password

.println ("\tHelloApiServer 10.22.12.34:8212 admin

.println ("\nNote:\n\t (1) When port number is not

443 is chosen by default.");

port, username and password * based on user
static void setUserArguments (

[1 args) {

args[0];
args([l];

args[2];

.contains (

[]

")) |

server.split (":");

parts

parts([0];
parts[1l];

* * Create a trust manager which accepts all certificates and * use

this trust

* manager to initialize the SSL Context.

HttpsURLConnection
* SSL Context
handshake. * *
* Note:

is not

* required for API Services to work.

this sample
* REST Client

* Create a
for this

and skip * server hostname verification during SSL

Trusting all certificates or skipping hostname verification *

These are done here to * keep

code as simple as possible.

*/ private static HttpsURLConnection

10

getAllTrustingHttpsUrlConnection () { HttpsURLConnection conn =

null; try | /* Creating a trust manager that does not
validate certificate chains */ TrustManager/|]
trustAllCertificatesManager = new TrustManager[] {new

X509TrustManager () {

public X509Certificate[] getAcceptedIssuers () {return null;}

public void checkClientTrusted (X509Certificatel]
certs, String authType) {}

public void checkServerTrusted (X509Certificatel]
certs, String authType) {}) /* Initialize the
SSLContext with the all-trusting trust manager */

SSLContext sslContext = SSLContext.getlInstance ("TLS");
sslContext.init (null, trustAllCertificatesManager, new
SecureRandom ()) ;
HttpsURLConnection.setDefaultSSLSocketFactory(sslContext.getSocketFactory (

)); URL url = new URL(server url); conn =
(HttpsURLConnection) url.openConnection () ; /* Do not perform an
actual hostname verification during SSL Handshake. Let all

hostname pass through as verified.*/

conn.setHostnameVerifier (new HostnameVerifier () { public
boolean verify(String host, SSLSession session) {
return true; } 1), } catch (Exception e)
{ e.printStackTrace() ; } return conn; }

/*

* * This forms the Base64 encoded string using the username and
password *
* provided by the user. This is required for HTTP Basic

Authentication.
*/ private static String getAuthorizationString() {
String userPassword = user + ":" + password;

byte[] authEncodedBytes =

Baseb64.encodeBaseb4 (userPassword.getBytes ()) ;
String authString = new String(authEncodedBytes) ;
return authString;

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

11

http://www.netapp.com/TM

	REST API access and authentication in Active IQ Unified Manager : Active IQ Unified Manager
	Table of Contents
	REST API access and authentication in Active IQ Unified Manager
	Authentication
	HTTP status codes used in Active IQ Unified Manager
	Recommendations for using the APIs for Active IQ Unified Manager
	Logs for troubleshooting
	Job objects asynchronous processes
	Asynchronous requests described using Job object
	Query the Job object associated with an API request
	Steps in an asynchronous request

	Hello API server

