Using Python

Astra Automation

NetApp
August 11, 2025

This PDF was generated from https://docs.netapp.com/us-en/astra-automation-
2304/python/astra_toolkits.html on August 11, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Using Python

NetApp Astra Control Python SDK
Two related software tools
How to access
Installation and basic requirements
Summary of helpful resources

Native Python
Before you begin
List the apps

W N DNDNDN-_2 2~ A

Using Python
NetApp Astra Control Python SDK

NetApp Astra Control Python SDK is an open source package you can use to automate
an Astra Control deployment. The package is also a valuable resource for learning about
the Astra Control REST API, perhaps as part of creating your own automation platform.

@ For simplicity, the NetApp Astra Control Python SDK will be referred to as the SDK throughout
the remainder this page.

Two related software tools

The SDK includes two different though related tools which operate at different levels of abstraction when
accessing the Astra Control REST API.

Astra SDK

The Astra SDK provides the core platform functionality. It includes a set of Python classes which abstract the
underlying REST API calls. The classes support administrative actions on various Astra Control resources,
including apps, backups, snapshots, and clusters.

The Astra SDK is one part of the package and is provided in the single astraSDK. py file. You can import this
file into your environment and use the classes directly.

@ The NetApp Astra Control Python SDK (or just SDK) is the name of the entire package. The
Astra SDK refers to the core Python classes in the single file astraSDK. py.

Toolkit script

In addition to the Astra SDK file, the toolkit.py script is also available. This script operates at a higher level
of abstraction by providing access to discrete administrative actions defined internally as Python functions. The
script imports the Astra SDK and makes calls to the classes as needed.

How to access

You can access the SDK in the following ways.

Python package

The SDK is available at Python Package Index under the name actoolkit. The package is assigned a version
number and will continue to be updated as needed. You must use the PiP package management utility to
install the package into your environment.

Once installed, the astraSDK.py classes can be utilized by placing import astraSDK in your scripts.
Additionally, actoolkit can be invoked directly on your command prompt, and is equivalent to toolkit.py
(actoolkit list clustersisthesameas ./toolkit.py list clusters).

See PyPl: NetApp Astra Control Python SDK for more information.

GitHub source code
The SDK source code is also available at GitHub. The repository includes the following:

https://pypi.org/
https://pypi.org/project/actoolkit/

* astraSDXK.py (Astra SDK with Python classes)

* toolkit.py (higher level function-based script)
* Detailed installation requirements and instructions
* Installation scripts

» Additional documentation

You can clone the GitHub: Netapp/netapp-astra-toolkits repository to your local environment.

Installation and basic requirements

There are several options and requirements to consider as part of installing the package and preparing to use
it.

Summary of the installation options
You can install the SDK in one of the following ways:

* Use the prepared Docker: NetApp/astra-toolkits image, which has all necessary dependencies installed,
including actoolkit

* Use Pip to install the actoolkit package from PyPI into your Python environment

 Clone the GitHub repository and copy/modify the two core Python files so they are accessible to your
Python client code

Refer to the PyPIl and GitHub pages for more information.

Requirements for the Astra Control environment

Whether directly using the Python classes in the Astra SDK or the functions in the toolkit.py script,
ultimately you'll be accessing the REST API at an Astra Control deployment. Because of this you’ll need an
Astra account along with an API token. See Before you begin and the other pages in the Get started section of
this documentation for more information.

Requirements for the NetApp Astra Control Python SDK

The SDK has several prerequisites related to the local Python environment. For example, you must use Python
3.8 or later. In addition, there are several Python packages that are required. See the GitHub repository page
or PyPI package page for more information.

Summary of helpful resources
Here are some the resources you’ll need to get started.

* PyPIl: NetApp Astra Control Python SDK
» GitHub: Netapp/netapp-astra-toolkits
* Docker: NetApp/astra-toolkits

Native Python

Before you begin

Python is a popular development language for datacenter automation. Before using the

https://github.com/NetApp/netapp-astra-toolkits
https://hub.docker.com/r/netapp/astra-toolkits
https://docs.netapp.com/us-en/astra-automation-2304/get-started/before_get_started.html
https://pypi.org/project/actoolkit
https://github.com/NetApp/netapp-astra-toolkits
https://hub.docker.com/r/netapp/astra-toolkits

native features of Python together with several common packages, you need to prepare
the environment and the required input files.

In addition to accessing the Astra Control REST API directly using Python, NetApp also provides
@ a toolkit package which abstracts the APl and removes some of the complexities. See NetApp
Astra Control Python SDK for more information.

Prepare the environment

The basic configuration requirements to run the Python scripts are described below.

Python 3
You need to have the latest version of Python 3 installed.

Additional libraries

The Requests and urllib3 libraries must be installed. You can use pip or another Python management tool as
appropriate for your environment.

Network access

The workstation where the scripts run must have network access and be able to reach Astra Control. When
using Astra Control Service, you must be connected to the internet and be able to connect to the service at
https://astra.netapp.io.

Identity information

You need a valid Astra account with the account identifier and APl token. See Get an API token for more
information.

Create the JSON input files

The Python scripts rely on configuration information contained in JSON input files. Sample files are provided
below.

@ You need to update the samples as appropriate for your environment.
Identity information

The following file contains the API token and Astra account. You need to pass this file to Python scripts using
the -1 (or -—identity) CLI parameter.

"api token": "kH4CA uVIa8q9UuPzhJaAHaGlaR7-no901DkkrVjIXk=",
"account id": "5131dfdf-03a4-5218-ad4b-fe84442b9786"

List the apps

You can use the following script to list the applications for your Astra account.

@ See Before you begin for an example of the required JSON input file.

https://astra.netapp.io
https://docs.netapp.com/us-en/astra-automation-2304/get-started/get_api_token.html

Usage: python3 list man apps.py -1 identity file.json

(C) Copyright 2022 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of

merchantability

10
11

or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is

granted

12
13
14

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to

no less restrictive than those set forth herein.

import argparse
import Jjson
import requests
import urllib3
import sys

Global variables
api token = ""
account id = ""

def get managed apps () :
''' Get and print the list of apps '''

Global variables
global api token

global account id

Create an HTTP session
sessl = requests.Session|()

Suppress SSL unsigned certificate warning

41 urllib3.disable warnings (urllib3.exceptions.
InsecureRequestWarning)

42

43 # Create URL

44 urll = "https://astra.netapp.io/accounts/" + account id +
"/k8s/v2/apps"

45

46 # Headers and response output

477 req_headers = {}

48 resp headers = {}

49 resp data = {}

50

51 # Prepare the request headers

52 req headers.clear

53 req _headers['Authorization'] = "Bearer " + api token

54 req_headers['Content-Type'] = "application/astra-app+json"

55 req headers|['Accept'] = "application/astra-app+json"

56

57 # Make the REST call

58 try:

59 respl = sessl.request('get', urll, headers=req headers,
allow redirects=True, verify=False)

60

61 except requests.exceptions.ConnectionError:

62 print ("Connection failed")

63 sys.exit (1)

64

65 # Retrieve the output

66 http code = respl.status code

67 resp headers = respl.headers

68

69 # Print the list of apps

70 if respl.ok:

71 resp data = json.loads (respl.text)

72 items = resp data['items']

73 for i in items:

74 print(" ")

75 print ("Name: " + i['name'])

76 print("ID: "™ + i['id'])

77 print("State: " + i['state'l])

78 else:

79 print("Failed with HTTP status code: " + str(http code))

80

81 print (" ")

82

83 # Close the session

84 sessl.close ()

85
86 return
87
88 def read_id_file(idf):
89 '''" Read the identity file and save values '''
90
91 # Global variables
92 global api token
93 global account id
94
95 with open (idf) as f:
96 data = json.load(f)
97
98 api token = data['api token']
99 account id = data['account id']
100
101 return
102
103 def main (args) :
104 ''"'" Main top level function '''
105
106 # Global variables
107 global api token
108 global account id
109
110 # Retrieve name of JSON input file
111 identity file = args.id file
112
113 # Get token and account
114 read id file(identity file)
115
116 # Issue REST call
117 get managed apps()
118
119 return
120
121 def parseArgs():
122 ''' Parse the CLI input parameters '''
123
124 parser = argparse.ArgumentParser (description='Astra REST API -

List the apps',

125 add help = True)

126 parser.add argument ("-i", "--identity", action="store", dest
="id file", default=None,

127 help="' (Req) Name of the identity input

file', required=True)

128

129 return parser.parse_ args ()
130

131 if name == ' main_ ':

132 ''"'" Begin here '''

133

134 # Parse input parameters

135 args = parseArgs ()

136

137 # Call main function

138 main (args)

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

http://www.netapp.com/TM

	Using Python : Astra Automation
	Table of Contents
	Using Python
	NetApp Astra Control Python SDK
	Two related software tools
	How to access
	Installation and basic requirements
	Summary of helpful resources

	Native Python
	Before you begin
	List the apps

