Core design
Astra Automation

NetApp
August 11, 2025

This PDF was generated from https://docs.netapp.com/us-en/astra-automation-2310/rest-
core/rest_web_services.html on August 11, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Core design

REST web services
Resources and state representation
URI endpoints
HTTP messages
JSON formatting

Resources and collections
Attributes of the Astra resources
Common structure for Astra resources

HTTP details
API transactions and the CRUD model
HTTP methods
Request and response headers
Query parameters
HTTP status codes

URL format

OO 0o A BRA W WWDNDN-_2 2 A A

Core design

REST web services

Representational State Transfer (REST) is a style for creating distributed web
applications. When applied to the design of a web services API, it establishes a set of
mainstream technologies and best practices for exposing server-based resources and
managing their states. While REST provides a consistent foundation for application
development, the details of each API can vary based on the specific design choices. You
should be aware of the characteristics of the Astra Control REST API before using it with
a live deployment.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services
application, early design tasks include:

« Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or
administrative entity. One of the first tasks in designing an application based on REST web services is to
identify the resources.

* Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations
used to affect the state changes, must be clearly defined.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The
endpoints where the resources are located and identified use a Uniform Resource Identifier (URI). The URI
provides a general framework for creating a unique name for each resource in the network. The Uniform
Resource Locator (URL) is a type of URI used with web services to identify and access resources. Resources
are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange
request and response messages about the resources. As part of designing a web services application, HTTP
methods are mapped to the resources and corresponding state management actions. HTTP is stateless.
Therefore, to associate a set of related requests and responses as part of one transaction, additional
information must be included in the HTTP headers carried with the request and response data flows.

JSON formatting

While information can be structured and transferred between a web services client and server in several ways,
the most popular option is JavaScript Object Notation (JSON). JSON is an industry standard for representing
simple data structures in plain text and is used to transfer state information describing the resources. The Astra
Control REST API uses JSON to format the data carried in the body of each HTTP request and response.

Resources and collections

The Astra Control REST API provides access to resource instances and collections of
resource instances.

Conceptually a REST resource is similar to an object as defined with the object-oriented

@ programming (OOP) languages and systems. Sometimes these terms are used interchangeably.
But in general, "resource" is preferred when used in the context of the external REST API while
"object" is used for the corresponding stateful instance data stored at the server.

Attributes of the Astra resources

The Astra Control REST API conforms to RESTful design principles. Each Astra resource instance is created
based on a well-defined resource type. A set of resource instances of the same type is referred to as a
collection. The API calls act on individual resources or collections of resources.

Resource types
The resource types included with the Astra Control REST API have the following characteristics:

» Every resource type is defined using a schema (typically in JSON)
» Every resource schema includes the resource type and version

* Resource types are globally unique

Resource instances

Resource instances available through the Astra Control REST API have the following characteristics:

* Resource instances are created based on a single resource type

* The resource type is indicated using the Media Type value

* Instances are composed of stateful data which is maintained by the Astra service

» Each instance is accessible through a unique and long-lived URL

* In cases where a resource instance can have more than one representation, different media types can be

used to request the desired representation

Resource collections
Resource collections available through the Astra Control REST API have the following characteristics:

» The set of resource instances of a single resource type is known as a collection

+ Collections of resources have a unique and long-lived URL

Instance identifiers

Every resource instance is assigned an identifier when it is created. This identifier is a 128-bit UUIDv4 value.
The assigned UUIDv4 values are globally unique and immutable. After issuing an API call that creates a new
instance, a URL with the associated id is returned to the caller in a Location header of the HTTP response.
You can extract the identifier and use it on subsequent calls when referring to the resource instance.

@ The resource identifier is the primary key used for collections.

Common structure for Astra resources

Every Astra Control resource is defined using a common structure.

Common data
Every Astra resource contains the key-values shown in the following table.

Key Description

type A globally unique resource type which is known as the resource type.

version A version identifier which is known as the resource version.

id A globally unique identifier which is known as the resource identifier.
metadata A JSON object containing various information, including user and system labels.

Metadata object
The metadata JSON object included with each Astra resource contains the key-values shown in the following

table.
Key Description
labels JSON array of client-specified labels associated with the resource.

creationTimest JSON string containing a timestamp indicating when the resource was created.
amp

modificationTi JSON string containing an ISO-8601 formatted timestamp indicating when the resource was
mestamp last altered.

createdBy JSON string containing the UUIDv4 identifier of the user id that created the resource. If the
resource was created by an internal system component and there is no UUID associated with
the creating entity, the null UUID is used.

Resource state

Selected resources a state value which is used to orchestrate lifecycle transitions and control access.

HTTP details

The Astra Control REST API uses HTTP and related parameters to act on the resource
instances and collections. Details of the HTTP implementation are presented below.

API transactions and the CRUD model

The Astra Control REST API implements a transactional model with well-defined operations and state
transitions.

Request and response API transaction

Every REST API call is performed as an HTTP request to the Astra service. Each request generates an
associated response back to the client. This request-response pair can be considered an API transaction.

Support for CRUD operational model
Each of the resource instances and collections available through the Astra Control REST API is accessed

based on the CRUD model. There are four operations, each of which maps to a single HTTP method. The

operations include:

* Create
* Read
* Update

e Delete

For some of the Astra resources, only a subset of these operations is supported. You should review the Online
API reference for more information about a specific API call.

HTTP methods

The HTTP methods or verbs supported by the API are presented in the table below.

Method CRUD
GET Read
POST Create
PUT Update
DELETE Delete

Description

Retrieves object properties for a resource instance or collection. This is
considered a list operation when used with a collection.

Creates a new resource instance based on the input parameters. The long-
term URL is returned in a Location response header.

Updates an entire resource instance with the supplied JSON request body.
Key values that are not user modifiable are preserved.

Deletes an existing resource instance.

Request and response headers

The following table summaries the HTTP headers used with the Astra Control REST API.

@ See RFC 7232 and RFC 7233 for more information.

Header

Accept

Authorization
Content-Type
Etag

If-Match

If-Modified-Since

Type

Request

Request
Response
Response

Request

Request

Usage notes

If the value is "I" or is not provided, application/json is
returned in Content-Type response header. If the value is
set to the Astra resource Media Type, the same Media Type
is returned in the Content-Type header.

Bearer token with the API key for the user.

Returned based on the Accept request header.

Included with a successful as defined with RFC 7232. The
value is a hexadecimal representation of the MD5 value for
the entire JSON resource.

A precondition request header implemented as described in
section 3.1 RFC 7232 and support for PUT requests.

A precondition request header implemented as described in
section 3.4 RFC 7232 and support for PUT requests.

https://docs.netapp.com/us-en/astra-automation-2310/get-started/online_api_ref.html
https://docs.netapp.com/us-en/astra-automation-2310/get-started/online_api_ref.html
https://www.rfc-editor.org/rfc/rfc7232.txt
https://www.rfc-editor.org/rfc/rfc7233.txt

Header

If-Unmodified-Since

Location

Type Usage notes

Request A precondition request header implemented as described in
section 3.4 RFC 7232 and support for PUT requests.

Response Contains the full URL of the newly created resource.

Query parameters

The following query parameters are available for use with resource collections. See Work with collections for
more information.

Query parameter Description

include

filter

orderBy
limit
skip

count

Contains the fields that should be returned when reading a collection.

Indicates the fields that must match for a resource to be returned when reading a

collection.

Determines the sort order of resources returned when reading a collection.

Limits the maximum number of resources returned when reading a collection.

Sets the number of resources to pass over and skip when reading a collection.

Indicates if the total number of resources should be returned in the metadata object.

HTTP status codes

The HTTP status codes used by the Astra Control REST API are described below.

®

Code
200
201

204
400
401
403
404
409
500
503

The Astra Control REST API also uses the Problem Details for HTTP APls standard. See
Diagnostics and support for more information.

Meaning
OK
Created

No content
Bad request
Unauthorized
Forbidden
Not found
Conflict
Internal error

Service unavailable

Description
Indicates success for calls that do not create a new resource instance.

An object is successfully created and the location response header
includes the unique identifier for the object.

The request was successful although no content was returned.

The request input is not recognized or is inappropriate.

The user is not authorized and must authentiate.

Access is denied due to an authorization error.

The resource referred to in the request does not exist.

An attempt to create an object failed because the object already exists.
A general internal error occurred at the server.

The service is not ready to handle the request for some reason.

https://docs.netapp.com/us-en/astra-automation-2310/additional/work_with_collections.html
https://docs.netapp.com/us-en/astra-automation-2310/additional/diagnostics_support.html

URL format

The general structure of the URL used to access a resource instance or collection
through the REST API is composed of several values. This structure reflects the
underlying object model and system design.

Account as the root

The root of the resource path to every REST endpoint is the Astra account. And so all paths in the URL begin
with /account/{account id} where account id is the unique UUIDv4 value for the account. Internally
structure this reflects a design where all resource access is based on a specific account.

Endpoint resource category

The Astra resource endpoints fall into three different categories:
* Core (/core)
* Managed application (/k8s)

* Topology (/topology)
See Resources for more information.

Category version

Each of the three resource categories has a global version that controls the version of the resources accessed.
By convention and definition, moving to a new major version of a resource category (such as, from /v1 to /v2)
will introduce breaking changes in the API.

Resource instance or collection

A combination of resource types and identifiers can be used in the path, based on whether a resource instance
or collection is accessed.

Example
* Resource path

Based on the structure presented above, a typical path to an endpoint is:
/accounts/{account id}/core/vl/users.

* Complete URL

The full URL for the corresponding endpoint is:
https://astra.netapp.io/accounts/{account id}/core/vl/users.

https://docs.netapp.com/us-en/astra-automation-2310/endpoints/resources.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

http://www.netapp.com/TM

	Core design : Astra Automation
	Table of Contents
	Core design
	REST web services
	Resources and state representation
	URI endpoints
	HTTP messages
	JSON formatting

	Resources and collections
	Attributes of the Astra resources
	Common structure for Astra resources

	HTTP details
	API transactions and the CRUD model
	HTTP methods
	Request and response headers
	Query parameters
	HTTP status codes

	URL format

