
Install Astra Control Center

Astra Control Center
NetApp
June 10, 2024

This PDF was generated from https://docs.netapp.com/us-en/astra-control-center-2208/get-
started/acc_cluster_cr_options.html on June 10, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Install Astra Control Center using the standard process . 1

Download and unpack the Astra Control Center bundle . 2

Install the NetApp Astra kubectl plugin. 2

Add the images to your local registry . 3

Set up namespace and secret for registries with auth requirements . 5

Install the Astra Control Center operator . 7

Configure Astra Control Center . 9

Complete Astra Control Center and operator installation . 11

Verify system status . 12

Set up ingress for load balancing. 16

Log in to the Astra Control Center UI . 21

Troubleshoot the installation . 22

What’s next. 22

Understand pod security policy restrictions . 22

Install Astra Control Center using the standard
process
To install Astra Control Center, download the installation bundle from the NetApp Support Site and perform the

following steps to install Astra Control Center Operator and Astra Control Center in your environment. You can

use this procedure to install Astra Control Center in internet-connected or air-gapped environments.

For Red Hat OpenShift environments, you can use an alternative procedure to install Astra Control Center

using OpenShift OperatorHub.

What you’ll need

• Before you begin installation, prepare your environment for Astra Control Center deployment.

• If you have configured or want to configure pod security policies in your environment, familiarize yourself

with pod security policies and how they affect Astra Control Center installation. See Understand pod

security policy restrictions.

• Ensure all cluster operators are in a healthy state and available.

kubectl get clusteroperators

• Ensure all API services are in a healthy state and available:

kubectl get apiservices

• Ensure the Astra FQDN you plan to use is routable to this cluster. This means that you either have a DNS

entry in your internal DNS server or you are using a core URL route that is already registered.

• If a cert-manager already exists in the cluster, you need to perform some prerequisite steps so that Astra

Control Center does not install its own cert-manager.

About this task

The Astra Control Center installation process does the following:

• Installs the Astra components into the netapp-acc (or custom-named) namespace.

• Creates a default account.

• Establishes a default administrative user email address and default one-time password. This user is

assigned the Owner role in the system that is needed for first time login to the UI.

• Helps you determine that all Astra Control Center pods are running.

• Installs the Astra UI.

(Applies to the Astra Data Store Early Access Program (EAP) release only) If you intend to

manage Astra Data Store using Astra Control Center and enable VMware workflows, deploy

Astra Control Center only on the pcloud namespace and not on the netapp-acc namespace

or a custom namespace described in the steps of this procedure.

1

https://docs.netapp.com/us-en/astra-control-center-2208/get-started/acc_operatorhub_install.html
https://docs.netapp.com/us-en/astra-control-center-2208/get-started/requirements.html
https://docs.netapp.com/us-en/astra-control-center-2208/get-started/cert-manager-prereqs.html

Do not execute the following command during the entirety of the installation process to avoid

deleting all Astra Control Center pods: kubectl delete -f

astra_control_center_operator_deploy.yaml

If you are using Red Hat’s Podman instead of Docker Engine, Podman commands can be used

in place of Docker commands.

Steps

To install Astra Control Center, do the following steps:

• Download and unpack the Astra Control Center bundle

• Install the NetApp Astra kubectl plugin

• Add the images to your local registry

• Set up namespace and secret for registries with auth requirements

• Install the Astra Control Center operator

• Configure Astra Control Center

• Complete Astra Control Center and operator installation

• Verify system status

• Set up ingress for load balancing

• Log in to the Astra Control Center UI

Download and unpack the Astra Control Center bundle

1. Download the Astra Control Center bundle (astra-control-center-[version].tar.gz) from the

NetApp Support Site.

2. Download the zip of Astra Control Center certificates and keys from the NetApp Support Site.

3. (Optional) Use the following command to verify the signature of the bundle:

openssl dgst -sha256 -verify AstraControlCenter-public.pub -signature

astra-control-center-[version].tar.gz.sig astra-control-center-

[version].tar.gz

4. Extract the images:

tar -vxzf astra-control-center-[version].tar.gz

Install the NetApp Astra kubectl plugin

The NetApp Astra kubectl command line plugin saves time when performing common tasks associated with

deploying and upgrading Astra Control Center.

What you’ll need

2

https://mysupport.netapp.com/site/products/all/details/astra-control-center/downloads-tab
https://mysupport.netapp.com/site/products/all/details/astra-control-center/downloads-tab

NetApp provides binaries for the plugin for different CPU architectures and operating systems. You need to

know which CPU and operating system you have before you perform this task. On Linux and Mac operating

systems, you can use the uname -a command to gather this information.

Steps

1. List the available NetApp Astra kubectl plugin binaries, and note the name of the file you need for your

operating system and CPU architecture:

ls kubectl-astra/

2. Copy the file to the same location as the standard kubectl utility. In this example, the kubectl utility is

located in the /usr/local/bin directory. Replace <binary-name> with the name of the file you need:

cp kubectl-astra/<binary-name> /usr/local/bin/kubectl-astra

Add the images to your local registry

1. Complete the appropriate step sequence for your container engine:

3

Docker

1. Change to the Astra directory:

cd acc

2. Push the package images in the Astra Control Center image directory to your local registry. Make

the following substitutions before running the command:

◦ Replace BUNDLE_FILE with the name of the Astra Control bundle file (for example,

acc.manifest.yaml).

◦ Replace MY_REGISTRY with the URL of the Docker repository.

◦ Replace MY_REGISTRY_USER with the user name.

◦ Replace MY_REGISTRY_TOKEN with an authorized token for the registry.

kubectl astra packages push-images -m BUNDLE_FILE -r MY_REGISTRY

-u MY_REGISTRY_USER -p MY_REGISTRY_TOKEN

Podman

1. Log in to your registry:

podman login [your_registry_path]

2. Run the following script, making the <YOUR_REGISTRY> substitution as noted in the comments:

4

You need to be at the root of the tarball.

You should see these files to confirm correct location:

acc.manifest.yaml

acc/

Replace <YOUR_REGISTRY> with your own registry (e.g

registry.customer.com or registry.customer.com/testing, etc..)

export REGISTRY=<YOUR_REGISTRY>

export PACKAGENAME=acc

export PACKAGEVERSION=22.08.1-26

export DIRECTORYNAME=acc

for astraImageFile in $(ls ${DIRECTORYNAME}/images/*.tar) ; do

 # Load to local cache

 astraImage=$(podman load --input ${astraImageFile} | sed 's/Loaded

image(s): //')

 # Remove path and keep imageName.

 astraImageNoPath=$(echo ${astraImage} | sed 's:.*/::')

 # Tag with local image repo.

 podman tag ${astraImage} ${REGISTRY}/netapp/astra/${PACKAGENAME}

/${PACKAGEVERSION}/${astraImageNoPath}

 # Push to the local repo.

 podman push ${REGISTRY}/netapp/astra/${PACKAGENAME}/

${PACKAGEVERSION}/${astraImageNoPath}

done

Set up namespace and secret for registries with auth
requirements

1. Export the KUBECONFIG for the Astra Control Center host cluster:

export KUBECONFIG=[file path]

2. If you use a registry that requires authentication, you need to do the following:

a. Create the netapp-acc-operator namespace:

kubectl create ns netapp-acc-operator

Response:

5

namespace/netapp-acc-operator created

b. Create a secret for the netapp-acc-operator namespace. Add Docker information and run the

following command:

The placeholder your_registry_path should match the location of the images that

you uploaded earlier (for example,

[Registry_URL]/netapp/astra/astracc/22.08.1-26).

kubectl create secret docker-registry astra-registry-cred -n netapp-

acc-operator --docker-server=[your_registry_path] --docker-username

=[username] --docker-password=[token]

Sample response:

secret/astra-registry-cred created

If you delete the namespace after the secret is generated, you need to regenerate the

secret for the namespace after the namespace is recreated.

c. Create the netapp-acc (or custom named) namespace.

kubectl create ns [netapp-acc or custom namespace]

Sample response:

namespace/netapp-acc created

d. Create a secret for the netapp-acc (or custom named) namespace. Add Docker information and run

the following command:

kubectl create secret docker-registry astra-registry-cred -n [netapp-

acc or custom namespace] --docker-server=[your_registry_path]

--docker-username=[username] --docker-password=[token]

Response

secret/astra-registry-cred created

e. (Optional) If you want the cluster to be automatically managed by Astra Control Center after

6

installation, make sure that you provide the kubeconfig as a secret within the Astra Control Center

namespace you intend to deploy into using this command:

kubectl create secret generic [acc-kubeconfig-cred or custom secret

name] --from-file=<path-to-your-kubeconfig> -n [netapp-acc or custom

namespace]

Install the Astra Control Center operator

1. Change the directory:

cd manifests

2. Edit the Astra Control Center operator deployment YAML

(astra_control_center_operator_deploy.yaml) to refer to your local registry and secret.

vim astra_control_center_operator_deploy.yaml

An annotated sample YAML follows these steps.

a. If you use a registry that requires authentication, replace the default line of imagePullSecrets: []

with the following:

imagePullSecrets:

- name: <astra-registry-cred>

b. Change [your_registry_path] for the kube-rbac-proxy image to the registry path where you

pushed the images in a previous step.

c. Change [your_registry_path] for the acc-operator-controller-manager image to the

registry path where you pushed the images in a previous step.

d. (For installations using Astra Data Store preview) See this known issue regarding storage class

provisioners and additional changes you will need to make to the YAML.

7

https://docs.netapp.com/us-en/astra-data-store-2112/release-notes/known-issues.html#mongodb-deployment-with-default-liveness-probe-value-fails-with-pods-in-crash-loop
https://docs.netapp.com/us-en/astra-data-store-2112/release-notes/known-issues.html#mongodb-deployment-with-default-liveness-probe-value-fails-with-pods-in-crash-loop

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 control-plane: controller-manager

 name: acc-operator-controller-manager

 namespace: netapp-acc-operator

spec:

 replicas: 1

 selector:

 matchLabels:

 control-plane: controller-manager

 template:

 metadata:

 labels:

 control-plane: controller-manager

 spec:

 containers:

 - args:

 - --secure-listen-address=0.0.0.0:8443

 - --upstream=http://127.0.0.1:8080/

 - --logtostderr=true

 - --v=10

 image: [your_registry_path]/kube-rbac-proxy:v4.8.0

 name: kube-rbac-proxy

 ports:

 - containerPort: 8443

 name: https

 - args:

 - --health-probe-bind-address=:8081

 - --metrics-bind-address=127.0.0.1:8080

 - --leader-elect

 command:

 - /manager

 env:

 - name: ACCOP_LOG_LEVEL

 value: "2"

 image: [your_registry_path]/acc-operator:[version x.y.z]

 imagePullPolicy: IfNotPresent

 imagePullSecrets: []

3. Install the Astra Control Center operator:

kubectl apply -f astra_control_center_operator_deploy.yaml

8

Sample response:

namespace/netapp-acc-operator created

customresourcedefinition.apiextensions.k8s.io/astracontrolcenters.astra.

netapp.io created

role.rbac.authorization.k8s.io/acc-operator-leader-election-role created

clusterrole.rbac.authorization.k8s.io/acc-operator-manager-role created

clusterrole.rbac.authorization.k8s.io/acc-operator-metrics-reader

created

clusterrole.rbac.authorization.k8s.io/acc-operator-proxy-role created

rolebinding.rbac.authorization.k8s.io/acc-operator-leader-election-

rolebinding created

clusterrolebinding.rbac.authorization.k8s.io/acc-operator-manager-

rolebinding created

clusterrolebinding.rbac.authorization.k8s.io/acc-operator-proxy-

rolebinding created

configmap/acc-operator-manager-config created

service/acc-operator-controller-manager-metrics-service created

deployment.apps/acc-operator-controller-manager created

4. Verify pods are running:

kubectl get pods -n netapp-acc-operator

Configure Astra Control Center

1. Edit the Astra Control Center custom resource (CR) file (astra_control_center_min.yaml) to make

account, autoSupport, registry, and other necessary configurations:

astra_control_center_min.yaml is the default CR and is suitable for most

installations. Familiarize yourself with all CR options and their potential values to ensure you

deploy Astra Control Center correctly for your environment. If additional customizations are

required for your environment, you can use astra_control_center.yaml as an

alternative CR.

vim astra_control_center_min.yaml

If you are using a registry that does not require authorization, you must delete the secret

line within imageRegistry or the installation will fail.

a. Change [your_registry_path] to the registry path where you pushed the images in the previous

step.

b. Change the accountName string to the name you want to associate with the account.

9

https://docs.netapp.com/us-en/astra-control-center-2208/get-started/acc_cluster_cr_options.html

c. Change the astraAddress string to the FQDN you want to use in your browser to access Astra. Do

not use http:// or https:// in the address. Copy this FQDN for use in a later step.

d. Change the email string to the default initial administrator address. Copy this email address for use in

a later step.

e. Change enrolled for AutoSupport to false for sites without internet connectivity or retain true for

connected sites.

f. If you use an external cert-manager, add the following lines to spec:

spec:

 crds:

 externalCertManager: true

g. (Optional) Add a first name firstName and last name lastName of the user associated with the

account. You can perform this step now or later within the UI.

h. (Optional) Change the storageClass value to another Trident storageClass resource if required by

your installation.

i. (Optional) If you want the cluster to be automatically managed by Astra Control Center after installation

and you have already created the secret containing the kubeconfig for this cluster, provide the name of

the secret by adding a new field to this YAML file called astraKubeConfigSecret: "acc-

kubeconfig-cred or custom secret name"

j. Complete one of the following steps:

▪ Other ingress controller (ingressType:Generic): This is the default action with Astra Control

Center. After Astra Control Center is deployed, you will need to configure the ingress controller to

expose Astra Control Center with a URL.

The default Astra Control Center installation sets up its gateway (service/traefik) to be of the

type ClusterIP. This default installation requires you to additionally set up a Kubernetes

IngressController/Ingress to route traffic to it. If you want to use an ingress, see Set up ingress for

load balancing.

▪ Service load balancer (ingressType:AccTraefik): If you don’t want to install an IngressController

or create an Ingress resource, set ingressType to AccTraefik.

This deploys the Astra Control Center traefik gateway as a Kubernetes LoadBalancer type

service.

Astra Control Center uses a service of the type "LoadBalancer" (svc/traefik in the Astra Control

Center namespace), and requires that it be assigned an accessible external IP address. If load

balancers are permitted in your environment and you don’t already have one configured, you can

use MetalLB or another external service load balancer to assign an external IP address to the

service. In the internal DNS server configuration, you should point the chosen DNS name for Astra

Control Center to the load-balanced IP address.

For details about the service type of "LoadBalancer" and ingress, see Requirements.

10

https://docs.netapp.com/us-en/astra-control-center-2208/get-started/requirements.html

apiVersion: astra.netapp.io/v1

kind: AstraControlCenter

metadata:

 name: astra

spec:

 accountName: "Example"

 astraVersion: "ASTRA_VERSION"

 astraAddress: "astra.example.com"

 astraKubeConfigSecret: "acc-kubeconfig-cred or custom secret name"

 ingressType: "Generic"

 autoSupport:

 enrolled: true

 email: "[admin@example.com]"

 firstName: "SRE"

 lastName: "Admin"

 imageRegistry:

 name: "[your_registry_path]"

 secret: "astra-registry-cred"

 storageClass: "ontap-gold"

Complete Astra Control Center and operator installation

1. If you didn’t already do so in a previous step, create the netapp-acc (or custom) namespace:

kubectl create ns [netapp-acc or custom namespace]

Sample response:

namespace/netapp-acc created

2. Install Astra Control Center in the netapp-acc (or your custom) namespace:

kubectl apply -f astra_control_center_min.yaml -n [netapp-acc or custom

namespace]

Sample response:

astracontrolcenter.astra.netapp.io/astra created

11

Verify system status

If you prefer to use OpenShift, you can use comparable oc commands for verification steps.

1. Verify that all system components installed successfully.

kubectl get pods -n [netapp-acc or custom namespace]

Each pod should have a status of Running. It may take several minutes before the system pods are

deployed.

12

Sample response

NAME READY STATUS RESTARTS

AGE

acc-helm-repo-6b44d68d94-d8m55 1/1 Running 0

13m

activity-78f99ddf8-hltct 1/1 Running 0

10m

api-token-authentication-457nl 1/1 Running 0

9m28s

api-token-authentication-dgwsz 1/1 Running 0

9m28s

api-token-authentication-hmqqc 1/1 Running 0

9m28s

asup-75fd554dc6-m6qzh 1/1 Running 0

9m38s

authentication-6779b4c85d-92gds 1/1 Running 0

8m11s

bucketservice-7cc767f8f8-lqwr8 1/1 Running 0

9m31s

certificates-549fd5d6cb-5kmd6 1/1 Running 0

9m56s

certificates-549fd5d6cb-bkjh9 1/1 Running 0

9m56s

cloud-extension-7bcb7948b-hn8h2 1/1 Running 0

10m

cloud-insights-service-56ccf86647-fgg69 1/1 Running 0

9m46s

composite-compute-677685b9bb-7vgsf 1/1 Running 0

10m

composite-volume-657d6c5585-dnq79 1/1 Running 0

9m49s

credentials-755fd867c8-vrlmt 1/1 Running 0

11m

entitlement-86495cdf5b-nwhh2 1/1 Running 2

10m

features-5684fb8b56-8d6s8 1/1 Running 0

10m

fluent-bit-ds-rhx7v 1/1 Running 0

7m48s

fluent-bit-ds-rjms4 1/1 Running 0

7m48s

fluent-bit-ds-zf5ph 1/1 Running 0

7m48s

graphql-server-66d895f544-w6hjd 1/1 Running 0

3m29s

13

identity-744df448d5-rlcmm 1/1 Running 0

10m

influxdb2-0 1/1 Running 0

13m

keycloak-operator-75c965cc54-z7csw 1/1 Running 0

8m16s

krakend-798d6df96f-9z2sk 1/1 Running 0

3m26s

license-5fb7d75765-f8mjg 1/1 Running 0

9m50s

login-ui-7d5b7df85d-l2s7s 1/1 Running 0

3m20s

loki-0 1/1 Running 0

13m

metrics-facade-599b9d7fcc-gtmgl 1/1 Running 0

9m40s

monitoring-operator-67cc74f844-cdplp 2/2 Running 0

8m11s

nats-0 1/1 Running 0

13m

nats-1 1/1 Running 0

13m

nats-2 1/1 Running 0

12m

nautilus-769f5b74cd-k5jxm 1/1 Running 0

9m42s

nautilus-769f5b74cd-kd9gd 1/1 Running 0

8m59s

openapi-84f6ccd8ff-76kvp 1/1 Running 0

9m34s

packages-6f59fc67dc-4g2f5 1/1 Running 0

9m52s

polaris-consul-consul-server-0 1/1 Running 0

13m

polaris-consul-consul-server-1 1/1 Running 0

13m

polaris-consul-consul-server-2 1/1 Running 0

13m

polaris-keycloak-0 1/1 Running 0

8m7s

polaris-keycloak-1 1/1 Running 0

5m49s

polaris-keycloak-2 1/1 Running 0

5m15s

polaris-keycloak-db-0 1/1 Running 0

8m6s

14

polaris-keycloak-db-1 1/1 Running 0

5m49s

polaris-keycloak-db-2 1/1 Running 0

4m57s

polaris-mongodb-0 2/2 Running 0

13m

polaris-mongodb-1 2/2 Running 0

12m

polaris-mongodb-2 2/2 Running 0

12m

polaris-ui-565f56bf7b-zwr8b 1/1 Running 0

3m19s

polaris-vault-0 1/1 Running 0

13m

polaris-vault-1 1/1 Running 0

13m

polaris-vault-2 1/1 Running 0

13m

public-metrics-6d86d66444-2wbzl 1/1 Running 0

9m30s

storage-backend-metrics-77c5d98dcd-dbhg5 1/1 Running 0

9m44s

storage-provider-78c885f57c-6zcv4 1/1 Running 0

9m36s

telegraf-ds-2l2m9 1/1 Running 0

7m48s

telegraf-ds-qfzgh 1/1 Running 0

7m48s

telegraf-ds-shrms 1/1 Running 0

7m48s

telegraf-rs-bjpkt 1/1 Running 0

7m48s

telemetry-service-6684696c64-qzfdf 1/1 Running 0

10m

tenancy-6596b6c54d-vmpsm 1/1 Running 0

10m

traefik-7489dc59f9-6mnst 1/1 Running 0

3m19s

traefik-7489dc59f9-xrkgg 1/1 Running 0

3m4s

trident-svc-6c8dc458f5-jswcl 1/1 Running 0

10m

vault-controller-6b954f9b76-gz9nm 1/1 Running 0

11m

15

2. (Optional) To ensure the installation is completed, you can watch the acc-operator logs using the

following command.

kubectl logs deploy/acc-operator-controller-manager -n netapp-acc-

operator -c manager -f

accHost cluster registration is one of the last operations, and if it fails it will not cause

deployment to fail. In the event of a cluster registration failure indicated in the logs, you can

attempt registration again through the add cluster workflow in the UI or API.

3. When all the pods are running, verify that the installation was successful (READY is True) and get the one-

time password you will use when you log in to Astra Control Center:

kubectl get AstraControlCenter -n netapp-acc

Response:

NAME UUID VERSION ADDRESS

READY

astra ACC-9aa5fdae-4214-4cb7-9976-5d8b4c0ce27f 22.08.1-26

10.111.111.111 True

Copy the UUID value. The password is ACC- followed by the UUID value (ACC-[UUID] or,

in this example, ACC-9aa5fdae-4214-4cb7-9976-5d8b4c0ce27f).

Set up ingress for load balancing

You can set up a Kubernetes ingress controller that manages external access to services, such as load

balancing in a cluster.

This procedure explains how to set up an ingress controller (ingressType:Generic). This is the default

action with Astra Control Center. After Astra Control Center is deployed, you will need to configure the ingress

controller to expose Astra Control Center with a URL.

If you don’t want to set up an ingress controller, you can set ingressType:AccTraefik).

Astra Control Center uses a service of the type "LoadBalancer" (svc/traefik in the Astra

Control Center namespace), and requires that it be assigned an accessible external IP address.

If load balancers are permitted in your environment and you don’t already have one configured,

you can use MetalLB or another external service load balancer to assign an external IP address

to the service. In the internal DNS server configuration, you should point the chosen DNS name

for Astra Control Center to the load-balanced IP address. For details about the service type of

"LoadBalancer" and ingress, see Requirements.

The steps differ depending on the type of ingress controller you use:

16

https://docs.netapp.com/us-en/astra-control-center-2208/get-started/setup_overview.html#add-cluster
https://docs.netapp.com/us-en/astra-control-center-2208/get-started/requirements.html

• Istio ingress

• Nginx ingress controller

• OpenShift ingress controller

What you’ll need

• The required ingress controller should already be deployed.

• The ingress class corresponding to the ingress controller should already be created.

• You are using Kubernetes versions between and including v1.19 and v1.22.

Steps for Istio ingress

1. Configure Istio ingress.

This procedure assumes that Istio is deployed using the "default" configuration profile.

2. Gather or create the desired certificate and private key file for the Ingress Gateway.

You can use a CA-signed or self-signed certificate. The common name must be the Astra address (FQDN).

Sample command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 

-keyout tls.key -out tls.crt

3. Create a secret tls secret name of type kubernetes.io/tls for a TLS private key and certificate

in the istio-system namespace as described in TLS secrets.

Sample command:

kubectl create secret tls [tls secret name]

--key="tls.key"

--cert="tls.crt" -n istio-system

The name of the secret should match the spec.tls.secretName provided in istio-

ingress.yaml file.

4. Deploy an ingress resource in netapp-acc (or custom-named) namespace using either

the v1beta1 (deprecated in Kubernetes version less than or 1.22) or v1 resource type for either a

deprecated or a new schema:

Output:

17

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class

apiVersion: networking.k8s.io/v1beta1

kind: IngressClass

metadata:

 name: istio

spec:

 controller: istio.io/ingress-controller

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: ingress

 namespace: istio-system

spec:

 ingressClassName: istio

 tls:

 - hosts:

 - <ACC addess>

 secretName: [tls secret name]

 rules:

 - host: [ACC addess]

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 serviceName: traefik

 servicePort: 80

For the v1 new schema, follow this sample:

kubectl apply -f istio-Ingress.yaml

Output:

18

apiVersion: networking.k8s.io/v1

kind: IngressClass

metadata:

 name: istio

spec:

 controller: istio.io/ingress-controller

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: ingress

 namespace: istio-system

spec:

 ingressClassName: istio

 tls:

 - hosts:

 - <ACC addess>

 secretName: [tls secret name]

 rules:

 - host: [ACC addess]

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: traefik

 port:

 number: 80

5. Deploy Astra Control Center as usual.

6. Check the status of the ingress:

kubectl get ingress -n netapp-acc

Response:

NAME CLASS HOSTS ADDRESS PORTS AGE

ingress istio astra.example.com 172.16.103.248 80, 443 1h

Steps for Nginx ingress controller

1. Create a secret of type kubernetes.io/tls for a TLS private key and certificate in netapp-acc (or

custom-named) namespace as described in TLS secrets.

19

http://kubernetes.io/tls
https://kubernetes.io/docs/concepts/configuration/secret/#tls-secrets

2. Deploy an ingress resource in netapp-acc (or custom-named) namespace using either the v1beta1

(deprecated in Kubernetes version less than or 1.22) or v1 resource type for either a deprecated or a new

schema:

a. For a v1beta1 deprecated schema, follow this sample:

apiVersion: extensions/v1beta1

Kind: IngressClass

metadata:

 name: ingress-acc

 namespace: [netapp-acc or custom namespace]

 annotations:

 kubernetes.io/ingress.class: [class name for nginx controller]

spec:

 tls:

 - hosts:

 - <ACC address>

 secretName: [tls secret name]

 rules:

 - host: [ACC address]

 http:

 paths:

 - backend:

 serviceName: traefik

 servicePort: 80

 pathType: ImplementationSpecific

b. For the v1 new schema, follow this sample:

20

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: netapp-acc-ingress

 namespace: [netapp-acc or custom namespace]

spec:

 ingressClassName: [class name for nginx controller]

 tls:

 - hosts:

 - <ACC address>

 secretName: [tls secret name]

 rules:

 - host: <ACC addess>

 http:

 paths:

 - path:

 backend:

 service:

 name: traefik

 port:

 number: 80

 pathType: ImplementationSpecific

Steps for OpenShift ingress controller

1. Procure your certificate and get the key, certificate, and CA files ready for use by the OpenShift route.

2. Create the OpenShift route:

oc create route edge --service=traefik

--port=web -n [netapp-acc or custom namespace]

--insecure-policy=Redirect --hostname=<ACC address>

--cert=cert.pem --key=key.pem

Log in to the Astra Control Center UI

After installing Astra Control Center, you will change the password for the default administrator and log in to the

Astra Control Center UI dashboard.

Steps

1. In a browser, enter the FQDN you used in the astraAddress in the

astra_control_center_min.yaml CR when you installed Astra Control Center.

2. Accept the self-signed certificates when prompted.

You can create a custom certificate after login.

21

3. At the Astra Control Center login page, enter the value you used for email in

astra_control_center_min.yaml CR when you installed Astra Control Center, followed by the one-

time password (ACC-[UUID]).

If you enter an incorrect password three times, the admin account will be locked for 15

minutes.

4. Select Login.

5. Change the password when prompted.

If this is your first login and you forget the password and no other administrative user

accounts have yet been created, contact NetApp Support for password recovery assistance.

6. (Optional) Remove the existing self-signed TLS certificate and replace it with a custom TLS certificate

signed by a Certificate Authority (CA).

Troubleshoot the installation

If any of the services are in Error status, you can inspect the logs. Look for API response codes in the 400 to

500 range. Those indicate the place where a failure happened.

Steps

1. To inspect the Astra Control Center operator logs, enter the following:

kubectl logs --follow -n netapp-acc-operator $(kubectl get pods -n

netapp-acc-operator -o name) -c manager

What’s next

Complete the deployment by performing setup tasks.

Understand pod security policy restrictions

Astra Control Center supports privilege limitation through pod security policies (PSPs). Pod security policies

enable you to limit what users or groups are able to run containers and what privileges those containers can

have.

Some Kubernetes distributions, such as RKE2, have a default pod security policy that is too restrictive, and

causes problems when installing Astra Control Center.

You can use the information and examples included here to understand the pod security policies that Astra

Control Center creates, and configure pod security policies that provide the protection you need without

interfering with Astra Control Center functions.

PSPs installed by Astra Control Center

Astra Control Center creates several pod security policies during installation. Some of these are permanent,

and some of them are created during certain operations and are removed once the operation is complete.

22

https://docs.netapp.com/us-en/astra-control-center-2208/get-started/add-custom-tls-certificate.html
https://docs.netapp.com/us-en/astra-control-center-2208/get-started/add-custom-tls-certificate.html
https://docs.netapp.com/us-en/astra-control-center-2208/get-started/setup_overview.html

PSPs created during installation

During Astra Control Center installation, the Astra Control Center operator installs a custom pod security policy,

a Role object, and a RoleBinding object to support the deployment of Astra Control Center services in the

Astra Control Center namespace.

The new policy and objects have the following attributes:

kubectl get psp

NAME PRIV CAPS SELINUX RUNASUSER

FSGROUP SUPGROUP READONLYROOTFS VOLUMES

avp-psp false RunAsAny RunAsAny

RunAsAny RunAsAny false *

netapp-astra-deployment-psp false RunAsAny RunAsAny

RunAsAny RunAsAny false *

kubectl get role

NAME CREATED AT

netapp-astra-deployment-role 2022-06-27T19:34:58Z

kubectl get rolebinding

NAME ROLE

AGE

netapp-astra-deployment-rb Role/netapp-astra-deployment-role

32m

PSPs created during backup operations

During backup operations, Astra Control Center creates a dynamic pod security policy, a ClusterRole object,

and a RoleBinding object. These support the backup process, which happens in a separate namespace.

The new policy and objects have the following attributes:

23

kubectl get psp

NAME PRIV CAPS

SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS

VOLUMES

netapp-astra-backup false DAC_READ_SEARCH

RunAsAny RunAsAny RunAsAny RunAsAny false *

kubectl get role

NAME CREATED AT

netapp-astra-backup 2022-07-21T00:00:00Z

kubectl get rolebinding

NAME ROLE AGE

netapp-astra-backup Role/netapp-astra-backup 62s

PSPs created during cluster management

When you manage a cluster, Astra Control Center installs the netapp-monitoring operator in the managed

cluster. This operator creates a pod security policy, a ClusterRole object, and a RoleBinding object to deploy

telemetry services in the Astra Control Center namespace.

The new policy and objects have the following attributes:

kubectl get psp

NAME PRIV CAPS

SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS

VOLUMES

netapp-monitoring-psp-nkmo true AUDIT_WRITE,NET_ADMIN,NET_RAW

RunAsAny RunAsAny RunAsAny RunAsAny false *

kubectl get role

NAME CREATED AT

netapp-monitoring-role-privileged 2022-07-21T00:00:00Z

kubectl get rolebinding

NAME ROLE

AGE

netapp-monitoring-role-binding-privileged Role/netapp-

monitoring-role-privileged 2m5s

24

Enable network communication between namespaces

Some environments use NetworkPolicy constructs to restrict traffic between namespaces. The Astra Control

Center operator, Astra Control Center, and the Astra Plugin for VMware vSphere are all in different

namespaces. The services in these different namespaces need to be able to communicate with one another.

To enable this communication, follow these steps.

Steps

1. Delete any NetworkPolicy resources that exist in the Astra Control Center namespace:

kubectl get networkpolicy -n netapp-acc

2. For each NetworkPolicy object that is returned by the preceding command, use the following command to

delete it. Replace <OBJECT_NAME> with the name of the returned object:

kubectl delete networkpolicy <OBJECT_NAME> -n netapp-acc

3. Apply the following resource file to configure the acc-avp-network-policy object to allow Astra Plugin for

VMware vSphere services to make requests to Astra Control Center services. Replace the information in

brackets <> with information from your environment:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: acc-avp-network-policy

 namespace: <ACC_NAMESPACE_NAME> # REPLACE THIS WITH THE ASTRA CONTROL

CENTER NAMESPACE NAME

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 kubernetes.io/metadata.name: <PLUGIN_NAMESPACE_NAME> #

REPLACE THIS WITH THE ASTRA PLUGIN FOR VMWARE VSPHERE NAMESPACE NAME

4. Apply the following resource file to configure the acc-operator-network-policy object to allow the Astra

Control Center operator to communicate with Astra Control Center services. Replace the information in

brackets <> with information from your environment:

25

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: acc-operator-network-policy

 namespace: <ACC_NAMESPACE_NAME> # REPLACE THIS WITH THE ASTRA CONTROL

CENTER NAMESPACE NAME

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 kubernetes.io/metadata.name: <NETAPP-ACC-OPERATOR> #

REPLACE THIS WITH THE OPERATOR NAMESPACE NAME

Remove resource limitations

Some environments use the ResourceQuotas and LimitRanges objects to prevent the resources in a

namespace from consuming all available CPU and memory on the cluster. Astra Control Center does not set

maximum limits, so it will not be in compliance with those resources. You need to remove them from the

namespaces where you plan to install Astra Control Center.

You can use the following steps to retrieve and remove these quotas and limits. In these examples, the

command output is shown immediately after the command.

Steps

1. Get the resource quotas in the netapp-acc namespace:

kubectl get quota -n netapp-acc

Response:

NAME AGE REQUEST LIMIT

pods-high 16s requests.cpu: 0/20, requests.memory: 0/100Gi

limits.cpu: 0/200, limits.memory: 0/1000Gi

pods-low 15s requests.cpu: 0/1, requests.memory: 0/1Gi

limits.cpu: 0/2, limits.memory: 0/2Gi

pods-medium 16s requests.cpu: 0/10, requests.memory: 0/20Gi

limits.cpu: 0/20, limits.memory: 0/200Gi

2. Delete all of the resource quotas by name:

26

kubectl delete resourcequota pods-high -n netapp-acc

kubectl delete resourcequota pods-low -n netapp-acc

kubectl delete resourcequota pods-medium -n netapp-acc

3. Get the limit ranges in the netapp-acc namespace:

kubectl get limits -n netapp-acc

Response:

NAME CREATED AT

cpu-limit-range 2022-06-27T19:01:23Z

4. Delete the limit ranges by name:

kubectl delete limitrange cpu-limit-range -n netapp-acc

27

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

28

http://www.netapp.com/TM

	Install Astra Control Center : Astra Control Center
	Table of Contents
	Install Astra Control Center using the standard process
	Download and unpack the Astra Control Center bundle
	Install the NetApp Astra kubectl plugin
	Add the images to your local registry
	Set up namespace and secret for registries with auth requirements
	Install the Astra Control Center operator
	Configure Astra Control Center
	Complete Astra Control Center and operator installation
	Verify system status
	Set up ingress for load balancing
	Log in to the Astra Control Center UI
	Troubleshoot the installation
	What’s next
	Understand pod security policy restrictions

