Define File and Block Nodes
BeeGFS on NetApp with E-Series Storage

NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/custom/architectures-inventory-
configure-file-nodes.html on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Define File and Block Nodes

Configure Individual File Nodes
Overview
Steps

Configure Individual Block Nodes
Overview
Steps

Specify Common File Node Configuration
Overview
Steps

Specify Common Block Node Configuration
Overview
Steps

(ol e I A e e

- A A
> o1 01

Define File and Block Nodes

Configure Individual File Nodes

Specify configuration for individual file nodes using host variables (host_vars).

Overview

This section walks through populating a host vars/<FILE NODE HOSTNAME>.yml file for each file node in
the cluster. These files should only contain configuration unique to a particular file node. This commonly
includes:

+ Defining the IP or hostname Ansible should use to connect to the node.

» Configuring additional interfaces and cluster IPs used for HA cluster services (Pacemaker and Corosync)
to communicate to other file nodes. By default these services use the same network as the management
interface, but additional interfaces should be available for redundancy. Common practice is to define
additional IPs on the storage network, avoiding the need for an additional cluster or management network.

o The performance of any networks used for cluster communication is not critical for file system
performance. With the default cluster configuration generally at least a 1Gb/s network will provide
sufficient performance for cluster operations such as synchronizing node states and coordinating
cluster resource state changes. Slow/busy networks may cause resource state changes to take longer
than usual, and in extreme cases could result in nodes being evicted from the cluster if they cannot
send heartbeats in a reasonable time frame.

» Configuring interfaces used for connecting to block nodes over the desired protocol (for example:
iISCSI/ISER, NVMe/IB, NVMe/RoCE, FCP, etc.)
Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each file node in the
cluster create a file host vars/<FILE NODE HOSTNAME>/yml and populate it as follows:

1. At the top specify the IP or hostname Ansible should use to SSH to the node and manage it:
ansible host: "<MANAGEMENT IP>"

2. Configure additional IPs that can be used for cluster traffic:

a. If the network type is InfiniBand (using IPolB):

eseries ipoib interfaces:

- name: <INTERFACE> # Example: ib0 or ilb
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

https://docs.netapp.com/us-en/beegfs/custom/architectures-plan-file-system.html
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce

eseries roce interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

eseries ip interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

3. Indicate what IPs should be used for cluster traffic, with preferred IPs listed higher:

beegfs ha cluster node ips:

- <MANAGEMENT IP> # Including the management IP is typically but not

required.
- <IP_ADDRESS> # Ex: 100.127.100.1
- <IP ADDRESS> # Additional IPs as needed.

IPs configured in step two will not be used as cluster IPs unless they are included in the

beegfs ha cluster node_ ips list. This allows you to configure additional IPs/interfaces
using Ansible that can be used for other purposes if desired.

4. If the file node needs to communicate to block nodes over an IP-based protocol, IPs will need to be
configured on the appropriate interface, and any packages required for that protocol installed/configured.

a. If using iISCSI:

eseries iscsi interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

b. If using ISER:

eseries ib iser interfaces:
- name: <INTERFACE> # Example: ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16

configure: true # If the file node is directly connected to the
block node set to true to setup OpenSM.

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md

c. If using NVMe/IB:

eseries nvme ib interfaces:
- name: <INTERFACE> # Example: ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16
configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.
d. If using NVMe/RoCE:

eseries nvme roce interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Other Protocols:

i. If using NVMe/FC, configuring individual interfaces is not required. The BeeGFS cluster
deployment will automatically detect the protocol and install/configure requirements as needed. If
you are using a fabric to connect file and block nodes, ensure switches are properly zoned
following NetApp and your switch vendor’s best practices.

i. Use of FCP or SAS do not require installing or configuring additional software. If using FCP, ensure
switches are properly zoned following NetApp and your switch vendor’s best practices.

ii. Use of IB SRP is not recommended at this time. Use NVMe/IB or iSER depending on what your E-
Series block nodes support.

Click here for an example of a complete inventory file representing a single file node.

Advanced: Toggling NVIDIA ConnectX VPI Adapters between Ethernet and InfiniBand Mode

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) adapters support both InfiniBand and Ethernet as
the transport layer. Switching between modes is not automatically negotiated, and must be configured using
the <code>mstconfig</code> tool included in <code>mstflint</code>, an open source package that is part of
the <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">NVIDIA Firmare Tools (MFT). Changing the mode of the adapters only need to be done
once. This can be done manually, or included in the Ansible inventory as part of any interfaces configured
using the <code>eseries-[ib|ib_iser|ipoibjnvme_ib|nvme_roce|roce] interfaces:</code> section of the
inventory, to have it checked/applied automatically.

For example to change an interface current in InfiniBand mode to Ethernet so it can be used for RoCE:

1. For each interface you want to configure specify mstconfig as a mapping (or dictionary) that specifies
LINK TYPE P<N>where <N> is determined by the HCA's port number for the interface. The <N> value
can be determined by running grep PCI_SLOT NAME
/sys/class/net/<INTERFACE NAME>/device/uevent and adding 1 to the last number from the PCI
slot name and converting to decimal.

a. For example given PCI_SLOT NAME=0000:2£:00.2(2+1 — HCAport 3) - LINK_TYPE P3:
eth:

https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml

eseries roce interfaces:
- name: <INTERFACE>
address: <IP/SUBNET>
mstconfig:
LINK TYPE P3: eth

For additional details refer to the NetApp E-Series Host collection’s documentation for the interface
type/protocol you are using.

Configure Individual Block Nodes

Specify configuration for individual block nodes using host variables (host_vars).

Overview

This section walks through populating a host _vars/<BLOCK NODE HOSTNAME>.yml file for each block
node in the cluster. These files should only contain configuration unique to a particular block node. This
commonly includes:

* The system name (as displayed in System Manager).

* The HTTPS URL for one of the controllers (used to manage the system using its REST API).

» What storage protocol file nodes use to connect to this block node.

» Configuring host interface card (HIC) ports, such as IP addresses (if needed).

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each block node in the
cluster create a file host vars/<BLOCK NODE HOSTNAME>/yml and populate it as follows:

1. At the top specify the system name and the HTTPS URL for one of the controllers:

eseries system name: <SYSTEM NAME>
eseries system api url:
https://<MANAGEMENT HOSTNAME OR IP>:8443/devmgr/v2/

2. Select the protocol file nodes will use to connect to this block node:

a. Supported Protocols: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme ib, nvme fc, nvme roce.
eseries initiator protocol: <PROTOCOL>

3. Depending on the protocol in use, the HIC ports may require additional configuration. When needed, HIC
port configuration should be defined so the top entry in the configuration for each controller corresponds
with with the physical left-most port on each controller, and the bottom port the right-most port. All ports
require valid configuration even if they are not currently in use.

https://github.com/netappeseries/host
https://docs.netapp.com/us-en/beegfs/custom/architectures-plan-file-system.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

@ Also see the section below if you are using HDR (200Gb) InfiniBand or 200Gb RoCE with
EF600 block nodes.

a. ForiSCSI:

eseries controller iscsi port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.
Choices: enabled, disabled
config method: # Port configuration method Choices: static,
dhcp
address: # Port IPv4 address
gateway: # Port IPv4 gateway
subnet mask: # Port IPv4 subnet mask
mtu: # Port IPv4 mtu
- (...) # Additional ports as needed.
controller Db: # Ordered list of controller B channel

definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller iscsi port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller iscsi port config method: dhcp # General port
configuration method definition for both controllers. Choices:
static, dhcp

eseries controller iscsi port gateway: # General port
IPv4 gateway for both controllers.

eseries controller iscsi port subnet mask: # General port
IPv4 subnet mask for both controllers.

eseries controller iscsi port mtu: 9000 # General port
maximum transfer units (MTU) for both controllers. Any value greater
than 1500 (bytes).

b. For iSER:

eseries controller ib iser port:

controller a:
definition.

= (ooo)
controller Db:

definition.

c. For NVMe/IB:

Ordered list of controller A channel address

Port IPv4 address for channel 1
So on and so forth

Ordered list of controller B channel address

eseries controller nvme ib port:

controller a:

definition.

- (...)
controller Db:

definition.

d. For NVMe/RoCE:

Ordered list of controller A channel address

Port IPv4 address for channel 1
So on and so forth
Ordered list of controller B channel address

eseries controller nvme roce port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.
config method: # Port configuration method Choices: static,

dhcp

address: # Port IPv4 address
subnet mask: # Port IPv4 subnet mask
gateway: # Port IPv4 gateway
mtu: # Port IPv4 mtu
speed: # Port IPv4 speed

#

controller Db: Ordered list of controller B channel
definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller nvme roce port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller nvme roce port config method: dhcp # General
port configuration method definition for both controllers. Choices:
static, dhcp

eseries controller nvme roce port gateway: # General
port IPv4 gateway for both controllers.

eseries controller nvme roce port subnet mask: # General

port IPv4 subnet mask for both controllers.

eseries controller nvme roce port mtu: 4200 # General
port maximum transfer units (MTU). Any value greater than 1500
(bytes) .

eseries controller nvme roce port speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

e. FC and SAS protocols do not require additional configuration. SRP is not correctly recommended.

For additional options to configure HIC ports and host protocols including the ability to configure iISCSI CHAP
refer to the documentation included with the SANTricity collection. Note when deploying BeeGFS the storage
pool, volume configuration, and other aspects of provisioning storage will be configured elsewhere, and should
not be defined in this file.

Click here for an example of a complete inventory file representing a single block node.

Using HDR (200Gb) InfiniBand or 200Gb RoCE with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600, a second "virtual" IP must be configured for each physical
port. Below is an example of the correct way to configure an EF600 equipped with the dual port InfiniBand

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

HDR HIC:

eseries controller nvme ib port:

controller a:

- 192.168.1.101 # Port 2a (virtual)
- 192.168.2.101 # Port 2b (virtual)
- 192.168.1.100 # Port 2a (physical)
- 192.168.2.100 # Port 2b (physical)
controller Db:
- 192.168.3.101 # Port 2a (virtual)
- 192.168.4.101 # Port 2b (virtual)
- 192.168.3.100 # Port 2a (physical)
- 192.168.4.100 # Port 2b (physical)

Specify Common File Node Configuration

Specify common file node configuration using group variables (group_vars).

Overview

Configuration that should apple to all file nodes is defined at group vars/ha cluster.yml. It commonly
includes:

* Details on how to connect and login to each file node.

» Common networking configuration.

» Whether automatic reboots are allowed.

* How firewall and selinux states should be configured.

+ Cluster configuration including alerting and fencing.

* Performance tuning.

» Common BeeGFS service configuration.

The options set in this file can also be defined on individual file nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual file nodes will take precedence over the configuration in this file.

Steps
Create the file group vars/ha_cluster.yml and populate it as follows:
1. Indicate how the Ansible Control node should authenticate with the remote hosts:

ansible ssh user: root
ansible become password: <PASSWORD>

Particularly for production environments, do not store passwords in plain text. Instead, use
Ansible Vault (see Encrypting content with Ansible Vault) or the -—ask-become-pass

@ option when running the playbook. If the ansible ssh user is already root, then you can
optionally omit the ansible become password

2. If you are configuring static IPs on ethernet or InfiniBand interfaces (for example cluster IPs) and multiple
interfaces are in the same IP subnet (for example if ib0O is using 192.168.1.10/24 and ib1 is using
192.168.1.11/24), additional IP routing tables and rules must be setup for multi-homed support to work
properly. Simply enable the provided network interface configuration hook as follows:

eseries ip default hook templates:

- 99-multihoming.j2

3. When deploying the cluster, depending on the storage protocol it may be necessary for nodes to be
rebooted to facilitate discovering remote block devices (E-Series volumes) or apply other aspects of the
configuration. By default nodes will prompt before rebooting, but you can allow nodes to restart
automatically by specifying the following:

eseries common allow host reboot: true

a. By default after a reboot, to ensure block devices and other services are ready Ansible will wait until the
systemd default.target is reached before continuing with the deployment. In some scenarios
when NVMe/IB is in use, this may not be long enough to initialize, discover, and connect to remote
devices. This can result in the automated deployment continuing prematurely and failing. To avoid this
when using NVMe/IB also define the following:

eseries common reboot test command: "! systemctl status
eseries nvme ib.service || systemctl --state=exited | grep

eseries nvme ib.service"

4. A number of firewall ports are required for BeeGFS and HA cluster services to communicate. Unless you
wish to configure the firwewall manually (not recommended), specify the following to have required firewall
zones created and ports opened automatically:

beegfs ha firewall configure: True

5. At this time SELinux is not supported, and it is is recommended the state be set to disabled to avoid
conflicts (especially when RDMA is in use). Set the following to ensure SELinux is disabled:

eseries beegfs ha disable selinux: True

eseries selinux state: disabled

6. Configure authentication so file nodes are able to communicate, adjusting the defaults as needed based on
your organizations policies:

https://docs.ansible.com/ansible/latest/vault_guide/index.html

beegfs ha cluster name: hacluster # BeeGFS HA cluster

name.

beegfs ha cluster username: hacluster # BeeGFS HA cluster
username.

beegfs ha cluster password: hapassword # BeeGFS HA cluster

username's password.
beegfs ha cluster password shab5l2 salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. Based on the Plan the File System section specify the BeeGFS management IP for this file system:

beegfs ha mgmtd floating ip: <IP ADDRESS>

While seemingly redundant, beegfs ha mgmtd floating ip is important when you

CD scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are
deployed without an additional BeeGFS management service and point at the management
service provided by the first cluster.

8. Enable email alerts if desired:

beegfs ha enable alerts: True

E-mail recipient list for notifications when BeeGFS HA resources
change or fail.

beegfs ha alert email list: ["<EMAIL>"]

This dictionary is used to configure postfix service
(/etc/postfix/main.cf) which is required to set email alerts.
beegfs ha alert conf ha group options:

This parameter specifies the local internet domain name. This is
optional when the cluster nodes have fully qualified hostnames (i.e.
host.example.com)

mydomain: <MY DOMAIN>
beegfs ha alert verbosity: 3
1) high-level node activity
3) high-level node activity + fencing action information + resources
(filter on X-monitor)
#

5) high-level node activity + fencing action information + resources

9. Enabling fencing is strongly recommended, otherwise services can be blocked from starting on secondary

10

nodes when the primary node fails.

a. Enable fencing globally by specifying the following:

https://docs.netapp.com/us-en/beegfs/custom/architectures-plan-file-system.html

beegfs ha cluster crm config options:
stonith-enabled: True

i. Note any supported cluster property can also be specified here if needed. Adjusting these is not
typically needed, as the BeeGFS HA role ships with a number of well tested defaults.

b. Next select and configure a fencing agent:
i. OPTION 1: To enable fencing using APC Power Distribution Units (PDUs):

beegfs ha fencing agents:
fence apc:
- lpaddr: <PDU IP ADDRESS>
login: <PDU_ USERNAME>
passwd: <PDU PASSWORD>
pcmk host map:
"<HOSTNAME>:<PDU PORT>, <PDU PORT>; <HOSTNAME>:<PDU PORT>, <PDU PORT>

n

i. OPTION 2: To enable fencing using the Redfish APIs provided by the Lenovo XCC (and other
BMCs):

redfish: &redfish

username: <BMC USERNAME>

password: <BMC PASSWORD>

ssl insecure: 1 # If a valid SSL certificate is not available
specify “1”.

beegfs ha fencing agents:
fence redfish:

- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish

- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish

ii. For details on configuring other fencing agents refer to the Red Hat Documentation.

10. The BeeGFS HA role can apply many different tuning parameters to help further optimize performance.
These include optimizing kernel memory utilization and block device I/O, among other parameters. The role
ships with a reasonable set of defaults based on testing with NetApp E-Series block nodes, but by default
these aren’t applied unless you specify:

beegfs ha enable performance tuning: True

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180

a. If needed also specify any changes to the default performance tuning here. See the full performance
tuning parameters documentation for additional details.

11. To ensure floating IP addresses (sometimes known as logical interfaces) used for BeeGFS services can fail

over between file nodes, all network interfaces must be named consistently. By default network interface
names are generated by the kernel, which is not guaranteed to generate consistent names, even across
identical server models with network adapters installed in the same PCle slots. This is also useful when
creating inventories before the equipment is deployed and generated interface names are known. To
ensure consistent device names, based on a block diagram of the server or 1shw -class network
-businfo output, specify the desired PCle address-to-logical interface mapping as follows:

a. For InfiniBand (IPolB) network interfaces:

eseries ipoib udev rules:
"<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: ila

b. For Ethernet network interfaces:

eseries ip udev rules:
"<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: ela

To avoid conflicts when interfaces are renamed (preventing them from being renamed),
you should not use any potential default names such as eth0, ens9f0, ib0, or ibs4f0. A

@ common naming convention is to use 'e' or 'i' for Ethernet or InfiniBand, followed by the
PCle slot number, and a letter to indicate the the port. For example the second port of an
InfiniBand adapter installed in slot 3 would be: i3b.

@ If you are using a verified file node model, click here example PCle address-to-logical
port mappings.

12. Optionally specify configuration that should apply to all BeeGFS services in the cluster. Default
configuration values can be found here, and per-service configuration is specified elsewhere:

a. BeeGFS Management service:

beegfs ha beegfs mgmtd conf ha group options:
<OPTION>: <VALUE>

b. BeeGFS Metadata services:

beegfs ha beegfs meta conf ha group options:
<OPTION>: <VALUE>

c. BeeGFS Storage services:

12

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

beegfs ha beegfs storage conf ha group options:
<OPTION>: <VALUE>

13. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled. There
are a few ways this can be configured using the Ansible based deployment:

a. By default the deployment will automatically configure connection authentication, and generate a
connauthfile that will be distributed to all file nodes and used with the BeeGFS services. This file
will also be placed/maintained on the Ansible control node at
<INVENTORY>/files/beegfs/<sysMgmtdHost> connAuthFile where it should be maintained
(securely) for reuse with clients that need to access this file system.

i. To generate a new key specify ~e "beegfs ha conn_auth force new=True when running
the Ansible playbook. Note this is ignored if a beegfs _ha conn auth secret is defined.

i. For advanced options refer to the full list of defaults included with the BeeGFS HA role.

b. A custom secret can be used by defining the following in ha cluster.yml:

beegfs ha conn auth secret: <SECRET>

c. Connection authentication can be disabled entirely (NOT recommended):

beegfs ha conn auth enabled: false

Click here for an example of a complete inventory file representing common file node configuration.

Using HDR (200Gb) InfiniBand with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600 the subnet manager must support virtualization. If file and
block nodes are connected using a switch, this will need to be enabled on the subnet manager manager for the
overall fabric.

If block and file nodes are directly connected using InfiniBand, an instance of opensm must be configured on
each file node for each interface directly connected to a block node. This is done by specifying configure:
true when configuring file node storage interfaces.

Currently the inbox version of opensm shipped with supported Linux distributions does not support
virtualization. Instead it is required you install and configure version of opensm from the NVIDIA OpenFabrics
Enterprise Distribution (OFED). Although deployment using Ansible is still supported, a few additional steps are
required:

1. Using curl or your desired tool, download the packages for the version of OpenSM listed in the technology
requirements section from NVIDIA's website to the <INVENTORY>/packages/ directory. For example:

13

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html

curl -o packages/opensm-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-5.17.2.MLNX20240610.dc7c2998~-
0.1.2310322.x86_64.rpm

curl -o packages/opensm-1libs-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86 64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-1ibs-5.17.2.MLNX20240610.dc7c2998-
0.1.2310322.x86_64.rpm

2. Under group vars/ha cluster.yml define the following configuration

14

OpenSM package and configuration information
eseries ib opensm allow upgrades: true
eseries ib opensm skip package validation: true
eseries ib opensm rhel packages: []
eseries ib opensm custom packages:
install:
- files:
add:
"packages/opensm-5.17.2.MLNX20240610.dc7c2998~-

0.1.2310322.x86_64.rpm": "/tmp/"

"packages/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998-

0.1.2310322.x86 64.rpm": "/tmp/"
- packages:
add:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm

- /tmp/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998~-

0.1.2310322.x86_64.rpm
uninstall:
- packages:
remove:
- opensm
- opensm-libs
files:
remove:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998~-
0.1.2310322.x86 64.rpm

- /tmp/opensm-1libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86 64.rpm

eseries ib opensm options:

virt enabled: "2"

Specify Common Block Node Configuration

Specify common block node configuration using group variables (group_vars).

Overview

Configuration that should apple to all block nodes is defined at
group vars/eseries storage systems.yml. |t commonly includes:

+ Details on how the Ansible control node should connect to E-Series storage systems used as block nodes.

* What firmware, NVSRAM, and Drive Firmware versions the nodes should run.

15

* Global configuration including cache settings, host configuration, and settings for how volumes should be
provisioned.

The options set in this file can also be defined on individual block nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual block nodes will take precedence over the configuration in this file.

Steps
Create the file group vars/eseries storage systems.yml and populate it as follows:

1. Ansible does not use SSH to connect to block nodes, and instead uses REST APls. To achieve this we
must set:

ansible connection: local

2. Specify the username and password to manage each node. The username can be optionally omitted (and
will default to admin), otherwise you can specify any account with admin privileges. Also specify if SSL
certificates should be verified, or ignored:

eseries system username: admin
eseries system password: <PASSWORD>
eseries validate certs: false

@ Listing any passwords in plaintext is not recommended. Use Ansible vault or provide the
eseries_system password when running Ansible using --extra-vars.

3. Optionally specify what controller firmware, NVSRAM, and drive firmware should be installed on the nodes.
These will need to be downloaded to the packages/ directory before running Ansible. E-Series controller
firmware and NVSRAM can be downloaded here and drive firmware here:

eseries firmware firmware: "packages/<FILENAME>.dlp" # Ex.
"packages/RCB _11.80GA 6000 64ccOee3.dlp"
eseries firmware nvsram: "packages/<FILENAME>.dlp" # Ex.
"packages/N6000-880834-D08.d1lp"
eseries drive firmware firmware list:

- "packages/<FILENAME>.dlp"

Additional firmware versions as needed.
eseries drive firmware upgrade drives online: true # Recommended unless
BeeGFS hasn't been deployed yet, as it will disrupt host access if set
to "false".

If this configuration is specified, Ansible will automatically update all firmware including
@ rebooting controllers (if necessary) with with no additional prompts. This is expected to be
non-disruptive to BeeGFS/host I/O, but may cause a temporary decrease in performance.

16

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

4. Adjust global system configuration defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries system cache block size: 32768

eseries system cache flush threshold: 80

eseries system default host type: linux dm-mp

eseries system autoload balance: disabled

eseries system host connectivity reporting: disabled

eseries system controller shelf id: 99 # Required by default.

5. Configure global volume provisioning defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries volume size unit: pct # Required by default. This allows volume
capacities to be specified as a percentage, simplifying putting together
the inventory.

eseries volume read cache enable: true

eseries volume read ahead enable: false

eseries volume write cache enable: true

eseries volume write cache mirror enable: true

eseries volume cache without batteries: false

6. If needed, adjust the order in which Ansible will select drives for storage pools and volume groups keeping
in mind the following best practices:

a. List any (potentially smaller) drives that should be used for management and/or metadata volumes first,
and storage volumes last.

b. Ensure to balance the drive selection order across available drive channels based on the disk
shelf/drive enclosure model(s). For example with the EF600 and no expansions, drives 0-11 are on
drive channel 1, and drives 12-23 are on drive channel. Thus a strategy to balance drive selection is to
select disk shelf:drive 99:0, 99:23, 99:1, 99:22, etc. In the event there is more than one
enclosure, the first digit represents the drive shelf ID.

Optimal/recommended order for the EF600 (no expansion) :

eseries storage pool usable drives:
"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18, 99
3B, 99817, 9987, 98816, 988, YRS, &R Q) Ce)gilal ~CCIaal0), ©Cg s, ©Cigalil , CC)g I 2w

Click here for an example of a complete inventory file representing common block node configuration.

17

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

18

http://www.netapp.com/TM

	Define File and Block Nodes : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Define File and Block Nodes
	Configure Individual File Nodes
	Overview
	Steps

	Configure Individual Block Nodes
	Overview
	Steps

	Specify Common File Node Configuration
	Overview
	Steps

	Specify Common Block Node Configuration
	Overview
	Steps

