Define the BeeGFS file system
BeeGFS on NetApp with E-Series Storage

NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/custom/architectures-inventory-
overview.html on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Define the BeeGFS file system

Ansible Inventory Overview
Overview
Steps
Plan the File System
Overview
Steps
Define File and Block Nodes
Configure Individual File Nodes
Configure Individual Block Nodes
Specify Common File Node Configuration
Specify Common Block Node Configuration
Define BeeGFS services
Define the BeeGFS management service
Define the BeeGFS metadata service
Define the BeeGFS storage service
Map BeeGFS services to file nodes
Overview
Steps

D W WNDNDN-_22 A~ A

N NN DNDN=2 22
O O o1 W =~ © © N O

Define the BeeGFS file system

Ansible Inventory Overview

The Ansible inventory is a set of configuration files that define the desired BeeGFS HA
cluster.

Overview

It is recommended to follow standard Ansible practices for organizing your inventory, including the use of sub-
directories/files instead of storing the entire inventory in one file.

The Ansible inventory for a single BeeGFS HA cluster is organized as follows:

./beegfs_cluster_1/

Jhost_vars/

Jgroup_vars/ — @

Contained on the
Ansible Control Node

/| nventory_ym | Usually, the Ansible inventory is

version controlled in a Git
repository to ensure it is not lost
and changes can be reverted.

playbook.yml
—

Since a single BeeGFS file system can span multiple HA clusters, it is possible for large
@ installations to have multiple Ansible inventories. Generally it is not recommend to try and define
multiple HA clusters as a single Ansible inventory to avoid issues.

Steps

1. On your Ansible control node create an empty directory that will contain the Ansible inventory for the
BeeGFS cluster you want to deploy.

a. If your file system will/may eventually contain multiple HA clusters, it is recommended to first create a
directory for the file system, then sub-directories for the inventory representing each HA cluster. For
example:

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

beegfs file system 1/
beegfs cluster 1/
beegfs cluster 2/
beegfs cluster N/

2. In the directory containing the inventory for the HA cluster you want to deploy, create two directories
group vars and host vars and two files inventory.yml and playbook. yml.

The following sections walk through defining the contents of each of these files.

Plan the File System

Plan the file system deployment before building out the Ansible inventory.

Overview

Before deploying the file system, you should define what IP addresses, ports, and other configuration will be
required by all file nodes, block nodes, and BeeGFS services running in the cluster. While the exact
configuration will vary based on the architecture of the cluster, this section defines best practices and steps to
follow that are generally applicable.

Steps

1. If you are using an IP based storage protocol (such as iSER, iSCSI, NVMe/IB, or NVMe/RoCE) to connect
file nodes to block nodes, fill out the following worksheet for each building block. Each direct connect in a
single building block should have a unique subnet, and there should be no overlap with subnets used for
client-server connectivity.

File node IB port IP address Block node IB port Physical IP Virtual IP (for
EF600 with
HDR IB only)
<HOSTNAME <PORT> <IP/SUBNET <HOSTNAME <PORT> <IP/SUBNET <IP/SUBNET
> > > > >
@ If the file and block nodes in each building block are directly connected you can often reuse
the same IPs/scheme for multiple building blocks.

2. Regardless if you are using InfiniBand or RDMA over Converged Ethernet (RoCE) for the storage network,
fill out the following worksheet to determine the IP ranges that will be used for HA cluster services,
BeeGFS file services, and clients to communicate:

Purpose InfiniBand port IP address or range
BeeGFS Cluster IP(s) <INTERFACE(s)> <RANGE>

BeeGFS Management <INTERFACE(s)> <IP(s)>

BeeGFS Metadata <INTERFACE(s)> <RANGE>

BeeGFS Storage <INTERFACE(s)> <RANGE>

Purpose InfiniBand port IP address or range

BeeGFS Clients <INTERFACE(s)> <RANGE>

a. If you are using a single IP subnet only one worksheet is needed, otherwise also fill out a worksheet for
the second subnet.

3. Based on the above, for each building block in the cluster, fill out the following worksheet defining what
BeeGFS services it will run. For each service specify the preferred/secondary file node(s), network port,
floating IP(s), NUMA zone assignment (if required), and what block node(s) will be used for its targets.
Refer to the following guidelines when filling out the worksheet:

a. Specify BeeGFS services as either mgmt . yml, meta <ID>.yml, Or storage <ID>.yml where ID
represents a unique number across all BeeGFS services of that type in this file system. This
convention will simplify referring back to this worksheet in subsequent sections while creating files to
configure each service.

b. Ports for BeeGFS services only need to be unique across a particular building block. Ensure services
with the same port number cannot ever run on the same file node to avoid port conflicts.

c. If necessary services can use volumes from more than one block node and/or storage pool (and not all
volumes need to be owned by the same controller). Multiple services can also share the same block
node and/or storage pool configuration (individual volumes will be defined in a later section).

BeeGFS File Nodes Port Floating NUMA Block Storage Owning
service IPs zone node pool controller
(file name)
<SERVICE <PREFER <PORT> <INTERFA <NUMA <BLOCK <STORAG <AORB>
TYPE> <I RED FILE CE>:<IP/S NODE/ZO NODE> E
D>.yml NODE> UBNET> NE> POOL/VOL

<SECOND <INTERFA UME

ARY FILE CE>:<IP/S GROUP>

NODE(s)> UBNET>

For more details on standard conventions, best practices, and filled out example worksheets refer to the best
practices and define BeeGFS building blocks sections of the BeeGFS on NetApp Verified Architecture.

Define File and Block Nodes

Configure Individual File Nodes

Specify configuration for individual file nodes using host variables (host_vars).

Overview

This section walks through populating a host vars/<FILE NODE HOSTNAME>.yml file for each file node in
the cluster. These files should only contain configuration unique to a particular file node. This commonly
includes:

* Defining the IP or hostname Ansible should use to connect to the node.

» Configuring additional interfaces and cluster IPs used for HA cluster services (Pacemaker and Corosync)
to communicate to other file nodes. By default these services use the same network as the management
interface, but additional interfaces should be available for redundancy. Common practice is to define

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-define-inventory.html

additional IPs on the storage network, avoiding the need for an additional cluster or management network.

> The performance of any networks used for cluster communication is not critical for file system
performance. With the default cluster configuration generally at least a 1Gb/s network will provide
sufficient performance for cluster operations such as synchronizing node states and coordinating
cluster resource state changes. Slow/busy networks may cause resource state changes to take longer
than usual, and in extreme cases could result in nodes being evicted from the cluster if they cannot
send heartbeats in a reasonable time frame.

« Configuring interfaces used for connecting to block nodes over the desired protocol (for example:
iISCSI/ISER, NVMe/IB, NVMe/RoCE, FCP, etc.)

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each file node in the
cluster create a file host vars/<FILE NODE HOSTNAME>/yml and populate it as follows:

1. At the top specify the IP or hostname Ansible should use to SSH to the node and manage it:

ansible host: "<MANAGEMENT IP>"

2. Configure additional IPs that can be used for cluster traffic:

a. If the network type is InfiniBand (using IPolB):

eseries ipoib interfaces:

- name: <INTERFACE> # Example: ib0 or ilb
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

eseries roce interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

eseries ip interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip

3. Indicate what IPs should be used for cluster traffic, with preferred IPs listed higher:

beegfs ha cluster node ips:

- <MANAGEMENT IP> # Including the management IP is typically but not

required.
- <IP_ADDRESS> # Ex: 100.127.100.1
- <IP ADDRESS> # Additional IPs as needed.

IPs configured in step two will not be used as cluster IPs unless they are included in the

beegfs ha cluster node ips list. This allows you to configure additional IPs/interfaces
using Ansible that can be used for other purposes if desired.

4. If the file node needs to communicate to block nodes over an IP-based protocol, IPs will need to be
configured on the appropriate interface, and any packages required for that protocol installed/configured.

a. If using iISCSI:

eseries iscsi interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

b. If using ISER:

eseries ib iser interfaces:
- name: <INTERFACE> # Example: 1ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16

configure: true # If the file node is directly connected to the
block node set to true to setup OpenSM.

c. If using NVMe/IB:

eseries nvme ib interfaces:
- name: <INTERFACE> # Example: ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16

configure: true # If the file node is directly connected to the
block node set to true to setup OpenSM.

d. If using NVMe/RoCE:

eseries nvme roce interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md

e. Other Protocols:

i. If using NVMe/FC, configuring individual interfaces is not required. The BeeGFS cluster
deployment will automatically detect the protocol and install/configure requirements as needed. If
you are using a fabric to connect file and block nodes, ensure switches are properly zoned
following NetApp and your switch vendor’s best practices.

i. Use of FCP or SAS do not require installing or configuring additional software. If using FCP, ensure
switches are properly zoned following NetApp and your switch vendor’s best practices.

ii. Use of IB SRP is not recommended at this time. Use NVMe/IB or iSER depending on what your E-
Series block nodes support.

Click here for an example of a complete inventory file representing a single file node.

Advanced: Toggling NVIDIA ConnectX VPI Adapters between Ethernet and InfiniBand Mode

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) adapters support both InfiniBand and Ethernet as
the transport layer. Switching between modes is not automatically negotiated, and must be configured using
the <code>mstconfig</code> tool included in <code>mstflint</code>, an open source package that is part of
the <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">NVIDIA Firmare Tools (MFT). Changing the mode of the adapters only need to be done
once. This can be done manually, or included in the Ansible inventory as part of any interfaces configured
using the <code>eseries-[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce] interfaces:</code> section of the
inventory, to have it checked/applied automatically.

For example to change an interface current in InfiniBand mode to Ethernet so it can be used for RoCE:

1. For each interface you want to configure specify mstconfig as a mapping (or dictionary) that specifies
LINK TYPE P<N>where <N> is determined by the HCA's port number for the interface. The <N> value
can be determined by running grep PCI_SLOT NAME
/sys/class/net/<INTERFACE NAME>/device/uevent and adding 1 to the last number from the PCI
slot name and converting to decimal.

a. For example given PCI_SLOT NAME=0000:2f:00.2(2+1 — HCAport 3) - LINK_TYPE P3:
eth:

eseries roce interfaces:
— name: <INTERFACE>
address: <IP/SUBNET>
mstconfig:
LINK TYPE P3: eth

For additional details refer to the NetApp E-Series Host collection’s documentation for the interface
type/protocol you are using.

Configure Individual Block Nodes

Specify configuration for individual block nodes using host variables (host_vars).

https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml
https://github.com/netappeseries/host

Overview

This section walks through populating a host vars/<BLOCK_NODE HOSTNAME>.yml file for each block
node in the cluster. These files should only contain configuration unique to a particular block node. This
commonly includes:

* The system name (as displayed in System Manager).
* The HTTPS URL for one of the controllers (used to manage the system using its REST API).
* What storage protocol file nodes use to connect to this block node.

« Configuring host interface card (HIC) ports, such as IP addresses (if needed).

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each block node in the
cluster create a file host vars/<BLOCK_NODE_ HOSTNAME>/yml and populate it as follows:

1. At the top specify the system name and the HTTPS URL for one of the controllers:
eseries system name: <SYSTEM NAME>

eseries system api url:
https://<MANAGEMENT HOSTNAME OR IP>:8443/devmgr/v2/

2. Select the protocol file nodes will use to connect to this block node:

a. Supported Protocols: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme ib, nvme fc, nvme roce.
eseries initiator protocol: <PROTOCOL>

3. Depending on the protocol in use, the HIC ports may require additional configuration. When needed, HIC
port configuration should be defined so the top entry in the configuration for each controller corresponds
with with the physical left-most port on each controller, and the bottom port the right-most port. All ports
require valid configuration even if they are not currently in use.

@ Also see the section below if you are using HDR (200Gb) InfiniBand or 200Gb RoCE with
EF600 block nodes.

a. ForiSCSI:

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

eseries controller iscsi port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.
Choices: enabled, disabled
config method: # Port configuration method Choices: static,
dhcp
address: # Port IPv4 address
gateway: # Port IPv4 gateway
subnet mask: # Port IPv4 subnet mask
mtu: # Port IPv4 mtu
= (co00) # Additional ports as needed.
controller Db: # Ordered list of controller B channel

definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller iscsi port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller iscsi port config method: dhcp # General port
configuration method definition for both controllers. Choices:
static, dhcp

eseries controller iscsi port gateway: # General port
IPv4 gateway for both controllers.

eseries controller iscsi port subnet mask: # General port
IPv4 subnet mask for both controllers.

eseries controller iscsi port mtu: 9000 # General port
maximum transfer units (MTU) for both controllers. Any value greater
than 1500 (bytes).

b. ForiSER:

eseries controller ib iser port:
controller a: # Ordered list of controller A channel address
definition.
= # Port IPv4 address for channel 1
- (...) # So on and so forth
controller Db: # Ordered list of controller B channel address
definition.

c. For NVMe/IB:

eseries controller nvme ib port:
controller a: # Ordered list of controller A channel address
definition.
- # Port IPv4 address for channel 1
= (coo) # So on and so forth
controller b: # Ordered list of controller B channel address

definition.

d. For NVMe/RoCE:

eseries controller nvme roce port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.

=

config method: Port configuration method Choices: static,

dhcp

address: # Port IPv4 address
subnet mask: # Port IPv4 subnet mask
gateway: # Port IPv4 gateway
mtu: # Port IPv4 mtu
speed: # Port IPv4 speed

#

controller Db: Ordered list of controller B channel
definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller nvme roce port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller nvme roce port config method: dhcp # General
port configuration method definition for both controllers. Choices:
static, dhcp

eseries controller nvme roce port gateway: # General
port IPv4 gateway for both controllers.

eseries controller nvme roce port subnet mask: # General
port IPv4 subnet mask for both controllers.

eseries controller nvme roce port mtu: 4200 # General
port maximum transfer units (MTU). Any value greater than 1500
(bytes) .

eseries controller nvme roce port speed: auto # General
interface speed. Value must be a supported speed or auto for
automatically negotiating the speed with the port.

e. FC and SAS protocols do not require additional configuration. SRP is not correctly recommended.

For additional options to configure HIC ports and host protocols including the ability to configure iISCSI CHAP
refer to the documentation included with the SANtricity collection. Note when deploying BeeGFS the storage
pool, volume configuration, and other aspects of provisioning storage will be configured elsewhere, and should
not be defined in this file.

Click here for an example of a complete inventory file representing a single block node.

Using HDR (200Gb) InfiniBand or 200Gb RoCE with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600, a second "virtual" IP must be configured for each physical
port. Below is an example of the correct way to configure an EF600 equipped with the dual port InfiniBand
HDR HIC:

eseries controller nvme ib port:

controller a:

- 192.168.1.101 # Port 2a (virtual)
- 192.168.2.101 # Port 2b (virtual)
- 192.168.1.100 # Port 2a (physical)
- 192.168.2.100 # Port 2b (physical)
controller Db:
- 192.168.3.101 # Port 2a (virtual)
- 192.168.4.101 # Port 2b (virtual)
- 192.168.3.100 # Port 2a (physical)
- 192.168.4.100 # Port 2b (physical)

Specify Common File Node Configuration

Specify common file node configuration using group variables (group_vars).

Overview

Configuration that should apple to all file nodes is defined at group vars/ha cluster.yml. It commonly
includes:

* Details on how to connect and login to each file node.

» Common networking configuration.

» Whether automatic reboots are allowed.

* How firewall and selinux states should be configured.

* Cluster configuration including alerting and fencing.

* Performance tuning.

» Common BeeGFS service configuration.

The options set in this file can also be defined on individual file nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual file nodes will take precedence over the configuration in this file.

10

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

Steps

Create the file group_vars/ha cluster.yml and populate it as follows:

1. Indicate how the Ansible Control node should authenticate with the remote hosts:

ansible ssh user: root
ansible become password: <PASSWORD>

Particularly for production environments, do not store passwords in plain text. Instead, use

@ Ansible Vault (see Encrypting content with Ansible Vault) or the --ask-become-pass
option when running the playbook. If the ansible ssh user is already root, then you can
optionally omit the ansible become password.

2. If you are configuring static IPs on ethernet or InfiniBand interfaces (for example cluster IPs) and multiple
interfaces are in the same IP subnet (for example if ib0 is using 192.168.1.10/24 and ib1 is using
192.168.1.11/24), additional IP routing tables and rules must be setup for multi-homed support to work
properly. Simply enable the provided network interface configuration hook as follows:

eseries ip default hook templates:
- 99-multihoming.j2

3. When deploying the cluster, depending on the storage protocol it may be necessary for nodes to be
rebooted to facilitate discovering remote block devices (E-Series volumes) or apply other aspects of the
configuration. By default nodes will prompt before rebooting, but you can allow nodes to restart
automatically by specifying the following:

eseries common allow host reboot: true

a. By default after a reboot, to ensure block devices and other services are ready Ansible will wait until the
systemd default.target is reached before continuing with the deployment. In some scenarios
when NVMe/IB is in use, this may not be long enough to initialize, discover, and connect to remote
devices. This can result in the automated deployment continuing prematurely and failing. To avoid this
when using NVMe/IB also define the following:

eseries common reboot test command: "! systemctl status
eseries nvme ib.service || systemctl --state=exited | grep

eseries nvme ib.service"

4. A number of firewall ports are required for BeeGFS and HA cluster services to communicate. Unless you
wish to configure the firwewall manually (not recommended), specify the following to have required firewall
zones created and ports opened automatically:

beegfs ha firewall configure: True

11

https://docs.ansible.com/ansible/latest/vault_guide/index.html

5. At this time SELinux is not supported, and it is is recommended the state be set to disabled to avoid
conflicts (especially when RDMA is in use). Set the following to ensure SELinux is disabled:

eseries beegfs ha disable selinux: True

eseries selinux state: disabled

6. Configure authentication so file nodes are able to communicate, adjusting the defaults as needed based on
your organizations policies:

beegfs ha cluster name: hacluster # BeeGFS HA cluster
name.

beegfs ha cluster username: hacluster # BeeGFS HA cluster
username.

beegfs ha cluster password: hapassword # BeeGFS HA cluster

username's password.
beegfs ha cluster password shab5l2 salt: randomSalt # BeeGFS HA cluster
username's password salt.

7. Based on the Plan the File System section specify the BeeGFS management IP for this file system:

beegfs ha mgmtd floating ip: <IP ADDRESS>

While seemingly redundant, beegfs ha mgmtd floating ip is important when you

@ scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are
deployed without an additional BeeGFS management service and point at the management
service provided by the first cluster.

8. Enable email alerts if desired:

12

beegfs ha enable alerts: True

E-mail recipient list for notifications when BeeGFS HA resources
change or fail.

beegfs ha alert email list: ["<EMAIL>"]

This dictionary is used to configure postfix service
(/etc/postfix/main.cf) which is required to set email alerts.
beegfs ha alert conf ha group options:

This parameter specifies the local internet domain name. This is
optional when the cluster nodes have fully qualified hostnames (i.e.
host.example.com)

mydomain: <MY DOMAIN>
beegfs ha alert verbosity: 3
1) high-level node activity
3) high-level node activity + fencing action information + resources
(filter on X-monitor)
#

5) high-level node activity + fencing action information + resources

9. Enabling fencing is strongly recommended, otherwise services can be blocked from starting on secondary
nodes when the primary node fails.

a. Enable fencing globally by specifying the following:

beegfs ha cluster crm config options:
stonith-enabled: True

i. Note any supported cluster property can also be specified here if needed. Adjusting these is not
typically needed, as the BeeGFS HA role ships with a number of well tested defaults.

b. Next select and configure a fencing agent:
i. OPTION 1: To enable fencing using APC Power Distribution Units (PDUs):

beegfs ha fencing agents:
fence apc:
- ipaddr: <PDU_IP ADDRESS>
login: <PDU USERNAME>
passwd: <PDU PASSWORD>
pcmk host map:
"<HOSTNAME>:<PDU PORT>,<PDU PORT>;<HOSTNAME>:<PDU PORT>,<PDU PORT>

"

i. OPTION 2: To enable fencing using the Redfish APIs provided by the Lenovo XCC (and other
BMCs):

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54

redfish: &redfish

username: <BMC USERNAME>

password: <BMC PASSWORD>

ssl insecure: 1 # If a valid SSL certificate is not available
specify “1”.

beegfs ha fencing agents:
fence redfish:

- pcmk host list: <HOSTNAME>
ip: <BMC IP>
<<: *redfish

- pcmk host list: <HOSTNAME>
ip: <BMC IP>
<<: *redfish

i. For details on configuring other fencing agents refer to the Red Hat Documentation.

10. The BeeGFS HA role can apply many different tuning parameters to help further optimize performance.
These include optimizing kernel memory utilization and block device I/O, among other parameters. The role
ships with a reasonable set of defaults based on testing with NetApp E-Series block nodes, but by default
these aren’t applied unless you specify:

beegfs ha enable performance tuning: True

a. If needed also specify any changes to the default performance tuning here. See the full performance
tuning parameters documentation for additional details.

11. To ensure floating IP addresses (sometimes known as logical interfaces) used for BeeGFS services can fail
over between file nodes, all network interfaces must be named consistently. By default network interface
names are generated by the kernel, which is not guaranteed to generate consistent names, even across
identical server models with network adapters installed in the same PCle slots. This is also useful when
creating inventories before the equipment is deployed and generated interface names are known. To
ensure consistent device names, based on a block diagram of the server or 1shw -class network
-businfo output, specify the desired PCle address-to-logical interface mapping as follows:

a. For InfiniBand (IPolB) network interfaces:

eseries ipoib udev rules:
"<PCIe ADDRESS>"|: <NAME> # Ex: 0000:01:00.0: ila

b. For Ethernet network interfaces:

eseries ip udev rules:
"<PCIe ADDRESS>"]: <NAME> # Ex: 0000:01:00.0: ela

14

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md

To avoid conflicts when interfaces are renamed (preventing them from being renamed),
you should not use any potential default names such as eth0, ens9f0, ib0, or ibs4f0. A

@ common naming convention is to use 'e' or 'i' for Ethernet or InfiniBand, followed by the
PCle slot number, and a letter to indicate the the port. For example the second port of an
InfiniBand adapter installed in slot 3 would be: i3b.

@ If you are using a verified file node model, click here example PCle address-to-logical
port mappings.

12. Optionally specify configuration that should apply to all BeeGFS services in the cluster. Default
configuration values can be found here, and per-service configuration is specified elsewhere:

a. BeeGFS Management service:

beegfs ha beegfs mgmtd conf ha group options:
<OPTION>: <VALUE>

b. BeeGFS Metadata services:

beegfs ha beegfs meta conf ha group options:
<OPTION>: <VALUE>

c. BeeGFS Storage services:

beegfs ha beegfs storage conf ha group options:
<OPTION>: <VALUE>

13. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled. There
are a few ways this can be configured using the Ansible based deployment:

a. By default the deployment will automatically configure connection authentication, and generate a
connauthfile that will be distributed to all file nodes and used with the BeeGFS services. This file
will also be placed/maintained on the Ansible control node at
<INVENTORY>/files/beegfs/<sysMgmtdHost> connAuthFile where it should be maintained
(securely) for reuse with clients that need to access this file system.

i. To generate a new key specify -e "beegfs ha conn_auth force new=True when running
the Ansible playbook. Note this is ignored if a beegfs ha conn auth secret is defined.

i. For advanced options refer to the full list of defaults included with the BeeGFS HA role.

b. A custom secret can be used by defining the following in ha cluster.yml:
beegfs ha conn auth secret: <SECRET>

c. Connection authentication can be disabled entirely (NOT recommended):

15

https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21

beegfs ha conn auth enabled: false

Click here for an example of a complete inventory file representing common file node configuration.

Using HDR (200Gb) InfiniBand with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600 the subnet manager must support virtualization. If file and
block nodes are connected using a switch, this will need to be enabled on the subnet manager manager for the
overall fabric.

If block and file nodes are directly connected using InfiniBand, an instance of opensm must be configured on
each file node for each interface directly connected to a block node. This is done by specifying configure:
true when configuring file node storage interfaces.

Currently the inbox version of opensm shipped with supported Linux distributions does not support
virtualization. Instead it is required you install and configure version of opensm from the NVIDIA OpenFabrics
Enterprise Distribution (OFED). Although deployment using Ansible is still supported, a few additional steps are
required:

1. Using curl or your desired tool, download the packages for the version of OpenSM listed in the technology
requirements section from NVIDIA's website to the <INVENTORY>/packages/ directory. For example:

curl -o packages/opensm-5.17.2.MLNX20240610.dc7c2998~
0.1.2310322.x86_ 64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-5.17.2.MLNX20240610.dc7c2998~-
0.1.2310322.x86_ 64.rpm

curl -o packages/opensm-1libs-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm

2. Under group vars/ha cluster.yml define the following configuration:

16

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html

OpenSM package and configuration information
eseries ib opensm allow upgrades: true
eseries ib opensm skip package validation: true
eseries ib opensm rhel packages: []
eseries ib opensm custom packages:
install:
- files:
add:
"packages/opensm-5.17.2.MLNX20240610.dc7c2998~-

0.1.2310322.x86_64.rpm": "/tmp/"

"packages/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998-

0.1.2310322.x86 64.rpm": "/tmp/"
- packages:
add:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm

- /tmp/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998~-

0.1.2310322.x86_64.rpm
uninstall:
- packages:
remove:
- opensm
- opensm-libs
files:
remove:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998~-
0.1.2310322.x86 64.rpm

- /tmp/opensm-1libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86 64.rpm

eseries ib opensm options:

virt enabled: "2"

Specify Common Block Node Configuration

Specify common block node configuration using group variables (group_vars).

Overview

Configuration that should apple to all block nodes is defined at
group vars/eseries storage systems.yml. |t commonly includes:

+ Details on how the Ansible control node should connect to E-Series storage systems used as block nodes.

* What firmware, NVSRAM, and Drive Firmware versions the nodes should run.

* Global configuration including cache settings, host configuration, and settings for how volumes should be

17

provisioned.

The options set in this file can also be defined on individual block nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual block nodes will take precedence over the configuration in this file.

Steps
Create the file group_vars/eseries storage systems.yml and populate it as follows:

1. Ansible does not use SSH to connect to block nodes, and instead uses REST APls. To achieve this we
must set:

ansible connection: local

2. Specify the username and password to manage each node. The username can be optionally omitted (and
will default to admin), otherwise you can specify any account with admin privileges. Also specify if SSL
certificates should be verified, or ignored:

eseries system username: admin
eseries system password: <PASSWORD>
eseries validate certs: false

@ Listing any passwords in plaintext is not recommended. Use Ansible vault or provide the
eseries_ system password when running Ansible using --extra-vars.

3. Optionally specify what controller firmware, NVSRAM, and drive firmware should be installed on the nodes.
These will need to be downloaded to the packages/ directory before running Ansible. E-Series controller
firmware and NVSRAM can be downloaded here and drive firmware here:

eseries firmware firmware: "packages/<FILENAME>.dlp" # Ex.
"packages/RCB_11.80GA 6000 64cclOee3.dlp"
eseries firmware nvsram: "packages/<FILENAME>.dlp" # Ex.
"packages/N6000-880834-D08.d1lp"
eseries drive firmware firmware list:

- "packages/<FILENAME>.dlp"

Additional firmware versions as needed.
eseries drive firmware upgrade drives online: true # Recommended unless
BeeGFS hasn't been deployed yet, as it will disrupt host access if set
to "false".

If this configuration is specified, Ansible will automatically update all firmware including
rebooting controllers (if necessary) with with no additional prompts. This is expected to be
non-disruptive to BeeGFS/host I/O, but may cause a temporary decrease in performance.

18

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

4. Adjust global system configuration defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries system cache block size: 32768

eseries system cache flush threshold: 80

eseries system default host type: linux dm-mp

eseries system autoload balance: disabled

eseries system host connectivity reporting: disabled

eseries system controller shelf id: 99 # Required by default.

5. Configure global volume provisioning defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries volume size unit: pct # Required by default. This allows volume
capacities to be specified as a percentage, simplifying putting together
the inventory.

eseries volume read cache enable: true

eseries volume read ahead enable: false

eseries volume write cache enable: true

eseries volume write cache mirror enable: true

eseries volume cache without batteries: false

6. If needed, adjust the order in which Ansible will select drives for storage pools and volume groups keeping
in mind the following best practices:

a. List any (potentially smaller) drives that should be used for management and/or metadata volumes first,
and storage volumes last.

b. Ensure to balance the drive selection order across available drive channels based on the disk
shelf/drive enclosure model(s). For example with the EF600 and no expansions, drives 0-11 are on
drive channel 1, and drives 12-23 are on drive channel. Thus a strategy to balance drive selection is to
select disk shelf:drive 99:0, 99:23, 99:1, 99:22, etc. In the event there is more than one
enclosure, the first digit represents the drive shelf ID.

Optimal/recommended order for the EF600 (no expansion) :

eseries storage pool usable drives:
"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18, 99
:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Click here for an example of a complete inventory file representing common block node configuration.

Define BeeGFS services

Define the BeeGFS management service

BeeGFS services are configured using group variables (group_vars).

19

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

Overview

This section walks through defining the BeeGFS management service. Only one service of this type should
exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

* The service type (management).

 Defining any configuration that should only apply to this BeeGFS service.

» Configuring one or more floating IPs (logical interfaces) where this service can be reached.

» Specifying where/how a volume should be to store data for this service (the BeeGFS management target).

Steps

Create a new file group vars/mgmt.yml and referencing the Plan the File System section populate it as
follows:

1.

2.

20

Indicate this file represents the configuration for a BeeGFS management service:

beegfs service: management

Define any configuration that should apply only to this BeeGFS service. This is not typically required for the
management service unless you need to enable quotas, however any supported configuration parameter
from beegfs-mgmtd.conf can be included. Note the following parameters are configured
automatically/elsewhere and should not be specified here: storeMgmtdDirectory, connAuthFile,
connDisableAuthentication, connInterfacesFile, and connNetFilterFile

beegfs ha beegfs mgmtd conf resource group options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

. Configure one or more floating IPs that other services and clients will use to connect to this service (this will

automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
1i1b:100.127.101.0/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this

will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

. Specify the BeeGFS management target where this service will store data according to the following

guidelines:

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common * configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration. Note some options such as state, host, host type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

beegfs targets:
<BLOCK_NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs ml m2 m5 mé6
raid level: <LEVEL> # One of: raidl, raid5, raid6, raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS management service.

Define the BeeGFS metadata service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS metadata service. At least one service of this type should
exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

» The service type (metadata).
 Defining any configuration that should only apply to this BeeGFS service.
» Configuring one or more floating IPs (logical interfaces) where this service can be reached.

» Specifying where/how a volume should be to store data for this service (the BeeGFS metadata target).

Steps

Referencing the Plan the File System section, create a file at group vars/meta_ <ID>.yml for each
metadata service in the cluster, and populate them as follows:

21

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

1. Indicate this file represents the configuration for a BeeGFS metadata service:

beegfs service: metadata

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the
desired TCP and UDP port, however any supported configuration parameter from beegfs-meta.conf
can also be included. Note the following parameters are configured automatically/elsewhere and should
not be specified here: sysMgmtdHost, storeMetaDirectory, connAuthFile,
connDisableAuthentication, connInterfacesFile, and connNetFilterFile

beegfs ha beegfs meta conf resource group options:

connMetaPortTCP: <TCP PORT>

connMetaPortUDP: <UDP PORT>

tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with
multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will
automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
11b:100.127.101.1/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this
will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS metadata target where this service will store data according to the following guidelines
(this will also automatically configure the storeMetaDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common_* configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration. Note some options such as state, host, host_type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

22

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs targets:
<BLOCK NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs ml m2 m5 m6
raid level: <LEVEL> # One of: raidl, raid5, raid6, raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS metadata service.

Define the BeeGFS storage service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS storage service. At least one service of this type should exist
in the HA cluster(s) for a particular file system. Configuring this service includes defining:

* The service type (storage).

 Defining any configuration that should only apply to this BeeGFS service.

» Configuring one or more floating IPs (logical interfaces) where this service can be reached.

» Specifying where/how volume(s) should be to store data for this service (the BeeGFS storage targets).

Steps

Referencing the Plan the File System section, create a file at group vars/stor <ID>.yml for each storage
service in the cluster, and populate them as follows:

1. Indicate this file represents the configuration for a BeeGFS storage service:
beegfs service: storage

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the
desired TCP and UDP port, however any supported configuration parameter from beegfs-
storage.conf can also be included. Note the following parameters are configured
automatically/elsewhere and should not be specified here: sysMgmtdHost, storeStorageDirectory,
connAuthFile, connDisableAuthentication, connInterfacesFile, and connNetFilterFile.

23

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <TCP PORT>
connStoragePortUDP: <UDP PORT>
tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with
multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will
automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
i1lb:100.127.101.1/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this
will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS storage target(s) where this service will store data according to the following
guidelines (this will also automatically configure the storeStorageDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common_* configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration.Note some options such as state, host, host type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

24

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs targets:
<BLOCK NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs sl s2
raid level: <LEVEL> # One of: raidl, raidb5, raidé,
raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B
Multiple storage targets are supported / typical:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS storage service.

Map BeeGFS services to file nodes

Specify what file nodes can run each BeeGFS service using the inventory.yml file.

Overview

This section walks through how to create the inventory. yml file. This includes listing all block nodes and
specifying what file nodes can run each BeeGFS service.

Steps
Create the file inventory.yml and populate it as follows:
1. From the top of the file, create the standard Ansible inventory structure:
BeeGFS HA (High Availability) cluster inventory.

all:
children:

2. Create a group containing all block nodes participating in this HA cluster:

25

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

Ansible group representing all block nodes:
eseries storage systems:
hosts:
<BLOCK NODE HOSTNAME>:
<BLOCK NODE HOSTNAME>:
Additional block nodes as needed.

3. Create a group that will contain all BeeGFS services in the cluster, and the file nodes that will run them:

Ansible group representing all file nodes:
ha cluster:
children:

4. For each BeeGFS service in the cluster, define the preferred and any secondary file node(s) that should
run that service:

<SERVICE>: # Ex. "mgmt", "meta 01", or "stor O1".
hosts:
<FILE NODE HOSTNAME>:
<FILE NODE HOSTNAME>:
Additional file nodes as needed.

Click here for an example of a complete inventory file.

26

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

27

http://www.netapp.com/TM

	Define the BeeGFS file system : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Define the BeeGFS file system
	Ansible Inventory Overview
	Overview
	Steps

	Plan the File System
	Overview
	Steps

	Define File and Block Nodes
	Configure Individual File Nodes
	Configure Individual Block Nodes
	Specify Common File Node Configuration
	Specify Common Block Node Configuration

	Define BeeGFS services
	Define the BeeGFS management service
	Define the BeeGFS metadata service
	Define the BeeGFS storage service

	Map BeeGFS services to file nodes
	Overview
	Steps

