
Deploy software
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-setup-
nodes.html on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Deploy software . 1

Set up file nodes and block nodes . 1

Set up file nodes . 1

Set up block nodes. 2

Tune file node system settings for performance . 2

Use the UEFI interface to tune system settings. 2

Use Redfish API to tune system settings . 3

Set up an Ansible control node . 4

Create the Ansible inventory . 5

Step 1: Define configuration for all building blocks . 6

Step 2: Define configuration for individual file and block nodes. 7

Step 3: Define configuration that should apply to all file and block nodes . 9

Step 4: Define configuration that should apply to all file nodes . 10

Step 5: Define the configuration for the common block node . 16

Define Ansible inventory for BeeGFS building blocks . 18

Step 1: Create the Ansible inventory file . 18

Step 2: Configure the inventory for a management, metadata, and storage building block 19

Step 3: Configure the inventory for a Metadata + storage building block . 25

Step 4: Configure the inventory for a storage-only building block . 29

Deploy BeeGFS . 32

Configure BeeGFS clients . 34

Deploy software

Set up file nodes and block nodes

While most software configuration tasks are automated using the NetApp-provided

Ansible collections, you must configure networking on the baseboard management

controller (BMC) of each server and configure the management port on each controller.

Set up file nodes

1. Configure networking on the baseboard management controller (BMC) of each server.

To learn how to configure networking for the validated Lenovo SR665 V3 file nodes, see the Lenovo

ThinkSystem Documentation.

A baseboard management controller (BMC), sometimes referred to as a service processor,

is the generic name for the out-of-band management capability built into various server

platforms that can provide remote access even if the operating system is not installed or

accessible. Vendors typically market this functionality with their own branding. For example,

on the Lenovo SR665, the BMC is referred to as the Lenovo XClarity Controller (XCC).

2. Configure the system settings for maximum performance.

You configure the system settings using the UEFI setup (formerly known as the BIOS) or by using the

Redfish APIs provided by many BMCs. The system settings vary based on the server model used as a file

node.

To learn how to configure the system settings for the validated Lenovo SR665 V3 file nodes, see Tune

system settings for performance.

3. Install Red Hat Enterprise Linux (RHEL) 9.4 and configure the host name and network port used to

manage the operating system including SSH connectivity from the Ansible control node.

Do not configure IPs on any of the InfiniBand ports at this time.

While not strictly required, subsequent sections presume that host names are sequentially

numbered (such as h1-hN) and refer to tasks that should be completed on odd versus even

numbered hosts.

4. Use Red Hat Subscription Manager to register and subscribe the system to allow installation of the

required packages from the official Red Hat repositories and to limit updates to the supported version of

Red Hat: subscription-manager release --set=9.4. For instructions, see How to register and

subscribe a RHEL system and How to limit updates.

5. Enable the Red Hat repository containing the packages required for high availability.

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Update all HCA firmware to the version recommended in Technology requirements using the Update file

1

https://pubs.lenovo.com/sr665-v3/
https://pubs.lenovo.com/sr665-v3/
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html

node adapter firmware guide.

Set up block nodes

Set up the EF600 block nodes by configuring the management port on each controller.

1. Configure the management port on each EF600 controller.

For instructions on configuring ports, go to the E-Series Documentation Center.

2. Optionally, set the storage array name for each system.

Setting a name can make it easier to refer to each system in subsequent sections. For instructions on

setting the array name, go to the E-Series Documentation Center.

While not strictly required, subsequent topics presume storage array names are sequentially

numbered (such as c1 - cN) and refer to the steps that should be completed on odd versus even

numbered systems.

Tune file node system settings for performance

To maximize performance, we recommend configuring the system settings on the server

model you use as your file nodes.

The system settings vary depending on the server model you use as your file node. This topic describes how

to configure the system settings for the validated Lenovo ThinkSystem SR665 server file nodes.

Use the UEFI interface to tune system settings

The Lenovo SR665 V3 server’s system firmware contains numerous tuning parameters that can be set through

the UEFI interface. These tuning parameters can affect all aspects of how the server functions and how well

the server performs.

Under UEFI Setup > System Settings, adjust the following system settings:

Operating Mode menu

System Setting Change to

Operating Mode Custom

cTDP Manual

cTDP Manual 350

Package Power Limit Manual

Efficiency Mode Disable

2

https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

System Setting Change to

Global-Cstate-Control Disable

SOC P-states P0

DF C-States Disable

P-State Disable

Memory Power Down Enable Disable

NUMA Nodes per Socket NPS1

Devices and I/O ports menu

System Setting Change to

IOMMU Disable

Power menu

System Setting Change to

PCIe Power Brake Disable

Processors menu

System Setting Change to

Global C-state Control Disable

DF C-States Disable

SMT Mode Disable

CPPC Disable

Use Redfish API to tune system settings

In addition to using UEFI Setup, you can use the Redfish API to change system settings.

3

Example

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

For detailed information on the Redfish schema, see the DMTF website.

Set up an Ansible control node

To set up an Ansible control node, you must designate a virtual or physical machine with

network access to all file and block nodes deployed for the BeeGFS on NetApp solution.

Review the Technical requirements for a list of recommended package versions. The following steps were

tested on Ubuntu 22.04. For steps specific to your preferred Linux distribution, see the Ansible documentation.

1. From your Ansible control node, install the following Python and Python Virtual Environment packages.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Create a Python virtual environment.

4

https://redfish.dmtf.org/redfish/schema_index
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv

3. Activate the virtual environment.

source ~/pyenv/bin/activate

4. Install the required Python packages within the activated virtual environment.

pip install ansible netaddr cryptography passlib

5. Install the BeeGFS collection using Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Verify the installed versions of Ansible, Python, and the BeeGFS collection match the Technical

requirements.

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Set up passwordless SSH to allow Ansible to access the remote BeeGFS file nodes from the Ansible

control node.

a. On the Ansible control node, if needed, generate a pair of public keys.

ssh-keygen

b. Set up passwordless SSH to each of the file nodes.

ssh-copy-id <ip_or_hostname>

Do not set up passwordless SSH to the block nodes. This is neither supported nor required.

Create the Ansible inventory

To define the configuration for file and block nodes, you create an Ansible inventory that

represents the BeeGFS file system you want to deploy. The inventory includes hosts,

groups, and variables describing the desired BeeGFS file system.

5

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements

Step 1: Define configuration for all building blocks

Define the configuration that applies to all building blocks, regardless of which configuration profile you may

apply to them individually.

Before you begin

• Choose a subnet addressing scheme for your deployment. Due to the benefits listed in the software

architecture, it is recommended to use a single subnet addressing scheme.

Steps

1. On your Ansible control node, identify a directory that you want to use to store the Ansible inventory and

playbook files.

Unless otherwise noted, all files and directories created in this step and following steps are created relative

to this directory.

2. Create the following subdirectories:

host_vars

group_vars

packages

3. Create a subdirectory for cluster passwords and secure the file by encrypting it with Ansible Vault (see

Encrypting content with Ansible Vault):

a. Create the subdirectory group_vars/all.

b. In the group_vars/all directory, create a passwords file labeled passwords.yml.

c. Populate the passwords.yml file with the following, replacing all username and password

parameters according to your configuration:

6

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Run ansible-vault encrypt passwords.yml and set a vault password when prompted.

Step 2: Define configuration for individual file and block nodes

Define the configuration that applies to individual file nodes and individual building block nodes.

1. Under host_vars/, create a file for each BeeGFS file node named <HOSTNAME>.yml with the following

content, paying special attention to the notes regarding content to populate for BeeGFS cluster IPs and

host names ending in odd versus even numbers.

Initially, the file node interface names do match what is listed here (such as ib0 or ibs1f0). These custom

names are configured in Step 4: Define configuration that should apply to all file nodes.

7

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

8

If you have already deployed the BeeGFS cluster, you must stop the cluster before adding

or changing statically configured IP addresses, including cluster IPs and IPs used for

NVMe/IB. This is required so these changes take effect properly and do not disrupt cluster

operations.

2. Under host_vars/, create a file for each BeeGFS block node named <HOSTNAME>.yml and populate it

with the following content.

Pay special attention to the notes regarding content to populate for storage array names ending in odd

versus even numbers.

For each block node, create one file and specify the <MANAGEMENT_IP> for one of the two controllers

(usually A).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Step 3: Define configuration that should apply to all file and block nodes

You can define configuration common to a group of hosts under group_vars in a file name that corresponds

with the group. This prevents repeating a shared configuration in multiple places.

9

About this task

Hosts can be in more than one group, and at runtime, Ansible chooses what variables apply to a particular host

based on its variable precedence rules. (For more information on these rules, see the Ansible documentation

for Using variables.)

Host-to-group assignments are defined in the actual Ansible inventory file, which is created towards the end of

this procedure.

Step

In Ansible, any configuration you want to apply to all hosts can be defined in a group called All. Create the file

group_vars/all.yml with the following content:

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Step 4: Define configuration that should apply to all file nodes

The shared configuration for file nodes is defined in a group called ha_cluster. The steps in this section

build out the configuration that should be included in the group_vars/ha_cluster.yml file.

Steps

1. At the top of the file, define the defaults, including the password to use as the sudo user on the file nodes.

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

10

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

If the ansible_ssh_user is already root, then you can optionally omit the

ansible_become_password and specify the --ask-become-pass option when running

the playbook.

2. Optionally, configure a name for the high-availability (HA) cluster and specify a user for intra-cluster

communication.

If you are modifying the private IP addressing scheme, you must also update the default

beegfs_ha_mgmtd_floating_ip. This must match what you configure later for the BeeGFS

Management resource group.

Specify one or more emails that should receive alerts for cluster events using

beegfs_ha_alert_email_list.

11

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

While seemingly redundant, beegfs_ha_mgmtd_floating_ip is important when you

scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are

deployed without an additional BeeGFS management service and point at the management

service provided by the first cluster.

3. Configure a fencing agent. (For more details, see Configure fencing in a Red Hat High Availability cluster.)

The following output shows examples for configuring common fencing agents. Choose one of these

options.

For this step, be aware that:

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ By default, fencing is enabled, but you need to configure a fencing agent.

◦ The <HOSTNAME> specified in the pcmk_host_map or pcmk_host_list must correspond with the

hostname in the Ansible inventory.

◦ Running the BeeGFS cluster without fencing is not supported, particularly in production. This is largely

to ensure when BeeGFS services, including any resource dependencies like block devices, fail over

due to an issue, there is no risk of concurrent access by multiple nodes that result in file system

corruption or other undesirable or unexpected behavior. If fencing must be disabled, refer to the

general notes in the BeeGFS HA role’s getting started guide and set

beegfs_ha_cluster_crm_config_options["stonith-enabled"] to false in

ha_cluster.yml.

◦ There are multiple node-level fencing devices available, and the BeeGFS HA role can configure any

fencing agent available in the Red Hat HA package repository. When possible, use a fencing agent that

works through the uninterruptible power supply (UPS) or rack power distribution unit (rPDU), because

some fencing agents such as the baseboard management controller (BMC) or other lights-out devices

that are built into the server might not respond to the fence request under certain failure scenarios.

13

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Enable recommended performance tuning in the Linux OS.

While many users find the default settings for the performance parameters generally work well, you can

optionally change the default settings for a particular workload. As such, these recommendations are

included in the BeeGFS role, but are not enabled by default to ensure users are aware of the tuning

applied to their file system.

To enable performance tuning, specify:

14

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Optional) You can adjust the performance tuning parameters in the Linux OS as needed.

For a comprehensive list of the available tuning parameters that you can adjust, see the Performance

Tuning Defaults section of the BeeGFS HA role in E-Series BeeGFS GitHub site. The default values can

be overridden for all nodes in the cluster in this file or the host_vars file for an individual node.

6. To allow full 200Gb/HDR connectivity between block and file nodes, use the Open Subnet Manager

(OpenSM) package from the NVIDIA Open Fabrics Enterprise Distribution (MLNX_OFED). The

MLNX_OFED version in listed the file node requirements comes bundled with the recommended OpenSM

packages. Although deployment using Ansible is supported, you must first install the MLNX_OFED driver

on all file nodes.

a. Populate the following parameters in group_vars/ha_cluster.yml (adjust packages as needed):

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Configure the udev rule to ensure consistent mapping of logical InfiniBand port identifiers to underlying

PCIe devices.

The udev rule must be unique to the PCIe topology of each server platform used as a BeeGFS file node.

Use the following values for verified file nodes:

15

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Optional) Update the metadata target selection algorithm.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

In verification testing, randomrobin was typically used to ensure that test files were evenly

distributed across all BeeGFS storage targets during performance benchmarking (for more

information on benchmarking, see the BeeGFS site for Benchmarking a BeeGFS System).

With real world use, this might cause lower numbered targets to fill up faster than higher

numbered targets. Omitting randomrobin and just using the default randomized value

has been shown to provide good performance while still utilizing all available targets.

Step 5: Define the configuration for the common block node

The shared configuration for block nodes is defined in a group called eseries_storage_systems. The

steps in this section build out the configuration that should be included in the group_vars/

eseries_storage_systems.yml file.

Steps

1. Set the Ansible connection to local, provide the system password, and specify if SSL certificates should be

verified. (Normally, Ansible uses SSH to connect to managed hosts, but in the case of the NetApp E-Series

storage systems used as block nodes, the modules use the REST API for communication.) At the top of

16

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

the file, add the following:

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. To ensure optimal performance, install the versions listed for block nodes in Technical requirements.

Download the corresponding files from the NetApp Support site. You can either upgrade them manually or

include them in the packages/ directory of the Ansible control node, and then populate the following

parameters in eseries_storage_systems.yml to upgrade using Ansible:

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Download and install the latest drive firmware available for the drives installed in your block nodes from the

NetApp Support site. You can either upgrade them manually or include them in the packages/ directory of

the Ansible control node, and then populate the following parameters in

eseries_storage_systems.yml to upgrade using Ansible:

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Setting eseries_drive_firmware_upgrade_drives_online to false will speed up

the upgrade, but should not be done until after BeeGFS is deployed. This is because that

setting requires stopping all I/O to the drives before the upgrade to avoid application errors.

Although performing an online drive firmware upgrade before configuring volumes is still

quick, we recommend you always set this value to true to avoid issues later.

4. To optimize performance, make the following changes to the global configuration:

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

17

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

5. To ensure optimal volume provisioning and behavior, specify the following parameters:

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

The value specified for eseries_storage_pool_usable_drives is specific to NetApp

EF600 block nodes and controls the order in which drives are assigned to new volume

groups. This ordering ensures that the I/O to each group is evenly distributed across

backend drive channels.

Define Ansible inventory for BeeGFS building blocks

After defining the general Ansible inventory structure, define the configuration for each

building block in the BeeGFS file system.

These deployment instructions demonstrate how to deploy a file system that consists of a base building block

including management, metadata, and storage services; a second building block with metadata and storage

services; and a third storage-only building block.

These steps are intended to show the full range of typical configuration profiles that you can use to configure

NetApp BeeGFS building blocks to meet the requirements of the overall BeeGFS file system.

In this and subsequent sections, adjust as needed to build the inventory representing the

BeeGFS file system that you want to deploy. In particular, use Ansible host names that

represent each block or file node and the desired IP addressing scheme for the storage network

to ensure it can scale to the number of BeeGFS file nodes and clients.

Step 1: Create the Ansible inventory file

Steps

1. Create a new inventory.yml file, and then insert the following parameters, replacing the hosts under

eseries_storage_systems as needed to represent the block nodes in your deployment. The names

should correspond with the name used for host_vars/<FILENAME>.yml.

18

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

In the subsequent sections, you will create additional Ansible groups under ha_cluster that represent

the BeeGFS services you want to run in the cluster.

Step 2: Configure the inventory for a management, metadata, and storage building
block

The first building block in the cluster or base building block must include the BeeGFS management service

along with metadata and storage services:

Steps

1. In inventory.yml, populate the following parameters under ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

19

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_07:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

20

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Create the file group_vars/mgmt.yml and include the following:

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Under group_vars/, create files for resource groups meta_01 through meta_08 using the following

template, and then fill in the placeholder values for each service referencing the table below:

21

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

The volume size is specified as a percentage of the overall storage pool (also referred to as

a volume group). NetApp highly recommends that you leave some free capacity in each pool

to allow room for SSD overprovisioning (for more information, see Introduction to NetApp

EF600 array). The storage pool, beegfs_m1_m2_m5_m6, also allocates 1% of the pool’s

capacity for the management service. Thus, for metadata volumes in the storage pool,

beegfs_m1_m2_m5_m6, when 1.92TB or 3.84TB drives are used, set this value to 21.25;

for 7.65TB drives, set this value to 22.25; and for 15.3TB drives, set this value to 23.75.

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_01.yml 8015 i1b:100.127.1

01.1/16

i2b:100.127.1

02.1/16

0 netapp_01 beegfs_m1_

m2_m5_m6

A

meta_02.yml 8025 i2b:100.127.1

02.2/16

i1b:100.127.1

01.2/16

0 netapp_01 beegfs_m1_

m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1

01.3/16

i4b:100.127.1

02.3/16

1 netapp_02 beegfs_m3_

m4_m7_m8

A

22

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf
https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_04.yml 8045 i4b:100.127.1

02.4/16

i3b:100.127.1

01.4/16

1 netapp_02 beegfs_m3_

m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1

01.5/16

i2b:100.127.1

02.5/16

0 netapp_01 beegfs_m1_

m2_m5_m6

A

meta_06.yml 8065 i2b:100.127.1

02.6/16

i1b:100.127.1

01.6/16

0 netapp_01 beegfs_m1_

m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1

01.7/16

i4b:100.127.1

02.7/16

1 netapp_02 beegfs_m3_

m4_m7_m8

A

meta_08.yml 8085 i4b:100.127.1

02.8/16

i3b:100.127.1

01.8/16

1 netapp_02 beegfs_m3_

m4_m7_m8

B

4. Under group_vars/, create files for resource groups stor_01 through stor_08 using the following

template, and then fill in the placeholder values for each service referencing the example:

23

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

For the correct size to use, see Recommended storage pool overprovisioning percentages.

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_01.yml 8013 i1b:100.127.1

03.1/16

i2b:100.127.1

04.1/16

0 netapp_01 beegfs_s1_s2 A

stor_02.yml 8023 i2b:100.127.1

04.2/16

i1b:100.127.1

03.2/16

0 netapp_01 beegfs_s1_s2 B

stor_03.yml 8033 i3b:100.127.1

03.3/16

i4b:100.127.1

04.3/16

1 netapp_02 beegfs_s3_s4 A

stor_04.yml 8043 i4b:100.127.1

04.4/16

i3b:100.127.1

03.4/16

1 netapp_02 beegfs_s3_s4 B

24

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_05.yml 8053 i1b:100.127.1

03.5/16

i2b:100.127.1

04.5/16

0 netapp_01 beegfs_s5_s6 A

stor_06.yml 8063 i2b:100.127.1

04.6/16

i1b:100.127.1

03.6/16

0 netapp_01 beegfs_s5_s6 B

stor_07.yml 8073 i3b:100.127.1

03.7/16

i4b:100.127.1

04.7/16

1 netapp_02 beegfs_s7_s8 A

stor_08.yml 8083 i4b:100.127.1

04.8/16

i3b:100.127.1

03.8/16

1 netapp_02 beegfs_s7_s8 B

Step 3: Configure the inventory for a Metadata + storage building block

These steps describe how to set up an Ansible inventory for a BeeGFS metadata + storage building block.

Steps

1. In inventory.yml, populate the following parameters under the existing configuration:

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

 beegfs_03:

 beegfs_04:

25

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

2. Under group_vars/, create files for resource groups meta_09 through meta_16 using the following

26

template, and then fill in the placeholder values for each service referencing the example:

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

For the correct size to use, see Recommended storage pool overprovisioning percentages.

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_09.yml 8015 i1b:100.127.1

01.9/16

i2b:100.127.1

02.9/16

0 netapp_03 beegfs_m9_

m10_m13_m

14

A

meta_10.yml 8025 i2b:100.127.1

02.10/16

i1b:100.127.1

01.10/16

0 netapp_03 beegfs_m9_

m10_m13_m

14

B

meta_11.yml 8035 i3b:100.127.1

01.11/16

i4b:100.127.1

02.11/16

1 netapp_04 beegfs_m11_

m12_m15_m

16

A

meta_12.yml 8045 i4b:100.127.1

02.12/16

i3b:100.127.1

01.12/16

1 netapp_04 beegfs_m11_

m12_m15_m

16

B

27

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_13.yml 8055 i1b:100.127.1

01.13/16

i2b:100.127.1

02.13/16

0 netapp_03 beegfs_m9_

m10_m13_m

14

A

meta_14.yml 8065 i2b:100.127.1

02.14/16

i1b:100.127.1

01.14/16

0 netapp_03 beegfs_m9_

m10_m13_m

14

B

meta_15.yml 8075 i3b:100.127.1

01.15/16

i4b:100.127.1

02.15/16

1 netapp_04 beegfs_m11_

m12_m15_m

16

A

meta_16.yml 8085 i4b:100.127.1

02.16/16

i3b:100.127.1

01.16/16

1 netapp_04 beegfs_m11_

m12_m15_m

16

B

3. Under group_vars/, create files for resource groups stor_09 through stor_16 using the following

template, and then fill in the placeholder values for each service referencing the example:

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

For the correct size to use, see Recommended storage pool overprovisioning percentages..

28

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_09.yml 8013 i1b:100.127.1

03.9/16

i2b:100.127.1

04.9/16

0 netapp_03 beegfs_s9_s1

0

A

stor_10.yml 8023 i2b:100.127.1

04.10/16

i1b:100.127.1

03.10/16

0 netapp_03 beegfs_s9_s1

0

B

stor_11.yml 8033 i3b:100.127.1

03.11/16

i4b:100.127.1

04.11/16

1 netapp_04 beegfs_s11_s

12

A

stor_12.yml 8043 i4b:100.127.1

04.12/16

i3b:100.127.1

03.12/16

1 netapp_04 beegfs_s11_s

12

B

stor_13.yml 8053 i1b:100.127.1

03.13/16

i2b:100.127.1

04.13/16

0 netapp_03 beegfs_s13_s

14

A

stor_14.yml 8063 i2b:100.127.1

04.14/16

i1b:100.127.1

03.14/16

0 netapp_03 beegfs_s13_s

14

B

stor_15.yml 8073 i3b:100.127.1

03.15/16

i4b:100.127.1

04.15/16

1 netapp_04 beegfs_s15_s

16

A

stor_16.yml 8083 i4b:100.127.1

04.16/16

i3b:100.127.1

03.16/16

1 netapp_04 beegfs_s15_s

16

B

Step 4: Configure the inventory for a storage-only building block

These steps describe how to set up an Ansible inventory for a BeeGFS storage-only building block. The major

difference between setting up the configuration for a metadata + storage versus a storage-only building block is

the omission of all metadata resource groups and changing criteria_drive_count from 10 to 12 for each

storage pool.

Steps

1. In inventory.yml, populate the following parameters under the existing configuration:

29

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Under group_vars/, create files for resource groups stor_17 through stor_24 using the following

template, and then fill in the placeholder values for each service referencing the example:

30

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

For the correct size to use, see Recommended storage pool overprovisioning percentages.

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_17.yml 8013 i1b:100.127.1

03.17/16

i2b:100.127.1

04.17/16

0 netapp_05 beegfs_s17_s

18

A

stor_18.yml 8023 i2b:100.127.1

04.18/16

i1b:100.127.1

03.18/16

0 netapp_05 beegfs_s17_s

18

B

stor_19.yml 8033 i3b:100.127.1

03.19/16

i4b:100.127.1

04.19/16

1 netapp_06 beegfs_s19_s

20

A

stor_20.yml 8043 i4b:100.127.1

04.20/16

i3b:100.127.1

03.20/16

1 netapp_06 beegfs_s19_s

20

B

31

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_21.yml 8053 i1b:100.127.1

03.21/16

i2b:100.127.1

04.21/16

0 netapp_05 beegfs_s21_s

22

A

stor_22.yml 8063 i2b:100.127.1

04.22/16

i1b:100.127.1

03.22/16

0 netapp_05 beegfs_s21_s

22

B

stor_23.yml 8073 i3b:100.127.1

03.23/16

i4b:100.127.1

04.23/16

1 netapp_06 beegfs_s23_s

24

A

stor_24.yml 8083 i4b:100.127.1

04.24/16

i3b:100.127.1

03.24/16

1 netapp_06 beegfs_s23_s

24

B

Deploy BeeGFS

Deploying and managing the configuration involves running one or more playbooks that

contain the tasks Ansible needs to execute and bring the overall system to the desired

state.

While all tasks can be included in a single playbook, for complex systems, this quickly becomes unwieldy to

manage. Ansible allows you to create and distribute roles as a way of packaging reusable playbooks and

related content (for example: default variables, tasks, and handlers). For more information, see the Ansible

documentation for Roles.

Roles are often distributed as part of an Ansible collection containing related roles and modules. Thus, these

playbooks primarily just import several roles distributed in the various NetApp E-Series Ansible collections.

Currently, at least two building blocks (four file nodes) are required to deploy BeeGFS, unless a

separate quorum device is configured as a tiebreaker to mitigate any issues when establishing

quorum with a two-node cluster.

Steps

1. Create a new playbook.yml file and include the following:

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Configure NetApp E-Series block nodes.

32

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

33

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

This playbook runs a few pre_tasks that verify Python 3 is installed on the file nodes and

check that the Ansible tags provided are supported.

2. Use the ansible-playbook command with the inventory and playbook files when you’re ready to deploy

BeeGFS.

The deployment will run all pre_tasks, and then prompt for user confirmation before proceeding with the

actual BeeGFS deployment.

Run the following command, adjusting the number of forks as needed (see the note below):

ansible-playbook -i inventory.yml playbook.yml --forks 20

Especially for larger deployments, overriding the default number of forks (5) using the

forks parameter is recommended to increase the number of hosts that Ansible configures

in parallel. (For more information, see Controlling playbook execution.) The maximum value

setting depends on the processing power available on the Ansible control node. The above

example of 20 was run on a virtual Ansible control node with 4 CPUs (Intel® Xeon® Gold

6146 CPU @ 3.20GHz).

Depending on the size of the deployment and network performance between the Ansible control node and

BeeGFS file and block nodes, deployment time might vary.

Configure BeeGFS clients

You must install and configure the BeeGFS client on any hosts that need access to the

BeeGFS file system, such as compute or GPU nodes. For this task, you can use Ansible

and the BeeGFS collection.

Steps

34

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

1. If needed, set up passwordless SSH from the Ansible control node to each of the hosts you want to

configure as BeeGFS clients:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Under host_vars/, create a file for each BeeGFS client named <HOSTNAME>.yml with the following

content, filling in the placeholder text with the correct information for your environment:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

If deploying with a two subnet addressing scheme, two InfiniBand interfaces must be

configured on each client, one in each of the two storage IPoIB subnets. If using the

example subnets and recommended ranges for each BeeGFS service listed here, clients

should have one interface configured in the range of 100.127.1.0 to 100.127.99.255

and the other in 100.128.1.0 to 100.128.99.255.

3. Create a new file client_inventory.yml, and then populate the following parameters at the top:

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

Do not store passwords in plain text. Instead, use the Ansible Vault (see the Ansible

documentation for Encrypting content with Ansible Vault) or use the --ask-become-pass

option when running the playbook.

4. In the client_inventory.yml file, list all hosts that should be configured as BeeGFS clients under the

beegfs_clients group, and then specify any additional configuration required to build the BeeGFS client

kernel module.

35

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

When using the NVIDIA OFED drivers, make sure that

beegfs_client_ofed_include_path points to the correct "header include path" for

your Linux installation. For more information, see the BeeGFS documentation for RDMA

support.

5. In the client_inventory.yml file, list the BeeGFS file systems you want mounted at the bottom of any

previously defined vars.

36

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

The beegfs_client_config represents the settings that were tested. See the

documentation included with the netapp_eseries.beegfs collection’s beegfs_client

role for a comprehensive overview of all options. This includes details around mounting

multiple BeeGFS file systems or mounting the same BeeGFS file system multiple times.

6. Create a new client_playbook.yml file, and then populate the following parameters:

37

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Omit importing the netapp_eseries.host collection and ipoib role if you have already

installed the required IB/RDMA drivers and configured IPs on the appropriate IPoIB

interfaces.

7. To install and build the client and mount BeeGFS, run the following command:

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Before you place the BeeGFS file system in production, we strongly recommend that you log in to any

clients and run beegfs-fsck --checkfs to ensure that all nodes are reachable and there are no issues

reported.

38

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

39

http://www.netapp.com/TM

	Deploy software : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Deploy software
	Set up file nodes and block nodes
	Set up file nodes
	Set up block nodes

	Tune file node system settings for performance
	Use the UEFI interface to tune system settings
	Use Redfish API to tune system settings

	Set up an Ansible control node
	Create the Ansible inventory
	Step 1: Define configuration for all building blocks
	Step 2: Define configuration for individual file and block nodes
	Step 3: Define configuration that should apply to all file and block nodes
	Step 4: Define configuration that should apply to all file nodes
	Step 5: Define the configuration for the common block node

	Define Ansible inventory for BeeGFS building blocks
	Step 1: Create the Ansible inventory file
	Step 2: Configure the inventory for a management, metadata, and storage building block
	Step 3: Configure the inventory for a Metadata + storage building block
	Step 4: Configure the inventory for a storage-only building block

	Deploy BeeGFS
	Configure BeeGFS clients

