Deploy software
BeeGFS on NetApp with E-Series Storage

NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-setup-
nodes.html on January 27, 2026. Always check docs.netapp.com for the latest.



Table of Contents

Deploy software
Set up file nodes and block nodes
Set up file nodes
Set up block nodes
Tune file node system settings for performance
Use the UEFI interface to tune system settings
Use Redfish API to tune system settings
Set up an Ansible control node
Create the Ansible inventory
Step 1: Define configuration for all building blocks
Step 2: Define configuration for individual file and block nodes
Step 3: Define configuration that should apply to all file and block nodes
Step 4: Define configuration that should apply to all file nodes
Step 5: Define the configuration for the common block node
Define Ansible inventory for BeeGFS building blocks
Step 1: Create the Ansible inventory file
Step 2: Configure the inventory for a management, metadata, and storage building block
Step 3: Configure the inventory for a Metadata + storage building block
Step 4: Configure the inventory for a storage-only building block
Deploy BeeGFS
Configure BeeGFS clients

O© N O O b WDNDNDN-=2 2 -

W W NN 22 A A
AN O O © 0 0 OO O



Deploy software

Set up file nodes and block nodes

While most software configuration tasks are automated using the NetApp-provided
Ansible collections, you must configure networking on the baseboard management
controller (BMC) of each server and configure the management port on each controller.

Set up file nodes

1. Configure networking on the baseboard management controller (BMC) of each server.

To learn how to configure networking for the validated Lenovo SR665 V3 file nodes, see the Lenovo
ThinkSystem Documentation.

A baseboard management controller (BMC), sometimes referred to as a service processor,
is the generic name for the out-of-band management capability built into various server

@ platforms that can provide remote access even if the operating system is not installed or
accessible. Vendors typically market this functionality with their own branding. For example,
on the Lenovo SR665, the BMC is referred to as the Lenovo XClarity Controller (XCC).

2. Configure the system settings for maximum performance.

You configure the system settings using the UEFI setup (formerly known as the BIOS) or by using the
Redfish APIs provided by many BMCs. The system settings vary based on the server model used as a file
node.

To learn how to configure the system settings for the validated Lenovo SR665 V3 file nodes, see Tune
system settings for performance.

3. Install Red Hat Enterprise Linux (RHEL) 9.4 and configure the host name and network port used to
manage the operating system including SSH connectivity from the Ansible control node.

Do not configure IPs on any of the InfiniBand ports at this time.

While not strictly required, subsequent sections presume that host names are sequentially
numbered (such as h1-hN) and refer to tasks that should be completed on odd versus even
numbered hosts.

4. Use Red Hat Subscription Manager to register and subscribe the system to allow installation of the
required packages from the official Red Hat repositories and to limit updates to the supported version of
Red Hat: subscription-manager release --set=9.4. Forinstructions, see How to register and
subscribe a RHEL system and How to limit updates.

5. Enable the Red Hat repository containing the packages required for high availability.

subscription-manager repo-override --repo=rhel-9-for-x86 64
-highavailability-rpms --add=enabled:1

6. Update all HCA firmware to the version recommended in Technology requirements using the Update file


https://pubs.lenovo.com/sr665-v3/
https://pubs.lenovo.com/sr665-v3/
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html

node adapter firmware guide.

Set up block nodes

Set up the EF600 block nodes by configuring the management port on each controller.
1. Configure the management port on each EF600 controller.
For instructions on configuring ports, go to the E-Series Documentation Center.
2. Optionally, set the storage array name for each system.

Setting a name can make it easier to refer to each system in subsequent sections. For instructions on
setting the array name, go to the E-Series Documentation Center.

While not strictly required, subsequent topics presume storage array names are sequentially
numbered (such as c1 - cN) and refer to the steps that should be completed on odd versus even
numbered systems.

Tune file node system settings for performance

To maximize performance, we recommend configuring the system settings on the server
model you use as your file nodes.

The system settings vary depending on the server model you use as your file node. This topic describes how
to configure the system settings for the validated Lenovo ThinkSystem SR665 server file nodes.

Use the UEFI interface to tune system settings

The Lenovo SR665 V3 server’s system firmware contains numerous tuning parameters that can be set through
the UEFI interface. These tuning parameters can affect all aspects of how the server functions and how well
the server performs.

Under UEFI Setup > System Settings, adjust the following system settings:

Operating Mode menu

System Setting Change to
Operating Mode Custom
cTDP Manual
c¢TDP Manual 350
Package Power Limit Manual
Efficiency Mode Disable


https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

System Setting Change to

Global-Cstate-Control Disable
SOC P-states PO

DF C-States Disable
P-State Disable
Memory Power Down Enable Disable
NUMA Nodes per Socket NPS1

Devices and I/O ports menu

System Setting Change to
IOMMU Disable

Power menu

System Setting Change to
PCle Power Brake Disable

Processors menu

System Setting Change to
Global C-state Control Disable
DF C-States Disable
SMT Mode Disable
CPPC Disable

Use Redfish API to tune system settings

In addition to using UEFI Setup, you can use the Redfish API to change system settings.



Example

curl --request PATCH \
--url https://<BMC_IP ADDRESS>/redfish/vl/Systems/1/Bios/Pending \
--user <BMC USER>:<BMC- PASSWORD> \
--header 'Content-Type: application/json' \
-—-data '{
"Attributes": {
"OperatingModes ChooseOperatingMode": "CustomMode",
"Processors cTDP": "Manual",
"Processors PackagePowerLimit": "Manual",
"Power EfficiencyMode": "Disable",
"Processors GlobalC stateControl": "Disable",
"Processors SOCP states": "PO",
"Processors DFC States": "Disable",
"Processors P State": "Disable",
"Memory MemoryPowerDownEnable": "Disable",
"DevicesandIOPorts IOMMU": "Disable",
"Power PCIePowerBrake": "Disable",
"Processors GlobalC stateControl": "Disable",
"Processors DFC States": "Disable",
"Processors SMTMode": "Disable",
"Processors CPPC": "Disable",
"Memory NUMANodesperSocket":"NPS1"
}
}

For detailed information on the Redfish schema, see the DMTF website.

Set up an Ansible control node

To set up an Ansible control node, you must designate a virtual or physical machine with
network access to all file and block nodes deployed for the BeeGFS on NetApp solution.

Review the Technical requirements for a list of recommended package versions. The following steps were
tested on Ubuntu 22.04. For steps specific to your preferred Linux distribution, see the Ansible documentation.

1. From your Ansible control node, install the following Python and Python Virtual Environment packages.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Create a Python virtual environment.


https://redfish.dmtf.org/redfish/schema_index
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv
3. Activate the virtual environment.
source ~/pyenv/bin/activate
4. Install the required Python packages within the activated virtual environment.
pip install ansible netaddr cryptography passlib
5. Install the BeeGFS collection using Ansible Galaxy.
ansible-galaxy collection install netapp eseries.beegfs

6. Verify the installed versions of Ansible, Python, and the BeeGFS collection match the Technical
requirements.

ansible --version

ansible-galaxy collection list netapp eseries.beegfs

7. Set up passwordless SSH to allow Ansible to access the remote BeeGFS file nodes from the Ansible
control node.

a. On the Ansible control node, if needed, generate a pair of public keys.
ssh-keygen
b. Set up passwordless SSH to each of the file nodes.

ssh-copy-id <ip or hostname>

@ Do not set up passwordless SSH to the block nodes. This is neither supported nor required.

Create the Ansible inventory

To define the configuration for file and block nodes, you create an Ansible inventory that
represents the BeeGFS file system you want to deploy. The inventory includes hosts,
groups, and variables describing the desired BeeGFS file system.


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements

Step 1: Define configuration for all building blocks

Define the configuration that applies to all building blocks, regardless of which configuration profile you may
apply to them individually.

Before you begin

* Choose a subnet addressing scheme for your deployment. Due to the benefits listed in the software
architecture, it is recommended to use a single subnet addressing scheme.

Steps

1. On your Ansible control node, identify a directory that you want to use to store the Ansible inventory and
playbook files.

Unless otherwise noted, all files and directories created in this step and following steps are created relative
to this directory.

2. Create the following subdirectories:
host vars
group_vars
packages

3. Create a subdirectory for cluster passwords and secure the file by encrypting it with Ansible Vault (see
Encrypting content with Ansible Vault):

a. Create the subdirectory group vars/all.
b. Inthe group vars/all directory, create a passwords file labeled passwords. yml.

C. Populate the passwords.yml file with the following, replacing all username and password
parameters according to your configuration:


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.ansible.com/ansible/latest/user_guide/vault.html

# Credentials for storage system's admin password
eseries password: <PASSWORD>

# Credentials for BeeGFS file nodes
ssh ha user: <USERNAME>
ssh _ha become pass: <PASSWORD>

# Credentials for HA cluster

ha cluster username: <USERNAME>

ha cluster password: <PASSWORD>

ha cluster password shabl2Z2 salt: randomSalt

# Credentials for fencing agents

# OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:
# Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

# OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and
other BMCs) for fencing:

# Credentials for XCC/BMC of BeeGFS file nodes

bmc username: <USERNAME>

bmc password: <PASSWORD>

d. Run ansible-vault encrypt passwords.yml and set a vault password when prompted.

Step 2: Define configuration for individual file and block nodes

Define the configuration that applies to individual file nodes and individual building block nodes.

1. Under host_vars/, create a file for each BeeGFS file node named <HOSTNAME> . ym1 with the following
content, paying special attention to the notes regarding content to populate for BeeGFS cluster IPs and
host names ending in odd versus even numbers.

Initially, the file node interface names do match what is listed here (such as ibO or ibs1f0). These custom
names are configured in Step 4: Define configuration that should apply to all file nodes.



ansible host: “<MANAGEMENT IP>"
eseries ipoib interfaces: # Used to configure BeeGFS cluster IP
addresses.
- name: ilb
address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16
- name: 1i4b
address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16
beegfs ha cluster node ips:
- <MANAGEMENT IP>
- <ilb BEEGFS_ CLUSTER IP>
- <i4b BEEGFS CLUSTER IP>
# NVMe over InfiniBand storage communication protocol information
# For odd numbered file nodes (i.e., h01l, h03, ..):
eseries nvme ib interfaces:
- name: ila
address: 192.168.1.10/24
configure: true
- name: iZ2a
address: 192.168.3.10/24
configure: true
- name: i3a
address: 192.168.5.10/24
configure: true
- name: i4da
address: 192.168.7.10/24
configure: true
# For even numbered file nodes (i.e., h02, h04, ..):
# NVMe over InfiniBand storage communication protocol information
eseries nvme ib interfaces:
- name: ila
address: 192.168.2.10/24
configure: true
- name: iZ2a
address: 192.168.4.10/24
configure: true
- name: i3a
address: 192.168.6.10/24
configure: true
- name: i4da
address: 192.168.8.10/24

configure: true



If you have already deployed the BeeGFS cluster, you must stop the cluster before adding

@ or changing statically configured IP addresses, including cluster IPs and IPs used for
NVMe/IB. This is required so these changes take effect properly and do not disrupt cluster
operations.

2. Under host_vars/, create a file for each BeeGFS block node named <HOSTNAME>. yml and populate it
with the following content.

Pay special attention to the notes regarding content to populate for storage array names ending in odd
versus even numbers.

For each block node, create one file and specify the <MANAGEMENT IP> for one of the two controllers
(usually A).

eseries system name: <STORAGE ARRAY NAME>
eseries system api url: https://<MANAGEMENT IP>:8443/devmgr/v2/
eseries initiator protocol: nvme ib
# For odd numbered block nodes (i.e., a0l, a03, ..):
eseries controller nvme ib port:
controller a:
- 192.168.1.101
- 192.168.2.101
- 192.168.1.100
- 192.168.2.100
controller Db:

- 192.168.3.101
- 192.168.4.101
- 192.168.3.100

- 192.168.4.100
# For even numbered block nodes (i.e., a02, a04, ..):
eseries controller nvme ib port:

controller a:

- 192.168.5.101
- 192.168.6.101
- 192.168.5.100
- 192.168.6.100
controller Db:
- 192.168.7.101
- 192.168.8.101
- 192.168.7.100
- 192.168.8.100

Step 3: Define configuration that should apply to all file and block nodes

You can define configuration common to a group of hosts under group_vars in a file name that corresponds
with the group. This prevents repeating a shared configuration in multiple places.



About this task

Hosts can be in more than one group, and at runtime, Ansible chooses what variables apply to a particular host
based on its variable precedence rules. (For more information on these rules, see the Ansible documentation
for Using variables.)

Host-to-group assignments are defined in the actual Ansible inventory file, which is created towards the end of
this procedure.

Step

In Ansible, any configuration you want to apply to all hosts can be defined in a group called A11. Create the file
group vars/all.yml with the following content:

ansible python interpreter: /usr/bin/python3
beegfs ha ntp server pools: # Modify the NTP server addressess if
desired.

- "pool 0O.pool.ntp.org iburst maxsources 3"

- "pool 1l.pool.ntp.org iburst maxsources 3"

Step 4: Define configuration that should apply to all file nodes

The shared configuration for file nodes is defined in a group called ha cluster. The steps in this section
build out the configuration that should be included in the group vars/ha cluster.yml file.

Steps

1. At the top of the file, define the defaults, including the password to use as the sudo user on the file nodes.

### ha cluster Ansible group inventory file.

# Place all default/common variables for BeeGFS HA cluster resources
below.

### Cluster node defaults

ansible ssh user: {{ ssh ha user }}

ansible become password: {{ ssh ha become pass }}

eseries ipoib default hook templates:

- 99-multihoming.j2 # This is required for single subnet
deployments, where static IPs containing multiple IB ports are in the
same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.
# If the following options are specified, then Ansible will
automatically reboot nodes when necessary for changes to take effect:
eseries common allow host reboot: true
eseries common reboot test command: "! systemctl status
eseries nvme ib.service || systemctl --state=exited | grep
eseries nvme ib.service"
eseries 1b opensm options:

virt enabled: "2"

virt max ports in process: "0O"

10


https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

If the ansible ssh useris already root, then you can optionally omit the
ansible become password and specify the --ask-become-pass option when running
the playbook.

2. Optionally, configure a name for the high-availability (HA) cluster and specify a user for intra-cluster
communication.

If you are modifying the private IP addressing scheme, you must also update the default
beegfs ha mgmtd floating ip. This must match what you configure later for the BeeGFS
Management resource group.

Specify one or more emails that should receive alerts for cluster events using
beegfs ha alert email list.

11



3.

12

### Cluster information

beegfs ha firewall configure: True

eseries beegfs ha disable selinux: True

eseries selinux state: disabled

# The following variables should be adjusted depending on the desired

configuration:

beegfs ha cluster name: hacluster # BeeGFS HA cluster
name.

beegfs ha cluster username: "{{ ha cluster username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.
beegfs ha cluster password: "{{ ha cluster password }}" # Parameter for
BeeGFS HA cluster username's password in the passwords file.
beegfs ha cluster password shab5l2 salt: "{{
ha cluster password shabl2 salt }}" # Parameter for BeeGFS HA cluster
username's password salt in the passwords file.
beegfs ha mgmtd floating ip: 100.127.101.0 # BeeGFS management
service IP address.
# Email Alerts Configuration
beegfs ha enable alerts: True
beegfs ha alert email list: ["email@example.com"] # E-mail recipient
list for notifications when BeeGFS HA resources change or fail. Often a
distribution list for the team responsible for managing the cluster.
beegfs ha alert conf ha group options:

mydomain: “example.com”
# The mydomain parameter specifies the local internet domain name. This
is optional when the cluster nodes have fully qualified hostnames (i.e.
host.example.com) .
# Adjusting the following parameters is optional:
beegfs ha alert timestamp format: "$Y-%m-%d %H:%M:%S.3%N" #%H:%M:%S.5%N
beegfs ha alert verbosity: 3
# 1) high-level node activity
# 3) high-level node activity + fencing action information + resources
(filter on X-monitor)
# 5) high-level node activity + fencing action information + resources

While seemingly redundant, beegfs ha mgmtd floating ip is important when you

@ scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are
deployed without an additional BeeGFS management service and point at the management
service provided by the first cluster.

Configure a fencing agent. (For more details, see Configure fencing in a Red Hat High Availability cluster.)
The following output shows examples for configuring common fencing agents. Choose one of these
options.

For this step, be aware that:


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

> By default, fencing is enabled, but you need to configure a fencing agent.

° The <HOSTNAME> specified in the pcmk_host map or pcmk _host 1ist must correspond with the
hostname in the Ansible inventory.

> Running the BeeGFS cluster without fencing is not supported, particularly in production. This is largely
to ensure when BeeGFS services, including any resource dependencies like block devices, fail over
due to an issue, there is no risk of concurrent access by multiple nodes that result in file system
corruption or other undesirable or unexpected behavior. If fencing must be disabled, refer to the
general notes in the BeeGFS HA role’s getting started guide and set
beegfs ha cluster crm config options["stonith-enabled"] to falsein
ha cluster.yml.

> There are multiple node-level fencing devices available, and the BeeGFS HA role can configure any
fencing agent available in the Red Hat HA package repository. When possible, use a fencing agent that
works through the uninterruptible power supply (UPS) or rack power distribution unit (rPDU), because
some fencing agents such as the baseboard management controller (BMC) or other lights-out devices
that are built into the server might not respond to the fence request under certain failure scenarios.

13



4.

14

### Fencing configuration:
# OPTION 1: To enable fencing using APC Power Distribution Units
(PDUS) :
beegfs ha fencing agents:
fence apc:
- ipaddr: <PDU IP ADDRESS>
login: "{{ apc_username }}" # Parameter for APC PDU username 1in
the passwords file.
passwd: "{{ apc password }}" # Parameter for APC PDU password in
the passwords file.
pcmk host map:
"<HOSTNAME>:<PDU PORT>, <PDU PORT>; <HOSTNAME>:<PDU PORT>,<PDU PORT>"
# OPTION 2: To enable fencing using the Redfish APIs provided by the
Lenovo XCC (and other BMCs) :
redfish: &redfish
username: "{{ bmc username }}" # Parameter for XCC/BMC username in
the passwords file.
password: "{{ bmc password }}" # Parameter for XCC/BMC password in
the passwords file.
ssl _insecure: 1 # If a valid SSL certificate is not available
specify “1”.
beegfs ha fencing agents:
fence redfish:
- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish
- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish
# For details on configuring other fencing agents see
https://access.redhat.com/documentation/en-
us/red hat enterprise linux/9/html/configuring and managing high avai
lability clusters/assembly configuring-fencing-configuring-and-
managing-high-availability-clusters.

Enable recommended performance tuning in the Linux OS.

While many users find the default settings for the performance parameters generally work well, you can
optionally change the default settings for a particular workload. As such, these recommendations are
included in the BeeGFS role, but are not enabled by default to ensure users are aware of the tuning

applied to their file system.

To enable performance tuning, specify:



### Performance Configuration:
beegfs ha enable performance tuning: True

5. (Optional) You can adjust the performance tuning parameters in the Linux OS as needed.

For a comprehensive list of the available tuning parameters that you can adjust, see the Performance
Tuning Defaults section of the BeeGFS HA role in E-Series BeeGFS GitHub site. The default values can
be overridden for all nodes in the cluster in this file or the host_vars file for an individual node.

. To allow full 200Gb/HDR connectivity between block and file nodes, use the Open Subnet Manager
(OpenSM) package from the NVIDIA Open Fabrics Enterprise Distribution (MLNX_OFED). The
MLNX_OFED version in listed the file node requirements comes bundled with the recommended OpenSM
packages. Although deployment using Ansible is supported, you must first install the MLNX_OFED driver
on all file nodes.

a. Populate the following parameters in group vars/ha cluster.yml (adjust packages as needed):

### OpenSM package and configuration information
eseries ib opensm options:
virt enabled: "2"

virt max ports in process: "0O"

. Configure the udev rule to ensure consistent mapping of logical InfiniBand port identifiers to underlying
PCle devices.

The udev rule must be unique to the PCle topology of each server platform used as a BeeGFS file node.

Use the following values for verified file nodes:

15


https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements

### Ensure Consistent Logical IB Port Numbering
# OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:
eseries ipoib udev rules:

"0000:01:00.0": ila

"0000:01:00.1": ilb

"0000:41:00.0": i2a

"0000:41:00.1": i2b

"0000:81:00.0": i3a

"0000:81:00.1": i3Db

"0000:a21:00.0": ida

"0000:a21:00.1": i4db

# OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:
eseries ipoib udev rules:

"0000:41:00.0": ila

"0000:41:00.1": ilb

"0000:01:00.0": i2a

"0000:01:00.1": i2b

"0000:a21:00.0": i3a

"0000:21:00.1": i3Db

"0000:81:00.0": i4da

"0000:81:00.1": i4db

8. (Optional) Update the metadata target selection algorithm.

beegfs ha beegfs meta conf ha group options:
tuneTargetChooser: randomrobin

In verification testing, randomrobin was typically used to ensure that test files were evenly
distributed across all BeeGFS storage targets during performance benchmarking (for more

@ information on benchmarking, see the BeeGFS site for Benchmarking a BeeGFS System).
With real world use, this might cause lower numbered targets to fill up faster than higher
numbered targets. Omitting randomrobin and just using the default randomized value
has been shown to provide good performance while still utilizing all available targets.

Step 5: Define the configuration for the common block node

The shared configuration for block nodes is defined in a group called eseries storage systems. The
steps in this section build out the configuration that should be included in the group vars/
eseries storage systems.yml file.

Steps

1. Set the Ansible connection to local, provide the system password, and specify if SSL certificates should be
verified. (Normally, Ansible uses SSH to connect to managed hosts, but in the case of the NetApp E-Series
storage systems used as block nodes, the modules use the REST API for communication.) At the top of

16


https://doc.beegfs.io/latest/advanced_topics/benchmark.html

the file, add the following:

### eseries storage systems Ansible group inventory file.

# Place all default/common variables for NetApp E-Series Storage Systems
here:

ansible connection: local

eseries system password: {{ eseries password }} # Parameter for E-Series
storage array password in the passwords file.

eseries validate certs: false

2. To ensure optimal performance, install the versions listed for block nodes in Technical requirements.

Download the corresponding files from the NetApp Support site. You can either upgrade them manually or
include them in the packages/ directory of the Ansible control node, and then populate the following
parameters in eseries storage systems.yml to upgrade using Ansible:

# Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed) :
eseries firmware firmware: "packages/RCB_11.80GA 6000 64ccOee3.dlp"
eseries firmware nvsram: "packages/N6000-880834-D08.dlp"

. Download and install the latest drive firmware available for the drives installed in your block nodes from the
NetApp Support site. You can either upgrade them manually or include them in the packages/ directory of
the Ansible control node, and then populate the following parameters in

eseries storage systems.yml to upgrade using Ansible:

eseries drive firmware firmware list:
- "packages/<FILENAME>.dlp"
eseries drive firmware upgrade drives online: true

Setting eseries drive firmware upgrade drives online to false will speed up
the upgrade, but should not be done until after BeeGFS is deployed. This is because that

@ setting requires stopping all I/O to the drives before the upgrade to avoid application errors.
Although performing an online drive firmware upgrade before configuring volumes is still
quick, we recommend you always set this value to true to avoid issues later.

4. To optimize performance, make the following changes to the global configuration:

# Global Configuration Defaults

eseries system cache block size: 32768

eseries system cache flush threshold: 80

eseries system default host type: linux dm-mp
eseries system autolocad balance: disabled

eseries system host connectivity reporting: disabled
eseries system controller shelf id: 99 # Required.

17


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

5. To ensure optimal volume provisioning and behavior, specify the following parameters:

# Storage Provisioning Defaults

eseries volume size unit: pct

eseries volume read cache enable: true

eseries volume read ahead enable: false

eseries volume write cache enable: true

eseries volume write cache mirror enable: true

eseries volume cache without batteries: false

eseries storage pool usable drives:

990, 99:123,,99:1,99:122, 99212, 99: 21, 9913/, 99 : 210, 99 : 4,/99:19,98: 5, 99:/18/,/99: 6,
99317,9987,99816,9938,99815,9989,99214,99310, 99813, 99311, 99g12%

The value specified for eseries storage pool usable drives is specific to NetApp

(D EF600 block nodes and controls the order in which drives are assigned to new volume
groups. This ordering ensures that the 1/0 to each group is evenly distributed across
backend drive channels.

Define Ansible inventory for BeeGFS building blocks

After defining the general Ansible inventory structure, define the configuration for each
building block in the BeeGFS file system.

These deployment instructions demonstrate how to deploy a file system that consists of a base building block
including management, metadata, and storage services; a second building block with metadata and storage
services; and a third storage-only building block.

These steps are intended to show the full range of typical configuration profiles that you can use to configure
NetApp BeeGFS building blocks to meet the requirements of the overall BeeGFS file system.

In this and subsequent sections, adjust as needed to build the inventory representing the

@ BeeGFS file system that you want to deploy. In particular, use Ansible host names that
represent each block or file node and the desired IP addressing scheme for the storage network
to ensure it can scale to the number of BeeGFS file nodes and clients.

Step 1: Create the Ansible inventory file

Steps

1. Create a new inventory.yml file, and then insert the following parameters, replacing the hosts under
eseries storage systems as needed to represent the block nodes in your deployment. The names
should correspond with the name used for host vars/<FILENAME>.yml.

18



# BeeGFS HA (High Availability) cluster inventory.
all:
children:
# Ansible group representing all block nodes:
eseries storage systems:
hosts:
netapp 01:
netapp 02:
netapp 03:
netapp 04:
netapp 05:
netapp 06:
# Ansible group representing all file nodes:
ha cluster:
children:

In the subsequent sections, you will create additional Ansible groups under ha cluster that represent
the BeeGFS services you want to run in the cluster.

Step 2: Configure the inventory for a management, metadata, and storage building
block

The first building block in the cluster or base building block must include the BeeGFS management service
along with metadata and storage services:

Steps

1. In inventory.yml, populate the following parameters under ha cluster: children:

# beegfs 01/beegfs 02 HA Pair (mgmt/meta/storage building block) :
mgmt:
hosts:
beegfs 01:
beegfs 02:
meta 01:
hosts:
beegfs 01:
beegfs 02:
stor 01:
hosts:
beegfs 01:
beegfs 02:
meta 02:
hosts:
beegfs 01:
beegfs 02:

19



20

stor 02:
hosts:
beegfs 01:
beegfs 02:
meta 03:
hosts:
beegfs 01:
beegfs 02:
stor 03:
hosts:
beegfs 01:
beegfs 02:
meta 04:
hosts:
beegfs 01:
beegfs 02:
stor 04:
hosts:
beegfs 01:
beegfs 02:
meta 05:
hosts:
beegfs 02:
beegfs 01:
stor 05:
hosts:
beegfs 02:
beegfs 01:
meta 06:
hosts:
beegfs 02:
beegfs 01:
stor 06:
hosts:
beegfs 02:
beegfs 01:
meta 07:
hosts:
beegfs 02:
beegfs 01:
stor 07:
hosts:
beegfs 02:
beegfs 01:
meta 08:
hosts:



beegfs 02:
beegfs 01:
stor 08:
hosts:
beegfs 02:
beegfs 01:

2. Create the file group_vars/mgmt.yml and include the following:

# mgmt - BeeGFS HA Management Resource Group
# OPTIONAL: Override default BeeGFS management configuration:
# beegfs ha beegfs mgmtd conf resource group options:
# <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>
floating ips:
- ilb: 100.127.101.0/16
- i2b: 100.127.102.0/16
beegfs service: management
beegfs targets:
netapp 01:
eseries storage pool configuration:
- name: beegfs ml mZ2 m5 mé6
raid level: raidl
criteria drive count: 4
common volume configuration:
segment size kb: 128
volumes:
- size: 1

owning controller: A

3. Under group_vars/, create files for resource groups meta 01 through meta 08 using the following
template, and then fill in the placeholder values for each service referencing the table below:

21



# meta 0X - BeeGFS HA Metadata Resource Group
beegfs ha beegfs meta conf resource group options:
connMetaPortTCP: <PORT>
connMetaPortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET> # Example: 11b:192.168.120.1/16
- <SECONDARY PORT:IP/SUBNET>
beegfs service: metadata
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidl
criteria drive count: 4
common volume configuration:
segment size kb: 128
volumes:
- size: 21.25 # SEE NOTE BELOW!
owning controller: <OWNING CONTROLLER>

The volume size is specified as a percentage of the overall storage pool (also referred to as
a volume group). NetApp highly recommends that you leave some free capacity in each pool
to allow room for SSD overprovisioning (for more information, see Introduction to NetApp
(D EF600 array). The storage pool, beegfs ml m2 m5 mé6, also allocates 1% of the pool’'s
capacity for the management service. Thus, for metadata volumes in the storage pool,
beegfs ml m2 m5 mé6, when 1.92TB or 3.84TB drives are used, set this value to 21.25;
for 7.65TB drives, set this value to 22 .25; and for 15.3TB drives, set this value to 23. 75.

File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller

meta_01.yml 8015 i1b:100.127.1 0 netapp 01 beegfs m1_ A
01.1/16 m2_m5_m6
i2b:100.127.1
02.1/16

meta_02.yml 8025 i2b:100.127.1 0 netapp_01 beegfs m1_ B
02.2/16 m2_m5_m6
i1b:100.127.1
01.2/16

meta_03.yml 8035 i3b:100.127.1 1 netapp_02 beegfs m3_ A
01.3/16 m4_m7_m8
i4b:100.127.1

02.3/16


https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf
https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

File name

meta_04.yml

meta_05.yml

meta_06.yml

meta_07.yml

meta_08.yml

Port

8045

8055

8065

8075

8085

Floating IPs

i4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

i4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

NUMA zone

Block node

netapp_02

netapp_01

netapp_01

netapp_02

netapp 02

Storage pool Owning

beegfs m3_
m4_m7_m8

beegfs m1_
m2_m5_m6

beegfs m1_
m2_m5 m6

beegfs m3_
m4 _m7_m8

beegfs m3_
m4_m7_m8

template, and then fill in the placeholder values for each service referencing the example:

controller

B

4. Under group_vars/, create files for resource groups stor 01 through stor 08 using the following

23



# stor 0X - BeeGFS HA Storage Resource
Groupbeegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
- <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé
criteria drive count: 10

common volume configuration:

segment size kb: 512 volumes:
- size: 21.50 # See note below! owning controller:
<OWNING CONTROLLER>
- size: 21.50 owning controller: <OWNING
CONTROLLER>
@ For the correct size to use, see Recommended storage pool overprovisioning percentages.
File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller
stor_01.yml 8013 i1b:100.127.1 0O netapp_01 beegfs_s1_s2 A
03.1/16
i2b:100.127.1
04.1/16
stor_02.yml 8023 i2b:100.127.1 0 netapp_01 beegfs s1_s2 B
04.2/16
i1b:100.127.1
03.2/16
stor_03.yml 8033 i3b:100.127.1 1 netapp_02 beegfs s3 s4 A
03.3/16
i4b:100.127.1
04.3/16
stor_04.yml 8043 i4b:100.127.1 1 netapp_02 beegfs_s3 s4 B
04.4/16
i3b:100.127.1

03.4/16


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name

stor_05.yml

stor_06.yml

stor_07.yml

stor_08.yml

Port Floating IPs NUMA zone

8053 i1b:100.127.1 0O
03.5/16
i2b:100.127.1
04.5/16

8063 i2b:100.127.1 0
04.6/16
i1b:100.127.1
03.6/16

8073 i3b:100.127.1 1
03.7/16
i4b:100.127.1
04.7/16

8083 i4b:100.127.1 1
04.8/16
i3b:100.127.1
03.8/16

Block node

netapp_01

netapp_01

netapp_02

netapp_02

Storage pool Owning
controller

beegfs s5 s6 A

beegfs s5 s6 B

beegfs s7 s8 A

beegfs s7 s8 B

Step 3: Configure the inventory for a Metadata + storage building block

These steps describe how to set up an Ansible inventory for a BeeGFS metadata + storage building block.

Steps

1. In inventory.yml, populate the following parameters under the existing configuration:

meta 09:
hosts:
beegfs 03:
beegfs 04:
stor 09:
hosts:
beegfs 03:
beegfs 04:
meta 10:
hosts:
beegfs 03:
beegfs 04:
stor 10:
hosts:
beegfs 03:
beegfs 04:
meta 11:
hosts:
beegfs 03:
beegfs 04:



2. Under group_vars/, create files for resource groups meta_ 09 through meta_16 using the following

26

stor 11:
hosts:
beegfs 03:
beegfs 04:
meta 12:
hosts:
beegfs 03:
beegfs 04:
stor 12:
hosts:
beegfs 03:
beegfs 04:
meta 13:
hosts:
beegfs 04:
beegfs 03:
stor 13:
hosts:
beegfs 04:
beegfs 03:
meta 14:
hosts:
beegfs 04:
beegfs 03:
stor 14:
hosts:
beegfs 04:
beegfs 03:
meta 15:
hosts:
beegfs 04:
beegfs 03:
stor 15:
hosts:
beegfs 04:
beegfs 03:
meta 16:
hosts:
beegfs 04:
beegfs 03:
stor 16:
hosts:
beegfs 04:
beegfs 03:



template, and then fill in the placeholder values for each service referencing the example:

# meta 0OX - BeeGFS HA Metadata Resource Group
beegfs ha beegfs meta conf resource group options:

connMetaPortTCP:
connMetaPortUDP:
tuneBindToNumaZone:

<PORT>
<PORT>
<NUMA ZONE>

floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>

beegfs service:

metadata

beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:

<STORAGE POOL>
raid level: raidl

name:

criteria drive count: 4
common volume configuration:

segment size kb: 128
volumes:

- size: 21.5 # SEE NOTE BELOW!

owning controller: <OWNING CONTROLLER>

®

File name Port
meta_09.yml 8015
meta_10.yml 8025
meta_11.yml 8035
meta_12.yml 8045

Floating IPs NUMA zone

i1b:100.127.1 O
01.9/16
i2b:100.127.1
02.9/16

i2b:100.127.1 O
02.10/16
i1b:100.127.1
01.10/16

i3b:100.127.1 1
01.11/16
i4b:100.127.1
02.11/16

i4b:100.127.1 1
02.12/16
i3b:100.127.1
01.12/16

Block node

netapp_03

netapp_03

netapp_04

netapp_04

For the correct size to use, see Recommended storage pool overprovisioning percentages.

Storage pool Owning
controller

beegfs m9 A
m10_m13_m
14

beegfs m9 B
m10_m13_m
14

beegfs m11_ A
m12_m15_m
16

beegfs m11_ B
m12 m15 m
16

27


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

3.

28

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_13.yml 8055 i1b:100.127.1 0O netapp_03 beegfs m9_ A
01.13/16 m10_m13_m
i2b:100.127.1 14
02.13/16

meta_14.yml 8065 i2b:100.127.1 0 netapp_03 beegfs m9_ B
02.14/16 m10_m13_m
i1b:100.127.1 14
01.14/16

meta_15.yml 8075 i3b:100.127.1 1 netapp_04 beegfs m11_ A
01.15/16 m12_m15_m
i4b:100.127.1 16
02.15/16

meta_16.yml 8085 i4b:100.127.1 1 netapp_04 beegfs m11_ B
02.16/16 m12_m15_m
i3b:100.127.1 16
01.16/16

Under group vars/, create files for resource groups stor 09 through stor 16 using the following
template, and then fill in the placeholder values for each service referencing the example:

# stor 0X - BeeGFS HA Storage Resource Group
beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé6
criteria drive count: 10
common volume configuration:
segment size kb: 512 volumes:
- size: 21.50 # See note below!
owning controller: <OWNING CONTROLLER>
- size: 21.50 owning controller: <OWNING
CONTROLLER>

@ For the correct size to use, see Recommended storage pool overprovisioning percentages..


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_09.yml 8013 i1b:100.127.1 0O netapp_03 beegfs_s9 s1 A
03.9/16 0
i2b:100.127.1
04.9/16

stor_10.yml 8023 i2b:100.127.1 0 netapp_03 beegfs s9 s1 B
04.10/16 0
i1b:100.127.1
03.10/16

stor_11.yml 8033 i3b:100.127.1 1 netapp_04 beegfs s11 s A
03.11/16 12
i4b:100.127.1
04.11/16

stor_12.yml 8043 i4b:100.127.1 1 netapp_04 beegfs s11_s B
04.12/16 12
i3b:100.127.1
03.12/16

stor_13.yml 8053 i1b:100.127.1 0 netapp 03 beegfs s13 s A
03.13/16 14
i2b:100.127.1
04.13/16

stor_14.yml 8063 i2b:100.127.1 0 netapp_ 03 beegfs s13 s B
04.14/16 14
i1b:100.127.1
03.14/16

stor_15.yml 8073 i3b:100.127.1 1 netapp_04 beegfs s15 s A
03.15/16 16
i4b:100.127.1
04.15/16

stor_16.yml 8083 i4b:100.127.1 1 netapp_04 beegfs s15 s B
04.16/16 16
i3b:100.127.1
03.16/16

Step 4: Configure the inventory for a storage-only building block

These steps describe how to set up an Ansible inventory for a BeeGFS storage-only building block. The major
difference between setting up the configuration for a metadata + storage versus a storage-only building block is
the omission of all metadata resource groups and changing criteria drive count from 10 to 12 for each
storage pool.

Steps
1. In inventory.yml, populate the following parameters under the existing configuration:

29



# beegfs 05/beegfs 06 HA Pair (storage only building block):
stor 17:
hosts:
beegfs 05:
beegfs 06:
stor 18:
hosts:
beegfs 05:
beegfs 06:
stor 19:
hosts:
beegfs 05:
beegfs 06:
stor 20:
hosts:
beegfs 05:
beegfs 06:
stor 21:
hosts:
beegfs 06:
beegfs 05:
stor 22:
hosts:
beegfs 06:
beegfs 05:
stor 23:
hosts:
beegfs 06:
beegfs 05:
stor 24:
hosts:
beegfs 06:
beegfs 05:

2. Under group vars/, create files for resource groups stor 17 through stor 24 using the following
template, and then fill in the placeholder values for each service referencing the example:

30



# stor 0X - BeeGFS HA Storage Resource Group
beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé
criteria drive count: 12
common volume configuration:
segment size kb: 512
volumes:
- size: 21.50 # See note below!
owning controller: <OWNING CONTROLLER>
- size: 21.50
owning controller: <OWNING CONTROLLER>

@ For the correct size to use, see Recommended storage pool overprovisioning percentages.
File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller
stor_17.yml 8013 i1b:100.127.1 0 netapp_ 05 beegfs s17 s A
03.17/16 18
i2b:100.127.1
04.17/16
stor_18.yml 8023 i2b:100.127.1 0 netapp_ 05 beegfs s17_s B
04.18/16 18
i1b:100.127.1
03.18/16
stor_19.yml 8033 i3b:100.127.1 1 netapp_06 beegfs s19 s A
03.19/16 20
i4b:100.127.1
04.19/16
stor_20.yml 8043 i4b:100.127.1 1 netapp_06 beegfs s19 s B
04.20/16 20
i3b:100.127.1
03.20/16

31


https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_21.yml 8053 i1b:100.127.1 0O netapp_05 beegfs_s21_ s A
03.21/16 22
i2b:100.127.1
04.21/16

stor_22.yml 8063 i2b:100.127.1 0 netapp_05 beegfs_s21 s B
04.22/16 22
i1b:100.127.1
03.22/16

stor_ 23.yml 8073 i3b:100.127.1 1 netapp_06 beegfs s23 s A
03.23/16 24
i4b:100.127.1
04.23/16

stor_24.yml 8083 i4b:100.127.1 1 netapp_06 beegfs s23 s B
04.24/16 24
i3b:100.127.1
03.24/16

Deploy BeeGFS

Deploying and managing the configuration involves running one or more playbooks that
contain the tasks Ansible needs to execute and bring the overall system to the desired
state.

While all tasks can be included in a single playbook, for complex systems, this quickly becomes unwieldy to
manage. Ansible allows you to create and distribute roles as a way of packaging reusable playbooks and
related content (for example: default variables, tasks, and handlers). For more information, see the Ansible
documentation for Roles.

Roles are often distributed as part of an Ansible collection containing related roles and modules. Thus, these
playbooks primarily just import several roles distributed in the various NetApp E-Series Ansible collections.

Currently, at least two building blocks (four file nodes) are required to deploy BeeGFS, unless a
separate quorum device is configured as a tiebreaker to mitigate any issues when establishing
quorum with a two-node cluster.

Steps
1. Create a new playbook. yml file and include the following:

# BeeGFS HA (High Availability) cluster playbook.
- hosts: eseries storage systems
gather facts: false
collections:
- netapp eseries.santricity
tasks:
- name: Configure NetApp E-Series block nodes.

32


https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

import role:
name: nar santricity management
- hosts: all
any errors fatal: true
gather facts: false
collections:
- netapp eseries.beegfs
pre tasks:
- name: Ensure a supported version of Python is available on all
file nodes.
block:
- name: Check if python is installed.
failed when: false
changed when: false
raw: python --version
register: python version
- name: Check if python3 is installed.
raw: python3 --version
failed when: false
changed when: false
register: python3 version
when: 'python version["rc"] != 0 or (python version["stdout"]
| regex replace("Python ", "")) is not version("3.0", ">=")'
- name: Install python3 if needed.
raw: |
id=$(grep "~ID=" /etc/*release* | cut -d= -f 2 | tr -d '"")
case $id in
ubuntu) sudo apt install python3 ;;
rhel |centos) sudo yum -y install python3 ;;
sles) sudo zypper install python3 ;;
esac
args:
executable: /bin/bash
register: python3 install
when: python version['rc'] != 0 and python3 version['rc'] !=
become: true
- name: Create a symbolic link to python from python3.
raw: 1In -s /usr/bin/python3 /usr/bin/python
become: true
when: python version['rc'] != 0
when: inventory hostname not in
groups [beegfs ha ansible storage group]
- name: Verify any provided tags are supported.
fail:
msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun
your playbook command with --list-tags to see all valid playbook tags."

0

33



when: 'item not in ["all", "storage", "beegfs ha",
"beegfs ha package", "beegfs ha configure",
"beegfs ha configure resource", "beegfs ha performance tuning",
"beegfs ha backup", "beegfs ha client"]'
loop: "{{ ansible run tags }}"
tasks:
- name: Verify before proceeding.
pause:
prompt: "Are you ready to proceed with running the BeeGFS HA
role? Depending on the size of the deployment and network performance
between the Ansible control node and BeeGFS file and block nodes this
can take awhile (10+ minutes) to complete."
- name: Verify the BeeGFS HA cluster is properly deployed.
ansible.builtin.import role:
name: netapp eseries.beegfs.beegfs ha 7 4

(D This playbook runs a few pre tasks that verify Python 3 is installed on the file nodes and
check that the Ansible tags provided are supported.

2. Use the ansible-playbook command with the inventory and playbook files when you're ready to deploy
BeeGFS.

The deployment will run all pre_tasks, and then prompt for user confirmation before proceeding with the
actual BeeGFS deployment.

Run the following command, adjusting the number of forks as needed (see the note below):

ansible-playbook -i inventory.yml playbook.yml --forks 20

Especially for larger deployments, overriding the default number of forks (5) using the
forks parameter is recommended to increase the number of hosts that Ansible configures

(D in parallel. (For more information, see Controlling playbook execution.) The maximum value
setting depends on the processing power available on the Ansible control node. The above
example of 20 was run on a virtual Ansible control node with 4 CPUs (Intel® Xeon® Gold
6146 CPU @ 3.20GHz).

Depending on the size of the deployment and network performance between the Ansible control node and
BeeGFS file and block nodes, deployment time might vary.
Configure BeeGFS clients

You must install and configure the BeeGFS client on any hosts that need access to the
BeeGFS file system, such as compute or GPU nodes. For this task, you can use Ansible
and the BeeGFS collection.

Steps

34


https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

1. If needed, set up passwordless SSH from the Ansible control node to each of the hosts you want to
configure as BeeGFS clients:

ssh-copy-id <user>@<HOSTNAME OR IP>

2. Under host_vars/, create a file for each BeeGFS client named <HOSTNAME>. ym1 with the following
content, filling in the placeholder text with the correct information for your environment:

# BeeGFS Client
ansible host: <MANAGEMENT IP>
# OPTIONAL: If you want to use the NetApp E-Series Host Collection’s
IPoIB role to configure InfiniBand interfaces for clients to connect to
BeeGFS file systems:
eseries ipoib interfaces:
- name: <INTERFACE>
address: <IP>/<SUBNET MASK> # Example: 100.127.1.1/16
- name: <INTERFACE>
address: <IP>/<SUBNET MASK>

If deploying with a two subnet addressing scheme, two InfiniBand interfaces must be
configured on each client, one in each of the two storage IPoIB subnets. If using the

(D example subnets and recommended ranges for each BeeGFS service listed here, clients
should have one interface configured in the range of 100.127.1.0t0100.127.99.255
and the otherin 100.128.1.0t0100.128.99.255.

3. Create a new file client inventory.yml, and then populate the following parameters at the top:

# BeeGFS client inventory.
all:
vars:

ansible ssh user: <USER> # This is the user Ansible should use to
connect to each client.

ansible become password: <PASSWORD> # This is the password Ansible
will use for privilege escalation, and requires the ansible ssh user be
root, or have sudo privileges.
The defaults set by the BeeGFS HA role are based on the testing
performed as part of this NetApp Verified Architecture and differ from
the typical BeeGFS client defaults.

Do not store passwords in plain text. Instead, use the Ansible Vault (see the Ansible
documentation for Encrypting content with Ansible Vault) or use the --ask-become-pass
option when running the playbook.

4. Inthe client inventory.yml file, list all hosts that should be configured as BeeGFS clients under the
beegfs clients group, and then specify any additional configuration required to build the BeeGFS client
kernel module.

35


https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:
# Ansible group representing all BeeGFS clients:
beegfs clients:
hosts:
beegfs 01:
beegfs 02:
beegfs 03:
beegfs 04:
beegfs 05:
beegfs 06:
beegfs 07:
beegfs 08:
beegfs 09:
beegfs 10:
vars:
# OPTION 1: If you’re using the NVIDIA OFED drivers and they are
already installed:
eseries ib skip: True # Skip installing inbox drivers when using
the IPoIB role.
beegfs client ofed enable: True
beegfs client ofed include path:
"/usr/src/ofa kernel/default/include"
# OPTION 2: If you’re using inbox IB/RDMA drivers and they are
already installed:
eseries ib skip: True # Skip installing inbox drivers when using
the IPoIB role.
# OPTION 3: If you want to use inbox IB/RDMA drivers and need
them installed/configured.
eseries ib skip: False # Default value.
beegfs client ofed enable: False # Default value.

When using the NVIDIA OFED drivers, make sure that

@ beegfs client ofed include path points to the correct "header include path" for
your Linux installation. For more information, see the BeeGFS documentation for RDMA
support.

3. Inthe client inventory.yml file, list the BeeGFS file systems you want mounted at the bottom of any
previously defined vars.

36


https://doc.beegfs.io/latest/advanced_topics/rdma_support.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

beegfs client mounts:
- sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS
management service.

mount point: /mnt/beegfs # Path to mount BeeGFS on the
client.
connInterfaces:
- <INTERFACE> # Example: ibs4fl
- <INTERFACE>
beegfs client config:
# Maximum number of simultaneous connections to the same
node.

connMaxInternodeNum: 128 # BeeGFS Client Default: 12

# Allocates the number of buffers for transferring IO.

connRDMABufNum: 36 # BeeGFS Client Default: 70

# Size of each allocated RDMA buffer

connRDMABufSize: 65536 # BeeGFS Client Default: 8192

# Required when using the BeeGFS client with the shared-
disk HA solution.

# This does require BeeGFS targets be mounted in the
default “sync” mode.

# See the documentation included with the BeeGFS client
role for full details.

sysSessionChecksEnabled: false

The beegfs client config represents the settings that were tested. See the

@ documentation included with the netapp eseries.beegfs collection’s beegfs client
role for a comprehensive overview of all options. This includes details around mounting
multiple BeeGFS file systems or mounting the same BeeGFS file system multiple times.

6. Create anew client playbook.yml file, and then populate the following parameters:

37



# BeeGFS client playbook.
- hosts: beegfs clients
any errors fatal: true
gather facts: true
collections:
- netapp eseries.beegfs
- netapp eseries.host
tasks:
- name: Ensure IPoIB is configured
import role:
name: ipoib
- name: Verify the BeeGFS clients are configured.
import role:

name: beegfs client

Omit importing the netapp eseries.host collection and ipoib role if you have already
installed the required IB/RDMA drivers and configured IPs on the appropriate IPolB
interfaces.

7. To install and build the client and mount BeeGFS, run the following command:

ansible-playbook -i client inventory.yml client playbook.yml

8. Before you place the BeeGFS file system in production, we strongly recommend that you log in to any

38

clients and run beegfs-fsck --checkfs to ensure that all nodes are reachable and there are no issues
reported.



Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

39


http://www.netapp.com/TM

	Deploy software : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Deploy software
	Set up file nodes and block nodes
	Set up file nodes
	Set up block nodes

	Tune file node system settings for performance
	Use the UEFI interface to tune system settings
	Use Redfish API to tune system settings

	Set up an Ansible control node
	Create the Ansible inventory
	Step 1: Define configuration for all building blocks
	Step 2: Define configuration for individual file and block nodes
	Step 3: Define configuration that should apply to all file and block nodes
	Step 4: Define configuration that should apply to all file nodes
	Step 5: Define the configuration for the common block node

	Define Ansible inventory for BeeGFS building blocks
	Step 1: Create the Ansible inventory file
	Step 2: Configure the inventory for a management, metadata, and storage building block
	Step 3: Configure the inventory for a Metadata + storage building block
	Step 4: Configure the inventory for a storage-only building block

	Deploy BeeGFS
	Configure BeeGFS clients


