
Review solution design
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-
overview.html on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Review solution design. 1

Design overview. 1

Hardware configuration . 1

File node configuration. 1

Network cabling configuration . 2

Software configuration . 4

BeeGFS network configuration . 4

EF600 block node configuration . 6

BeeGFS file node configuration . 7

BeeGFS HA clusters . 7

Design verification . 10

BeeGFS file striping . 11

IOR bandwidth tests: Multiple clients . 11

IOR bandwidth tests: Single client . 13

Metadata performance test . 14

Functional validation . 15

NVIDIA DGX SuperPOD and BasePOD validation . 15

Sizing guidelines . 16

Performance sizing . 16

Capacity sizing for metadata + storage building blocks. 16

Capacity sizing for storage-only building blocks . 16

Performance tuning . 17

Performance tuning for file nodes . 17

Performance tuning for block nodes . 18

High capacity building block. 19

Hardware and software configuration . 19

Sizing guidelines . 19

Review solution design

Design overview

Specific equipment, cabling, and configurations are required to support the BeeGFS on

NetApp solution, which combines the BeeGFS parallel file system with the NetApp EF600

storage systems.

Learn more:

• Hardware configuration

• Software configuration

• Design verification

• Sizing guidelines

• Performance tuning

Derivative architectures with variations in design and performance:

• High Capacity Building Block

Hardware configuration

The hardware configuration for BeeGFS on NetApp includes file nodes and network

cabling.

File node configuration

File nodes have two CPU sockets configured as separate NUMA zones, which include local access to an equal

number of PCIe slots and memory.

InfiniBand adapters must be populated in the appropriate PCI risers or slots, so the workload is balanced over

the available PCIe lanes and memory channels. You balance the workload by fully isolating work for individual

BeeGFS services to a particular NUMA node. The goal is to achieve similar performance from each file node

as if it were two independent single socket servers.

The following figure shows the file node NUMA configuration.

1

The BeeGFS processes are pinned to a particular NUMA zone to ensure that the interfaces used are in the

same zone. This configuration avoids the need for remote access over the inter-socket connection. The inter-

socket connection is sometimes known as the QPI or GMI2 link; even in modern processor architectures, they

can be a bottleneck when using high-speed networking like HDR InfiniBand.

Network cabling configuration

Within a building block, each file node is connected to two block nodes using a total of four redundant

InfiniBand connections. In addition, each file node has four redundant connections to the InfiniBand storage

network.

In the following figure, notice that:

• All file node ports outlined in green are used to connect to the storage fabric; all other file node ports are

the direct connects to the block nodes.

• Two InfiniBand ports in a specific NUMA zone connect to the A and B controllers of the same block node.

• Ports in NUMA node 0 always connect to the first block node.

• Ports in NUMA node 1 connect to the second block node.

When using splitter cables to connect the storage switch to file nodes, one cable should branch

out and connect to the ports outlined in light green. Another cable should branch out and

connect to the ports outlined in dark green.

Additionally, for storage networks with redundant switches, ports outlined in light green should

connect to one switch, while ports in dark green should connect to another switch.

2

The cabling configuration depicted in the figure allows each BeeGFS service to:

• Run in the same NUMA zone regardless of which file node is running the BeeGFS service.

• Have secondary optimal paths to the front-end storage network and to the back-end block nodes

regardless of where a failure occurs.

• Minimize performance effects if a file node or controller in a block node requires maintenance.

Cabling to leverage bandwidth

To leverage the full PCIe bidirectional bandwidth, make sure one port on each InfiniBand adapter connects to

the storage fabric, and the other port connects to a block node.

The following figure shows the cabling design used to leverage the full PCIe bidirectional bandwidth.

For each BeeGFS service, use the same adapter to connect the preferred port used for client traffic with the

path to the block nodes controller that is the primary owner of that services volumes. For more information, see

Software configuration.

3

Software configuration

The software configuration for BeeGFS on NetApp includes BeeGFS network

components, EF600 block nodes, BeeGFS file nodes, resource groups, and BeeGFS

services.

BeeGFS network configuration

The BeeGFS network configuration consists of the following components.

• Floating IPs

Floating IPs are a kind of virtual IP address that can be dynamically routed to any server in the same

network. Multiple servers can own the same Floating IP address, but it can only be active on one server at

any given time.

Each BeeGFS server service has its own IP address that can move between file nodes depending on the

run location of the BeeGFS server service. This floating IP configuration allows each service to fail over

independently to the other file node. The client simply needs to know the IP address for a particular

BeeGFS service; it does not need to know which file node is currently running that service.

• BeeGFS server multi-homing configuration

To increase the density of the solution, each file node has multiple storage interfaces with IPs configured in

the same IP subnet.

Additional configuration is required to make sure that this configuration works as expected with the Linux

networking stack, because by default, requests to one interface can be responded to on a different

interface if their IPs are in the same subnet. In addition to other drawbacks, this default behavior makes it

impossible to properly establish or maintain RDMA connections.

The Ansible-based deployment handles tightening of the reverse path (RP) and address resolution protocol

(ARP) behavior, along with ensuring when floating IPs are started and stopped; corresponding IP routes

and rules are dynamically created to allow the multihomed network configuration to work properly.

• BeeGFS client multi-rail configuration

Multi-rail refers to the ability of an application to use multiple independent network connections, or “rails”, to

increase performance.

BeeGFS implements multi-rail support to allow the use of multiple IB interfaces in a single IPoIB subnet.

This capability enables features such as dynamic load balancing across RDMA NICs, optimizing the use of

network resources. It also integrates with NVIDIA GPUDirect Storage (GDS), which offers increased

system bandwidth and decreases latency and utilization on the client’s CPU.

This documentation provides instructions for single IPoIB subnet configurations. Dual IPoIB subnet

configurations are supported but do not provide the same advantages as single subnet configurations.

The following figure shows the balancing of traffic across multiple BeeGFS client interfaces.

4

Because each file in BeeGFS is typically striped across multiple storage services, the multi-rail configuration

allows the client to achieve more throughput than is possible with a single InfiniBand port. For example, the

following code sample shows a common file-striping configuration that allows the client to balance traffic across

both interfaces:

+

5

root@beegfs01:/mnt/beegfs# beegfs-ctl --getentryinfo myfile

Entry type: file

EntryID: 11D-624759A9-65

Metadata node: meta_01_tgt_0101 [ID: 101]

Stripe pattern details:

+ Type: RAID0

+ Chunksize: 1M

+ Number of storage targets: desired: 4; actual: 4

+ Storage targets:

 + 101 @ stor_01_tgt_0101 [ID: 101]

 + 102 @ stor_01_tgt_0101 [ID: 101]

 + 201 @ stor_02_tgt_0201 [ID: 201]

 + 202 @ stor_02_tgt_0201 [ID: 201]

EF600 block node configuration

Block nodes are comprised of two active/active RAID controllers with shared access to the same set of drives.

Typically, each controller owns half the volumes configured on the system, but can take over for the other

controller as needed.

Multipathing software on the file nodes determines the active and optimized path to each volume and

automatically moves to the alternate path in the event of a cable, adapter, or controller failure.

The following diagram shows the controller layout in EF600 block nodes.

To facilitate the shared-disk HA solution, volumes are mapped to both file nodes so that they can take over for

each other as needed. The following diagram shows an example of how the BeeGFS service and preferred

volume ownership is configured for maximum performance. The interface to the left of each BeeGFS service

indicates the preferred interface that the clients and other services use to contact it.

6

In the previous example, clients and server services prefer to communicate with storage service 1 using

interface i1b. Storage service 1 uses interface i1a as the preferred path to communicate with its volumes

(storage_tgt_101, 102) on controller A of the first block node. This configuration makes use of the full

bidirectional PCIe bandwidth available to the InfiniBand adapter and achieves better performance from a dual-

port HDR InfiniBand adapter than would otherwise be possible with PCIe 4.0.

BeeGFS file node configuration

The BeeGFS file nodes are configured into a High-Availability (HA) cluster to facilitate failover of BeeGFS

services between multiple file nodes.

The HA cluster design is based on two widely used Linux HA projects: Corosync for cluster membership and

Pacemaker for cluster resource management. For more information, see Red Hat training for high-availability

add-ons.

NetApp authored and extended several open cluster framework (OCF) resource agents to allow the cluster to

intelligently start and monitor the BeeGFS resources.

BeeGFS HA clusters

Typically, when you start a BeeGFS service (with or without HA), a few resources must be in place:

• IP addresses where the service is reachable, typically configured by Network Manager.

• Underlying file systems used as the targets for BeeGFS to store data.

These are typically defined in /etc/fstab and mounted by Systemd.

7

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters

• A Systemd service responsible for starting BeeGFS processes when the other resources are ready.

Without additional software, these resources start only on a single file node. Therefore, if the file node goes

offline, a portion of the BeeGFS file system is inaccessible.

Because multiple nodes can start each BeeGFS service, Pacemaker must make sure each service and

dependent resources are only running on one node at a time. For example, if two nodes try to start the same

BeeGFS service, there is a risk of data corruption if they both try to write to the same files on the underlying

target. To avoid this scenario, Pacemaker relies on Corosync to reliably keep the state of the overall cluster in

sync across all nodes and establish quorum.

If a failure occurs in the cluster, Pacemaker reacts and restarts BeeGFS resources on another node. In some

scenarios, Pacemaker might not be able to communicate with the original faulty node to confirm the resources

are stopped. To verify that the node is down before restarting BeeGFS resources elsewhere, Pacemaker

fences off the faulty node, ideally by removing power.

Many open-source fencing agents are available that enable Pacemaker to fence a node with a power

distribution unit (PDU) or by using the server baseboard management controller (BMC) with APIs such as

Redfish.

When BeeGFS is running in an HA cluster, all BeeGFS services and underlying resources are managed by

Pacemaker in resource groups. Each BeeGFS service and the resources it depends on, are configured into a

resource group, which ensures resources are started and stopped in the correct order and collocated on the

same node.

For each BeeGFS resource group, Pacemaker runs a custom BeeGFS monitoring resource that is responsible

for detecting failure conditions and intelligently triggering failovers when a BeeGFS service is no longer

accessible on a particular node.

The following figure shows the Pacemaker-controlled BeeGFS services and dependencies.

8

So that multiple BeeGFS services of the same type are started on the same node, Pacemaker is

configured to start BeeGFS services using the Multi Mode configuration method. For more

information, see the BeeGFS documentation on Multi Mode.

Because BeeGFS services must be able to start on multiple nodes, the configuration file for each service

(normally located at /etc/beegfs) is stored on one of the E-Series volumes used as the BeeGFS target for

that service. This makes the configuration along with the data for a particular BeeGFS service accessible to all

nodes that might need to run the service.

9

https://doc.beegfs.io/latest/advanced_topics/multimode.html

tree stor_01_tgt_0101/ -L 2

stor_01_tgt_0101/

├── data
│ ├── benchmark
│ ├── buddymir
│ ├── chunks
│ ├── format.conf
│ ├── lock.pid
│ ├── nodeID
│ ├── nodeNumID
│ ├── originalNodeID
│ ├── targetID
│ └── targetNumID
└── storage_config
 ├── beegfs-storage.conf
 ├── connInterfacesFile.conf
 └── connNetFilterFile.conf

Design verification

The second-generation design for the BeeGFS on NetApp solution was verified using

three building block configuration profiles.

The configuration profiles include the following:

• A single base building block, including BeeGFS management, metadata, and storage services.

• A BeeGFS metadata plus a storage building block.

• A BeeGFS storage-only building block.

The building blocks were attached to two NVIDIA Quantum InfiniBand (MQM8700) switches. Ten BeeGFS

clients were also attached to the InfiniBand switches and used to run synthetic benchmark utilities.

The following figure shows the BeeGFS configuration used to validate the BeeGFS on NetApp solution.

10

BeeGFS file striping

A benefit of parallel file systems is the ability to stripe individual files across multiple storage targets, which

could represent volumes on the same or different underlying storage systems.

In BeeGFS, you can configure striping on a per-directory and per-file basis to control the number of targets

used for each file and to control the chunksize (or block size) used for each file stripe. This configuration allows

the file system to support different types of workloads and I/O profiles without the need for reconfiguring or

restarting services. You can apply stripe settings using the beegfs-ctl command line tool or with

applications that use the striping API. For more information, see the BeeGFS documentation for Striping and

Striping API.

To achieve the best performance, stripe patterns were adjusted throughout testing, and the parameters used

for each test are noted.

IOR bandwidth tests: Multiple clients

The IOR bandwidth tests used OpenMPI to run parallel jobs of the synthetic I/O generator tool IOR (available

from HPC GitHub) across all 10 client nodes to one or more BeeGFS building blocks. Unless otherwise noted:

• All tests used direct I/O with a 1MiB transfer size.

• BeeGFS file striping was set to a 1MB chunksize and one target per file.

The following parameters were used for IOR with the segment count adjusted to keep the aggregate file size to

5TiB for one building block and 40TiB for three building blocks.

mpirun --allow-run-as-root --mca btl tcp -np 48 -map-by node -hostfile

10xnodes ior -b 1024k --posix.odirect -e -t 1024k -s 54613 -z -C -F -E -k

One BeeGFS base (management, metadata, and storage) building block

The following figure shows the IOR test results with a single BeeGFS base (management, metadata, and

storage) building block.

11

https://doc.beegfs.io/latest/advanced_topics/striping.html
https://doc.beegfs.io/latest/reference/striping_api.html
https://github.com/hpc/ior

BeeGFS metadata + storage building block

The following figure shows the IOR test results with a single BeeGFS metadata + storage building block.

BeeGFS storage-only building block

The following figure shows the IOR test results with a single BeeGFS storage-only building block.

Three BeeGFS building blocks

The following figure shows the IOR test results with three BeeGFS building blocks.

12

As expected, the performance difference between the base building block and the subsequent metadata +

storage building block is negligible. Comparing the metadata + storage building block and a storage-only

building block shows a slight increase in read performance due to the additional drives used as storage

targets. However, there is no significant difference in write performance. To achieve higher performance, you

can add multiple building blocks together to scale performance in a linear fashion.

IOR bandwidth tests: Single client

The IOR bandwidth test used OpenMPI to run multiple IOR processes using a single high-performance GPU

server to explore the performance achievable to a single client.

This test also compares the reread behavior and performance of BeeGFS when the client is configured to use

the Linux kernel page-cache (tuneFileCacheType = native) versus the default buffered setting.

The native caching mode uses the Linux kernel page-cache on the client, allowing reread operations to come

from local memory instead of being retransmitted over the network.

The following diagram shows the IOR test results with three BeeGFS building blocks and a single client.

BeeGFS striping for these tests was set to a 1MB chunksize with eight targets per file.

Although write and initial read performance is higher using the default buffered mode, for workloads that reread

the same data multiple times, a significant performance boost is seen with the native caching mode. This

improved reread performance is important for workloads like deep learning that reread the same dataset

multiple times across many epochs.

13

Metadata performance test

The Metadata performance tests used the MDTest tool (included as part of IOR) to measure the metadata

performance of BeeGFS. The tests utilized OpenMPI to run parallel jobs across all ten client nodes.

The following parameters were used to run the benchmark test with the total number of processes scaled from

10 to 320 in step of 2x and with a file size of 4k.

mpirun -h 10xnodes –map-by node np $processes mdtest -e 4k -w 4k -i 3 -I

16 -z 3 -b 8 -u

Metadata performance was measured first with one then two metadata + storage building blocks to show how

performance scales by adding additional building blocks.

One BeeGFS metadata + storage building block

The following diagram shows the MDTest results with one BeeGFS metadata + storage building blocks.

Two BeeGFS metadata + storage building blocks

The following diagram shows the MDTest results with two BeeGFS metadata + storage building blocks.

14

Functional validation

As part of validating this architecture, NetApp executed several functional tests including the following:

• Failing a single client InfiniBand port by disabling the switch port.

• Failing a single server InfiniBand port by disabling the switch port.

• Triggering an immediate server power off using the BMC.

• Gracefully placing a node in standby and failing over service to another node.

• Gracefully placing a node back online and failing back services to the original node.

• Powering off one of the InfiniBand switches using the PDU. All tests were performed while stress testing

was in progress with the sysSessionChecksEnabled: false parameter set on the BeeGFS clients.

No errors or disruption to I/O was observed.

There is a known issue (see the Changelog) when BeeGFS client/server RDMA connections are

disrupted unexpectedly, either through loss of the primary interface (as defined in

connInterfacesFile) or a BeeGFS server failing; active client I/O can hang for up to ten

minutes before resuming. This issue does not occur when BeeGFS nodes are gracefully placed

in and out of standby for planned maintenance or if TCP is in use.

NVIDIA DGX SuperPOD and BasePOD validation

NetApp validated a storage solution for NVIDIAs DGX A100 SuperPOD using a similar BeeGFS file system

consisting of three building blocks with the metadata plus storage configuration profile applied. The

qualification effort involved testing the solution described by this NVA with twenty DGX A100 GPU servers

running a variety of storage, machine learning, and deep learning benchmarks. Building on the validation

established with NVIDIA’s DGX A100 SuperPOD, the BeeGFS on NetApp solution has been approved for DGX

SuperPOD H100, H200, and B200 systems. This extension is based on meeting the previously established

benchmarks and system requirements as validated with the NVIDIA DGX A100.

For more information, see NVIDIA DGX SuperPOD with NetApp and NVIDIA DGX BasePOD.

15

https://github.com/netappeseries/beegfs/blob/master/CHANGELOG.md
https://www.netapp.com/pdf.html?item=/media/72718-nva-1167-DESIGN.pdf
https://www.nvidia.com/en-us/data-center/dgx-basepod/

Sizing guidelines

The BeeGFS solution includes recommendations for performance and capacity sizing

that were based on verification tests.

The objective with a building-block architecture is to create a solution that is simple to size by adding multiple

building blocks to meet the requirements for a particular BeeGFS system. Using the guidelines below, you can

estimate the quantity and types of BeeGFS building blocks that are needed to meet the requirements of your

environment.

Keep in mind that these estimates are best-case performance. Synthetic benchmarking applications are written

and utilized to optimize the use of underlying file systems in ways that real-world applications might not.

Performance sizing

The following table provides recommended performance sizing.

Configuration profile 1MiB reads 1MiB writes

Metadata + storage 62GiBps 21GiBps

Storage only 64GiBps 21GiBps

Metadata capacity sizing estimates are based on the "rule of thumb" that 500GB of capacity is sufficient for

roughly 150 million files in BeeGFS. (For more information, see the BeeGFS documentation for System

Requirements.)

The use of features like access control lists and the number of directories and files per directory also affect how

quickly metadata space is consumed. Storage capacity estimates do account for usable drive capacity along

with RAID 6 and XFS overhead.

Capacity sizing for metadata + storage building blocks

The following table provides recommended capacity sizing for metadata plus storage building blocks.

Drive size (2+2 RAID 1)

metadata volume

groups

Metadata capacity

(number of files)

Drive size (8+2 RAID 6)

storage volume groups

Storage capacity (file

content)

1.92TB 1,938,577,200 1.92TB 51.77TB

3.84TB 3,880,388,400 3.84TB 103.55TB

7.68TB 8,125,278,000 7.68TB 216.74TB

15.3TB 17,269,854,000 15.3TB 460.60TB

When sizing metadata plus storage building blocks, you can reduce costs by using smaller

drives for metadata volume groups versus storage volume groups.

Capacity sizing for storage-only building blocks

The following table provides rule-of-thumb capacity sizing for storage-only building blocks.

16

https://doc.beegfs.io/latest/system_design/system_requirements.html
https://doc.beegfs.io/latest/system_design/system_requirements.html

Drive size (10+2 RAID 6) storage volume groups Storage capacity (file content)

1.92TB 59.89TB

3.84TB 119.80TB

7.68TB 251.89TB

15.3TB 538.55TB

The performance and capacity overhead of including the management service in the base (first)

building block are minimal, unless global file locking is enabled.

Performance tuning

The BeeGFS solution includes recommendations for performance tuning that were based

on verification tests.

Although BeeGFS provides reasonable performance out of the box, NetApp has developed a set of

recommended tuning parameters to maximize performance. These parameters take into account the

capabilities of the underlying E-Series block nodes and any special requirements needed to run BeeGFS in a

shared-disk HA architecture.

Performance tuning for file nodes

The available tuning parameters that you can configure include the following:

1. System settings in the UEFI/BIOS of file nodes.

To maximize performance, we recommend configuring the system settings on the server model you use as

your file nodes. You configure the system settings when you set up your file nodes by using either the

system setup (UEFI/BIOS) or the Redfish APIs provided by the baseboard management controller (BMC).

The system settings vary depending on the server model you use as your file node. The settings must be

manually configured based on the server model in use. To learn how to configure the system settings for

the validated Lenovo SR665 V3 file nodes, see Tune file node system settings for performance.

2. Default settings for required configuration parameters.

The required configuration parameters affect how BeeGFS services are configured and how E-Series

volumes (block devices) are formatted and mounted by Pacemaker. These required configuration

parameters include the following:

◦ BeeGFS Service configuration parameters

You can override the default settings for the configuration parameters as needed. For the parameters

that you can adjust for your specific workloads or use cases, see the BeeGFS service configuration

parameters.

◦ Volume formatting and mounting parameters are set to recommended defaults, and should only be

adjusted for advanced use cases. The default values will do the following:

▪ Optimize initial volume formatting based on the target type (such as management, metadata, or

storage), along with the RAID configuration and segment size of the underlying volume.

▪ Adjust how Pacemaker mounts each volume to ensure that changes are immediately flushed to E-

series block nodes. This prevents data loss when file nodes fail with active writes in progress.

17

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-file-node-tuning.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

For the parameters that you can adjust for your specific workloads or use cases, see the volume

formatting and mounting configuration parameters.

3. System settings in the Linux OS installed on the file nodes.

You can override the default Linux OS system settings when you create the Ansible inventory in step 4 of

Create the Ansible inventory.

The default settings were used to validate the BeeGFS on NetApp solution, but you can change them to

adjust for your specific workloads or use cases. Some examples of the Linux OS system settings that you

can change include the following:

◦ I/O queues on E-Series block devices.

You can configure I/O queues on the E-Series block devices used as BeeGFS targets to:

▪ Adjust the scheduling algorithm based on the device type (NVMe, HDD, and so on).

▪ Increase the number of outstanding requests.

▪ Adjust request sizes.

▪ Optimize read ahead behavior.

◦ Virtual memory settings.

You can adjust virtual memory settings for optimal sustained streaming performance.

◦ CPU settings.

You can adjust the CPU frequency governor and other CPU configurations for maximum performance.

◦ Read request size.

You can increase the maximum read request size for NVIDIA HCAs.

Performance tuning for block nodes

Based on the configuration profiles applied to a particular BeeGFS building block, the volume groups

configured on the block nodes change slightly. For example, with a 24-drive EF600 block node:

• For the single base building block, including BeeGFS management, metadata, and storage services:

◦ 1x 2+2 RAID 10 volume group for BeeGFS management and metadata services

◦ 2x 8+2 RAID 6 volume groups for BeeGFS storage services

• For a BeeGFS metadata + storage building block:

◦ 1x 2+2 RAID 10 volume group for BeeGFS metadata services

◦ 2x 8+2 RAID 6 volume groups for BeeGFS storage services

• For BeeGFS storage only building block:

◦ 2x 10+2 RAID 6 volume groups for BeeGFS storage services

As BeeGFS needs significantly less storage space for management and metadata versus

storage, one option is to use smaller drives for the RAID 10 volume groups. Smaller drives

should be populated in the outermost drive slots. For more information, see the deployment

instructions.

18

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-create-inventory.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-overview.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-overview.html

These are all configured by the Ansible-based deployment, along with several other settings generally

recommended to optimize performance/behavior including:

• Adjusting the global cache block size to 32KiB and adjusting demand-based cache flushing to 80%.

• Disabling autoload balancing (ensuring controller volume assignments stay as intended).

• Enabling read caching and disabling read-ahead caching.

• Enabling write caching with mirroring and requiring battery backup, so that caches persist through failure of

a block node controller.

• Specifying the order that drives are assigned to volume groups, balancing I/O across available drive

channels.

High capacity building block

The standard BeeGFS solution design is built with high performance workloads in mind.

Customers looking for a high capacity use cases should observe the variations in design

and performance characteristics outlined here.

Hardware and software configuration

Hardware and software configuration for the high capacity building block is standard except that the EF600

controllers should be replaced with a EF300 controllers with an option to attach between 1 and 7 IOM

expansion trays with 60 drives each for each storage array, totaling 2 to 14 expansions trays per building block.

Customers deploying a high capacity building block design are likely to use only the base building block style

configuration consisting of BeeGFS management, metadata, and storage services for each node. For cost

efficiency, high capacity storage nodes should provision metadata volumes on the NVMe drives in the EF300

controller enclosure and should provision storage volumes to the NL-SAS drives in the expansion trays.

[high capacity rack diagram]

Sizing guidelines

These sizing guidelines assume high capacity building blocks are configured with one 2+2 NVMe SSD volume

group for metadata in the base EF300 enclosure and 6x 8+2 NL-SAS volume groups per IOM expansion tray

for storage.

Drive size (capacity

HDDs)

Capacity per BB (1

Tray)

Capacity per BB (2

Trays)

Capacity per BB (3

Trays)

Capacity per BB (4

Trays)

4TB 439TB 878 TB 1317 TB 1756 TB

8 TB 878 TB 1756 TB 2634 TB 3512 TB

10 TB 1097 TB 2195 TB 3292 TB 4390 TB

12 TB 1317 TB 2634 TB 3951 TB 5268 TB

16 TB 1756 TB 3512 TB 5268 TB 7024 TB

18 TB 1975 TB 3951 TB 5927 TB 7902 TB

19

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

20

http://www.netapp.com/TM

	Review solution design : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Review solution design
	Design overview
	Hardware configuration
	File node configuration
	Network cabling configuration

	Software configuration
	BeeGFS network configuration
	EF600 block node configuration
	BeeGFS file node configuration
	BeeGFS HA clusters

	Design verification
	BeeGFS file striping
	IOR bandwidth tests: Multiple clients
	IOR bandwidth tests: Single client
	Metadata performance test
	Functional validation
	NVIDIA DGX SuperPOD and BasePOD validation

	Sizing guidelines
	Performance sizing
	Capacity sizing for metadata + storage building blocks
	Capacity sizing for storage-only building blocks

	Performance tuning
	Performance tuning for file nodes
	Performance tuning for block nodes

	High capacity building block
	Hardware and software configuration
	Sizing guidelines

