
Use custom architectures

BeeGFS on NetApp with E-Series Storage
NetApp
March 21, 2024

This PDF was generated from https://docs.netapp.com/us-en/beegfs/custom-architectures-overview.html
on March 21, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Use custom architectures. 1

Overview and requirements . 1

Initial Set Up. 2

Define the BeeGFS file system . 5

Deploy the BeeGFS file system . 30

Use custom architectures

Overview and requirements

Use any NetApp E/EF-Series storage systems as BeeGFS block nodes and x86 servers

as BeeGFS file nodes when deploying BeeGFS high availability clusters using Ansible.

Definitions for terminology used throughout this section can be found on the terms and concepts

page.

Introduction

While NetApp verified architectures provide predefined reference configurations and sizing guidance, some

customers and partners may prefer to design custom architectures better suited to particular requirements or

hardware preferences. One of the primary benefits of choosing BeeGFS on NetApp is the ability to deploy

BeeGFS shared-disk HA clusters using Ansible, simplifying cluster management and improving reliability with

NetApp authored HA components. The deployment of custom BeeGFS architectures on NetApp is still done

using Ansible, maintaining an appliance-like approach on a flexible range of hardware.

This section outlines the general steps needed to deploy BeeGFS file systems on NetApp hardware and use of

Ansible to configure BeeGFS file systems. For details on best practices surrounding the design of BeeGFS file

systems and optimized examples please refer to the NetApp verified architectures section.

Deployment Overview

Generally deploying a BeeGFS file system involves the following steps:

• Initial set up:

◦ Install/cable hardware.

◦ Set up file and block nodes.

◦ Set up an Ansible control node.

• Define the BeeGFS file system as an Ansible inventory.

• Run Ansible against file and block nodes to deploy BeeGFS.

◦ Optionally to set up clients and mount BeeGFS.

Subsequent sections will cover these steps in more detail.

Ansible handles all software provisioning and configuration tasks including:

• Creating/mapping volumes on block nodes.

• Formatting/tuning volumes on file nodes.

• Installing/configuring software on file nodes.

• Establishing the HA cluster and configuring BeeGFS resources and file system services.

1

https://docs.netapp.com/us-en/beegfs/custom/beegfs-terms.html
https://docs.netapp.com/us-en/beegfs/custom/beegfs-solution-overview.html
https://docs.netapp.com/us-en/beegfs/custom/beegfs-solution-overview.html

Requirements

Support for BeeGFS in Ansible is released on Ansible Galaxy as a collection of roles and modules that

automate the end-to-end deployment and management of BeeGFS HA clusters.

BeeGFS itself is versioned following a <major>.<minor>.<patch> versioning scheme and the collection

maintains roles for each supported <major>.<minor> version of BeeGFS, for example BeeGFS 7.2 or BeeGFS

7.3. As updates to the collection are released the patch version in each role will be updated to point at the

latest available BeeGFS version for that release branch (example: 7.2.8). Each version of the collection is also

tested and supported with specific Linux distributions and versions, currently Red Hat for file nodes, and

RedHat and Ubuntu for clients. Running other distributions is not supported, and running other versions

(especially other major versions) is not recommended.

Ansible Control Node

This node will contain the inventory and playbooks used to manage BeeGFS. It requires:

• Ansible 6.x (ansible-core 2.13)

• Python 3.6 (or later)

• Python (pip) packages: ipaddr and netaddr

It is also recommend you setup passwordless SSH from the control node to all BeeGFS file nodes and clients.

BeeGFS File Nodes

File nodes must run RedHat 8.4 and have access to the HA repository containing required packages

(pacemaker, corosync, fence-agents-all, resource-agents). For example the following command can be

executed to enable the appropriate repository on RedHat 8:

subscription-manager repo-override repo=rhel-8-for-x86_64-

highavailability-rpms --add=enabled:1

BeeGFS Client Nodes

A BeeGFS client Ansible role is available to install the BeeGFS client package and manage BeeGFS mount(s).

This role has been tested with RedHat 8.4 and Ubuntu 22.04.

If you are not using Ansible to setup the BeeGFS client and mount BeeGFS, any BeeGFS supported Linux

distribution and kernel can be used.

Initial Set Up

Install and Cable Hardware

Steps needed to install and cable hardware used to run BeeGFS on NetApp.

Plan the Installation

Each BeeGFS file system will consist of some number of file nodes running BeeGFS services using backend

storage provided by some number of block nodes. The file nodes are configured into one or more high

availability clusters to provide fault tolerance for BeeGFS services. Each block node is a already an

2

https://galaxy.ansible.com/netapp_eseries/beegfs
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels

active/active HA pair. The minimum number of supported file nodes in each HA cluster is three, and the

maximum number of supported file nodes in each cluster is ten. BeeGFS file systems can scale beyond ten

node by deploying multiple independent HA clusters that work together to provide a single file system

namespace.

Commonly each HA cluster is deployed as a series of "building blocks" where some number of file nodes (x86

servers) are directly connected to some number of block nodes (typically E-Series storage systems). This

configuration creates an asymmetrical cluster, where BeeGFS services are only able to run on certain file

nodes that have access to the backend block storage used for the BeeGFS targets. The balance of file-to-

block nodes in each building block and the storage protocol in use for the direct-connects depend on the

requirements of a particular installation.

An alternative HA cluster architecture uses a storage fabric (also known as a storage area network or SAN)

between the file and block nodes to establish a symmetrical cluster. This allows BeeGFS services to run on

any file node in a particular HA cluster. As generally symmetrical clusters are not as cost effective due to the

extra SAN hardware, this documentation presumes use of an asymmetrical cluster deployed as a series of one

or more building blocks.

Ensure the desired file system architecture for a particular BeeGFS deployment is well

understood before proceeding with the installation.

Rack Hardware

When planning the installation it is important all equipment in each building block is racked in adjacent rack

units. Best practice is for file nodes to be racked immediately above block nodes in each building block. Follow

the documentation for the model(s) of file and block nodes you are using as you install rails and hardware into

the rack.

Example of a single building block:

[example building block]

Example of a large BeeGFS installation where there are multiple building blocks in each HA cluster, and

multiple HA clusters in the file system:

[example BeeGFS deployment]

Cable File and Block Nodes

Typically you will direct-connect the HIC ports of the E-Series block nodes to the designated host channel

adapter (for InfiniBand protocols) or host bus adapter (for fibre channel and other protocols) ports of the file

nodes. The exact way to establish these connections will depend on the desired file system architecture, here

is an example based on the second-generation BeeGFS on NetApp verified architecture:

[example BeeGFS file to block node cabling]

Cable File Nodes to the Client Network

Each file node will have some number of InfiniBand or Ethernet ports designated for BeeGFS client traffic.

Depending on the architecture each file node will have one or more connections to a high performance

client/storage network, potentially to multiple switches for redundancy and increased bandwidth. Here is an

example of client cabling using redundant network switches, where ports highlighted in dark green versus light

green are connected to separate switches:

3

https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-design-hardware-architecture.html

[example BeeGFS client cabling]

Connect Management Networking and Power

Establish any network connections needed for in-band and out-of-band network.

Connect all power supplies ensuring each file and block node has connections to multiple power distribution

units for redundancy (if available).

Set Up File and Block Nodes

Manual steps required to set up file and block nodes before running Ansible.

File Nodes

Configure the Baseboard Management Controller (BMC)

A baseboard management controller (BMC), sometimes referred to as a service processor, is the generic

name for the out-of-band management capability built into various server platforms that can provide remote

access even if the operating system is not installed or accessible. Vendors typically market this functionality

with their own branding. For example, on the Lenovo SR665, the BMC is referred to as the Lenovo XClarity

Controller (XCC).

Follow the server vendor’s documentation to enable any licenses needed to access this functionality and

ensure the BMC is connected to the network and configured appropriately for remote access.

If BMC based fencing using Redfish is desired, ensure Redfish is enabled and the BMC

interface is accessible from the OS installed on the file node. Special configuration may be

required on the network switch if the BMC and operating share the same physical network

interface.

Tune System Settings

Using the system setup (BIOS/UEFI) interface, ensure settings are set to maximize performance. The exact

settings and optimal values will vary based on the server model in use. Guidance is provided for verified file

node models, otherwise refer to the server vendor’s documentation and best practices based on your model.

Install an Operating System

Install a supported operating system based on the file node requirements listed here. Refer to any additional

steps below based on your Linux distribution.

RedHat

Use RedHat Subscription Manager to register and subscribe the system to allow installation of the required

packages from the official Red Hat repositories and to limit updates to the supported version of Red Hat:

subscription-manager release --set=<MAJOR_VERSION>.<MINOR_VERSION>. For instructions,

see How to register and subscribe a RHEL system and How to limit updates.

Enable the Red Hat repository containing the packages required for high availability:

4

https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-deploy-file-node-tuning.html
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-deploy-file-node-tuning.html
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-technology-requirements.html#file-node-requirements
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031

subscription-manager repo-override --repo=rhel-8-for-x86_64

-highavailability-rpms --add=enabled:1

Configure Management Network

Configure any network interfaces needed to allow in-band management of the operating system. The exact

steps will depend on the specific Linux distribution and version in use.

Ensure SSH is enabled and all management interfaces are accessible from the Ansible control

node.

Update HCA and HBA Firmware

Ensure all HBAs and HCAs are running supported firmware versions listed on the NetApp Interoperability

Matrix and upgrade if necessary. Additional recommendations for NVIDIA ConnectX adapters can be found

here.

Block Nodes

Follow the steps to get up and running with E-Series to configure the management port on each block node

controller and optionally set the storage array name for each system.

No additional configuration beyond ensuring all block nodes are accessible from the Ansible

control node is necessary. The remaining system configuration will be applied/maintained using

Ansible.

Set Up Ansible Control Node

Set up an Ansible control node to deploy and manage the file system.

Overview

An Ansible control node is a physical or virtual Linux machine used to manage the cluster. It must meet the

following requirements:

• Meet the requirements for the BeeGFS HA role including the installed versions of Ansible, Python, and any

additional Python packages.

• Meet the official Ansible control node requirements including operating system versions.

• Have SSH and HTTPS access to all file and block nodes.

Detailed installation steps can be found here.

Define the BeeGFS file system

Ansible Inventory Overview

The Ansible inventory is a set of configuration files that define the desired BeeGFS HA

cluster.

5

https://imt.netapp.com/matrix/
https://imt.netapp.com/matrix/
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-technology-requirements.html#file-node-requirements
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements
https://docs.netapp.com/us-en/beegfs/custom/initial-setup/beegfs-deploy-setting-up-an-ansible-control-node.html

Overview

It is recommended to follow standard Ansible practices for organizing your inventory, including the use of sub-

directories/files instead of storing the entire inventory in one file.

The Ansible inventory for a single BeeGFS HA cluster is organized as follows:

[Ansible Inventory Overview]

Since a single BeeGFS file system can span multiple HA clusters, it is possible for large

installations to have multiple Ansible inventories. Generally it is not recommend to try and define

multiple HA clusters as a single Ansible inventory to avoid issues.

Steps

1. On your Ansible control node create an empty directory that will contain the Ansible inventory for the

BeeGFS cluster you want to deploy.

a. If your file system will/may eventually contain multiple HA clusters, it is recommended to first create a

directory for the file system, then sub-directories for the inventory representing each HA cluster. For

example:

beegfs_file_system_1/

 beegfs_cluster_1/

 beegfs_cluster_2/

 beegfs_cluster_N/

2. In the directory containing the inventory for the HA cluster you want to deploy, create two directories

group_vars and host_vars and two files inventory.yml and playbook.yml.

The following sections walk through defining the contents of each of these files.

Plan the File System

Plan the file system deployment before building out the Ansible inventory.

Overview

Before deploying the file system, you should define what IP addresses, ports, and other configuration will be

required by all file nodes, block nodes, and BeeGFS services running in the cluster. While the exact

configuration will vary based on the architecture of the cluster, this section defines best practices and steps to

follow that are generally applicable.

Steps

1. If you are using an IP based storage protocol (such as iSER, iSCSI, NVMe/IB, or NVMe/RoCE) to connect

file nodes to block nodes, fill out the following worksheet for each building block. Each direct connect in a

single building block should have a unique subnet, and there should be no overlap with subnets used for

client-server connectivity.

6

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

File node IB port IP address Block node IB port Physical IP Virtual IP (for

EF600 with

HDR IB only)

<HOSTNAME

>

<PORT> <IP/SUBNET

>

<HOSTNAME

>

<PORT> <IP/SUBNET

>

<IP/SUBNET

>

If the file and block nodes in each building block are directly connected you can often reuse

the same IPs/scheme for multiple building blocks.

2. Regardless if you are using InfiniBand or RDMA over Converged Ethernet (RoCE) for the storage network,

fill out the following worksheet to determine the IP ranges that will be used for HA cluster services,

BeeGFS file services, and clients to communicate:

Purpose InfiniBand port IP address or range

BeeGFS Cluster IP(s) <INTERFACE(s)> <RANGE>

BeeGFS Management <INTERFACE(s)> <IP(s)>

BeeGFS Metadata <INTERFACE(s)> <RANGE>

BeeGFS Storage <INTERFACE(s)> <RANGE>

BeeGFS Clients <INTERFACE(s)> <RANGE>

a. If you are using a single IP subnet only one worksheet is needed, otherwise also fill out a worksheet for

the second subnet.

3. Based on the above, for each building block in the cluster, fill out the following worksheet defining what

BeeGFS services it will run. For each service specify the preferred/secondary file node(s), network port,

floating IP(s), NUMA zone assignment (if required), and what block node(s) will be used for its targets.

Refer to the following guidelines when filling out the worksheet:

a. Specify BeeGFS services as either mgmt.yml, meta_<ID>.yml, or storage_<ID>.yml where ID

represents a unique number across all BeeGFS services of that type in this file system. This

convention will simplify referring back to this worksheet in subsequent sections while creating files to

configure each service.

b. Ports for BeeGFS services only need to be unique across a particular building block. Ensure services

with the same port number cannot ever run on the same file node to avoid port conflicts.

c. If necessary services can use volumes from more than one block node and/or storage pool (and not all

volumes need to be owned by the same controller). Multiple services can also share the same block

node and/or storage pool configuration (individual volumes will be defined in a later section).

BeeGFS

service

(file name)

File Nodes Port Floating

IPs

NUMA

zone

Block

node

Storage

pool

Owning

controller

<SERVICE

TYPE>_<I

D>.yml

<PREFER

RED FILE

NODE>

<SECOND

ARY FILE

NODE(s)>

<PORT> <INTERFA

CE>:<IP/S

UBNET>

<INTERFA

CE>:<IP/S

UBNET>

<NUMA

NODE/ZO

NE>

<BLOCK

NODE>

<STORAG

E

POOL/VOL

UME

GROUP>

<A OR B>

7

For more details on standard conventions, best practices, and filled out example worksheets refer to the best

practices and define BeeGFS building blocks sections of the BeeGFS on NetApp Verified Architecture.

Define File and Block Nodes

Configure Individual File Nodes

Specify configuration for individual file nodes using host variables (host_vars).

Overview

This section walks through populating a host_vars/<FILE_NODE_HOSTNAME>.yml file for each file node in

the cluster. These files should only contain configuration unique to a particular file node. This commonly

includes:

• Defining the IP or hostname Ansible should use to connect to the node.

• Configuring additional interfaces and cluster IPs used for HA cluster services (Pacemaker and Corosync)

to communicate to other file nodes. By default these services use the same network as the management

interface, but additional interfaces should be available for redundancy. Common practice is to define

additional IPs on the storage network, avoiding the need for an additional cluster or management network.

◦ The performance of any networks used for cluster communication is not critical for file system

performance. With the default cluster configuration generally at least a 1Gbps network will provide

sufficient performance for cluster operations such as synchronizing node states and coordinating

cluster resource state changes. Slow/busy networks may cause resource state changes to take longer

than usual, and in extreme cases could result in nodes being evicted from the cluster if they cannot

send heartbeats in a reasonable time frame.

• Configuring interfaces used for connecting to block nodes over the desired protocol (for example:

iSCSI/iSER, NVMe/IB, NVMe/RoCE, FCP, etc.)

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each file node in the

cluster create a file host_vars/<FILE_NODE_HOSTNAME>/yml and populate it as follows:

1. At the top specify the IP or hostname Ansible should use to SSH to the node and manage it:

ansible_host: "<MANAGEMENT_IP>"

2. Configure additional IPs that can be used for cluster traffic:

a. If the network type is InfiniBand (using IPoIB):

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

8

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/beegfs-deploy-define-inventory.html
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-nodes/custom-architectures-plan-file-system.html
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

3. Indicate what IPs should be used for cluster traffic, with preferred IPs listed higher:

beegfs_ha_cluster_node_ips:

- <MANAGEMENT_IP> # Including the management IP is typically but not

required.

- <IP_ADDRESS> # Ex: 100.127.100.1

- <IP_ADDRESS> # Additional IPs as needed.

IPs configured in step two will not be used as cluster IPs unless they are included in the

beegfs_ha_cluster_node_ips list. This allows you to configure additional IPs/interfaces

using Ansible that can be used for other purposes if desired.

4. If the file node needs to communicate to block nodes over an IP-based protocol, IPs will need to be

configured on the appropriate interface, and any packages required for that protocol installed/configured.

a. If using iSCSI:

eseries_iscsi_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

b. If using iSER:

eseries_ib_iser_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

9

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md

c. If using NVMe/IB:

eseries_nvme_ib_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

d. If using NVMe/RoCE:

eseries_nvme_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Other Protocols:

i. If using NVMe/FC, configuring individual interfaces is not required. The BeeGFS cluster

deployment will automatically detect the protocol and install/configure requirements as needed. If

you are using a fabric to connect file and block nodes, ensure switches are properly zoned

following NetApp and your switch vendor’s best practices.

ii. Use of FCP or SAS do not require installing or configuring additional software. If using FCP, ensure

switches are properly zoned following NetApp and your switch vendor’s best practices.

iii. Use of IB SRP is not recommended at this time. Use NVMe/IB or iSER depending on what your E-

Series block nodes support.

Click here for an example of a complete inventory file representing a single file node.

Advanced: Toggling NVIDIA ConnectX VPI Adapters between Ethernet and InfiniBand Mode

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) adapters support both InfiniBand and Ethernet as

the transport layer. Switching between modes is not automatically negotiated, and must be configured using

the <code>mstconfig</code> tool included in <code>mstflint</code>, an open source package that is part of

the <a

href="https://docs.nvidia.com/networking/display/MFTV4133/MFT+Supported+Configurations+and+Parameters

" target="_blank">Mellanox Firmare Tools (MFT). Changing the mode of the adapters only need to be

done once. This can be done manually, or included in the Ansible inventory as part of any interfaces configured

using the <code>eseries-[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce]_interfaces:</code> section of the

inventory, to have it checked/applied automatically.

For example to change an interface current in InfiniBand mode to Ethernet so it can be used for RoCE:

1. For each interface you want to configure specify mstconfig as a mapping (or dictionary) that specifies

LINK_TYPE_P<N> where <N> is determined by the HCA’s port number for the interface. The <N> value

can be determined by running grep PCI_SLOT_NAME

/sys/class/net/<INTERFACE_NAME>/device/uevent and adding 1 to the last number from the PCI

slot name and converting to decimal.

a. For example given PCI_SLOT_NAME=0000:2f:00.2 (2 + 1 → HCA port 3) → LINK_TYPE_P3:

eth:

10

https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml

eseries_roce_interfaces:

- name: <INTERFACE>

 address: <IP/SUBNET>

 mstconfig:

 LINK_TYPE_P3: eth

For additional details refer to the NetApp E-Series Host collection’s documentation for the interface

type/protocol you are using.

Configure Individual Block Nodes

Specify configuration for individual block nodes using host variables (host_vars).

Overview

This section walks through populating a host_vars/<BLOCK_NODE_HOSTNAME>.yml file for each block

node in the cluster. These files should only contain configuration unique to a particular block node. This

commonly includes:

• The system name (as displayed in System Manager).

• The HTTPS URL for one of the controllers (used to manage the system using its REST API).

• What storage protocol file nodes use to connect to this block node.

• Configuring host interface card (HIC) ports, such as IP addresses (if needed).

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each block node in the

cluster create a file host_vars/<BLOCK_NODE_HOSTNAME>/yml and populate it as follows:

1. At the top specify the system name and the HTTPS URL for one of the controllers:

eseries_system_name: <SYSTEM_NAME>

eseries_system_api_url:

https://<MANAGEMENT_HOSTNAME_OR_IP>:8443/devmgr/v2/

2. Select the protocol file nodes will use to connect to this block node:

a. Supported Protocols: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme_ib, nvme_fc, nvme_roce.

eseries_initiator_protocol: <PROTOCOL>

3. Depending on the protocol in use, the HIC ports may require additional configuration. When needed, HIC

port configuration should be defined so the top entry in the configuration for each controller corresponds

with with the physical left-most port on each controller, and the bottom port the right-most port. All ports

require valid configuration even if they are not currently in use.

11

https://github.com/netappeseries/host
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-nodes/custom-architectures-plan-file-system.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

Also see the section below if you are using HDR (200Gb) InfiniBand or 200Gb RoCE with

EF600 block nodes.

a. For iSCSI:

eseries_controller_iscsi_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

Choices: enabled, disabled

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 gateway: # Port IPv4 gateway

 subnet_mask: # Port IPv4 subnet_mask

 mtu: # Port IPv4 mtu

 - (...) # Additional ports as needed.

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_iscsi_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_iscsi_port_config_method: dhcp # General port

configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_iscsi_port_gateway: # General port

IPv4 gateway for both controllers.

eseries_controller_iscsi_port_subnet_mask: # General port

IPv4 subnet mask for both controllers.

eseries_controller_iscsi_port_mtu: 9000 # General port

maximum transfer units (MTU) for both controllers. Any value greater

than 1500 (bytes).

b. For iSER:

12

eseries_controller_ib_iser_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

c. For NVMe/IB:

eseries_controller_nvme_ib_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

d. For NVMe/RoCE:

13

eseries_controller_nvme_roce_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 subnet_mask: # Port IPv4 subnet_mask

 gateway: # Port IPv4 gateway

 mtu: # Port IPv4 mtu

 speed: # Port IPv4 speed

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_nvme_roce_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_nvme_roce_port_config_method: dhcp # General

port configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_nvme_roce_port_gateway: # General

port IPv4 gateway for both controllers.

eseries_controller_nvme_roce_port_subnet_mask: # General

port IPv4 subnet mask for both controllers.

eseries_controller_nvme_roce_port_mtu: 4200 # General

port maximum transfer units (MTU). Any value greater than 1500

(bytes).

eseries_controller_nvme_roce_port_speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

e. FC and SAS protocols do not require additional configuration. SRP is not correctly recommended.

For additional options to configure HIC ports and host protocols including the ability to configure iSCSI CHAP

refer to the documentation included with the SANtricity collection. Note when deploying BeeGFS the storage

pool, volume configuration, and other aspects of provisioning storage will be configured elsewhere, and should

not be defined in this file.

Click here for an example of a complete inventory file representing a single block node.

Using HDR (200Gb) InfiniBand or 200Gb RoCE with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600, a second "virtual" IP must be configured for each physical

port. THis is an example of the correct way to configure an EF600 equipped with the dual port InfiniBand HDR

14

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

HIC:

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101 # Port 2a (physical)

 - 192.168.2.101 # Port 2a (virtual)

 - 192.168.1.100 # Port 2b (physical)

 - 192.168.2.100 # Port 2b (virtual)

 controller_b:

 - 192.168.3.101 # Port 2a (physical)

 - 192.168.4.101 # Port 2a (virtual)

 - 192.168.3.100 # Port 2b (physical)

 - 192.168.4.100 # Port 2b (virtual)

Specify Common File Node Configuration

Specify common file node configuration using group variables (group_vars).

Overview

Configuration that should apple to all file nodes is defined at group_vars/ha_cluster.yml. It commonly

includes:

• Details on how to connect and login to each file node.

• Common networking configuration.

• Whether automatic reboots are allowed.

• How firewall and selinux states should be configured.

• Cluster configuration including alerting and fencing.

• Performance tuning.

• Common BeeGFS service configuration.

The options set in this file can also be defined on individual file nodes, for example if mixed

hardware models are in use, or you have different passwords for each node. Configuration on

individual file nodes will take precedence over the configuration in this file.

Steps

Create the file group_vars/ha_cluster.yml and populate it as follows:

1. Indicate how the Ansible Control node should authenticate with the remote hosts:

ansible_ssh_user: root

ansible_become_password: <PASSWORD>

15

Particularly for production environments, do not store passwords in plain text. Instead, use

Ansible Vault (see Encrypting content with Ansible Vault) or the --ask-become-pass

option when running the playbook. If the ansible_ssh_user is already root, then you can

optionally omit the ansible_become_password.

2. If you are configuring static IPs on ethernet or InfiniBand interfaces (for example cluster IPs) and multiple

interfaces are in the same IP subnet (for example if ib0 is using 192.168.1.10/24 and ib1 is using

192.168.1.11/24), additional IP routing tables and rules must be setup for multi-homed support to work

properly. Simply enable the provided network interface configuration hook as follows:

eseries_ip_default_hook_templates:

 - 99-multihoming.j2

3. When deploying the cluster, depending on the storage protocol it may be necessary for nodes to be

rebooted to facilitate discovering remote block devices (E-Series volumes) or apply other aspects of the

configuration. By default nodes will prompt before rebooting, but you can allow nodes to restart

automatically by specifying the following:

eseries_common_allow_host_reboot: true

a. By default after a reboot, to ensure block devices and other services are ready Ansible will wait until the

systemd default.target is reached before continuing with the deployment. In some scenarios

when NVMe/IB is in use, this may not be long enough to initialize, discover, and connect to remote

devices. This can result in the automated deployment continuing prematurely and failing. To avoid this

when using NVMe/IB also define the following:

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

4. A number of firewall ports are required for BeeGFS and HA cluster services to communicate. Unless you

wish to configure the firwewall manually (not recommended), specify the following to have required firewall

zones created and ports opened automatically:

beegfs_ha_firewall_configure: True

5. At this time SELinux is not supported, and it is is recommended the state be set to disabled to avoid

conflicts (especially when RDMA is in use). Set the following to ensure SELinux is disabled:

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

6. Configure authentication so file nodes are able to communicate, adjusting the defaults as needed based on

your organizations policies:

16

https://docs.ansible.com/ansible/latest/vault_guide/index.html

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: hacluster # BeeGFS HA cluster

username.

beegfs_ha_cluster_password: hapassword # BeeGFS HA cluster

username's password.

beegfs_ha_cluster_password_sha512_salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. Based on the Plan the File System section specify the BeeGFS management IP for this file system:

beegfs_ha_mgmtd_floating_ip: <IP ADDRESS>

While seemingly redundant, beegfs_ha_mgmtd_floating_ip is important when you

scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are

deployed without an additional BeeGFS management service and point at the management

service provided by the first cluster.

8. Enable email alerts if desired:

beegfs_ha_enable_alerts: True

E-mail recipient list for notifications when BeeGFS HA resources

change or fail.

beegfs_ha_alert_email_list: ["<EMAIL>"]

This dictionary is used to configure postfix service

(/etc/postfix/main.cf) which is required to set email alerts.

beegfs_ha_alert_conf_ha_group_options:

 # This parameter specifies the local internet domain name. This is

optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com)

 mydomain: <MY_DOMAIN>

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

9. Enabling fencing is strongly recommended, otherwise services can be blocked from starting on secondary

nodes when the primary node fails.

a. Enable fencing globally by specifying the following:

17

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-nodes/custom-architectures-plan-file-system.html

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: True

i. Note any supported cluster property can also be specified here if needed. Adjusting these is not

typically needed, as the BeeGFS HA role ships with a number of well tested defaults.

b. Next select and configure a fencing agent:

i. OPTION 1: To enable fencing using APC Power Distribution Units (PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: <PDU_USERNAME>

 passwd: <PDU_PASSWORD>

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>

"

ii. OPTION 2: To enable fencing using the Redfish APIs provided by the Lenovo XCC (and other

BMCs):

redfish: &redfish

 username: <BMC_USERNAME>

 password: <BMC_PASSWORD>

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

iii. For details on configuring other fencing agents refer to the RedHat Documentation.

10. The BeeGFS HA role can apply many different tuning parameters to help further optimize performance.

These include optimizing kernel memory utilization and block device I/O, among other parameters. The role

ships with a reasonable set of defaults based on testing with NetApp E-Series block nodes, but by default

these aren’t applied unless you specify:

beegfs_ha_enable_performance_tuning: True

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/netappeseries/beegfs/blob/ae038bb2f7617d18a36cc4df8ca9464bd5039b8b/roles/beegfs_ha_7_2/defaults/main.yml#L54
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/netappeseries/beegfs/blob/release-3.0.1/roles/beegfs_ha_7_2/defaults/main.yml#L106

a. If needed also specify any changes to the default performance tuning here. See the full performance

tuning parameters documentation for additional details.

11. To ensure floating IP addresses (sometimes known as logical interfaces) used for BeeGFS services can fail

over between file nodes, all network interfaces must be named consistently. By default network interface

names are generated by the kernel, which is not guaranteed to generate consistent names, even across

identical server models with network adapters installed in the same PCIe slots. This is also useful when

creating inventories before the equipment is deployed and generated interface names are known. To

ensure consistent device names, based on a block diagram of the server or lshw -class network

-businfo output, specify the desired PCIe address-to-logical interface mapping as follows:

a. For InfiniBand (IPoIB) network interfaces:

eseries_ipoib_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:41:00.0: i1a

b. For Ethernet network interfaces:

eseries_ip_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:41:00.0: e1a

To avoid conflicts when interfaces are renamed (preventing them from being renamed),

you should not use any potential default names such as eth0, ens9f0, ib0, or ibs4f0. A

common naming convention is to use 'e' or 'i' for Ethernet or InfiniBand, followed by the

PCIe slot number, and a letter to indicate the the port. For example the second port of an

InfiniBand adapter installed in slot 3 would be: i3b.

If you are using a verified file node model, click here example PCIe address-to-logical

port mappings.

12. Optionally specify configuration that should apply to all BeeGFS services in the cluster. Default

configuration values can be found here, and per-service configuration is specified elsewhere:

a. BeeGFS Management service:

beegfs_ha_beegfs_mgmtd_conf_ha_group_options:

 <OPTION>: <VALUE>

b. BeeGFS Metadata services:

beegfs_ha_beegfs_meta_conf_ha_group_options:

 <OPTION>: <VALUE>

c. BeeGFS Storage services:

19

https://github.com/netappeseries/beegfs/blob/release-3.0.1/roles/beegfs_ha_7_2/docs/performance_tuning.md
https://github.com/netappeseries/beegfs/blob/release-3.0.1/roles/beegfs_ha_7_2/docs/performance_tuning.md
https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/netappeseries/beegfs/blob/release-3.0.1/roles/beegfs_ha_7_2/defaults/main.yml#L159

beegfs_ha_beegfs_storage_conf_ha_group_options:

 <OPTION>: <VALUE>

13. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled. There

are a few ways this can be configured using the Ansible based deployment:

a. By default the deployment will automatically configure connection authentication, and generate a

connauthfile that will be distributed to all file nodes and used with the BeeGFS services. This file

will also be placed/maintained on the Ansible control node at

<INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile where it should be maintained

(securely) for reuse with clients that need to access this file system.

i. To generate a new key specify -e "beegfs_ha_conn_auth_force_new=True when running

the Ansible playbook. Note this is ignored if a beegfs_ha_conn_auth_secret is defined.

ii. For advanced options refer to the full list of defaults included with the BeeGFS HA role.

b. A custom secret can be used by defining the following in ha_cluster.yml:

beegfs_ha_conn_auth_secret: <SECRET>

c. Connection authentication can be disabled entirely (NOT recommended):

beegfs_ha_conn_auth_enabled: false

Click here for an example of a complete inventory file representing common file node configuration.

Using HDR (200Gb) InfiniBand with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600 the subnet manager must support virtualization. If file and

block nodes are connected using a switch, this will need to be enabled on the subnet manager manager for the

overall fabric.

If block and file nodes are directly connected using InfiniBand, an instance of opensm must be configured on

each file node for each interface directly connected to a block node. This is done by specifying configure:

true when configuring file node storage interfaces.

Currently the inbox version of opensm shipped with supported Linux distributions does not support

virtualization. Instead it is required you install and configure version of opensm from the Mellanox OpenFabrics

Enterprise Distribution (OFED). Although deployment using Ansible is still supported, a few additional steps are

required:

1. Using curl or your desired tool, download the packages for the version of OpenSM listed in the technology

requirements section from Mellanox’s website to the <INVENTORY>/packages/ directory. For example:

20

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_ha_7_3/defaults/main.yml#L32
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-nodes/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-nodes/beegfs-technology-requirements.html

curl -o packages/opensm-libs-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/5.4-

1.0.3.0/rhel8.4/x86_64/opensm-libs-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm

curl -o packages/opensm-5.9.0.MLNX20210617.c9f2ade-0.1.54103.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/5.4-

1.0.3.0/rhel8.4/x86_64/opensm-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm

2. Under group_vars/ha_cluster.yml define the following configuration:

OpenSM package and configuration information

eseries_ib_opensm_allow_upgrades: true

eseries_ib_opensm_skip_package_validation: true

eseries_ib_opensm_rhel_packages: []

eseries_ib_opensm_custom_packages:

 install:

 - files:

 add:

 "packages/opensm-libs-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm": "/tmp/"

 "packages/opensm-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm": "/tmp/"

 - packages:

 add:

 - /tmp/opensm-5.9.0.MLNX20210617.c9f2ade-0.1.54103.x86_64.rpm

 - /tmp/opensm-libs-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm

 uninstall:

 - packages:

 remove:

 - opensm

 - opensm-libs

 files:

 remove:

 - /tmp/opensm-5.9.0.MLNX20210617.c9f2ade-0.1.54103.x86_64.rpm

 - /tmp/opensm-libs-5.9.0.MLNX20210617.c9f2ade-

0.1.54103.x86_64.rpm

eseries_ib_opensm_options:

 virt_enabled: "2"

21

Specify Common Block Node Configuration

Specify common block node configuration using group variables (group_vars).

Overview

Configuration that should apple to all block nodes is defined at

group_vars/eseries_storage_systems.yml. It commonly includes:

• Details on how the Ansible control node should connect to E-Series storage systems used as block nodes.

• What firmware, NVSRAM, and Drive Firmware versions the nodes should run.

• Global configuration including cache settings, host configuration, and settings for how volumes should be

provisioned.

The options set in this file can also be defined on individual block nodes, for example if mixed

hardware models are in use, or you have different passwords for each node. Configuration on

individual block nodes will take precedence over the configuration in this file.

Steps

Create the file group_vars/eseries_storage_systems.yml and populate it as follows:

1. Ansible does not use SSH to connect to block nodes, and instead uses REST APIs. To achieve this we

must set:

ansible_connection: local

2. Specify the username and password to manage each node. The username can be optionally omitted (and

will default to admin), otherwise you can specify any account with admin privileges. Also specify if SSL

certificates should be verified, or ignored:

eseries_system_username: admin

eseries_system_password: <PASSWORD>

eseries_validate_certs: false

Listing any passwords in plaintext is not recommended. Use Ansible vault or provide the

eseries_system_password when running Ansible using --extra-vars.

3. Optionally specify what controller firmware, NVSRAM, and drive firmware should be installed on the nodes.

These will need to be downloaded to the packages/ directory before running Ansible. E-Series controller

firmware and NVSRAM can be downloaded here and drive firmware here:

22

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

eseries_firmware_firmware: "packages/<FILENAME>.dlp" # Ex.

"packages/RCB_11.70.2_6000_61b1131d.dlp"

eseries_firmware_nvsram: "packages/<FILENAME>.dlp" # Ex.

"packages/N6000-872834-D06.dlp"

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

 # Additional firmware versions as needed.

eseries_drive_firmware_upgrade_drives_online: true # Recommended unless

BeeGFS hasn't been deployed yet, as it will disrupt host access if set

to "false".

If this configuration is specified, Ansible will automatically update all firmware including

rebooting controllers (if necessary) with with no additional prompts. This is expected to be

non-disruptive to BeeGFS/host I/O, but may cause a temporary decrease in performance.

4. Adjust global system configuration defaults. The options and values listed here are commonly

recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required by default.

5. Configure global volume provisioning defaults. The options and values listed here are commonly

recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries_volume_size_unit: pct # Required by default. This allows volume

capacities to be specified as a percentage, simplifying putting together

the inventory.

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

6. If needed, adjust the order in which Ansible will select drives for storage pools and volume groups keeping

in mind the following best practices:

a. List any (potentially smaller) drives that should be used for management and/or metadata volumes first,

and storage volumes last.

b. Ensure to balance the drive selection order across available drive channels based on the disk

shelf/drive enclosure model(s). For example with the EF600 and no expansions, drives 0-11 are on

drive channel 1, and drives 12-23 are on drive channel. Thus a strategy to balance drive selection is to

23

select disk shelf:drive 99:0, 99:23, 99:1, 99:22, etc. In the event there is more than one

enclosure, the first digit represents the drive shelf ID.

Optimal/recommended order for the EF600 (no expansion):

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99

:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Click here for an example of a complete inventory file representing common block node configuration.

Define BeeGFS services

Define the BeeGFS management service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS management service. Only one service of this type should

exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

• The service type (management).

• Defining any configuration that should only apply to this BeeGFS service.

• Configuring one or more floating IPs (logical interfaces) where this service can be reached.

• Specifying where/how a volume should be to store data for this service (the BeeGFS management target).

Steps

Create a new file group_vars/mgmt.yml and referencing the Plan the File System section populate it as

follows:

1. Indicate this file represents the configuration for a BeeGFS management service:

beegfs_service: management

2. Define any configuration that should apply only to this BeeGFS service. This is not typically required for the

management service unless you need to enable quotas, however any supported configuration parameter

from beegfs-mgmtd.conf can be included. Note the following parameters are configured

automatically/elsewhere and should not be specified here: storeMgmtdDirectory, connAuthFile,

connDisableAuthentication, connInterfacesFile, and connNetFilterFile.

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

 <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will

automatically set the BeeGFS connInterfacesFile option):

24

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/custom-architectures-plan-file-system.html

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.0/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this

will automatically set the BeeGFS connNetFilterFile option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS management target where this service will store data according to the following

guidelines:

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,

simply ensure to use the same name, raid_level, criteria_*, and common_* configuration for

each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total

should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note

when using SSDs it is recommended to leave some free space in the volume group to maximize SSD

performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the

eseries_storage_pool_configuration. Note some options such as state, host, host_type,

workload_name, and workload_metadata and volume names are generated automatically and

should not be specified here.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: ictad22a01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS management service.

Define the BeeGFS metadata service

BeeGFS services are configured using group variables (group_vars).

25

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

Overview

This section walks through defining the BeeGFS metadata service. At least one service of this type should

exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

• The service type (metadata).

• Defining any configuration that should only apply to this BeeGFS service.

• Configuring one or more floating IPs (logical interfaces) where this service can be reached.

• Specifying where/how a volume should be to store data for this service (the BeeGFS metadata target).

Steps

Referencing the Plan the File System section, create a file at group_vars/meta_<ID>.yml for each

metadata service in the cluster, and populate them as follows:

1. Indicate this file represents the configuration for a BeeGFS metadata service:

beegfs_service: metadata

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the

desired TCP and UDP port, however any supported configuration parameter from beegfs-meta.conf

can also be included. Note the following parameters are configured automatically/elsewhere and should

not be specified here: sysMgmtdHost, storeMetaDirectory, connAuthFile,

connDisableAuthentication, connInterfacesFile, and connNetFilterFile.

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <TCP PORT>

 connMetaPortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will

automatically set the BeeGFS connInterfacesFile option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this

will automatically set the BeeGFS connNetFilterFile option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

26

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/custom-architectures-plan-file-system.html

5. Specify the BeeGFS metadata target where this service will store data according to the following guidelines

(this will also automatically configure the storeMetaDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,

simply ensure to use the same name, raid_level, criteria_*, and common_* configuration for

each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total

should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note

when using SSDs it is recommended to leave some free space in the volume group to maximize SSD

performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the

eseries_storage_pool_configuration. Note some options such as state, host, host_type,

workload_name, and workload_metadata and volume names are generated automatically and

should not be specified here.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: ictad22a01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS metadata service.

Define the BeeGFS storage service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS storage service. At least one service of this type should exist

in the HA cluster(s) for a particular file system. Configuring this service includes defining:

• The service type (storage).

• Defining any configuration that should only apply to this BeeGFS service.

• Configuring one or more floating IPs (logical interfaces) where this service can be reached.

• Specifying where/how volume(s) should be to store data for this service (the BeeGFS storage targets).

Steps

Referencing the Plan the File System section, create a file at group_vars/stor_<ID>.yml for each storage

27

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml
https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/custom-architectures-plan-file-system.html

service in the cluster, and populate them as follows:

1. Indicate this file represents the configuration for a BeeGFS storage service:

beegfs_service: storage

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the

desired TCP and UDP port, however any supported configuration parameter from beegfs-

storage.conf can also be included. Note the following parameters are configured

automatically/elsewhere and should not be specified here: sysMgmtdHost, storeStorageDirectory,

connAuthFile, connDisableAuthentication, connInterfacesFile, and connNetFilterFile.

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <TCP PORT>

 connStoragePortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will

automatically set the BeeGFS connInterfacesFile option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this

will automatically set the BeeGFS connNetFilterFile option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS storage target(s) where this service will store data according to the following

guidelines (this will also automatically configure the storeStorageDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,

simply ensure to use the same name, raid_level, criteria_*, and common_* configuration for

each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total

should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note

when using SSDs it is recommended to leave some free space in the volume group to maximize SSD

performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the

eseries_storage_pool_configuration. Note some options such as state, host, host_type,

workload_name, and workload_metadata and volume names are generated automatically and

28

https://docs.netapp.com/us-en/beegfs/custom/define-beegfs-fs/define-services/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

should not be specified here.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: ictad22a01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_s1_s2

 raid_level: <LEVEL> # One of: raid1, raid5, raid6,

raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

 # Multiple storage targets are supported / typical:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS storage service.

Map BeeGFS services to file nodes

Specify what file nodes can run each BeeGFS service using the inventory.yml file.

Overview

This section walks through how to create the inventory.yml file. This includes listing all block nodes and

specifying what file nodes can run each BeeGFS service.

Steps

Create the file inventory.yml and populate it as follows:

1. From the top of the file, create the standard Ansible inventory structure:

BeeGFS HA (High_Availability) cluster inventory.

all:

 children:

2. Create a group containing all block nodes participating in this HA cluster:

29

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 <BLOCK NODE HOSTNAME>:

 <BLOCK NODE HOSTNAME>:

 # Additional block nodes as needed.

3. Create a group that will contain all BeeGFS services in the cluster, and the file nodes that will run them:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

4. For each BeeGFS service in the cluster, define the preferred and any secondary file node(s) that should

run that service:

 <SERVICE>: # Ex. "mgmt", "meta_01", or "stor_01".

 hosts:

 <FILE NODE HOSTNAME>:

 <FILE NODE HOSTNAME>:

 # Additional file nodes as needed.

Click here for an example of a complete inventory file.

Deploy the BeeGFS file system

Ansible Playbook Overview

Deploying and managing BeeGFS HA clusters using Ansible.

Overview

The previous sections walked through the steps needed to build an Ansible inventory representing a BeeGFS

HA cluster. This section introduces the Ansible automation developed by NetApp to deploy and manage the

cluster.

Ansible: Key Concepts

Before proceeding, it is helpful to be familiar with a few key Ansible concepts:

• Tasks to execute against an Ansible inventory are defined in what is known as a playbook.

◦ Most tasks in Ansible are designed to be idempotent, meaning they can be run multiple times to verify

the desired configuration/state is still applied without breaking things or making unnecessary updates.

• The smallest unit of execution in Ansible is a module.

30

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

◦ Typical playbooks use multiple modules.

▪ Examples: Download a package, update a config file, start/enable a service.

◦ NetApp distributes modules to automate NetApp E-Series systems.

• Complex automation is better packaged as a role.

◦ Essentially a standard format to distribute a reusable playbook.

◦ NetApp distributes roles for Linux hosts and BeeGFS file systems.

BeeGFS HA role for Ansible: Key Concepts

All the automation needed to deploy and manage each version of BeeGFS on NetApp is packaged as an

Ansible role and distributed as part of the NetApp E-Series Ansible Collection for BeeGFS:

• This role can be thought of as somewhere between an installer and modern deployment/management

engine for BeeGFS.

◦ Applies modern infrastructure as code practices and philosophies to simplify managing storage

infrastructure at any scale.

◦ Similar to how the Kubespray project allows users to deploy/maintain an entire Kubernetes distribution

for scale out compute infrastructure.

• This role is the software-defined format NetApp uses to package, distribute, and maintain BeeGFS on

NetApp solutions.

◦ Strive to create an “appliance-like” experience without needing to distribute an entire Linux distribution

or large image.

◦ Includes NetApp authored Open Cluster Framework (OCF) compliant cluster resource agents for

custom BeeGFS targets, IP addresses, and monitoring that provide intelligent Pacemaker/BeeGFS

integration.

• This role is not simply deployment "automation" and is intended to manage the entire file system lifecycle

including:

◦ Applying per-service or cluster-wide configuration changes and updates.

◦ Automating cluster healing and recovery after hardware issues are resolved.

◦ Simplifying performance tuning with default values set based on extensive testing with BeeGFS and

NetApp volumes.

◦ Verifying and correcting configuration drift.

NetApp also provides an Ansible role for BeeGFS clients, that can optionally be used to install BeeGFS and

mount file systems to compute/GPU/login nodes.

Deploy the BeeGFS HA cluster

Specify what tasks should run to deploy the BeeGFS HA cluster using a playbook.

Overview

This section covers how to assemble the standard playbook used to deploy/manage BeeGFS on NetApp.

Steps

31

https://galaxy.ansible.com/netapp_eseries/beegfs
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

Create the Ansible Playbook

Create the file playbook.yml and populate it as follows:

1. First define a set of tasks (commonly referred to as a play) that should only run on NetApp E-Series block

nodes. We use a pause task to prompt before running the installation (to avoid accidental playbook runs),

then import the nar_santricity_management role. This role handles applying any general system

configuration defined in group_vars/eseries_storage_systems.yml or individual

host_vars/<BLOCK NODE>.yml files.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

2. Define the play that will run against all file and block nodes:

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

3. Within this play we can optionally define a set of "pre-tasks" that should run before deploying the HA

cluster. This can be useful to verify/install any prerequisites like Python. We can also inject any pre-flight

checks, for example verifying the provided Ansible tags are supported:

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

32

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

4. Lastly, this play imports the BeeGFS HA role for the version of BeeGFS you want to deploy:

33

 tasks:

 - name: Verify the BeeGFS HA cluster is properly deployed.

 import_role:

 name: beegfs_ha_7_3 # Alternatively specify: beegfs_ha_7_2.

A BeeGFS HA role is maintained for each supported major.minor version of BeeGFS. This

allows users to choose when they want to upgrade major/minor versions. Currently either

BeeGFS 7.3.x (beegfs_7_3) or BeeGFS 7.2.x (beegfs_7_2) are supported. By default

both roles will deploy the latest BeeGFS patch version at the time of release, though users

can opt to override this and deploy the latest patch if desired. Refer to the latest upgrade

guide for more details.

5. Optional: If you wish to define additional tasks, keep in mind if the tasks should be directed to all hosts

(including the E-Series storage systems) or only the file nodes. If needed define a new play specifically

targeting file nodes using - hosts: ha_cluster.

Click here for an example of a complete playbook file.

Install the NetApp Ansible Collections

The BeeGFS collection for Ansible and all dependencies are maintained on Ansible Galaxy. On your Ansible

control node run the following command to install the latest version:

ansible-galaxy collection install netapp_eseries.beegfs

Though not typically recommended, it is also possible to install a specific version of the collection:

ansible-galaxy collection install netapp_eseries.beegfs:

==<MAJOR>.<MINOR>.<PATCH>

Run the Playbook

From the directory on your Ansible control node containing the inventory.yml and playbook.yml files,

run the playbook as follows:

ansible-playbook -i inventory.yml playbook.yml

Based on the size of the cluster the initial deployment can take 20+ minutes. If the deployment fails for any

reason, simply correct any issues (e.g., miscabling, node wasn’t started, etc.), and restart the Ansible

playbook.

When specifying common file node configuration, if you choose the default option to have Ansible

automatically manage connection based authentication, a connAuthFile used as a shared secret can now

be found at <playbook_dir>/files/beegfs/<sysMgmtdHost>_connAuthFile (by default). Any clients

needing to access the file system will need to use this shared secret. This is handled automatically if clients are

configured using the BeeGFS client role.

34

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_common/docs/upgrade.md
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_common/docs/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs
https://docs.netapp.com/us-en/beegfs/custom/deploy-beegfs-fs/custom-architectures-inventory-common-file-node-configuration.html

Deploy BeeGFS clients

Optionally, Ansible can be used to configure BeeGFS clients and mount the file system.

Overview

Accessing BeeGFS file systems requires installing and configuring the BeeGFS client on each node that needs

to mount the file system. This section documents how to perform these tasks using the available Ansible role.

Steps

Create the Client Inventory File

1. If needed, set up passwordless SSH from the Ansible control node to each of the hosts you want to

configure as BeeGFS clients:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Under host_vars/, create a file for each BeeGFS client named <HOSTNAME>.yml with the following

content, filling in the placeholder text with the correct information for your environment:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

3. Optionally include one of the following if you want to use the NetApp E-Series Host Collection’s roles to

configure InfiniBand or Ethernet interfaces for clients to connect to BeeGFS file nodes:

a. If the network type is InfiniBand (using IPoIB):

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

35

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

4. Create a new file client_inventory.yml and specify the user Ansible should use to connect to each

client, and the password Ansible should use for privilege escalation (this requires ansible_ssh_user be

root, or have sudo privileges):

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER>

 ansible_become_password: <PASSWORD>

Do not store passwords in plain text. Instead, use the Ansible Vault (see the Ansible

documentation for Encrypting content with Ansible Vault) or use the --ask-become-pass

option when running the playbook.

5. In the client_inventory.yml file, list all hosts that should be configured as BeeGFS clients under the

beegfs_clients group, and then refer to the inline comments and uncomment any additional

configuration required to build the BeeGFS client kernel module on your system:

36

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 <CLIENT HOSTNAME>:

 # Additional clients as needed.

 vars:

 # OPTION 1: If you’re using the Mellanox OFED drivers and they

are already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 #beegfs_client_ofed_enable: True

 #beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 #eseries_ib_skip: False # Default value.

 #beegfs_client_ofed_enable: False # Default value.

When using the Mellanox OFED drivers, make sure that beegfs_client_ofed_include_path

points to the correct "header include path" for your Linux installation. For more information,

see the BeeGFS documentation for RDMA support.

6. In the client_inventory.yml file, list the BeeGFS file systems you want mounted under any previously

defined vars:

37

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

 # Specify additional file system mounts for this or other file

systems.

7. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled.

Depending how you choose to configure connection based authentication when specifying common file

node configuration, you may need to adjust your client configuration:

a. By default the HA cluster deployment will automatically configure connection authentication, and

generate a connauthfile that will be placed/maintained on the Ansible control node at

<INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile. By default the BeeGFS client

role is setup to read/distribute this file to the clients defined in client_inventory.yml, and no

additional action is needed.

i. For advanced options refer to the full list of defaults included with the BeeGFS client role.

b. If you choose to specify a custom secret with beegfs_ha_conn_auth_secret specify it in the

client_inventory.yml file as well:

beegfs_ha_conn_auth_secret: <SECRET>

c. If you choose to disable connection based authentication entirely with

beegfs_ha_conn_auth_enabled, specify that in the client_inventory.yml file as well:

38

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://docs.netapp.com/us-en/beegfs/custom/deploy-beegfs-fs/custom-architectures-inventory-common-file-node-configuration.html
https://docs.netapp.com/us-en/beegfs/custom/deploy-beegfs-fs/custom-architectures-inventory-common-file-node-configuration.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs_ha_conn_auth_enabled: false

For a full list of supported parameters and additional details refer to the full BeeGFS client documentation. For

a complete example of a client inventory click here.

Create the BeeGFS Client Playbook File

1. Create a new file client_playbook.yml

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

2. Optional: If you want to use the NetApp E-Series Host Collection’s roles to configure interfaces for clients

to connect to BeeGFS file systems, import the role corresponding with the interface type you are

configuring:

a. If you are using are using InfiniBand (IPoIB):

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

b. If you are using are using RDMA over Converged Ethernet (RoCE):

 - name: Ensure IPoIB is configured

 import_role:

 name: roce

c. If you are using are using Ethernet (TCP only, no RDMA):

 - name: Ensure IPoIB is configured

 import_role:

 name: ip

3. Lastly import the BeeGFS client role to install the client software and setup the file system mounts:

39

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

 # REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

For a complete example of a client playbook click here.

Run the BeeGFS Client Playbook

To install/build the client and mount BeeGFS, run the following command:

ansible-playbook -i client_inventory.yml client_playbook.yml

Verify the BeeGFS deployment

Verify the file system deployment before placing the system in production.

Overview

Before you place the BeeGFS file system in production, perform a few verification checks.

Steps

1. Login to any client and run the following to ensure all expected nodes are present/reachable, and there are

no inconsistencies or other issues reported:

beegfs-fsck --checkfs

2. Shutdown the entire cluster, then restart it. From any file node run the following:

pcs cluster stop --all # Stop the cluster on all file nodes.

pcs cluster start --all # Start the cluster on all file nodes.

pcs status # Verify all nodes and services are started and no failures

are reported (the command may need to be reran a few times to allow time

for all services to start).

3. Place each node in standby and verify BeeGFS services are able to failover to secondary node(s). To do

this login to any of the file nodes and run the following:

40

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in

standby.

pcs status # Verify services are started on a secondary node and no

failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out

of standby.

pcs status # Verify the file node is back online and no failures are

reported.

pcs resource relocate run # Move all services back to their preferred

nodes.

pcs status # Verify services have moved back to the preferred node.

4. Use performance benchmarking tools such as IOR and MDTest to verify the file system performance meets

expectations. Examples of common tests and parameters used with BeeGFS can be found in the Design

Verification section of the BeeGFS on NetApp Verified Architecture.

Additional tests should be performed based on the acceptance criteria defined for a particular site/installation.

41

https://docs.netapp.com/us-en/beegfs/custom/deploy-beegfs-fs/beegfs-design-solution-verification.html
https://docs.netapp.com/us-en/beegfs/custom/deploy-beegfs-fs/beegfs-design-solution-verification.html

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

42

http://www.netapp.com/TM

	Use custom architectures : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Use custom architectures
	Overview and requirements
	Initial Set Up
	Define the BeeGFS file system
	Deploy the BeeGFS file system

