Use custom architectures
BeeGFS on NetApp with E-Series Storage

NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/custom/architectures-overview.html
on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Use custom architectures

Overview and requirements
Introduction
Deployment Overview
Requirements

Initial Set Up
Install and Cable Hardware
Set Up File and Block Nodes
Set Up Ansible Control Node

Define the BeeGFS file system
Ansible Inventory Overview
Plan the File System
Define File and Block Nodes
Define BeeGFS services
Map BeeGFS services to file nodes

Deploy the BeeGFS file system
Ansible Playbook Overview
Deploy the BeeGFS HA cluster
Deploy BeeGFS clients
Verify the BeeGFS deployment

© 0 0 N O DNDNDN-_2 2~ 2

AW W W W WN >
W ook~ W WNO O

Use custom architectures

Overview and requirements

Use any NetApp E/EF-Series storage systems as BeeGFS block nodes and x86 servers
as BeeGFS file nodes when deploying BeeGFS high availability clusters using Ansible.

Definitions for terminology used throughout this section can be found on the terms and concepts
page.

Introduction

While NetApp verified architectures provide predefined reference configurations and sizing guidance, some
customers and partners may prefer to design custom architectures better suited to particular requirements or
hardware preferences. One of the primary benefits of choosing BeeGFS on NetApp is the ability to deploy
BeeGFS shared-disk HA clusters using Ansible, simplifying cluster management and improving reliability with
NetApp authored HA components. The deployment of custom BeeGFS architectures on NetApp is still done
using Ansible, maintaining an appliance-like approach on a flexible range of hardware.

This section outlines the general steps needed to deploy BeeGFS file systems on NetApp hardware and use of
Ansible to configure BeeGFS file systems. For details on best practices surrounding the design of BeeGFS file
systems and optimized examples please refer to the NetApp verified architectures section.

Deployment Overview

Generally deploying a BeeGFS file system involves the following steps:

* Initial set up:
o Install/cable hardware.
> Set up file and block nodes.
o Set up an Ansible control node.
» Define the BeeGFS file system as an Ansible inventory.
* Run Ansible against file and block nodes to deploy BeeGFS.

> Optionally to set up clients and mount BeeGFS.

Subsequent sections will cover these steps in more detail.

Ansible handles all software provisioning and configuration tasks including:

 Creating/mapping volumes on block nodes.
@ + Formatting/tuning volumes on file nodes.
* Installing/configuring software on file nodes.

» Establishing the HA cluster and configuring BeeGFS resources and file system services.

https://docs.netapp.com/us-en/beegfs/get-started/beegfs-terms.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-solution-overview.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-solution-overview.html

Requirements

Support for BeeGFS in Ansible is released on Ansible Galaxy as a collection of roles and modules that
automate the end-to-end deployment and management of BeeGFS HA clusters.

BeeGFS itself is versioned following a <major>.<minor>.<patch> versioning scheme and the collection
maintains roles for each supported <major>.<minor> version of BeeGFS, for example BeeGFS 7.2 or BeeGFS
7.3. As updates to the collection are released the patch version in each role will be updated to point at the
latest available BeeGFS version for that release branch (example: 7.2.8). Each version of the collection is also
tested and supported with specific Linux distributions and versions, currently Red Hat for file nodes, and Red
Hat and Ubuntu for clients. Running other distributions is not supported, and running other versions (especially
other major versions) is not recommended.

Ansible Control Node

This node will contain the inventory and playbooks used to manage BeeGFS. It requires:

* Ansible 6.x (ansible-core 2.13)
* Python 3.6 (or later)
* Python (pip) packages: ipaddr and netaddr

It is also recommend you setup passwordless SSH from the control node to all BeeGFS file nodes and clients.

BeeGFS File Nodes

File nodes must run Red Hat Enterprise Linux (RHEL) 9.4 and have access to the HA repository containing
required packages (pacemaker, corosync, fence-agents-all, resource-agents). For example the following
command can be executed to enable the appropriate repository on RHEL 9:

subscription-manager repo-override repo=rhel-9-for-x86 64-
highavailability-rpms --add=enabled:1

BeeGFS Client Nodes

A BeeGFS client Ansible role is available to install the BeeGFS client package and manage BeeGFS mount(s).
This role has been tested with RHEL 9.4 and Ubuntu 22.04.

If you are not using Ansible to setup the BeeGFS client and mount BeeGFS, any BeeGFS supported Linux
distribution and kernel can be used.

Initial Set Up

Install and Cable Hardware

Steps needed to install and cable hardware used to run BeeGFS on NetApp.

Plan the Installation

Each BeeGFS file system will consist of some number of file nodes running BeeGFS services using backend
storage provided by some number of block nodes. The file nodes are configured into one or more high
availability clusters to provide fault tolerance for BeeGFS services. Each block node is a already an

https://galaxy.ansible.com/netapp_eseries/beegfs
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels

active/active HA pair. The minimum number of supported file nodes in each HA cluster is three, and the
maximum number of supported file nodes in each cluster is ten. BeeGFS file systems can scale beyond ten
node by deploying multiple independent HA clusters that work together to provide a single file system
namespace.

Commonly each HA cluster is deployed as a series of "building blocks" where some number of file nodes (x86
servers) are directly connected to some number of block nodes (typically E-Series storage systems). This
configuration creates an asymmetrical cluster, where BeeGFS services are only able to run on certain file
nodes that have access to the backend block storage used for the BeeGFS targets. The balance of file-to-
block nodes in each building block and the storage protocol in use for the direct-connects depend on the
requirements of a particular installation.

An alternative HA cluster architecture uses a storage fabric (also known as a storage area network or SAN)
between the file and block nodes to establish a symmetrical cluster. This allows BeeGFS services to run on
any file node in a particular HA cluster. As generally symmetrical clusters are not as cost effective due to the
extra SAN hardware, this documentation presumes use of an asymmetrical cluster deployed as a series of one
or more building blocks.

@ Ensure the desired file system architecture for a particular BeeGFS deployment is well
understood before proceeding with the installation.

Rack Hardware

When planning the installation it is important all equipment in each building block is racked in adjacent rack
units. Best practice is for file nodes to be racked immediately above block nodes in each building block. Follow
the documentation for the model(s) of file and block nodes you are using as you install rails and hardware into
the rack.

Example of a single building block:

https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

<

IS o

Example of a large BeeGFS installation where there are multiple building blocks in each HA cluster, and
multiple HA clusters in the file system:

4]l° BeeGFS Parallel Filesystem

Standalone Standalone Standalone
HA Cluster HA Clustar HA Clustar

Cable File and Block Nodes

Typically you will direct-connect the HIC ports of the E-Series block nodes to the designated host channel
adapter (for InfiniBand protocols) or host bus adapter (for fibre channel and other protocols) ports of the file
nodes. The exact way to establish these connections will depend on the desired file system architecture, here
is an example based on the second-generation BeeGFS on NetApp verified architecture:

Hd

11111
1olol

Cable File Nodes to the Client Network

Each file node will have some number of InfiniBand or Ethernet ports designated for BeeGFS client traffic.
Depending on the architecture each file node will have one or more connections to a high performance
client/storage network, potentially to multiple switches for redundancy and increased bandwidth. Here is an
example of client cabling using redundant network switches, where ports highlighted in dark green versus light
green are connected to separate switches:

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-hardware-architecture.html

Connect Management Networking and Power

Establish any network connections needed for in-band and out-of-band network.

Connect all power supplies ensuring each file and block node has connections to multiple power distribution
units for redundancy (if available).

Set Up File and Block Nodes

Manual steps required to set up file and block nodes before running Ansible.

File Nodes

Configure the Baseboard Management Controller (BMC)

A baseboard management controller (BMC), sometimes referred to as a service processor, is the generic
name for the out-of-band management capability built into various server platforms that can provide remote
access even if the operating system is not installed or accessible. Vendors typically market this functionality
with their own branding. For example, on the Lenovo SR665, the BMC is referred to as the Lenovo XClarity
Controller (XCC).

Follow the server vendor’s documentation to enable any licenses needed to access this functionality and
ensure the BMC is connected to the network and configured appropriately for remote access.

If BMC based fencing using Redfish is desired, ensure Redfish is enabled and the BMC

@ interface is accessible from the OS installed on the file node. Special configuration may be
required on the network switch if the BMC and operating share the same physical network
interface.

Tune System Settings

Using the system setup (BIOS/UEFI) interface, ensure settings are set to maximize performance. The exact
settings and optimal values will vary based on the server model in use. Guidance is provided for verified file
node models, otherwise refer to the server vendor’s documentation and best practices based on your model.

Install an Operating System

Install a supported operating system based on the file node requirements listed here. Refer to any additional

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-file-node-tuning.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-file-node-tuning.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements

steps below based on your Linux distribution.

Red Hat

Use Red Hat Subscription Manager to register and subscribe the system to allow installation of the required
packages from the official Red Hat repositories and to limit updates to the supported version of Red Hat:
subscription-manager release --set=<MAJOR VERSION>.<MINOR VERSION>. For instructions,
see How to register and subscribe a RHEL system and How to limit updates.

Enable the Red Hat repository containing the packages required for high availability:

subscription-manager repo-override --repo=rhel-9-for-x86 64
-highavailability-rpms --add=enabled:1

Configure Management Network

Configure any network interfaces needed to allow in-band management of the operating system. The exact
steps will depend on the specific Linux distribution and version in use.

@ Ensure SSH is enabled and all management interfaces are accessible from the Ansible control
node.
Update HCA and HBA Firmware

Ensure all HBAs and HCAs are running supported firmware versions listed on the NetApp Interoperability
Matrix and upgrade if necessary. Additional recommendations for NVIDIA ConnectX adapters can be found
here.

Block Nodes

Follow the steps to get up and running with E-Series to configure the management port on each block node
controller and optionally set the storage array name for each system.

No additional configuration beyond ensuring all block nodes are accessible from the Ansible
@ control node is necessary. The remaining system configuration will be applied/maintained using
Ansible.

Set Up Ansible Control Node

Set up an Ansible control node to deploy and manage the file system.

Overview

An Ansible control node is a physical or virtual Linux machine used to manage the cluster. It must meet the
following requirements:

* Meet the requirements for the BeeGFS HA role including the installed versions of Ansible, Python, and any
additional Python packages.

» Meet the official Ansible control node requirements including operating system versions.

» Have SSH and HTTPS access to all file and block nodes.

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://imt.netapp.com/matrix/
https://imt.netapp.com/matrix/
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements

Detailed installation steps can be found here.

Define the BeeGFS file system

Ansible Inventory Overview

The Ansible inventory is a set of configuration files that define the desired BeeGFS HA

cluster.

Overview

It is recommended to follow standard Ansible practices for organizing your inventory, including the use of sub-

directories/files instead of storing the entire inventory in one file.

The Ansible inventory for a single BeeGFS HA cluster is organized as follows:

Ibeegfs_cluster_1/

Jhost_vars/

Jgroup_vars/

Jinventory.yml

playbook.yml

—

—

Contained on the
Ansible Control Node

Usually, the Ansible inventory is
version controlled in a Git
repository to ensure it is not lost
and changes can be reverted.

Since a single BeeGFS file system can span multiple HA clusters, it is possible for large
installations to have multiple Ansible inventories. Generally it is not recommend to try and define
multiple HA clusters as a single Ansible inventory to avoid issues.

Steps

1. On your Ansible control node create an empty directory that will contain the Ansible inventory for the

BeeGFS cluster you want to deploy.

a. If your file system will/may eventually contain multiple HA clusters, it is recommended to first create a
directory for the file system, then sub-directories for the inventory representing each HA cluster. For

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-setting-up-an-ansible-control-node.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

example:

beegfs file system 1/
beegfs cluster 1/
beegfs cluster 2/
beegfs cluster N/

2. In the directory containing the inventory for the HA cluster you want to deploy, create two directories
group vars and host vars and two files inventory.yml and playbook. yml.

The following sections walk through defining the contents of each of these files.

Plan the File System

Plan the file system deployment before building out the Ansible inventory.

Overview

Before deploying the file system, you should define what IP addresses, ports, and other configuration will be
required by all file nodes, block nodes, and BeeGFS services running in the cluster. While the exact
configuration will vary based on the architecture of the cluster, this section defines best practices and steps to
follow that are generally applicable.

Steps

1. If you are using an IP based storage protocol (such as iSER, iSCSI, NVMe/IB, or NVMe/RoCE) to connect
file nodes to block nodes, fill out the following worksheet for each building block. Each direct connect in a
single building block should have a unique subnet, and there should be no overlap with subnets used for
client-server connectivity.

File node IB port IP address Block node IB port Physical I[P Virtual IP (for
EF600 with
HDR IB only)
<HOSTNAME <PORT> <IP/SUBNET <HOSTNAME <PORT> <IP/SUBNET <IP/SUBNET
> > > > >
@ If the file and block nodes in each building block are directly connected you can often reuse
the same IPs/scheme for multiple building blocks.

2. Regardless if you are using InfiniBand or RDMA over Converged Ethernet (RoCE) for the storage network,
fill out the following worksheet to determine the IP ranges that will be used for HA cluster services,
BeeGFS file services, and clients to communicate:

Purpose InfiniBand port IP address or range
BeeGFS Cluster IP(s) <INTERFACE(s)> <RANGE>

BeeGFS Management <INTERFACE(s)> <IP(s)>

BeeGFS Metadata <INTERFACE(s)> <RANGE>

Purpose InfiniBand port IP address or range
BeeGFS Storage <INTERFACE(s)> <RANGE>
BeeGFS Clients <INTERFACE(s)> <RANGE>

a. If you are using a single IP subnet only one worksheet is needed, otherwise also fill out a worksheet for
the second subnet.

3. Based on the above, for each building block in the cluster, fill out the following worksheet defining what
BeeGFS services it will run. For each service specify the preferred/secondary file node(s), network port,
floating IP(s), NUMA zone assignment (if required), and what block node(s) will be used for its targets.
Refer to the following guidelines when filling out the worksheet:

a. Specify BeeGFS services as either mgmt . yml, meta <ID>.yml, Or storage <ID>.yml where ID
represents a unique number across all BeeGFS services of that type in this file system. This
convention will simplify referring back to this worksheet in subsequent sections while creating files to
configure each service.

b. Ports for BeeGFS services only need to be unique across a particular building block. Ensure services
with the same port number cannot ever run on the same file node to avoid port conflicts.

c. If necessary services can use volumes from more than one block node and/or storage pool (and not all
volumes need to be owned by the same controller). Multiple services can also share the same block
node and/or storage pool configuration (individual volumes will be defined in a later section).

BeeGFS File Nodes Port Floating NUMA Block Storage Owning
service IPs zone node pool controller
(file name)
<SERVICE <PREFER <PORT> <INTERFA <NUMA <BLOCK <STORAG <AORB>
TYPE>_<I RED FILE CE>:<IP/S NODE/ZO NODE> E
D>.yml NODE> UBNET> NE> POOL/VOL

<SECOND <INTERFA UME

ARY FILE CE>:<IP/S GROUP>

NODE(s)> UBNET>

For more details on standard conventions, best practices, and filled out example worksheets refer to the best
practices and define BeeGFS building blocks sections of the BeeGFS on NetApp Verified Architecture.

Define File and Block Nodes

Configure Individual File Nodes

Specify configuration for individual file nodes using host variables (host_vars).

Overview

This section walks through populating a host vars/<FILE NODE HOSTNAME>.yml file for each file node in
the cluster. These files should only contain configuration unique to a particular file node. This commonly
includes:

* Defining the IP or hostname Ansible should use to connect to the node.

» Configuring additional interfaces and cluster IPs used for HA cluster services (Pacemaker and Corosync)
to communicate to other file nodes. By default these services use the same network as the management

10

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-bestpractice.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-define-inventory.html

interface, but additional interfaces should be available for redundancy. Common practice is to define
additional IPs on the storage network, avoiding the need for an additional cluster or management network.

o The performance of any networks used for cluster communication is not critical for file system
performance. With the default cluster configuration generally at least a 1Gb/s network will provide
sufficient performance for cluster operations such as synchronizing node states and coordinating
cluster resource state changes. Slow/busy networks may cause resource state changes to take longer
than usual, and in extreme cases could result in nodes being evicted from the cluster if they cannot
send heartbeats in a reasonable time frame.

» Configuring interfaces used for connecting to block nodes over the desired protocol (for example:
iISCSI/ISER, NVMe/IB, NVMe/RoCE, FCP, etc.)

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each file node in the
cluster create a file host vars/<FILE NODE HOSTNAME>/yml and populate it as follows:

1. At the top specify the IP or hostname Ansible should use to SSH to the node and manage it:

ansible host: "<MANAGEMENT IP>"

2. Configure additional IPs that can be used for cluster traffic:

a. If the network type is InfiniBand (using IPolB):

eseries ipoib interfaces:

- name: <INTERFACE> # Example: ib0 or ilb
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

eseries roce interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

eseries ip interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

11

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip

3. Indicate what IPs should be used for cluster traffic, with preferred IPs listed higher:

beegfs ha cluster node ips:

- <MANAGEMENT IP> # Including the management IP is typically but not

required.
- <IP_ADDRESS> # Ex: 100.127.100.1
- <IP ADDRESS> # Additional IPs as needed.

IPs configured in step two will not be used as cluster IPs unless they are included in the

beegfs ha cluster node ips list. This allows you to configure additional IPs/interfaces
using Ansible that can be used for other purposes if desired.

4. If the file node needs to communicate to block nodes over an IP-based protocol, IPs will need to be
configured on the appropriate interface, and any packages required for that protocol installed/configured.

a. If using iISCSI:

eseries iscsi interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

b. If using ISER:

eseries ib iser interfaces:
- name: <INTERFACE> # Example: 1ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16

configure: true # If the file node is directly connected to the
block node set to true to setup OpenSM.

c. If using NVMe/IB:

eseries nvme ib interfaces:
- name: <INTERFACE> # Example: ibO0.
address: <IP/SUBNET> # Example: 100.127.100.1/16

configure: true # If the file node is directly connected to the
block node set to true to setup OpenSM.

d. If using NVMe/RoCE:

eseries nvme roce interfaces:
- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

12

https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md

e. Other Protocols:

i. If using NVMe/FC, configuring individual interfaces is not required. The BeeGFS cluster
deployment will automatically detect the protocol and install/configure requirements as needed. If
you are using a fabric to connect file and block nodes, ensure switches are properly zoned
following NetApp and your switch vendor’s best practices.

i. Use of FCP or SAS do not require installing or configuring additional software. If using FCP, ensure
switches are properly zoned following NetApp and your switch vendor’s best practices.

ii. Use of IB SRP is not recommended at this time. Use NVMe/IB or iSER depending on what your E-
Series block nodes support.

Click here for an example of a complete inventory file representing a single file node.

Advanced: Toggling NVIDIA ConnectX VPI Adapters between Ethernet and InfiniBand Mode

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) adapters support both InfiniBand and Ethernet as
the transport layer. Switching between modes is not automatically negotiated, and must be configured using
the <code>mstconfig</code> tool included in <code>mstflint</code>, an open source package that is part of
the <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">NVIDIA Firmare Tools (MFT). Changing the mode of the adapters only need to be done
once. This can be done manually, or included in the Ansible inventory as part of any interfaces configured
using the <code>eseries-[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce] interfaces:</code> section of the
inventory, to have it checked/applied automatically.

For example to change an interface current in InfiniBand mode to Ethernet so it can be used for RoCE:

1. For each interface you want to configure specify mstconfig as a mapping (or dictionary) that specifies
LINK TYPE P<N> where <N> is determined by the HCA's port number for the interface. The <N> value
can be determined by running grep PCI_SLOT NAME

/sys/class/net/<INTERFACE NAME>/device/uevent and adding 1 to the last number from the PCI
slot name and converting to decimal.

a. For example given PCI SLOT NAME=0000:2£:00.2(2+1 — HCAport 3) - LINK_TYPE P3:
eth:

eseries roce interfaces:
- name: <INTERFACE>
address: <IP/SUBNET>
mstconfig:
LINK TYPE P3: eth

For additional details refer to the NetApp E-Series Host collection’s documentation for the interface
type/protocol you are using.

Configure Individual Block Nodes

Specify configuration for individual block nodes using host variables (host_vars).

13

https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml
https://github.com/netappeseries/host

Overview

This section walks through populating a host vars/<BLOCK NODE HOSTNAME>.yml file for each block
node in the cluster. These files should only contain configuration unique to a particular block node. This
commonly includes:

* The system name (as displayed in System Manager).
* The HTTPS URL for one of the controllers (used to manage the system using its REST API).
» What storage protocol file nodes use to connect to this block node.

« Configuring host interface card (HIC) ports, such as IP addresses (if needed).

Steps

Referencing the IP addressing scheme defined in the Plan the File System section, for each block node in the
cluster create a file host vars/<BLOCK_NODE HOSTNAME>/yml and populate it as follows:

1. At the top specify the system name and the HTTPS URL for one of the controllers:

eseries system name: <SYSTEM NAME>
eseries system api url:
https://<MANAGEMENT HOSTNAME OR IP>:8443/devmgr/v2/

2. Select the protocol file nodes will use to connect to this block node:

a. Supported Protocols: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme ib, nvme fc, nvme roce.
eseries initiator protocol: <PROTOCOL>

3. Depending on the protocol in use, the HIC ports may require additional configuration. When needed, HIC
port configuration should be defined so the top entry in the configuration for each controller corresponds
with with the physical left-most port on each controller, and the bottom port the right-most port. All ports
require valid configuration even if they are not currently in use.

@ Also see the section below if you are using HDR (200Gb) InfiniBand or 200Gb RoCE with
EF600 block nodes.

a. ForiSCSI:

14

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

eseries controller iscsi port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.
Choices: enabled, disabled
config method: # Port configuration method Choices: static,
dhcp
address: # Port IPv4 address
gateway: # Port IPv4 gateway
subnet mask: # Port IPv4 subnet mask
mtu: # Port IPv4 mtu
= (co00) # Additional ports as needed.
controller Db: # Ordered list of controller B channel

definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller iscsi port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller iscsi port config method: dhcp # General port
configuration method definition for both controllers. Choices:
static, dhcp

eseries controller iscsi port gateway: # General port
IPv4 gateway for both controllers.

eseries controller iscsi port subnet mask: # General port
IPv4 subnet mask for both controllers.

eseries controller iscsi port mtu: 9000 # General port
maximum transfer units (MTU) for both controllers. Any value greater
than 1500 (bytes).

b. ForiSER:

eseries controller ib iser port:
controller a: # Ordered list of controller A channel address
definition.
= # Port IPv4 address for channel 1
- (...) # So on and so forth
controller Db: # Ordered list of controller B channel address
definition.

c. For NVMe/IB:

eseries controller nvme ib port:
controller a: # Ordered list of controller A channel address
definition.
- # Port IPv4 address for channel 1
= (coo) # So on and so forth
controller b: # Ordered list of controller B channel address

definition.

d. For NVMe/RoCE:

eseries controller nvme roce port:

controller a: # Ordered list of controller A channel
definition.
- state: # Whether the port should be enabled.

=

config method: Port configuration method Choices: static,

dhcp

address: # Port IPv4 address
subnet mask: # Port IPv4 subnet mask
gateway: # Port IPv4 gateway
mtu: # Port IPv4 mtu
speed: # Port IPv4 speed

#

controller Db: Ordered list of controller B channel
definition.

- (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be
defined for all ports and omitted above:

eseries controller nvme roce port state: enabled # Generally
specifies whether a controller port definition should be applied
Choices: enabled, disabled

eseries controller nvme roce port config method: dhcp # General
port configuration method definition for both controllers. Choices:
static, dhcp

eseries controller nvme roce port gateway: # General
port IPv4 gateway for both controllers.

eseries controller nvme roce port subnet mask: # General
port IPv4 subnet mask for both controllers.

eseries controller nvme roce port mtu: 4200 # General
port maximum transfer units (MTU). Any value greater than 1500
(bytes) .

eseries controller nvme roce port speed: auto # General
interface speed. Value must be a supported speed or auto for
automatically negotiating the speed with the port.

e. FC and SAS protocols do not require additional configuration. SRP is not correctly recommended.

For additional options to configure HIC ports and host protocols including the ability to configure iISCSI CHAP
refer to the documentation included with the SANtricity collection. Note when deploying BeeGFS the storage
pool, volume configuration, and other aspects of provisioning storage will be configured elsewhere, and should
not be defined in this file.

Click here for an example of a complete inventory file representing a single block node.

Using HDR (200Gb) InfiniBand or 200Gb RoCE with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600, a second "virtual" IP must be configured for each physical
port. Below is an example of the correct way to configure an EF600 equipped with the dual port InfiniBand
HDR HIC:

eseries controller nvme ib port:

controller a:

- 192.168.1.101 # Port 2a (virtual)
- 192.168.2.101 # Port 2b (virtual)
- 192.168.1.100 # Port 2a (physical)
- 192.168.2.100 # Port 2b (physical)
controller b:
- 192.168.3.101 # Port 2a (virtual)
- 192.168.4.101 # Port 2b (virtual)
- 192.168.3.100 # Port 2a (physical)
- 192.168.4.100 # Port 2b (physical)

Specify Common File Node Configuration

Specify common file node configuration using group variables (group_vars).

Overview

Configuration that should apple to all file nodes is defined at group vars/ha_cluster.yml. It commonly
includes:

* Details on how to connect and login to each file node.

« Common networking configuration.

» Whether automatic reboots are allowed.

* How firewall and selinux states should be configured.

« Cluster configuration including alerting and fencing.

» Performance tuning.

+ Common BeeGFS service configuration.

The options set in this file can also be defined on individual file nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual file nodes will take precedence over the configuration in this file.

17

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

Steps

Create the file group _vars/ha cluster.yml and populate it as follows:

1. Indicate how the Ansible Control node should authenticate with the remote hosts:

ansible ssh user: root
ansible become password: <PASSWORD>

Particularly for production environments, do not store passwords in plain text. Instead, use
Ansible Vault (see Encrypting content with Ansible Vault) or the -—ask-become-pass

@ option when running the playbook. If the ansible ssh user is already root, then you can
optionally omit the ansible become password

2. If you are configuring static IPs on ethernet or InfiniBand interfaces (for example cluster IPs) and multiple
interfaces are in the same IP subnet (for example if ib0 is using 192.168.1.10/24 and ib1 is using
192.168.1.11/24), additional IP routing tables and rules must be setup for multi-homed support to work
properly. Simply enable the provided network interface configuration hook as follows:

eseries ip default hook templates:
- 99-multihoming.j2

3. When deploying the cluster, depending on the storage protocol it may be necessary for nodes to be
rebooted to facilitate discovering remote block devices (E-Series volumes) or apply other aspects of the
configuration. By default nodes will prompt before rebooting, but you can allow nodes to restart
automatically by specifying the following:

eseries common allow host reboot: true

a. By default after a reboot, to ensure block devices and other services are ready Ansible will wait until the
systemd default.target is reached before continuing with the deployment. In some scenarios
when NVMe/IB is in use, this may not be long enough to initialize, discover, and connect to remote
devices. This can result in the automated deployment continuing prematurely and failing. To avoid this
when using NVMe/IB also define the following:

eseries common reboot test command: "! systemctl status
eseries nvme ib.service || systemctl --state=exited | grep

eseries nvme ib.service"

4. A number of firewall ports are required for BeeGFS and HA cluster services to communicate. Unless you
wish to configure the firwewall manually (not recommended), specify the following to have required firewall
zones created and ports opened automatically:

beegfs ha firewall configure: True

18

https://docs.ansible.com/ansible/latest/vault_guide/index.html

5. At this time SELinux is not supported, and it is is recommended the state be set to disabled to avoid

conflicts (especially when RDMA is in use). Set the following to ensure SELinux is disabled:

eseries beegfs ha disable selinux: True

eseries selinux state: disabled

6. Configure authentication so file nodes are able to communicate, adjusting the defaults as needed based on

your organizations policies:

beegfs ha cluster name: hacluster

name.

beegfs ha cluster username: hacluster
username.

beegfs ha cluster password: hapassword
username's password.

beegfs ha cluster password shab5l2 salt:
username's password salt.

randomSalt #

BeeGF'S

BeeGF'S

BeeGFS

BeeGFS

HA

HA

HA

HA

cluster

cluster

cluster

cluster

7. Based on the Plan the File System section specify the BeeGFS management IP for this file system:

beegfs ha mgmtd floating ip: <IP ADDRESS>

While seemingly redundant, beegfs ha mgmtd floating ip is important when you
@ scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are

deployed without an additional BeeGFS management service and point at the management

service provided by the first cluster.

8. Enable email alerts if desired:

19

beegfs ha enable alerts: True

E-mail recipient list for notifications when BeeGFS HA resources
change or fail.

beegfs ha alert email list: ["<EMAIL>"]

This dictionary is used to configure postfix service
(/etc/postfix/main.cf) which is required to set email alerts.
beegfs ha alert conf ha group options:

This parameter specifies the local internet domain name. This is
optional when the cluster nodes have fully qualified hostnames (i.e.
host.example.com)

mydomain: <MY DOMAIN>
beegfs ha alert verbosity: 3
1) high-level node activity
3) high-level node activity + fencing action information + resources
(filter on X-monitor)
#

5) high-level node activity + fencing action information + resources

9. Enabling fencing is strongly recommended, otherwise services can be blocked from starting on secondary
nodes when the primary node fails.

a. Enable fencing globally by specifying the following:

beegfs ha cluster crm config options:
stonith-enabled: True

i. Note any supported cluster property can also be specified here if needed. Adjusting these is not
typically needed, as the BeeGFS HA role ships with a number of well tested defaults.

b. Next select and configure a fencing agent:
i. OPTION 1: To enable fencing using APC Power Distribution Units (PDUs):

beegfs ha fencing agents:
fence apc:
- ipaddr: <PDU_IP ADDRESS>
login: <PDU USERNAME>
passwd: <PDU PASSWORD>
pcmk host map:
"<HOSTNAME>:<PDU PORT>,<PDU PORT>;<HOSTNAME>:<PDU PORT>,<PDU PORT>

"

i. OPTION 2: To enable fencing using the Redfish APIs provided by the Lenovo XCC (and other
BMCs):

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54

redfish: &redfish

username: <BMC USERNAME>

password: <BMC PASSWORD>

ssl insecure: 1 # If a valid SSL certificate is not available
specify “1”.

beegfs ha fencing agents:
fence redfish:

- pcmk host list: <HOSTNAME>
ip: <BMC IP>
<<: *redfish

- pcmk host list: <HOSTNAME>
ip: <BMC IP>
<<: *redfish

i. For details on configuring other fencing agents refer to the Red Hat Documentation.

10. The BeeGFS HA role can apply many different tuning parameters to help further optimize performance.
These include optimizing kernel memory utilization and block device I/O, among other parameters. The role
ships with a reasonable set of defaults based on testing with NetApp E-Series block nodes, but by default
these aren’t applied unless you specify:

beegfs ha enable performance tuning: True

a. If needed also specify any changes to the default performance tuning here. See the full performance
tuning parameters documentation for additional details.

11. To ensure floating IP addresses (sometimes known as logical interfaces) used for BeeGFS services can fail
over between file nodes, all network interfaces must be named consistently. By default network interface
names are generated by the kernel, which is not guaranteed to generate consistent names, even across
identical server models with network adapters installed in the same PCle slots. This is also useful when
creating inventories before the equipment is deployed and generated interface names are known. To
ensure consistent device names, based on a block diagram of the server or 1shw -class network
-businfo output, specify the desired PCle address-to-logical interface mapping as follows:

a. For InfiniBand (IPolB) network interfaces:

eseries ipoib udev rules:
"<PCIe ADDRESS>"|: <NAME> # Ex: 0000:01:00.0: ila

b. For Ethernet network interfaces:

eseries ip udev rules:
"<PCIe ADDRESS>"]: <NAME> # Ex: 0000:01:00.0: ela

21

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md

To avoid conflicts when interfaces are renamed (preventing them from being renamed),
you should not use any potential default names such as eth0, ens9f0, ib0, or ibs4f0. A

@ common naming convention is to use 'e' or 'i' for Ethernet or InfiniBand, followed by the
PCle slot number, and a letter to indicate the the port. For example the second port of an
InfiniBand adapter installed in slot 3 would be: i3b.

@ If you are using a verified file node model, click here example PCle address-to-logical
port mappings.

12. Optionally specify configuration that should apply to all BeeGFS services in the cluster. Default
configuration values can be found here, and per-service configuration is specified elsewhere:

a. BeeGFS Management service:

beegfs ha beegfs mgmtd conf ha group options:
<OPTION>: <VALUE>

b. BeeGFS Metadata services:

beegfs ha beegfs meta conf ha group options:
<OPTION>: <VALUE>

c. BeeGFS Storage services:

beegfs ha beegfs storage conf ha group options:
<OPTION>: <VALUE>

13. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled. There
are a few ways this can be configured using the Ansible based deployment:

a. By default the deployment will automatically configure connection authentication, and generate a
connauthfile that will be distributed to all file nodes and used with the BeeGFS services. This file
will also be placed/maintained on the Ansible control node at
<INVENTORY>/files/beegfs/<sysMgmtdHost> connAuthFile where it should be maintained
(securely) for reuse with clients that need to access this file system.

i. To generate a new key specify -e "beegfs ha conn_auth force new=True when running
the Ansible playbook. Note this is ignored if a beegfs ha conn auth secret is defined.

i. For advanced options refer to the full list of defaults included with the BeeGFS HA role.

b. A custom secret can be used by defining the following in ha cluster.yml:
beegfs ha conn auth secret: <SECRET>

c. Connection authentication can be disabled entirely (NOT recommended):

22

https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21

beegfs ha conn auth enabled: false

Click here for an example of a complete inventory file representing common file node configuration.

Using HDR (200Gb) InfiniBand with NetApp EF600 block nodes:

To use HDR (200Gb) InfiniBand with the EF600 the subnet manager must support virtualization. If file and
block nodes are connected using a switch, this will need to be enabled on the subnet manager manager for the
overall fabric.

If block and file nodes are directly connected using InfiniBand, an instance of opensm must be configured on
each file node for each interface directly connected to a block node. This is done by specifying configure:
true when configuring file node storage interfaces.

Currently the inbox version of opensm shipped with supported Linux distributions does not support
virtualization. Instead it is required you install and configure version of opensm from the NVIDIA OpenFabrics
Enterprise Distribution (OFED). Although deployment using Ansible is still supported, a few additional steps are
required:

1. Using curl or your desired tool, download the packages for the version of OpenSM listed in the technology
requirements section from NVIDIA's website to the <INVENTORY>/packages/ directory. For example:

curl -o packages/opensm-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-5.17.2.MLNX20240610.dc7¢c2998~-
0.1.2310322.x86_64.rpm

curl -o packages/opensm-1ibs-5.17.2.MLNX20240610.dc7c2998-
0.1.2310322.x86_ 64.rpm
https://linux.mellanox.com/public/repo/mlnx ofed/23.10-
3.2.2.0/rhel9.4/x86 64/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998~-
0.1.2310322.x86 64.rpm

2. Under group vars/ha cluster.yml define the following configuration:

23

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-technology-requirements.html

OpenSM package and configuration information
eseries ib opensm allow upgrades: true
eseries ib opensm skip package validation: true
eseries ib opensm rhel packages: []
eseries ib opensm custom packages:
install:
- files:
add:
"packages/opensm-5.17.2.MLNX20240610.dc7c2998~-
0.1.2310322.x86_64.rpm": "/tmp/"
"packages/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86 64.rpm": "/tmp/"
- packages:
add:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm
- /tmp/opensm-1ibs-5.17.2.MLNX20240610.dc7¢c2998-
0.1.2310322.x86_64.rpm
uninstall:
- packages:
remove:
- opensm
- opensm-libs
files:
remove:
- /tmp/opensm-5.17.2.MLNX20240610.dc7¢c2998~-
0.1.2310322.x86 64.rpm
- /tmp/opensm-1libs-5.17.2.MLNX20240610.dc7c2998-
0.1.2310322.x86 64.rpm

eseries ib opensm options:

virt enabled: "2"

Specify Common Block Node Configuration

Specify common block node configuration using group variables (group_vars).

Overview

Configuration that should apple to all block nodes is defined at
group vars/eseries storage systems.yml. |t commonly includes:

+ Details on how the Ansible control node should connect to E-Series storage systems used as block nodes.
* What firmware, NVSRAM, and Drive Firmware versions the nodes should run.

* Global configuration including cache settings, host configuration, and settings for how volumes should be

24

provisioned.

The options set in this file can also be defined on individual block nodes, for example if mixed
hardware models are in use, or you have different passwords for each node. Configuration on
individual block nodes will take precedence over the configuration in this file.

Steps
Create the file group _vars/eseries storage systems.yml and populate it as follows:

1. Ansible does not use SSH to connect to block nodes, and instead uses REST APls. To achieve this we
must set:

ansible connection: local

2. Specify the username and password to manage each node. The username can be optionally omitted (and
will default to admin), otherwise you can specify any account with admin privileges. Also specify if SSL
certificates should be verified, or ignored:

eseries system username: admin
eseries system password: <PASSWORD>

eseries validate certs: false

@ Listing any passwords in plaintext is not recommended. Use Ansible vault or provide the
eseries system password when running Ansible using --extra-vars.

3. Optionally specify what controller firmware, NVSRAM, and drive firmware should be installed on the nodes.
These will need to be downloaded to the packages/ directory before running Ansible. E-Series controller
firmware and NVSRAM can be downloaded here and drive firmware here:

eseries firmware firmware: "packages/<FILENAME>.dlp" # Ex.
"packages/RCB 11.80GA 6000 64cclOee3.dlp"
eseries firmware nvsram: "packages/<FILENAME>.dlp" # Ex.
"packages/N6000-880834-D08.d1lp"
eseries drive firmware firmware list:

- "packages/<FILENAME>.dlp"

Additional firmware versions as needed.
eseries drive firmware upgrade drives online: true # Recommended unless
BeeGFS hasn't been deployed yet, as it will disrupt host access if set
to "false".

If this configuration is specified, Ansible will automatically update all firmware including
@ rebooting controllers (if necessary) with with no additional prompts. This is expected to be
non-disruptive to BeeGFS/host I/O, but may cause a temporary decrease in performance.

25

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

4. Adjust global system configuration defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries system cache block size: 32768

eseries system cache flush threshold: 80

eseries system default host type: linux dm-mp

eseries system autoload balance: disabled

eseries system host connectivity reporting: disabled

eseries system controller shelf id: 99 # Required by default.

5. Configure global volume provisioning defaults. The options and values listed here are commonly
recommended for BeeGFS on NetApp, but can be adjusted if needed:

eseries volume size unit: pct # Required by default. This allows volume
capacities to be specified as a percentage, simplifying putting together
the inventory.

eseries volume read cache enable: true

eseries volume read ahead enable: false

eseries volume write cache enable: true

eseries volume write cache mirror enable: true

eseries volume cache without batteries: false

6. If needed, adjust the order in which Ansible will select drives for storage pools and volume groups keeping
in mind the following best practices:

a. List any (potentially smaller) drives that should be used for management and/or metadata volumes first,
and storage volumes last.

b. Ensure to balance the drive selection order across available drive channels based on the disk
shelf/drive enclosure model(s). For example with the EF600 and no expansions, drives 0-11 are on
drive channel 1, and drives 12-23 are on drive channel. Thus a strategy to balance drive selection is to
select disk shelf:drive 99:0, 99:23, 99:1, 99:22, etc. In the event there is more than one
enclosure, the first digit represents the drive shelf ID.

Optimal/recommended order for the EF600 (no expansion) :

eseries storage pool usable drives:
"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18, 99
:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Click here for an example of a complete inventory file representing common block node configuration.

Define BeeGFS services

Define the BeeGFS management service

BeeGFS services are configured using group variables (group_vars).

26

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

Overview

This section walks through defining the BeeGFS management service. Only one service of this type should
exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

* The service type (management).

 Defining any configuration that should only apply to this BeeGFS service.

« Configuring one or more floating IPs (logical interfaces) where this service can be reached.

 Specifying where/how a volume should be to store data for this service (the BeeGFS management target).

Steps

Create a new file group_vars/mgmt.yml and referencing the Plan the File System section populate it as
follows:

1. Indicate this file represents the configuration for a BeeGFS management service:

beegfs service: management

2. Define any configuration that should apply only to this BeeGFS service. This is not typically required for the
management service unless you need to enable quotas, however any supported configuration parameter
from beegfs-mgmtd.conf can be included. Note the following parameters are configured
automatically/elsewhere and should not be specified here: storeMgmtdDirectory, connAuthFile,
connDisableAuthentication, connInterfacesFile, and connNetFilterFile

beegfs ha beegfs mgmtd conf resource group options:
<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will
automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
11b:100.127.101.0/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this
will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS management target where this service will store data according to the following
guidelines:

27

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common * configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration. Note some options such as state, host, host type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

beegfs targets:
<BLOCK_NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs ml m2 m5 mé6
raid level: <LEVEL> # One of: raidl, raid5, raid6, raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS management service.

Define the BeeGFS metadata service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS metadata service. At least one service of this type should
exist in the HA cluster(s) for a particular file system. Configuring this service includes defining:

» The service type (metadata).
 Defining any configuration that should only apply to this BeeGFS service.
« Configuring one or more floating IPs (logical interfaces) where this service can be reached.

« Specifying where/how a volume should be to store data for this service (the BeeGFS metadata target).

Steps

Referencing the Plan the File System section, create a file at group vars/meta_<ID>.yml for each
metadata service in the cluster, and populate them as follows:

1. Indicate this file represents the configuration for a BeeGFS metadata service:

28

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

beegfs service: metadata

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the
desired TCP and UDP port, however any supported configuration parameter from beegfs-meta.conf
can also be included. Note the following parameters are configured automatically/elsewhere and should
not be specified here: sysMgmtdHost, storeMetaDirectory, connAuthFile,
connDisableAuthentication, connInterfacesFile, and connNetFilterFile

beegfs ha beegfs meta conf resource group options:

connMetaPortTCP: <TCP PORT>

connMetaPortUDP: <UDP PORT>

tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with
multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will
automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
1i1b:100.127.101.1/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this
will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS metadata target where this service will store data according to the following guidelines
(this will also automatically configure the storeMetaDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common_ * configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration. Note some options such as state, host, host type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

29

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs targets:
<BLOCK NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs ml m2 m5 m6
raid level: <LEVEL> # One of: raidl, raid5, raid6, raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS metadata service.

Define the BeeGFS storage service

BeeGFS services are configured using group variables (group_vars).

Overview

This section walks through defining the BeeGFS storage service. At least one service of this type should exist
in the HA cluster(s) for a particular file system. Configuring this service includes defining:

* The service type (storage).

 Defining any configuration that should only apply to this BeeGFS service.

» Configuring one or more floating IPs (logical interfaces) where this service can be reached.

» Specifying where/how volume(s) should be to store data for this service (the BeeGFS storage targets).

Steps

Referencing the Plan the File System section, create a file at group vars/stor <ID>.yml for each storage
service in the cluster, and populate them as follows:

1. Indicate this file represents the configuration for a BeeGFS storage service:
beegfs service: storage

2. Define any configuration that should apply only to this BeeGFS service. At minimum you must specify the
desired TCP and UDP port, however any supported configuration parameter from beegfs-
storage.conf can also be included. Note the following parameters are configured
automatically/elsewhere and should not be specified here: sysMgmtdHost, storeStorageDirectory,
connAuthFile, connDisableAuthentication, connInterfacesFile, and connNetFilterFile.

30

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <TCP PORT>
connStoragePortUDP: <UDP PORT>
tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with
multiple CPU sockets.

3. Configure one or more floating IPs that other services and clients will use to connect to this service (this will
automatically set the BeeGFS connInterfacesFile option):

floating ips:

- <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.
i1lb:100.127.101.1/16

- <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Optionally, specify one or more allowed IP subnets which may be used for outgoing communication (this
will automatically set the BeeGFS connNetFilterFile option):

filter ip ranges:
- <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specify the BeeGFS storage target(s) where this service will store data according to the following
guidelines (this will also automatically configure the storeStorageDirectory option):

a. The same storage pool or volume group name can be used for multiple BeeGFS services/targets,
simply ensure to use the same name, raid level, criteria *, and common_* configuration for
each (the volumes listed for each service should be different).

b. Volume sizes should be specified as a percentage of the storage pool/volume group and the total
should not exceed 100 across all services/volumes using a particular storage pool/volume group. Note
when using SSDs it is recommended to leave some free space in the volume group to maximize SSD
performance and wear life (click here for more details).

c. Click here for a full list of configuration options available for the
eseries storage pool configuration.Note some options such as state, host, host type
workload name, and workload metadata and volume names are generated automatically and
should not be specified here.

31

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs targets:
<BLOCK NODE>: # The name of the block node as found in the Ansible
inventory. Ex: netapp 01
eseries storage pool configuration:
- name: <NAME> # Ex: beegfs sl s2
raid level: <LEVEL> # One of: raidl, raidb5, raidé,
raidDiskPool
criteria drive count: <DRIVE COUNT> # Ex. 4
common volume configuration:
segment size kb: <SEGMENT SIZE> # Ex. 128
volumes:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B
Multiple storage targets are supported / typical:
- size: <PERCENT> # Percent of the pool or volume group to
allocate to this volume. Ex. 1
owning controller: <CONTROLLER> # One of: A, B

Click here for an example of a complete inventory file representing a BeeGFS storage service.

Map BeeGFS services to file nodes
Specify what file nodes can run each BeeGFS service using the inventory. yml file.

Overview

This section walks through how to create the inventory. yml file. This includes listing all block nodes and
specifying what file nodes can run each BeeGFS service.

Steps
Create the file inventory.yml and populate it as follows:

1. From the top of the file, create the standard Ansible inventory structure:

BeeGFS HA (High Availability) cluster inventory.
all:
children:

2. Create a group containing all block nodes participating in this HA cluster:

32

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

Ansible group representing all block nodes:
eseries storage systems:
hosts:
<BLOCK NODE HOSTNAME>:
<BLOCK NODE HOSTNAME>:
Additional block nodes as needed.

3. Create a group that will contain all BeeGFS services in the cluster, and the file nodes that will run them:

Ansible group representing all file nodes:
ha cluster:
children:

4. For each BeeGFS service in the cluster, define the preferred and any secondary file node(s) that should
run that service:

<SERVICE>: # Ex. "mgmt", "meta 01", or "stor 01".
hosts:
<FILE NODE HOSTNAME>:
<FILE NODE HOSTNAME>:

Additional file nodes as needed.

Click here for an example of a complete inventory file.

Deploy the BeeGFS file system

Ansible Playbook Overview

Deploying and managing BeeGFS HA clusters using Ansible.

Overview

The previous sections walked through the steps needed to build an Ansible inventory representing a BeeGFS
HA cluster. This section introduces the Ansible automation developed by NetApp to deploy and manage the
cluster.

Ansible: Key Concepts

Before proceeding, it is helpful to be familiar with a few key Ansible concepts:

» Tasks to execute against an Ansible inventory are defined in what is known as a playbook.

> Most tasks in Ansible are designed to be idempotent, meaning they can be run multiple times to verify
the desired configuration/state is still applied without breaking things or making unnecessary updates.

* The smallest unit of execution in Ansible is a module.

33

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

o Typical playbooks use multiple modules.
= Examples: Download a package, update a config file, start/enable a service.
o NetApp distributes modules to automate NetApp E-Series systems.
» Complex automation is better packaged as a role.
o Essentially a standard format to distribute a reusable playbook.

> NetApp distributes roles for Linux hosts and BeeGFS file systems.

BeeGFS HA role for Ansible: Key Concepts

All the automation needed to deploy and manage each version of BeeGFS on NetApp is packaged as an
Ansible role and distributed as part of the NetApp E-Series Ansible Collection for BeeGFS:

 This role can be thought of as somewhere between an installer and modern deployment/management
engine for BeeGFS.

> Applies modern infrastructure as code practices and philosophies to simplify managing storage
infrastructure at any scale.

o Similar to how the Kubespray project allows users to deploy/maintain an entire Kubernetes distribution
for scale out compute infrastructure.

* This role is the software-defined format NetApp uses to package, distribute, and maintain BeeGFS on
NetApp solutions.

o Strive to create an “appliance-like” experience without needing to distribute an entire Linux distribution
or large image.

° Includes NetApp authored Open Cluster Framework (OCF) compliant cluster resource agents for
custom BeeGFS targets, IP addresses, and monitoring that provide intelligent Pacemaker/BeeGFS
integration.

* This role is not simply deployment "automation" and is intended to manage the entire file system lifecycle
including:

> Applying per-service or cluster-wide configuration changes and updates.
o Automating cluster healing and recovery after hardware issues are resolved.

o Simplifying performance tuning with default values set based on extensive testing with BeeGFS and
NetApp volumes.

o Verifying and correcting configuration drift.

NetApp also provides an Ansible role for BeeGFS clients, that can optionally be used to install BeeGFS and
mount file systems to compute/GPU/login nodes.

Deploy the BeeGFS HA cluster
Specify what tasks should run to deploy the BeeGFS HA cluster using a playbook.

Overview

This section covers how to assemble the standard playbook used to deploy/manage BeeGFS on NetApp.

Steps

34

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/kubernetes-sigs/kubespray
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

Create the Ansible Playbook

Create the file playbook. yml and populate it as follows:

1. First define a set of tasks (commonly referred to as a play) that should only run on NetApp E-Series block
nodes. We use a pause task to prompt before running the installation (to avoid accidental playbook runs),
then import the nar santricity management role. This role handles applying any general system
configuration defined in group vars/eseries storage systems.yml or individua
host vars/<BLOCK NODE>.yml files.

- hosts: eseries storage systems
gather facts: false
collections:
- netapp eseries.santricity
tasks:
- name: Verify before proceeding.
pause:
prompt: "Are you ready to proceed with running the BeeGFS HA
role? Depending on the size of the deployment and network performance
between the Ansible control node and BeeGFS file and block nodes this
can take awhile (10+ minutes) to complete."
- name: Configure NetApp E-Series block nodes.
import role:

name: nar santricity management

2. Define the play that will run against all file and block nodes:

- hosts: all
any errors fatal: true
gather facts: false
collections:

- netapp eseries.beegfs

3. Within this play we can optionally define a set of "pre-tasks" that should run before deploying the HA
cluster. This can be useful to verify/install any prerequisites like Python. We can also inject any pre-flight
checks, for example verifying the provided Ansible tags are supported:

pre tasks:
- name: Ensure a supported version of Python is available on all
file nodes.
block:
- name: Check if python is installed.
failed when: false
changed when: false
raw: python --version

register: python version

35

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

- name: Check if python3 is installed.
raw: python3 --version
failed when: false
changed when: false
register: python3 version
when: 'python version["rc"] != 0 or (python version["stdout"]
| regex replace("Python ", "")) is not version("3.0", ">=")"

- name: Install python3 if needed.
raw: |
id=$ (grep "~ID=" /etc/*release* | cut -d= -f 2 | tr -d '"")
case $id in
ubuntu) sudo apt install python3 ;;
rhel |centos) sudo yum -y install python3 ;;
sles) sudo zypper install python3 ;;
esac
args:
executable: /bin/bash
register: python3 install
when: python version['rc'] != 0 and python3 version['rc'] !=
become: true

- name: Create a symbolic link to python from python3.
raw: 1ln -s /usr/bin/python3 /usr/bin/python
become: true
when: python version['rc'] != 0
when: inventory hostname not in
groups [beegfs ha ansible storage group]

- name: Verify any provided tags are supported.
fail:
msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

when: 'item not in ["all", "storage", "beegfs ha",
"beegfs ha package", "beegfs ha configure",
"beegfs ha configure resource", "beegfs ha performance tuning",
"beegfs ha backup", "beegfs ha client"]'

loop: "{{ ansible run tags }}"

4. Lastly, this play imports the BeeGFS HA role for the version of BeeGFS you want to deploy:

36

0

tasks:
- name: Verify the BeeGFS HA cluster is properly deployed.
import role:

name: beegfs ha 7 4 # Alternatively specify: beegfs ha 7 3.

A BeeGFS HA role is maintained for each supported major.minor version of BeeGFS. This
allows users to choose when they want to upgrade major/minor versions. Currently either

@ BeeGFS 7.3.x (beegfs_7 3)or BeeGFS 7.2.x (beegfs_ 7 2)are supported. By default
both roles will deploy the latest BeeGFS patch version at the time of release, though users
can opt to override this and deploy the latest patch if desired. Refer to the latest upgrade
guide for more details.

5. Optional: If you wish to define additional tasks, keep in mind if the tasks should be directed to a11 hosts
(including the E-Series storage systems) or only the file nodes. If needed define a new play specifically
targeting file nodes using - hosts: ha cluster.

Click here for an example of a complete playbook file.

Install the NetApp Ansible Collections

The BeeGFS collection for Ansible and all dependencies are maintained on Ansible Galaxy. On your Ansible
control node run the following command to install the latest version:

ansible-galaxy collection install netapp eseries.beegfs
Though not typically recommended, it is also possible to install a specific version of the collection:

ansible-galaxy collection install netapp eseries.beegfs:
==<MAJOR>.<MINOR>.<PATCH>

Run the Playbook

From the directory on your Ansible control node containing the inventory.yml and playbook.yml files,
run the playbook as follows:

ansible-playbook -i inventory.yml playbook.yml

Based on the size of the cluster the initial deployment can take 20+ minutes. If the deployment fails for any
reason, simply correct any issues (e.g., miscabling, node wasn’t started, etc.), and restart the Ansible
playbook.

When specifying common file node configuration, if you choose the default option to have Ansible
automatically manage connection based authentication, a connAuthFile used as a shared secret can now
be found at <playbook dir>/files/beegfs/<sysMgmtdHost> connAuthFile (by default). Any clients
needing to access the file system will need to use this shared secret. This is handled automatically if clients are
configured using the BeeGFS client role.

37

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs

Deploy BeeGFS clients

Optionally, Ansible can be used to configure BeeGFS clients and mount the file system.

Overview

Accessing BeeGFS file systems requires installing and configuring the BeeGFS client on each node that needs
to mount the file system. This section documents how to perform these tasks using the available Ansible role.

Steps

Create the Client Inventory File

1. If needed, set up passwordless SSH from the Ansible control node to each of the hosts you want to

configure as BeeGFS clients:

ssh-copy-id <user>@<HOSTNAME OR IP>

2. Under host vars/, create a file for each BeeGFS client named <HOSTNAME> . ym1 with the following
content, filling in the placeholder text with the correct information for your environment:

BeeGFS Client
ansible host: <MANAGEMENT IP>

3. Optionally include one of the following if you want to use the NetApp E-Series Host Collection’s roles to
configure InfiniBand or Ethernet interfaces for clients to connect to BeeGFS file nodes:

a. If the network type is InfiniBand (using IPolB):

eseries ipoib interfaces:

name: <INTERFACE> # Example: ib0 or ilb

address: <IP/SUBNET> # Example: 100.127.100.1/16
name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

b. If the network type is RDMA over Converged Ethernet (RoCE):

eseries roce interfaces:

name: <INTERFACE> # Example: ethO.

address: <IP/SUBNET> # Example: 100.127.100.1/16
name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

c. If the network type is Ethernet (TCP only, no RDMA):

38

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip

eseries ip interfaces:

- name: <INTERFACE> # Example: ethO.
address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.
address: <IP/SUBNET>

4. Create anew file client inventory.yml and specify the user Ansible should use to connect to each

client, and the password Ansible should use for privilege escalation (this requires ansible ssh user be
root, or have sudo privileges):

BeeGFS client inventory.
all:
vars:
ansible ssh user: <USER>
ansible become password: <PASSWORD>

Do not store passwords in plain text. Instead, use the Ansible Vault (see the Ansible

documentation for Encrypting content with Ansible Vault) or use the --ask-become-pass
option when running the playbook.

d. Inthe client inventory.yml file, list all hosts that should be configured as BeeGFS clients under the
beegfs clients group, and then refer to the inline comments and uncomment any additional
configuration required to build the BeeGFS client kernel module on your system:

39

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:
Ansible group representing all BeeGFS clients:
beegfs clients:
hosts:
<CLIENT HOSTNAME>:

Additional clients as needed.

vars:
OPTION 1: If you’re using the NVIDIA OFED drivers and they are
already installed:
#eseries ib skip: True # Skip installing inbox drivers when
using the IPoIB role.
#beegfs client ofed enable: True
#beegfs client ofed include path:

"/usr/src/ofa kernel/default/include"

OPTION 2: If you’re using inbox IB/RDMA drivers and they are
already installed:

#eseries ib skip: True # Skip installing inbox drivers when
using the IPoIB role.

OPTION 3: If you want to use inbox IB/RDMA drivers and need
them installed/configured.

#eseries ib skip: False # Default value.

#beegfs client ofed enable: False # Default value.

When using the NVIDIA OFED drivers, make sure that beegfs_client_ofed_include_path
points to the correct "header include path" for your Linux installation. For more information,
see the BeeGFS documentation for RDMA support.

6. Inthe client inventory.yml file, list the BeeGFS file systems you want mounted under any previously
defined vars:

40

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

beegfs client mounts:
- sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

mount point: /mnt/beegfs # Path to mount BeeGFS on the
client.
connInterfaces:
- <INTERFACE> # Example: ibs4fl
- <INTERFACE>
beegfs client config:
Maximum number of simultaneous connections to the same
node.

connMaxInternodeNum: 128 # BeeGFS Client Default: 12

Allocates the number of buffers for transferring IO.

connRDMABufNum: 36 # BeeGFS Client Default: 70

Size of each allocated RDMA buffer

connRDMABufSize: 65536 # BeeGFS Client Default: 8192

Required when using the BeeGFS client with the shared-
disk HA solution.

This does require BeeGFS targets be mounted in the
default “sync” mode.

See the documentation included with the BeeGFS client
role for full details.

sysSessionChecksEnabled: false

Specify additional file system mounts for this or other file

systems.

7. As of BeeGFS 7.2.7 and 7.3.1 connection authentication must be configured or explicitly disabled.
Depending how you choose to configure connection based authentication when specifying common file
node configuration, you may need to adjust your client configuration:

a. By default the HA cluster deployment will automatically configure connection authentication, and
generate a connauthfile that will be placed/maintained on the Ansible control node at
<INVENTORY>/files/beegfs/<sysMgmtdHost> connAuthFile. By default the BeeGFS client
role is setup to read/distribute this file to the clients defined in client inventory.yml, and no
additional action is needed.

i. For advanced options refer to the full list of defaults included with the BeeGFS client role.

b. If you choose to specify a custom secret with beegfs_ha conn_auth secret specify it in the
client inventory.yml file as well:

beegfs ha conn auth secret: <SECRET>

c. If you choose to disable connection based authentication entirely with
beegfs ha conn auth enabled, specify thatin the client inventory.yml file as well:

41

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs ha conn auth enabled: false

For a full list of supported parameters and additional details refer to the full BeeGFS client documentation. For
a complete example of a client inventory click here.

Create the BeeGFS Client Playbook File

1. Create a new file client playbook.yml

BeeGFS client playbook.
- hosts: beegfs clients
any errors fatal: true
gather facts: true
collections:
- netapp eseries.beegfs
- netapp eseries.host
tasks:

2. Optional: If you want to use the NetApp E-Series Host Collection’s roles to configure interfaces for clients
to connect to BeeGFS file systems, import the role corresponding with the interface type you are
configuring:

a. If you are using are using InfiniBand (IPolB):

- name: Ensure IPoIB is configured
import role:

name: ipoib

b. If you are using are using RDMA over Converged Ethernet (RoCE):

- name: Ensure IPoIB is configured
import role:

name: roce

c. If you are using are using Ethernet (TCP only, no RDMA):

- name: Ensure IPoIB is configured
import role:

name: ip

3. Lastly import the BeeGFS client role to install the client software and setup the file system mounts:

42

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

- name: Verify the BeeGFS clients are configured.
import role:

name: beegfs client

For a complete example of a client playbook click here.

Run the BeeGFS Client Playbook

To install/build the client and mount BeeGFS, run the following command:

ansible-playbook -i client inventory.yml client playbook.yml

Verify the BeeGFS deployment

Verify the file system deployment before placing the system in production.

Overview

Before you place the BeeGFS file system in production, perform a few verification checks.

Steps

1. Login to any client and run the following to ensure all expected nodes are present/reachable, and there are
no inconsistencies or other issues reported:

beegfs-fsck --checkfs

2. Shutdown the entire cluster, then restart it. From any file node run the following:

pcs
pcs
pcs
are

for

cluster stop --all # Stop the cluster on all file nodes.

cluster start --all # Start the cluster on all file nodes.

status # Verify all nodes and services are started and no failures
reported (the command may need to be reran a few times to allow time

all services to start).

3. Place each node in standby and verify BeeGFS services are able to failover to secondary node(s). To do
this login to any of the file nodes and run the following:

43

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in
standby.

pcs status # Verify services are started on a secondary node and no
failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out
of standby.

pcs status # Verify the file node is back online and no failures are
reported.

pcs resource relocate run # Move all services back to their preferred
nodes.

pcs status # Verify services have moved back to the preferred node.

4. Use performance benchmarking tools such as IOR and MDTest to verify the file system performance meets
expectations. Examples of common tests and parameters used with BeeGFS can be found in the Design
Verification section of the BeeGFS on NetApp Verified Architecture.

Additional tests should be performed based on the acceptance criteria defined for a particular site/installation.

44

https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-solution-verification.html
https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-design-solution-verification.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

45

http://www.netapp.com/TM

	Use custom architectures : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Use custom architectures
	Overview and requirements
	Introduction
	Deployment Overview
	Requirements

	Initial Set Up
	Install and Cable Hardware
	Set Up File and Block Nodes
	Set Up Ansible Control Node

	Define the BeeGFS file system
	Ansible Inventory Overview
	Plan the File System
	Define File and Block Nodes
	Define BeeGFS services
	Map BeeGFS services to file nodes

	Deploy the BeeGFS file system
	Ansible Playbook Overview
	Deploy the BeeGFS HA cluster
	Deploy BeeGFS clients
	Verify the BeeGFS deployment

