Use verified architectures
BeeGFS on NetApp with E-Series Storage

NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/us-en/beegfs/second-gen/beegfs-solution-
overview.html on January 27, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Use verified architectures
Overview and requirements

Solution overview
Architecture overview
Technical requirements

Review solution design

Design overview

Hardware configuration
Software configuration
Design verification

Sizing guidelines
Performance tuning

High capacity building block

Deploy solution

Deployment overview

Learn about the Ansible inventory

Review best practices

Deploy hardware

Deploy software

Scale beyond five building blocks

Recommended storage pool overprovisioning percentages
High capacity building block

© O© ON =~ 2

10
12
19
25
26
28
29
29
30
32
35
38
76
77
77

Use verified architectures

Overview and requirements

Solution overview

The BeeGFS on NetApp solution combines the BeeGFS parallel file system with NetApp
EF600 storage systems for a reliable, scalable, and cost-effective infrastructure that
keeps pace with demanding workloads.

NVA program

The BeeGFS on NetApp solution is part of the NetApp Verified Architecture (NVA) program, which provides
customers with reference configurations and sizing guidance for specific workloads and use cases. NVA
solutions are thoroughly tested and designed to minimize deployment risks and to accelerate time to market.

Design Overview

The BeeGFS on NetApp solution is designed as a scalable building block architecture, configurable for a
variety of demanding workloads. Whether dealing with many small files, managing substantial large file
operations, or a hybrid workload, the file system can be customized to meet these needs. High availability is
built into the design with the use of a two-tier hardware structure that allows independent failover at multiple
hardware layers and ensures consistent performance, even during partial system degradations. The BeeGFS
file system enables a high-performance and scalable environment across different Linux distributions, and
presents clients with a single easily accessible storage namespace. Learn more in the architecture overview.

Use cases

The following use cases apply to the BeeGFS on NetApp solution:

* NVIDIA DGX SuperPOD systems featuring DGX’s with A100, H100, H200, and B200 GPU's.

« Artificial Intelligence (Al) including machine learning (ML), deep learning (DL), large-scale natural language
processing (NLP), and natural language understanding (NLU). For more information, see BeeGFS for Al:
Fact versus fiction.

» High-performance computing (HPC) including applications accelerated by MPI (message passing
interface) and other distributed computing techniques. For more information, see Why BeeGFS goes
beyond HPC.

 Application workloads characterized by:

> Reading or writing to files larger than 1GB

o Reading or writing to the same file by multiple clients (10s, 100s, and 1000s)
* Multi-terabyte or multi-petabyte datasets.

« Environments that need a single storage namespace optimizable for a mix of large and small files.

Benefits

The key benefits of using BeeGFS on NetApp include:

+ Availability of verified hardware designs providing full integration of hardware and software components to
ensure predictable performance and reliability.

https://www.netapp.com/blog/beefs-for-ai-fact-vs-fiction/
https://www.netapp.com/blog/beefs-for-ai-fact-vs-fiction/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/

* Deployment and management using Ansible for simplicity and consistency at scale.

» Monitoring and observability provided using the E-Series Performance Analyzer and BeeGFS plugin. For
more information, see Introducing a Framework to Monitor NetApp E-Series Solutions.

+ High availability featuring a shared-disk architecture that provides data durability and availability.

» Support for modern workload management and orchestration using containers and Kubernetes. For more
information, see Kubernetes meet BeeGFS: A tale of future-proof investment.

Architecture overview

The BeeGFS on NetApp solution includes architectural design considerations used to
determine the specific equipment, cabling, and configurations required to support
validated workloads.

Building block architecture

The BeeGFS file system can be deployed and scaled in different ways depending on the storage requirements.
For example, use cases primarily featuring numerous small files will benefit from extra metadata performance
and capacity, whereas use cases featuring fewer large files might favor more storage capacity and
performance for actual file contents. These multiple considerations impact different dimensions of the parallel
file system deployment, which adds complexity to designing and deploying the file system.

To address these challenges, NetApp has designed a standard building block architecture that is used to scale
out each of these dimensions. Typically, BeeGFS building blocks are deployed in one of three configuration
profiles:

» A single base building block, including BeeGFS management, metadata, and storage services

* A BeeGFS metadata plus storage building block

» A BeeGFS storage only building block
The only hardware change between these three options is the use of smaller drives for BeeGFS metadata.

Otherwise, all configuration changes are applied through software. And with Ansible as the deployment engine,
setting up the desired profile for a particular building block makes configuration tasks straightforward.

For further details, see Verified hardware design.

File system services

The BeeGFS file system includes the following main services:

* Management service. Registers and monitors all other services.

» Storage service. Stores the distributed user file contents known as data chunk files.

* Metadata service. Keeps track of the file system layout, directory, file attributes, and so on.
« Client service. Mounts the file system to access the stored data.

The following figure shows BeeGFS solution components and relationships used with NetApp E-Series
systems.

https://www.netapp.com/blog/monitoring-netapp-eseries/
https://www.netapp.com/blog/kubernetes-meet-beegfs/

<« Clients

Inform Direct Parallel
T ACCess

< Management

L _ ¥

—a

< Metadata) «ni- Storage

_ — Coordinate —» _

Stores Dentries E-Series Stores Data

and Inodes m Chunks

As a parallel file system, BeeGFS stripes its files over multiple server nodes to maximize read/write
performance and scalability. The server nodes work together to deliver a single file system that can be
simultaneously mounted and accessed by other server nodes, commonly known as clients. These clients can
see and consume the distributed file system similarly to a local file system such as NTFS, XFS, or ext4.

The four main services run on a wide range of supported Linux distributions and communicate via any TCP/IP
or RDMA-capable network, including InfiniBand (IB), Omni-Path (OPA), and RDMA over Converged Ethernet

(RoCE). The BeeGFS server services (management, storage, and metadata) are user space daemons, while
the client is a native kernel module (patchless). All components can be installed or updated without rebooting,
and you can run any combination of services on the same node.

HA architecture

BeeGFS on NetApp expands the functionality of the BeeGFS enterprise edition by creating a fully integrated
solution with NetApp hardware that enables a shared-disk high availability (HA) architecture.

While the BeeGFS community edition can be used free of charge, the enterprise edition requires

@ purchasing a professional support subscription contract from a partner like NetApp. The
enterprise edition allows use of several additional features including resiliency, quota
enforcement, and storage pools.

The following figure compares the shared-nothing and shared-disk HA architectures.

Shared-Nothing vs. Shared-Disk
Architecture Architecture

BeeGFS Node BeeGFS Node BeeGFS Node BeeGFS Node

BeeGFS BeeGFS
BeeGFS BeeGFS Service Service
Service Service

External Storage System

For more information, see Announcing High Availability for BeeGFS Supported by NetApp.

Verified nodes

The BeeGFS on NetApp solution has verified the nodes listed below.

Node Hardware Details

Block NetApp EF600 A high-performance, all-NVMe 2U storage array designed for demanding
Storage System workloads.

File Lenovo ThinkSystem A two-socket 2U server featuring PCle 5.0, dual AMD EPYC 9124

SR665 V3 Server processors.
For more information about the Lenovo SR665 V3, see Lenovo’s website.

Lenovo ThinkSystem A two-socket 2U server featuring PCle 4.0, dual AMD EPYC 7003
SR665 Server processors.

For more information about the Lenovo SR665, see Lenovo’s website.
Verified hardware design

The solution’s building blocks (shown in the following figure) uses the verified file node servers for the BeeGFS
file layer and two EF600 storage systems as the block layer.

InfiniBand Network

File)
Layer ' HA Pair
\ . InfiniBand (HDR)
HA PAIR Direct Connects
Block < =
Layer HA PAIR)
L {2l

The BeeGFS on NetApp solution runs across all building blocks in the deployment. The first building block

https://www.netapp.com/blog/high-availability-beegfs/
https://lenovopress.lenovo.com/lp1608-thinksystem-sr665-v3-server
https://lenovopress.lenovo.com/lp1269-thinksystem-sr665-server

deployed must run BeeGFS management, metadata, and storage services (known as the base building block).
All subsequent building blocks can be configured through software to extend metadata and storage services,
or to provide storage services exclusively. This modular approach enables scaling the file system to the needs
of a workload while using the same underlying hardware platforms and building block design.

Up to five building blocks can be deployed to form a standalone Linux HA cluster. This optimizes resource
management with Pacemaker and maintains efficient synchronization with Corosync. One or more of these
standalone BeeGFS HA clusters are combined to create a BeeGFS file system that is accessible to clients as a
single storage namespace. On the hardware side, a single 42U rack can accommodate up to five building
blocks, along with two 1U InfiniBand switches for the storage/data network. See the graphic below for a visual
representation.

A minimum of two building blocks are required to establish quorum in the failover cluster. A two-

@ node cluster has limitations that might prevent a successful failover from occurring. You can
configure a two-node cluster by incorporating a third device as a tiebreaker; however, this
documentation does not describe that design.

4]1° BeeGFS Parallel Filesystem

Standalone

Standalone
HA Cluster

Standalone
HA Cluster

HA Cluster

HA PAIR — HA PAIR
HA PAIR HA PAIR
& = L

§ o

HA PAIR
&
HA PAIR

HA PAIR
HA PAIR
- |

§ o S g
HA PAIR ' HA PAIR
& . >
HA PAIR HA PAIR
oL 2 - b |

|

HA PAIR ' HA PAIR
- | &>

HA PAIR
HA PAIR ' HA PAIR

HA PAIR
>

HA PAIR 3 HA PAIR
X - X

HA PAIR i HA PAIR
> . X il

HA PAIR
X 2
HA PAIR
x 2
g oo 8

HA PAIR
&

HA PAIR
-

HA PAIR ; HA PAIR
HA PAIR HA PAIR
2 2 = |

Ansible

BeeGFS on NetApp is delivered and deployed using Ansible automation, which is hosted on GitHub and
Ansible Galaxy (the BeeGFS collection is available from Ansible Galaxy and NetApp’s E-Series GitHub).
Although Ansible is primarily tested with the hardware used to assemble the BeeGFS building blocks, you can
configure it to run on virtually any x86-based server using a supported Linux distribution.

For more information, see Deploying BeeGFS with E-Series Storage.

Technical requirements

To implement the BeeGFS on NetApp solution, ensure your environment meets the
technology requirements outlined in this document.

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/netappeseries/beegfs/
https://www.netapp.com/blog/deploying-beegfs-eseries/

Hardware requirements

Before you begin, ensure that your hardware meets the following specifications for a single second-generation
building block design of the BeeGFS on NetApp solution. The exact components for a particular deployment
may vary based on customer requirements.

Quantity Hardware Requirements
component
2 BeeGFS file nodes Each file node should meet or exceed the specifications of the

recommended file nodes to achieve expected performance.
Recommended file node options:

* Lenovo ThinkSystem SR665 V3

> Processors: 2x AMD EPYC 9124 16C 3.0 GHz (configured as two
NUMA zones).

o Memory: 256GB (16x 16GB TruDDR5 4800MHz RDIMM-A)
o PCle Expansion: Four PCle Gen5 x16 slots (two per NUMA zone)
o Miscellaneous:

= Two drives in RAID 1 for OS (1TB 7.2K SATA or better)

= 1GbE port for in-band OS management

= 1GbE BMC with Redfish API for out-of-band server
management

= Dual hot swap power supplies and performance fans

2 E-Series block Memory: 256GB (128GB per controller).
nodes (EF600 array) Adapter: 2-port 200Gb/HDR (NVMe/IB).
Drives: Configured to match desired metadata and storage capacity.

8 InfiniBand host card Host card adapters may vary based on the file node’s server model.
adapters (for file Recommendations for verified file nodes include:
nodes).

* Lenovo ThinkSystem SR665 V3 Server:

o MCX755106AS-HEAT ConnectX-7, NDR200, QSFP112, 2-port,
PCle Gen5 x16, InfiniBand Adapter

1 Storage network The storage network switch must be capable of 200Gb/s InfiniBand speeds.
switch Recommended switch models include:

* NVIDIA QM9700 Quantum 2 NDR InfiniBand switch
* NVIDIA MQM8700 Quantum HDR InfiniBand switch

Cabling requirements

Direct connections from block nodes to file nodes.

Quantity Part Number

Length

8 MCP1650-HO01E30 (NVIDIA Passive Copper cable, QSFP56, 200Gb/s) 1m

Connections from file nodes to the storage network switch.
Select the appropriate cable option from the following table according to your InfiniBand storage switch.
The recommended cable length is 2m; however, this may vary based on the customer’s environment.

Switch model Cable Type Quantity Part Number

NVIDIA QM9700 Active Fiber 2
(including
transceivers)

Passive 2
Copper

NVIDIA MQM8700 Active Fiber 8

Passive 8
Copper

Software and firmware requirements

MMA4Z00-NS (multimode, IB/ETH, 800Gb/s 2x400Gb/s
Twin-port OSFP)

MFP7E20-Nxxx (multimode, 4-channel-to-two 2-channel
splitter fiber cable)

MMA1Z00-NS400 (multimode, IB/ETH, 400Gb/s Single-port
QSFP-112)

MCP7Y40-N002 (NVIDIA passive copper splitter cable,
InfiniBand 800Gb/s to 4x 200Gb/s, OSFP to 4x QSFP112)

MFS1S00-HOO3E (NVIDIA Active Fiber cable, InfiniBand
200Gb/s, QSFP56)

MCP1650-HO02E26 (NVIDIA Passive Copper cable,
InfiniBand 200Gb/s, QSFP56)

To ensure predictable performance and reliability, releases of the BeeGFS on NetApp solution are tested with
specific versions of software and firmware components. These versions are required for implementation of the

solution.

File node requirements

Software Version

Red Hat Enterprise RHEL 9.4 Server Physical with High Availability (2 socket).

Linux (RHEL) Note: File nodes require a valid Red Hat Enterprise Linux Server subscription and the
Red Hat Enterprise Linux High Availability Add-On.

Linux Kernel 5.14.0-427.42.1.el9_4.x86_64

HCA Firmware ConnectX-7 HCA Firmware

FW: 28.45.1200
PXE: 3.7.0500
UEFI: 14.38.0016

ConnectX-6 HCA Firmware

FW: 20.43.2566
PXE: 3.7.0500
UEFI: 14.37.0013

EF600 block node requirements

Software Version

SANTtricity OS 11.90R3

NVSRAM N6000-890834-D02.dIp

Drive Firmware Latest available for the drive models in use. See the E-Series disk firmware site.

Software deployment requirements

The following table lists the software requirements deployed automatically as part of the Ansible-based
BeeGFS deployment.

Software Version

BeeGFS 7.4.6

Corosync 3.1.8-1

Pacemaker 21.7-5.2

PCS 0.11.7-2

Fence Agents 4.10.0-62

(redfish/apc)

InfiniBand / RDMA MLNX_OFED_LINUX-23.10-3.2.2.1-LTS
Drivers

Ansible control node requirements

The BeeGFS on NetApp solution is deployed and managed from an Ansible control node. For more
information, see the Ansible documentation.

The software requirements listed in the following tables are specific to the version of the NetApp BeeGFS
Ansible collection listed below.

Software Version

Ansible 10.x

Ansible-core >=2.13.0

Python 3.10

Additional Python packages Cryptography-43.0.0, netaddr-1.3.0, ipaddr-2.2.0
NetApp E-Series BeeGFS 3.2.0

Ansible Collection

Review solution design

Design overview

Specific equipment, cabling, and configurations are required to support the BeeGFS on
NetApp solution, which combines the BeeGFS parallel file system with the NetApp EF600

https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html

storage systems.
Learn more:

* Hardware configuration
+ Software configuration
+ Design verification

+ Sizing guidelines

* Performance tuning
Derivative architectures with variations in design and performance:

+ High Capacity Building Block

Hardware configuration

The hardware configuration for BeeGFS on NetApp includes file nodes and network
cabling.

File node configuration

File nodes have two CPU sockets configured as separate NUMA zones, which include local access to an equal
number of PCle slots and memory.

InfiniBand adapters must be populated in the appropriate PCI risers or slots, so the workload is balanced over
the available PCle lanes and memory channels. You balance the workload by fully isolating work for individual
BeeGFS services to a particular NUMA node. The goal is to achieve similar performance from each file node
as if it were two independent single socket servers.

The following figure shows the file node NUMA configuration.

Intersocket

Riser 1: PC1 5.0 x32 Riser 2: PCI 5.0 x32

Siot 1 (x16)
Siot 2 (x16)
Siot 3 (x16)
Siot 4 (x16)

NUMA Node 0 NUMA Node 1

The BeeGFS processes are pinned to a particular NUMA zone to ensure that the interfaces used are in the
same zone. This configuration avoids the need for remote access over the inter-socket connection. The inter-
socket connection is sometimes known as the QPI or GMI2 link; even in modern processor architectures, they
can be a bottleneck when using high-speed networking like HDR InfiniBand.

10

Network cabling configuration

Within a building block, each file node is connected to two block nodes using a total of four redundant
InfiniBand connections. In addition, each file node has four redundant connections to the InfiniBand storage
network.

In the following figure, notice that:
« All file node ports outlined in green are used to connect to the storage fabric; all other file node ports are
the direct connects to the block nodes.
» Two InfiniBand ports in a specific NUMA zone connect to the A and B controllers of the same block node.
* Ports in NUMA node 0 always connect to the first block node.

* Ports in NUMA node 1 connect to the second block node.

NUMA Node 0 NUMA Node 1 NUMA Node 0 NUMA Node 1
File Nodes: [IEEIFAEACNENIED i 2al 20 188 i3 eal 4o
\\

Controller A: peZ:S1:8 Controller B: --

Block Nodes: HA P:|R

Controller A: FeL:81=8 Controller B: --

B HA PAIR

e -

When using splitter cables to connect the storage switch to file nodes, one cable should branch
out and connect to the ports outlined in light green. Another cable should branch out and

@ connect to the ports outlined in dark green.
Additionally, for storage networks with redundant switches, ports outlined in light green should
connect to one switch, while ports in dark green should connect to another switch.

The cabling configuration depicted in the figure allows each BeeGFS service to:

* Run in the same NUMA zone regardless of which file node is running the BeeGFS service.

» Have secondary optimal paths to the front-end storage network and to the back-end block nodes
regardless of where a failure occurs.

* Minimize performance effects if a file node or controller in a block node requires maintenance.

Cabling to leverage bandwidth

To leverage the full PCle bidirectional bandwidth, make sure one port on each InfiniBand adapter connects to
the storage fabric, and the other port connects to a block node.

The following figure shows the cabling design used to leverage the full PCle bidirectional bandwidth.

11

Write to Write from Read from Read to
E-Series Array. BeeGFS client. E-Series Array. BeeGFS client.

BeeGFS BeeGFS
Storage Storage
Service 1 Service 2

NUMA Node 0

For each BeeGFS service, use the same adapter to connect the preferred port used for client traffic with the
path to the block nodes controller that is the primary owner of that services volumes. For more information, see
Software configuration.

Software configuration

The software configuration for BeeGFS on NetApp includes BeeGFS network
components, EF600 block nodes, BeeGFS file nodes, resource groups, and BeeGFS
services.

BeeGFS network configuration

The BeeGFS network configuration consists of the following components.

* Floating IPs
Floating IPs are a kind of virtual IP address that can be dynamically routed to any server in the same
network. Multiple servers can own the same Floating IP address, but it can only be active on one server at
any given time.

12

Each BeeGFS server service has its own IP address that can move between file nodes depending on the
run location of the BeeGFS server service. This floating IP configuration allows each service to fail over
independently to the other file node. The client simply needs to know the IP address for a particular
BeeGFS service; it does not need to know which file node is currently running that service.

BeeGFS server multi-homing configuration
To increase the density of the solution, each file node has multiple storage interfaces with IPs configured in
the same [P subnet.

Additional configuration is required to make sure that this configuration works as expected with the Linux
networking stack, because by default, requests to one interface can be responded to on a different
interface if their IPs are in the same subnet. In addition to other drawbacks, this default behavior makes it
impossible to properly establish or maintain RDMA connections.

The Ansible-based deployment handles tightening of the reverse path (RP) and address resolution protocol
(ARP) behavior, along with ensuring when floating IPs are started and stopped; corresponding IP routes
and rules are dynamically created to allow the multihomed network configuration to work properly.

BeeGFS client multi-rail configuration
Muilti-rail refers to the ability of an application to use multiple independent network connections, or “rails”, to
increase performance.

BeeGFS implements multi-rail support to allow the use of multiple IB interfaces in a single IPoIB subnet.
This capability enables features such as dynamic load balancing across RDMA NICs, optimizing the use of
network resources. It also integrates with NVIDIA GPUDirect Storage (GDS), which offers increased
system bandwidth and decreases latency and utilization on the client's CPU.

This documentation provides instructions for single IPoIB subnet configurations. Dual IPolB subnet
configurations are supported but do not provide the same advantages as single subnet configurations.

The following figure shows the balancing of traffic across multiple BeeGFS client interfaces.

13

Interface BeeGFS

Priority Services
Storage Service 1

i1b, i2b

: I Metadata Service 1
Storage Service 2

i2b, i1b

: I Metadata Service 2

NUMA Node 0
BeeGFS File Node ila i1b |i2a|i2b

BeeGFS Client

Because each file in BeeGFS is typically striped across multiple storage services, the multi-rail configuration
allows the client to achieve more throughput than is possible with a single InfiniBand port. For example, the
following code sample shows a common file-striping configuration that allows the client to balance traffic across
both interfaces:

=+

14

root@beegfs0l:/mnt/beegfs# beegfs-ctl --getentryinfo myfile

Entry type: file

EntryID: 11D-624759A9-65

Metadata node: meta 01 tgt 0101 [ID: 101]

Stripe pattern details:

+ Type: RAIDO

+ Chunksize: 1M

+ Number of storage targets: desired: 4; actual: 4

+ Storage targets:
+ 101 @ stor 01 tgt 0101 [ID: 101]
+ 102 @ stor 01 tgt 0101 [ID: 101]
+ 201 @ stor 02 tgt 0201 [ID: 201]
+ 202 @ stor 02 tgt 0201 [ID: 201]

EF600 block node configuration

Block nodes are comprised of two active/active RAID controllers with shared access to the same set of drives.
Typically, each controller owns half the volumes configured on the system, but can take over for the other
controller as needed.

Multipathing software on the file nodes determines the active and optimized path to each volume and
automatically moves to the alternate path in the event of a cable, adapter, or controller failure.

The following diagram shows the controller layout in EF600 block nodes.

A

- Controller A
‘ e Controller B

To facilitate the shared-disk HA solution, volumes are mapped to both file nodes so that they can take over for
each other as needed. The following diagram shows an example of how the BeeGFS service and preferred
volume ownership is configured for maximum performance. The interface to the left of each BeeGFS service
indicates the preferred interface that the clients and other services use to contact it.

8

15

BeeGFS Services Preferred on File Node 1

iip Storage Service 1 iab Storage Service 3
Metadata Service 1 Metadata Service 3

i2b Storage Service 2 iab Storage Service 4
Metadata Service 2 Metadata Service 4

NUMA Node0 NUMA Node 1
File Nodes: | " EBI3 - m i3a i3b ida m

Controller A: P:S1:8 Controller B: | 0| ~=]

HA PAIR

B .

Volumes preferred on Volumes preferred on
Controller A Controller B

Block Nodes:

Storage storage_tgt_101 Storage storage_tgt 201
Targets storage tgt 102 Targets storage tgt 202

Metadata o1adata 01 Metadata 15 ata 02

Targets Targets

Volumes preferred on Volumes preferred on
Controller A Controller B

Storage storage tgt 501 Storage storage tgt 601
Targets storage_tgt 502 Targets storage_tgt 602

Metadata \otaqata_05 Metadata or20ata_06
Targets Targets

BeeGFS Services Preferred on File Node 2

iip Storage Service 5 igh Storage Service 7
Metadata Service 5 Metadata Service 7

i2b Storage Service 6 iab Storage Service 8
Metadata Service 6 Metadata Service 8

NUMA Node 0 NUMA Node 1

mm i8a i3b ida|idb |

Controller A: PL:W4:8 Controller B: | .0 | ~=)

HA PAIR

— .

Volumes preferred on Volumes preferred on
Controller A Controller B

Storage storage_tgt 301 Storage storage_tgt 401
Targets storage tgt 302 Targets storage tgt 402

Metadata metadata 03 Metadata

Targets Targets metadata_04

Volumes preferred on Volumes preferred on
Controller A Controller B

Storage storage_tgt 701 Storage storage tgt 801
Targets storage_tgt 702 Targets storage_tgt 802

Metadata \otaqata_07 Metadata craqata_os
Targets Targets

In the previous example, clients and server services prefer to communicate with storage service 1 using
interface i1b. Storage service 1 uses interface i1a as the preferred path to communicate with its volumes
(storage_tgt 101, 102) on controller A of the first block node. This configuration makes use of the full
bidirectional PCle bandwidth available to the InfiniBand adapter and achieves better performance from a dual-
port HDR InfiniBand adapter than would otherwise be possible with PCle 4.0.

BeeGFS file node configuration

The BeeGFS file nodes are configured into a High-Availability (HA) cluster to facilitate failover of BeeGFS

services between multiple file nodes.

The HA cluster design is based on two widely used Linux HA projects: Corosync for cluster membership and
Pacemaker for cluster resource management. For more information, see Red Hat training for high-availability

add-ons.

NetApp authored and extended several open cluster framework (OCF) resource agents to allow the cluster to

intelligently start and monitor the BeeGFS resources.

BeeGFS HA clusters

Typically, when you start a BeeGFS service (with or without HA), a few resources must be in place:

I[P addresses where the service is reachable, typically configured by Network Manager.

» Underlying file systems used as the targets for BeeGFS to store data.

These are typically defined in /etc/fstab and mounted by Systemd.

« A Systemd service responsible for starting BeeGFS processes when the other resources are ready.

16

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters

Without additional software, these resources start only on a single file node. Therefore, if the file node goes
offline, a portion of the BeeGFS file system is inaccessible.

Because multiple nodes can start each BeeGFS service, Pacemaker must make sure each service and
dependent resources are only running on one node at a time. For example, if two nodes try to start the same
BeeGFS service, there is a risk of data corruption if they both try to write to the same files on the underlying
target. To avoid this scenario, Pacemaker relies on Corosync to reliably keep the state of the overall cluster in
sync across all nodes and establish quorum.

If a failure occurs in the cluster, Pacemaker reacts and restarts BeeGFS resources on another node. In some
scenarios, Pacemaker might not be able to communicate with the original faulty node to confirm the resources
are stopped. To verify that the node is down before restarting BeeGFS resources elsewhere, Pacemaker
fences off the faulty node, ideally by removing power.

Many open-source fencing agents are available that enable Pacemaker to fence a node with a power
distribution unit (PDU) or by using the server baseboard management controller (BMC) with APIs such as
Redfish.

When BeeGFS is running in an HA cluster, all BeeGFS services and underlying resources are managed by
Pacemaker in resource groups. Each BeeGFS service and the resources it depends on, are configured into a
resource group, which ensures resources are started and stopped in the correct order and collocated on the
same node.

For each BeeGFS resource group, Pacemaker runs a custom BeeGFS monitoring resource that is responsible
for detecting failure conditions and intelligently triggering failovers when a BeeGFS service is no longer
accessible on a particular node.

The following figure shows the Pacemaker-controlled BeeGFS services and dependencies.

17

File System Mount(s)

Monitoring IP Address(es)

Systemd Service

Corosync

File Node File Node File Node File Node

So that multiple BeeGFS services of the same type are started on the same node, Pacemaker is
configured to start BeeGFS services using the Multi Mode configuration method. For more
information, see the BeeGFS documentation on Multi Mode.

Because BeeGFS services must be able to start on multiple nodes, the configuration file for each service
(normally located at /etc/beegfs) is stored on one of the E-Series volumes used as the BeeGFS target for
that service. This makes the configuration along with the data for a particular BeeGFS service accessible to all

nodes that might need to run the service.

18

https://doc.beegfs.io/latest/advanced_topics/multimode.html

tree stor 01 tgt 0101/ -L 2
stor 01 tgt 0101/

F—— data
F—— benchmark

buddymir
chunks
format.conf
lock.pid
nodelID
nodeNumID
originalNodeID
targetID
targetNumID

[TTTTTTTIT

L

9]

torage config
beegfs-storage.conf
connInterfacesFile.conf

1T

connNetFilterFile.conf

Design verification

The second-generation design for the BeeGFS on NetApp solution was verified using
three building block configuration profiles.

The configuration profiles include the following:

» A single base building block, including BeeGFS management, metadata, and storage services.
+ A BeeGFS metadata plus a storage building block.
* A BeeGFS storage-only building block.

The building blocks were attached to two NVIDIA Quantum InfiniBand (MQM8700) switches. Ten BeeGFS
clients were also attached to the InfiniBand switches and used to run synthetic benchmark utilities.

The following figure shows the BeeGFS configuration used to validate the BeeGFS on NetApp solution.

19

— InfiniBand Storage Network
(BeeGFS Client/Server Traffic)

BeeGFS Management,

HA PAIR
.

£ Metadata, and Storage

. i = Building Block
BeeGIZSf CPHj(ilientS < — o= = BeeGFS Metadata, and
(used for validation) ::EE:: Storage Building Block
o BeeGFS Storage Only

E2 Hapar Building Block

BeeGFS GPU Client —— 1 HAi,SnR

(used for validation)

BeeGFS file striping

A benefit of parallel file systems is the ability to stripe individual files across multiple storage targets, which
could represent volumes on the same or different underlying storage systems.

In BeeGFS, you can configure striping on a per-directory and per-file basis to control the number of targets
used for each file and to control the chunksize (or block size) used for each file stripe. This configuration allows
the file system to support different types of workloads and I/O profiles without the need for reconfiguring or
restarting services. You can apply stripe settings using the beegfs-ct1 command line tool or with
applications that use the striping API. For more information, see the BeeGFS documentation for Striping and
Striping API.

To achieve the best performance, stripe patterns were adjusted throughout testing, and the parameters used
for each test are noted.

IOR bandwidth tests: Multiple clients

The IOR bandwidth tests used OpenMPI to run parallel jobs of the synthetic I/O generator tool IOR (available
from HPC GitHub) across all 10 client nodes to one or more BeeGFS building blocks. Unless otherwise noted:

 All tests used direct I/O with a 1MiB transfer size.
* BeeGFS file striping was set to a 1MB chunksize and one target per file.
The following parameters were used for IOR with the segment count adjusted to keep the aggregate file size to

5TiB for one building block and 40TiB for three building blocks.

mpirun --allow-run-as-root --mca btl tcp -np 48 -map-by node -hostfile
10xnodes ior -b 1024k --posix.odirect -e -t 1024k -s 54613 -z -C -F -E -k

One BeeGFS base (management, metadata, and storage) building block

The following figure shows the IOR test results with a single BeeGFS base (management, metadata, and
storage) building block.

20

https://doc.beegfs.io/latest/advanced_topics/striping.html
https://doc.beegfs.io/latest/reference/striping_api.html
https://github.com/hpc/ior

10 x Clients

70.00 GiB/s
60.00 GiB/s
50.00 GiB/s
40.00 GiB/s
30.00 GiB/s
20.00 GiB/s
0.00 GiB/fs
16 processes 48 processes 160 processes
1MiB
Mgt+Meta+Storage
W READ - Direct-l0 - sequential 17.55 GiB/s 40.75 GiB/s 63.61 GiB/s
B WRITE - Direct-10 - sequential 15.10 GiB/s 18.55 GiB/s 2141 GiB/s

BeeGFS metadata + storage building block
The following figure shows the IOR test results with a single BeeGFS metadata + storage building block.

10 x Clients
70.00 GiB/s
60.00 GiB/s
50.00 GiB/s
40.00 GiBfs
30.00 Gib/s
20.00 GiB/s
0.00 GiB/s
16 processaes 48 processes 160 processes
1MiB
Meta+Storage
B READ - Direct-0 - sequential 16.99 GiB/s 39.23 GiB/s 62.92 GiB/s
B WRITE - Direct-10 - sequential 15.02 GiB/s 18.51 GiB/s 2112 GiB/s

BeeGFS storage-only building block
The following figure shows the IOR test results with a single BeeGFS storage-only building block.

10 x Clients
70.00 GiB/s
60.00 GiB/s
50.00 GiB/fs
40.00 GiBfs
30.00 GiB/s
20.00 GiB/s
0.00 GiB/s
16 processes 48 processes 160 processes
1MiB
Storage Only
B READ - Direct-l0 - sequential 1732 GiB/s 41.35 GiB/s 65.74 GiB/s
B WRITE - Direct-10 - sequential 15.02 GiB/s 18.59 GiB/s 21.07 GiB/s

Three BeeGFS building blocks
The following figure shows the IOR test results with three BeeGFS building blocks.

10 x Clients

250.00 GiB/s
200.00 GiB/s
150.00 GiB/s
100.00 GiB/s
- -

0.00 GiB/s

48 processes 160 processes 480 processes 960 processes

1MiB
3x Building Blocks 7.2.6
B READ - Direct-10 - sequential 50.93 GiB/s 128.79 GiB/s 191.47 GiB/s 211.00 GiB/s
® WRITE - Direct-10 - sequential 45.04 GiB/s 57.12 GiB/s 63.79 GiB/s 65.92 GiB/s

As expected, the performance difference between the base building block and the subsequent metadata +
storage building block is negligible. Comparing the metadata + storage building block and a storage-only
building block shows a slight increase in read performance due to the additional drives used as storage
targets. However, there is no significant difference in write performance. To achieve higher performance, you
can add multiple building blocks together to scale performance in a linear fashion.

IOR bandwidth tests: Single client

The IOR bandwidth test used OpenMPI to run multiple IOR processes using a single high-performance GPU
server to explore the performance achievable to a single client.

This test also compares the reread behavior and performance of BeeGFS when the client is configured to use
the Linux kernel page-cache (tuneFileCacheType = native) versus the default buffered setting.

The native caching mode uses the Linux kernel page-cache on the client, allowing reread operations to come
from local memory instead of being retransmitted over the network.

The following diagram shows the IOR test results with three BeeGFS building blocks and a single client.

1x HGX Client - IOR Buffered 10 w/ 960GIB Aggregate filesize

350.00 GiR/s
300.00 Gig/s
250.00 GiB/s
200.00 GiB/fs
150.00 Gig/s
100.00 Gis/s
50.00 Gififs
0.00 GIB/s — T S [—
128 Processes 128 Processes
Buffered-40 Buffered-10
Native Buffered
Beegfs-7.2.6
® sequential - write 4.49 GIBfs 11.94 GiB/s
= sequential - read 20.50 Gifi/s 31.27 Gibfs
® sequential - rereadl 136.08 GiB/s 31.22 GiB/s
1 sequential - reread2 28947 GiBfs 31.50 GiB/s
W sequential - reread3 289,48 GiB/s 31.50 GiB/s

@ BeeGFS striping for these tests was set to a 1MB chunksize with eight targets per file.

Although write and initial read performance is higher using the default buffered mode, for workloads that reread
the same data multiple times, a significant performance boost is seen with the native caching mode. This
improved reread performance is important for workloads like deep learning that reread the same dataset
multiple times across many epochs.

22

Metadata performance test

The Metadata performance tests used the MDTest tool (included as part of IOR) to measure the metadata
performance of BeeGFS. The tests utilized OpenMPI to run parallel jobs across all ten client nodes.

The following parameters were used to run the benchmark test with the total number of processes scaled from

10 to 320 in step of 2x and with a file size of 4k.

mpirun -h 10xnodes -map-by node np S$processes mdtest -e 4k -w 4k -i 3 -T
16 -z 3 -b 8 -u

Metadata performance was measured first with one then two metadata + storage building blocks to show how
performance scales by adding additional building blocks.

One BeeGFS metadata + storage building block
The following diagram shows the MDTest results with one BeeGFS metadata + storage building blocks.

MDOtest - 1 x Meta + Storage Building Blocks

E00,0000PS
500,0000PS
400,0000F5
300,0000PS
200,0000Ps
100,0000Ps I I I I
00FS P — e e II ——_]]
Directory creation Directory removal Directory stat File crestion Fileread Filz remova Filz stat Tres cregtion Tres remaovd
1xBB1
m 10 Total Processes 2,433 OP5 2,063 0P5 150,7200P5 3,512 0P5 51,132 0P5 5,6810P3 2249370Ps 262 OPS 2220P5
m 20 Total Processes 3,505 OPS 2,6250P5 2459950P5 5,3290P5 83,093 0P5 7,6540P5 398,8000PS 187 OPS 1380P5
m 430 Total Processes 4,922 OP% 3,0920P3 425,4520P3 7,4240P3 107,2760P 11,305 0P3 487,6980Ps 135 0Ps 85 0P
20 Total Processes 6,561 OPS 3,3360P3 5143830Ps 9,917 OPs 124,3800Ps 14,473 OFE 516,4650P5 860Ps 45 OPS
m 150 Tots| Proceszes 8,153 OPS 3,486 0P5 527,34B0P5 12,790 OPS 140,5540P5 18,806 OPS 533,1740P5 S40Ps 23 0P8
W 320 Total Processes. 2,491 OP% 3,586 0P% 523,6590P3 14,043 0P 151,6800P3 13,928 OP3 519,8210Ps 270Ps 12 0P

Two BeeGFS metadata + storage building blocks

The following diagram shows the MDTest results with two BeeGFS metadata + storage building blocks.

23

MDtest - 2 x Meta + Storage Building Blocks
1,200,000 0PS

1,000,000 OFS

800,0000F5

B00,0000PS

400,0000P5

200,0000Ps I II I
00FS e —— — I T .II ——y 1

Directory creation Directory removal Directory stat File crestion Fileread Filz remova Filz stat Tres cregtion Tres remaovd
2xBB1-2
m 10 Total Processes 2,881 OP5 2,6310P5 1484530P5 3,7830P5 55,7190P5 7,2020P5 252,0050P5 294 0P5 2670P5
m 20 Total Processes 4,502 OPS 3,8500P5 258,3130P5 6,527 0PS 102,0310P5 11,446 OPS 472,6840P5 240 0Ps 196 0PS
m 430 Total Processes 6,665 OP% 5,009 0P 483,6580P3 10,802 0P 191,3910P 17,420 OP3 819,5820Ps 172 OP: 1280Ps
20 Total Processes 9,270 0PS 5,8910Ps 727,9350P5 15,593 OFS 293,6100P5 25,258 OFS 910,754 0P 121 OPS 720Ps
m 150 Tots| Processes. 12,586 OFS 6,368 0F5 857,96B0F5 20,374 0F5 314 1040F5 33,358 OFS 571,3740F5 790Ps 40 0PS
W 320 Tota| Processes. 15,062 OPS 6,600 0PS 513,9000P5 22,757 OP3 337,7840P5 43,184 OPS 926,993 0P 450Ps 200P3

Functional validation
As part of validating this architecture, NetApp executed several functional tests including the following:

« Failing a single client InfiniBand port by disabling the switch port.

+ Failing a single server InfiniBand port by disabling the switch port.

 Triggering an immediate server power off using the BMC.

« Gracefully placing a node in standby and failing over service to another node.

» Gracefully placing a node back online and failing back services to the original node.

» Powering off one of the InfiniBand switches using the PDU. All tests were performed while stress testing
was in progress with the sysSessionChecksEnabled: false parameter seton the BeeGFS clients.
No errors or disruption to I/O was observed.

There is a known issue (see the Changelog) when BeeGFS client/server RDMA connections are
disrupted unexpectedly, either through loss of the primary interface (as defined in

@ connInterfacesFile) or a BeeGFS server failing; active client I/O can hang for up to ten
minutes before resuming. This issue does not occur when BeeGFS nodes are gracefully placed
in and out of standby for planned maintenance or if TCP is in use.

NVIDIA DGX SuperPOD and BasePOD validation

NetApp validated a storage solution for NVIDIAs DGX A100 SuperPOD using a similar BeeGFS file system
consisting of three building blocks with the metadata plus storage configuration profile applied. The
qualification effort involved testing the solution described by this NVA with twenty DGX A100 GPU servers
running a variety of storage, machine learning, and deep learning benchmarks. Building on the validation
established with NVIDIA’s DGX A100 SuperPOD, the BeeGFS on NetApp solution has been approved for DGX
SuperPOD H100, H200, and B200 systems. This extension is based on meeting the previously established
benchmarks and system requirements as validated with the NVIDIA DGX A100.

For more information, see NVIDIA DGX SuperPOD with NetApp and NVIDIA DGX BasePOD.

24

https://github.com/netappeseries/beegfs/blob/master/CHANGELOG.md
https://www.netapp.com/pdf.html?item=/media/72718-nva-1167-DESIGN.pdf
https://www.nvidia.com/en-us/data-center/dgx-basepod/

Sizing guidelines

The BeeGFS solution includes recommendations for performance and capacity sizing
that were based on verification tests.

The objective with a building-block architecture is to create a solution that is simple to size by adding multiple
building blocks to meet the requirements for a particular BeeGFS system. Using the guidelines below, you can
estimate the quantity and types of BeeGFS building blocks that are needed to meet the requirements of your
environment.

Keep in mind that these estimates are best-case performance. Synthetic benchmarking applications are written
and utilized to optimize the use of underlying file systems in ways that real-world applications might not.

Performance sizing

The following table provides recommended performance sizing.

Configuration profile 1MiB reads 1MiB writes
Metadata + storage 62GiBps 21GiBps
Storage only 64GiBps 21GiBps

Metadata capacity sizing estimates are based on the "rule of thumb" that 500GB of capacity is sufficient for
roughly 150 million files in BeeGFS. (For more information, see the BeeGFS documentation for System
Requirements.)

The use of features like access control lists and the number of directories and files per directory also affect how
quickly metadata space is consumed. Storage capacity estimates do account for usable drive capacity along
with RAID 6 and XFS overhead.

Capacity sizing for metadata + storage building blocks

The following table provides recommended capacity sizing for metadata plus storage building blocks.

Drive size (2+2 RAID 1) Metadata capacity Drive size (8+2 RAID 6) Storage capacity (file
metadata volume (number of files) storage volume groups content)
groups
1.92TB 1,938,577,200 1.92TB 51.77TB
3.84TB 3,880,388,400 3.84TB 103.55TB
7.68TB 8,125,278,000 7.68TB 216.74TB
15.3TB 17,269,854,000 15.3TB 460.60TB
@ When sizing metadata plus storage building blocks, you can reduce costs by using smaller
drives for metadata volume groups versus storage volume groups.

Capacity sizing for storage-only building blocks

The following table provides rule-of-thumb capacity sizing for storage-only building blocks.

25

https://doc.beegfs.io/latest/system_design/system_requirements.html
https://doc.beegfs.io/latest/system_design/system_requirements.html

Drive size (10+2 RAID 6) storage volume groups Storage capacity (file content)

1.92TB 59.89TB
3.84TB 119.80TB
7.68TB 251.89TB
15.3TB 538.55TB
@ Th.e performance an.d .capacity overhead gf incIU(I:iing. the management service in the base (first)
building block are minimal, unless global file locking is enabled.

Performance tuning

The BeeGFS solution includes recommendations for performance tuning that were based
on verification tests.

Although BeeGFS provides reasonable performance out of the box, NetApp has developed a set of
recommended tuning parameters to maximize performance. These parameters take into account the
capabilities of the underlying E-Series block nodes and any special requirements needed to run BeeGFS in a
shared-disk HA architecture.

Performance tuning for file nodes

The available tuning parameters that you can configure include the following:

1. System settings in the UEFI/BIOS of file nodes.
To maximize performance, we recommend configuring the system settings on the server model you use as
your file nodes. You configure the system settings when you set up your file nodes by using either the
system setup (UEFI/BIOS) or the Redfish APIs provided by the baseboard management controller (BMC).

The system settings vary depending on the server model you use as your file node. The settings must be
manually configured based on the server model in use. To learn how to configure the system settings for
the validated Lenovo SR665 V3 file nodes, see Tune file node system settings for performance.

2. Default settings for required configuration parameters.
The required configuration parameters affect how BeeGFS services are configured and how E-Series
volumes (block devices) are formatted and mounted by Pacemaker. These required configuration
parameters include the following:

> BeeGFS Service configuration parameters
You can override the default settings for the configuration parameters as needed. For the parameters

that you can adjust for your specific workloads or use cases, see the BeeGFS service configuration
parameters.

> Volume formatting and mounting parameters are set to recommended defaults, and should only be
adjusted for advanced use cases. The default values will do the following:

= Optimize initial volume formatting based on the target type (such as management, metadata, or
storage), along with the RAID configuration and segment size of the underlying volume.

= Adjust how Pacemaker mounts each volume to ensure that changes are immediately flushed to E-
series block nodes. This prevents data loss when file nodes fail with active writes in progress.

26

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

For the parameters that you can adjust for your specific workloads or use cases, see the volume
formatting and mounting configuration parameters.

3. System settings in the Linux OS installed on the file nodes.

You can override the default Linux OS system settings when you create the Ansible inventory in step 4 of
Create the Ansible inventory.

The default settings were used to validate the BeeGFS on NetApp solution, but you can change them to
adjust for your specific workloads or use cases. Some examples of the Linux OS system settings that you
can change include the following:

> 1/O queues on E-Series block devices.
You can configure I/O queues on the E-Series block devices used as BeeGFS targets to:

= Adjust the scheduling algorithm based on the device type (NVMe, HDD, and so on).
= Increase the number of outstanding requests.

= Adjust request sizes.

= Optimize read ahead behavior.

o Virtual memory settings.

You can adjust virtual memory settings for optimal sustained streaming performance.

o CPU settings.

You can adjust the CPU frequency governor and other CPU configurations for maximum performance.
o Read request size.

You can increase the maximum read request size for NVIDIA HCAs.

Performance tuning for block nodes

Based on the configuration profiles applied to a particular BeeGFS building block, the volume groups
configured on the block nodes change slightly. For example, with a 24-drive EF600 block node:
* For the single base building block, including BeeGFS management, metadata, and storage services:
> 1x 2+2 RAID 10 volume group for BeeGFS management and metadata services
o 2x 8+2 RAID 6 volume groups for BeeGFS storage services
» For a BeeGFS metadata + storage building block:
o 1x 2+2 RAID 10 volume group for BeeGFS metadata services
o 2x 8+2 RAID 6 volume groups for BeeGFS storage services
* For BeeGFS storage only building block:

o 2x 10+2 RAID 6 volume groups for BeeGFS storage services

As BeeGFS needs significantly less storage space for management and metadata versus

@ storage, one option is to use smaller drives for the RAID 10 volume groups. Smaller drives
should be populated in the outermost drive slots. For more information, see the deployment
instructions.

27

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279

These are all configured by the Ansible-based deployment, along with several other settings generally
recommended to optimize performance/behavior including:
+ Adjusting the global cache block size to 32KiB and adjusting demand-based cache flushing to 80%.
« Disabling autoload balancing (ensuring controller volume assignments stay as intended).
» Enabling read caching and disabling read-ahead caching.

« Enabling write caching with mirroring and requiring battery backup, so that caches persist through failure of
a block node controller.

» Specifying the order that drives are assigned to volume groups, balancing I/O across available drive
channels.

High capacity building block

The standard BeeGFS solution design is built with high performance workloads in mind.
Customers looking for a high capacity use cases should observe the variations in design
and performance characteristics outlined here.

Hardware and software configuration

Hardware and software configuration for the high capacity building block is standard except that the EF600
controllers should be replaced with a EF300 controllers with an option to attach between 1 and 7 IOM
expansion trays with 60 drives each for each storage array, totaling 2 to 14 expansions trays per building block.

Customers deploying a high capacity building block design are likely to use only the base building block style
configuration consisting of BeeGFS management, metadata, and storage services for each node. For cost
efficiency, high capacity storage nodes should provision metadata volumes on the NVMe drives in the EF300
controller enclosure and should provision storage volumes to the NL-SAS drives in the expansion trays.

[high capacity rack diagram]
Sizing guidelines
These sizing guidelines assume high capacity building blocks are configured with one 2+2 NVMe SSD volume

group for metadata in the base EF300 enclosure and 6x 8+2 NL-SAS volume groups per IOM expansion tray
for storage.

Drive size (capacity Capacity per BB (1 Capacity per BB (2 Capacity per BB (3 Capacity per BB (4

HDDs) Tray) Trays) Trays) Trays)

4TB 439TB 878 TB 1317 TB 1756 TB
8 TB 878 TB 1756 TB 2634 TB 3512 TB
10TB 1097 TB 2195TB 3292 TB 4390 TB
12TB 1317 TB 2634 TB 3951 TB 5268 TB
16 TB 1756 TB 3512 TB 5268 TB 7024 TB
18 TB 1975TB 3951 TB 5927 TB 7902 TB

28

Deploy solution

Deployment overview

BeeGFS on NetApp can be deployed to validated file and block nodes using Ansible with
NetApp’s BeeGFS building block design.

Ansible collections and roles

The BeeGFS on NetApp solution is deployed using Ansible, a popular IT automation engine that automates
application deployments. Ansible uses a series of files collectively known as the inventory, which models the
BeeGFS file system you want to deploy.

Ansible allows companies like NetApp to expand on built-in functionality using collections available on Ansible
Galaxy (see NetApp E-Series BeeGFS collection). Collections include modules that perform specific functions
or tasks (such as creating an E-Series volume) and roles that can call multiple modules and other roles. This
automated approach reduces the time needed to deploy the BeeGFS file system and the underlying HA
cluster. Additionally, it simplifies maintaining and expanding the cluster and BeeGFS filesystem.

For additional details, see Learn about the Ansible inventory.

@ Because numerous steps are involved in deploying the BeeGFS on NetApp solution, NetApp
does not support manually deploying the solution.

Configuration profiles for BeeGFS building blocks

The deployment procedures cover the following configuration profiles:

» One base building block that includes management, metadata, and storage services.
» A second building block that includes metadata and storage services.
 Athird building block that includes only storage services.
These profiles demonstrate the full range of recommended configuration profiles for the NetApp BeeGFS

building blocks. For each deployment, the number of metadata and storage building blocks or storage
services-only building blocks may vary depending on capacity and performance requirements.

Overview of deployment steps

Deployment involves the following high-level tasks:

Hardware deployment
1. Physically assemble each building block.

2. Rack and cable hardware.
For detailed procedures, see Deploy hardware.

Software deployment
1. Set up file and block nodes.

o Configure BMC IPs on file nodes

o Install a supported operating system and configure management networking on file nodes

29

https://galaxy.ansible.com/netapp_eseries/santricity

o Configure management IPs on block nodes
Set up an Ansible control node.
Tune system settings for performance.
Create the Ansible inventory.
Define Ansible inventory for BeeGFS building blocks.
Deploy BeeGFS using Ansible.

N o o k&~ 0 DN

Configure BeeGFS clients.

The deploy procedures includes several examples where text needs to be copied to a file. Pay
close attention to any inline comments denoted by “#” or “//” characters for anything that should
or can be modified for a specific deployment. For example:

®

‘beegfs ha ntp server pools: # THIS IS AN EXAMPLE OF A COMMENT!
- "pool 0.pool.ntp.org iburst maxsources 3"
- "pool 1l.pool.ntp.org iburst maxsources 3"

Derivative architectures with variations in deployment recommendations:

* High Capacity Building Block

Learn about the Ansible inventory

Before beginning a deployment, familiarize yourself with how Ansible is configured and
used to deploy the BeeGFS on NetApp solution.

The Ansible inventory is a directory structure listing the file and block nodes for the BeeGFS file system to be
deployed across. It includes hosts, groups, and variables describing the desired BeeGFS file system. The
Ansible inventory needs to be stored on the Ansible control node, which is any machine with access to the file
and block nodes used to run the Ansible playbook. Sample inventories can be downloaded from the NetApp E-
Series BeeGFS GitHub.

Ansible modules and roles

To apply the configuration described by the Ansible inventory, use the various Ansible modules and roles
provided in the NetApp E-Series Ansible collection (available from the NetApp E-Series BeeGFS GitHub) that
deploy the end-to-end solution.

Each role in the NetApp E-Series Ansible collection is a complete end-to-end deployment of the BeeGFS on
NetApp solution. The roles use the NetApp E-Series SANTtricity, Host, and BeeGFS collections that allow you to
configure the BeeGFS file system with HA (High Availability). You can then provision and map storage, and
ensure the cluster storage is ready for use.

While in-depth documentation is provided with the roles, the deployment procedures describe how to use the
role to deploy a NetApp Verified Architecture using the second generation BeeGFS building block design.

Although the deployment steps attempt to provide enough detail so that prior experience with
Ansible is not a prerequisite, you should have some familiarity with Ansible and related
terminology.

30

https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4

Inventory layout for a BeeGFS HA cluster
Define a BeeGFS HA cluster using the Ansible inventory structure.

Anyone with previous Ansible experience should be aware that the BeeGFS HA role implements a custom
method for discovering which variables (or facts) apply to each host. This design simplifies structuring the
Ansible inventory to describe resources that can run on multiple servers.

An Ansible inventory typically consists of the files in host vars and group vars, along with an
inventory.yml file that assigns hosts to specific groups (and potentially groups to other groups).

@ Don’t create any files with the content in this subsection, which is intended as an example only.

Although this configuration is predetermined based on the configuration profile, you should have a general
understanding of how everything is laid out as an Ansible inventory, as follows:

BeeGFS HA (High Availability) cluster inventory.
all:
children:
Ansible group representing all block nodes:
eseries storage systems:
hosts:
netappOl:
netapp02:
Ansible group representing all file nodes:

ha cluster:

children:
meta 0l1: # Group representing a metadata service with ID 01.
hosts:
beegfs 01: # This service is preferred on the first file
node.
beegfs 02: # And can failover to the second file node.
meta 02: # Group representing a metadata service with ID 02.
hosts:
beegfs 02: # This service is preferred on the second file
node.

beegfs 01: # And can failover to the first file node.

For each service, an additional file is created under group_ vars describing its configuration:

31

meta 01 - BeeGFS HA Metadata Resource Group
beegfs ha beegfs meta conf resource group options:
connMetaPortTCP: 8015
connMetaPortUDP: 8015
tuneBindToNumaZone: 0
floating ips:
- ilb: <IP>/<SUBNET_MASK>
- i2b: <IP>/<SUBNET MASK>
Type of BeeGFS service the HA resource group will manage.
beegfs service: metadata # Choices: management, metadata, storage.
What block node should be used to create a volume for this service:
beegfs targets:
netappOl:
eseries storage pool configuration:
- name: beegfs ml mZ m5 mb6
raid level: raidl
criteria drive count: 4
common volume configuration:
segment size kb: 128
volumes:
- size: 21.25

owning controller: A

This layout allows the BeeGFS service, network, and storage configuration for each resource to be defined in a
single place. Behind the scenes, the BeeGFS role aggregates the necessary configuration for each file and
block node based on this inventory structure.

The BeeGFS numerical and string node ID for each service is automatically configured based
on the group name. Thus, in addition to the general Ansible requirement for group names to be
@ unique, groups representing a BeeGFS service must end in a number that is unique for the type
of BeeGFS service the group represents. For example, meta_01 and stor_01 are allowed, but
metadata_01 and meta_01 are not.
Review best practices

Follow the best practice guidelines when deploying the BeeGFS on NetApp solution.

Standard conventions

When physically assembling and creating the Ansible inventory file, follow these standard conventions (for
more information, see Create the Ansible inventory).

* File node host names are sequentially numbered (h01-hN) with lower numbers at the top of the rack and
higher numbers at the bottom.

For example, the naming convention [location] [row] [rack]hN looks like: beegfs 01.

» Each block node is comprised of two storage controllers, each with their own host name.

32

A storage array name is used to refer to the whole block storage system as part of an Ansible inventory.
The storage array names should be sequentially numbered (a01 - aN), and the host names for individual
controllers are derived from that naming convention.

For example, a block node named ictad22a01 typically can have host names configured for each
controller like ictad22a01-a and ictad22a01-b, but be referred to in an Ansible inventory as
netapp O1.

* File and block nodes within the same building block share the same numbering scheme and are adjacent
to each other in the rack with both file nodes on top and both block nodes directly underneath them.

For example, in the first building block, file nodes h01 and h02 are both directly connected to block nodes
a01 and a02. From top to bottom, the host names are h01, h02, a01, and a02.

« Building blocks are installed in sequential order based on their host names, so that lower numbered host
names are at the top of the rack and higher numbered host names are at the bottom.

The intent is to minimize the length of cable running to the top of rack switches, and to define a standard
deployment practice to simplify troubleshooting. For datacenters where this is not allowed due to concerns
around rack stability, the inverse is certainly allowed, populating the rack from the bottom up.

InfiniBand storage network configuration

Half the InfiniBand ports on each file node are used to connect directly to block nodes. The other half are
connected to the InfiniBand switches and are used for BeeGFS client-server connectivity. When determining
the size of the IPolB subnets that are used for BeeGFS clients and servers, you must consider the anticipated
growth of your compute/GPU cluster and BeeGFS file system. If you must deviate from the recommended IP
ranges, keep in mind that each direct connect in a single building block has a unique subnet and there is no
overlap with subnets used for client-server connectivity.

Direct connects

File and block nodes within each building block always use the IPs in the following table for their direct

connects.

®

File node
Odd (h1)
Odd (h1)
Odd (h1)

(h1)

IB port
i1a
i2a
i3a
i4a
i1a
i2a
i3a
i4a

IP address

192.168.1.10
192.168.3.10
192.168.5.10
192.168.7.10
192.168.2.10
192.168.4.10
192.168.6.10
192.168.8.10

Block node
Odd (c1)
Odd (c1)
Even (c2)
Even (c2)
Odd (c1)
Odd (c1)
Even (c2)
Even (c2)

IB port
2a
2a
2a
2a
2b
2b
2b
2b

Physical IP

192.168.1.100
192.168.3.100
192.168.5.100
192.168.7.100
192.168.2.100
192.168.4.100
192.168.6.100
192.168.8.100

This addressing scheme adheres to the following rule: The third octet is always odd or even,
which depends on whether the file node is odd or even.

Virtual IP

192.168.1.101
192.168.3.101
192.168.5.101
192.168.7.101
192.168.2.101
192.168.4.101
192.168.6.101
192.168.8.101

33

BeeGFS client-server IPolB addressing schemes

Each file node runs multiple BeeGFS server services (management, metadata, or storage). To allow each
service to fail over independently to the other file node, each is configured with unique IP addresses that can
float between both nodes (sometimes referred to as a logical interface or LIF).

While not mandatory, this deployment presumes the following IPolB subnet ranges are in use for these
connections and defines a standard addressing scheme that applies the following rules:

» The second octet is always odd or even, based on whether the file node InfiniBand port is odd or even.

* BeeGFS cluster IPs are always xxx. 127.100.yyy Or xxx.128.100.yyy.
In addition to the interface used for in-band OS management, additional interfaces can be used
by Corosync for cluster heart beating and synchronization. This ensures that the loss of a single
interface does not bring down the entire cluster.

* The BeeGFS Management service is always at xxx.yyy.101.0 or xxx.yyy.102.0.

* BeeGFS Metadata services are always at xxx.yyy.101.zzz Or xxx.yyy.102.zzz.

* BeeGFS Storage services are always at xxx.yyy.103.zzz Or xxx.yyy.104.zzz.

* Addresses in the range 100.xxx.1.1 through 100.xxx.99.255 are reserved for clients.

IPoIB single subnet addressing scheme

This deployment guide will utilize a single subnet schema given the advantages listed in the software
architecture.

Subnet: 100.127.0.0/16
The following table provides the range for a single subnet: 100.127.0.0/16.

Purpose InfiniBand port IP address or range
BeeGFS Cluster IP i1b or i4b 100.127.100.1 - 100.127.100.255
BeeGFS Management i1b 100.127.101.0
i2b 100.127.102.0
BeeGFS Metadata i1b or i3b 100.127.101.1 - 100.127.101.255
i2b or i4b 100.127.102.1 - 100.127.102.255
BeeGFS Storage i1b or i3b 100.127.103.1 - 100.127.103.255
i2b or i4b 100.127.104.1 - 100.127.104.255
BeeGFS Clients (varies by client) 100.127.1.1 - 100.127.99.255

IPoIB two subnet addressing scheme

A two subnet addressing scheme is no longer recommended, but can still be implemented. Refer to the tables
below for a recommended two subnet scheme.

Subnet A: 100.127.0.0/16
The following table provides the range for Subnet A: 100.127.0.0/16.

34

Purpose InfiniBand port IP address or range

BeeGFS Cluster IP i1b 100.127.100.1 - 100.127.100.255
BeeGFS Management i1b 100.127.101.0

BeeGFS Metadata i1b ori3b 100.127.101.1 - 100.127.101.255
BeeGFS Storage i1b ori3b 100.127.103.1 - 100.127.103.255
BeeGFS Clients (varies by client) 100.127.1.1 - 100.127.99.255

Subnet B: 100.128.0.0/16
The following table provides the range for Subnet B: 100.128.0.0/16.

Purpose InfiniBand port IP address or range

BeeGFS Cluster IP i4b 100.128.100.1 - 100.128.100.255
BeeGFS Management i2b 100.128.102.0

BeeGFS Metadata i2b or i4b 100.128.102.1 - 100.128.102.255
BeeGFS Storage i2b or i4b 100.128.104.1 - 100.128.104.255
BeeGFS Clients (varies by client) 100.128.1.1 - 100.128.99.255

Not all IPs in the above ranges are used in this NetApp Verified Architecture. They demonstrate
how IP addresses can be pre-allocated to allow easy file system expansion using a consistent

@ IP addressing scheme. In this scheme, BeeGFS file nodes and service IDs correspond with the
fourth octet of a well-known range of IPs. The file system could certainly scale beyond 255
nodes or services if needed.

Deploy hardware

Each building block consists of two validated x86 file nodes directly connected to two
block nodes using HDR (200GDb) InfiniBand cables.

A minimum of two building blocks are required to establish quorum in the failover cluster. A two-

@ node cluster has limitations that might prevent a successful failover from occurring. You can
configure a two-node cluster by incorporating a third device as a tiebreaker; however, this
documentation does not describe that design.

The following steps are identical for each building block in the cluster, regardless of whether it is used to run
both BeeGFS metadata and storage services, or just storage services, unless it is otherwise noted.
Steps

1. Set up each BeeGFS file node with four Host Channel Adapters (HCAs) using the models specified in the
Technical requirements. Insert the HCAs into the PCle slots of your file node according to the specifications
below:

o Lenovo ThinkSystem SR665 V3 Server: Use PCle slots 1, 2, 4, and 5.
> Lenovo ThinkSystem SR665 Server: Use PCle slots 2, 3, 5, and 6.

2. Configure each BeeGFS block node with a dual-port 200Gb Host Interface Card (HIC) and install the HIC
in each of its two storage controllers.

35

Rack the building blocks so the two BeeGFS file nodes are above the BeeGFS block nodes. The following
figure shows the correct hardware configuration for the BeeGFS building block using Lenovo ThinkSystem
SR665 V3 servers as the file nodes (rear view).

Ll

111l
ioio!

(D The power supply configuration for production use cases should typically use redundant
PSUs.

3. If needed, install the drives in each of the BeeGFS block nodes.

a. If the building block will be used to run BeeGFS metadata and storage services and smaller drives are
used for metadata volumes, verify that they are populated in the outermost drive slots, as shown in the
figure below.

b. For all building block configurations, if a drive enclosure is not fully populated, make sure that an equal
number of drives are populated in slots 0—11 and 12—-23 for optimal performance.

36

RAID 6 (8+2) Data

P — N ——— I — |
LIl
© o%® o e
=)
L
a_e L)
= e
llegeg 0 e g
Sele o %
®e®% _ o e
~ ~ G
K _ M
1 e
1 -
) e
] o o
= .A
@ ® -
| ._
] |
“ ._
=l |
“ ‘_
H i
.
.
.

1
11
000000000000 008 ©OSULE

I PN .. Il *00°
@ o 4 S MY
Toior §& e

RAID 6 (8+2) Data
RAID 1 (2+2) Metadata

-dh 00000000000000000 0 0 0000000000)
e

ul. M ul. ﬁ..ulr =

4. Connect the block and file nodes using the 1m InfiniBand HDR 200Gb direct attach copper cables, so that
they match the topology shown in the following figure.

37

The nodes across multiple building blocks are never directly connected. Each building block
should be treated as a standalone unit and all communication between building blocks
occurs through network switches.

5. Connect the remaining InfiniBand ports on the file node to the storage network’s InfiniBand switch using the
2m InfiniBand cables specific to your InfiniBand storage switch.

When using splitter cables to connect the storage switch to file nodes, one cable should branch out from
the switch and connect to the ports outlined in light green. Another splitter cable should branch out from the
switch and connect to the ports outlined in dark green.

Additionally, for storage networks with redundant switches, ports outlined in light green should connect to
one switch, while ports in dark green should connect to another switch.

6. As needed, assemble additional building blocks following the same cabling guidelines.

@ The total number of building blocks that can be deployed in a single rack depends on the
available power and cooling at each site.

Deploy software

Set up file nodes and block nodes

While most software configuration tasks are automated using the NetApp-provided
Ansible collections, you must configure networking on the baseboard management
controller (BMC) of each server and configure the management port on each controller.

Set up file nodes

1. Configure networking on the baseboard management controller (BMC) of each server.

To learn how to configure networking for the validated Lenovo SR665 V3 file nodes, see the Lenovo
ThinkSystem Documentation.

38

https://pubs.lenovo.com/sr665-v3/
https://pubs.lenovo.com/sr665-v3/

A baseboard management controller (BMC), sometimes referred to as a service processor,
is the generic name for the out-of-band management capability built into various server

@ platforms that can provide remote access even if the operating system is not installed or
accessible. Vendors typically market this functionality with their own branding. For example,
on the Lenovo SR665, the BMC is referred to as the Lenovo XClarity Controller (XCC).

2. Configure the system settings for maximum performance.
You configure the system settings using the UEFI setup (formerly known as the BIOS) or by using the
Redfish APIs provided by many BMCs. The system settings vary based on the server model used as a file
node.

To learn how to configure the system settings for the validated Lenovo SR665 V3 file nodes, see Tune
system settings for performance.

3. Install Red Hat Enterprise Linux (RHEL) 9.4 and configure the host name and network port used to
manage the operating system including SSH connectivity from the Ansible control node.

Do not configure IPs on any of the InfiniBand ports at this time.

While not strictly required, subsequent sections presume that host names are sequentially
numbered (such as h1-hN) and refer to tasks that should be completed on odd versus even
numbered hosts.

4. Use Red Hat Subscription Manager to register and subscribe the system to allow installation of the
required packages from the official Red Hat repositories and to limit updates to the supported version of
Red Hat: subscription-manager release --set=9.4. Forinstructions, see How to register and
subscribe a RHEL system and How to limit updates.

5. Enable the Red Hat repository containing the packages required for high availability.

subscription-manager repo-override --repo=rhel-9-for-x86 64
-highavailability-rpms --add=enabled:1

6. Update all HCA firmware to the version recommended in Technology requirements using the Update file
node adapter firmware guide.

Set up block nodes
Set up the EF600 block nodes by configuring the management port on each controller.
1. Configure the management port on each EF600 controller.
For instructions on configuring ports, go to the E-Series Documentation Center.
2. Optionally, set the storage array name for each system.

Setting a name can make it easier to refer to each system in subsequent sections. For instructions on
setting the array name, go to the E-Series Documentation Center.

39

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

While not strictly required, subsequent topics presume storage array names are sequentially
numbered (such as c¢1 - cN) and refer to the steps that should be completed on odd versus even
numbered systems.

Tune file node system settings for performance

To maximize performance, we recommend configuring the system settings on the server
model you use as your file nodes.

The system settings vary depending on the server model you use as your file node. This topic describes how
to configure the system settings for the validated Lenovo ThinkSystem SR665 server file nodes.

Use the UEFI interface to tune system settings

The Lenovo SR665 V3 server’s system firmware contains numerous tuning parameters that can be set through
the UEFI interface. These tuning parameters can affect all aspects of how the server functions and how well
the server performs.

Under UEFI Setup > System Settings, adjust the following system settings:

Operating Mode menu

System Setting Change to
Operating Mode Custom
cTDP Manual
cTDP Manual 350
Package Power Limit Manual
Efficiency Mode Disable
Global-Cstate-Control Disable
SOC P-states PO

DF C-States Disable
P-State Disable
Memory Power Down Enable Disable
NUMA Nodes per Socket NPS1

40

Devices and I/O ports menu

System Setting Change to
IOMMU Disable

Power menu

System Setting Change to
PCle Power Brake Disable

Processors menu

System Setting Change to
Global C-state Control Disable
DF C-States Disable
SMT Mode Disable
CPPC Disable

Use Redfish API to tune system settings

In addition to using UEFI Setup, you can use the Redfish API to change system settings.

Example

curl --request PATCH \
--url https://<BMC_IP ADDRESS>/redfish/vl/Systems/1/Bios/Pending \
—-—user <BMC USER>:<BMC- PASSWORD> \
--header 'Content-Type: application/json' \
-—-data '{
"Attributes": {
"OperatingModes ChooseOperatingMode": "CustomMode",
"Processors cTDP": "Manual",
"Processors PackagePowerLimit": "Manual",
"Power EfficiencyMode": "Disable",
"Processors GlobalC stateControl": "Disable",
"Processors SOCP states": "PO",
"Processors DFC States": "Disable",
"Processors P State": "Disable",
"Memory MemoryPowerDownEnable": "Disable",
"DevicesandIOPorts IOMMU": "Disable",
"Power PCIePowerBrake": "Disable",
"Processors GlobalC stateControl": "Disable",
"Processors DFC States": "Disable",
"Processors SMTMode": "Disable",
"Processors_ CPPC": "Disable",
"Memory NUMANodesperSocket":"NPS1"
}
}

For detailed information on the Redfish schema, see the DMTF website.

Set up an Ansible control node

To set up an Ansible control node, you must designate a virtual or physical machine with
network access to all file and block nodes deployed for the BeeGFS on NetApp solution.

Review the Technical requirements for a list of recommended package versions. The following steps were
tested on Ubuntu 22.04. For steps specific to your preferred Linux distribution, see the Ansible documentation.

1. From your Ansible control node, install the following Python and Python Virtual Environment packages.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Create a Python virtual environment.

42

https://redfish.dmtf.org/redfish/schema_index
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv
3. Activate the virtual environment.
source ~/pyenv/bin/activate
4. Install the required Python packages within the activated virtual environment.
pip install ansible netaddr cryptography passlib
5. Install the BeeGFS collection using Ansible Galaxy.
ansible-galaxy collection install netapp eseries.beegfs

6. Verify the installed versions of Ansible, Python, and the BeeGFS collection match the Technical
requirements.

ansible --version

ansible-galaxy collection list netapp eseries.beegfs

7. Set up passwordless SSH to allow Ansible to access the remote BeeGFS file nodes from the Ansible
control node.

a. On the Ansible control node, if needed, generate a pair of public keys.
ssh-keygen
b. Set up passwordless SSH to each of the file nodes.

ssh-copy-id <ip or hostname>

@ Do not set up passwordless SSH to the block nodes. This is neither supported nor required.

Create the Ansible inventory

To define the configuration for file and block nodes, you create an Ansible inventory that
represents the BeeGFS file system you want to deploy. The inventory includes hosts,
groups, and variables describing the desired BeeGFS file system.

43

Step 1: Define configuration for all building blocks

Define the configuration that applies to all building blocks, regardless of which configuration profile you may
apply to them individually.

Before you begin

* Choose a subnet addressing scheme for your deployment. Due to the benefits listed in the software
architecture, it is recommended to use a single subnet addressing scheme.

Steps

1. On your Ansible control node, identify a directory that you want to use to store the Ansible inventory and
playbook files.

Unless otherwise noted, all files and directories created in this step and following steps are created relative
to this directory.

2. Create the following subdirectories:
host vars
group vars
packages

3. Create a subdirectory for cluster passwords and secure the file by encrypting it with Ansible Vault (see
Encrypting content with Ansible Vault):

a. Create the subdirectory group vars/all.
b. In the group vars/all directory, create a passwords file labeled passwords.yml.

C. Populate the passwords.yml file with the following, replacing all username and password
parameters according to your configuration:

44

https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password
eseries password: <PASSWORD>

Credentials for BeeGFS file nodes
ssh ha user: <USERNAME>
ssh _ha become pass: <PASSWORD>

Credentials for HA cluster

ha cluster username: <USERNAME>

ha cluster password: <PASSWORD>

ha cluster password shabl2Z2 salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:
Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and
other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc username: <USERNAME>

bmc password: <PASSWORD>

d. Run ansible-vault encrypt passwords.yml and set a vault password when prompted.

Step 2: Define configuration for individual file and block nodes

Define the configuration that applies to individual file nodes and individual building block nodes.

1. Under host_vars/, create a file for each BeeGFS file node named <HOSTNAME> . ym1 with the following
content, paying special attention to the notes regarding content to populate for BeeGFS cluster IPs and
host names ending in odd versus even numbers.

Initially, the file node interface names do match what is listed here (such as ibO or ibs1f0). These custom
names are configured in Step 4: Define configuration that should apply to all file nodes.

45

ansible host: “<MANAGEMENT IP>"
eseries ipoib interfaces: # Used to configure BeeGFS cluster IP
addresses.
- name: ilb
address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16
- name: 1i4b
address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16
beegfs ha cluster node ips:
- <MANAGEMENT IP>
- <ilb BEEGFS_ CLUSTER IP>
- <i4b BEEGFS CLUSTER IP>
NVMe over InfiniBand storage communication protocol information
For odd numbered file nodes (i.e., h01l, h03, ..):
eseries nvme ib interfaces:
- name: ila
address: 192.168.1.10/24
configure: true
- name: iZ2a
address: 192.168.3.10/24
configure: true
- name: i3a
address: 192.168.5.10/24
configure: true
- name: i4da
address: 192.168.7.10/24
configure: true
For even numbered file nodes (i.e., h02, h04, ..):
NVMe over InfiniBand storage communication protocol information
eseries nvme ib interfaces:
- name: ila
address: 192.168.2.10/24
configure: true
- name: iZ2a
address: 192.168.4.10/24
configure: true
- name: i3a
address: 192.168.6.10/24
configure: true
- name: i4da
address: 192.168.8.10/24

configure: true

If you have already deployed the BeeGFS cluster, you must stop the cluster before adding

@ or changing statically configured IP addresses, including cluster IPs and IPs used for
NVMe/IB. This is required so these changes take effect properly and do not disrupt cluster
operations.

2. Under host_vars/, create a file for each BeeGFS block node named <HOSTNAME>. yml and populate it
with the following content.

Pay special attention to the notes regarding content to populate for storage array names ending in odd
versus even numbers.

For each block node, create one file and specify the <MANAGEMENT IP> for one of the two controllers
(usually A).

eseries system name: <STORAGE ARRAY NAME>
eseries system api url: https://<MANAGEMENT IP>:8443/devmgr/v2/
eseries initiator protocol: nvme ib
For odd numbered block nodes (i.e., a0l, a03, ..):
eseries controller nvme ib port:
controller a:
- 192.168.1.101
- 192.168.2.101
- 192.168.1.100
- 192.168.2.100
controller Db:
- 192.168.
- 192.168.4.101
- 192.168.3.100
- 192.168.4.100
For even numbered block nodes (i.e., a02, a04, ..):

.101

w & W

eseries controller nvme ib port:

controller a:

- 192.168.5.101
- 192.168.6.101
- 192.168.5.100
- 192.168.6.100
controller Db:
- 192.168.7.101
- 192.168.8.101
- 192.168.7.100
- 192.168.8.100

Step 3: Define configuration that should apply to all file and block nodes

You can define configuration common to a group of hosts under group vars in a file name that corresponds
with the group. This prevents repeating a shared configuration in multiple places.

47

About this task

Hosts can be in more than one group, and at runtime, Ansible chooses what variables apply to a particular host
based on its variable precedence rules. (For more information on these rules, see the Ansible documentation
for Using variables.)

Host-to-group assignments are defined in the actual Ansible inventory file, which is created towards the end of
this procedure.

Step

In Ansible, any configuration you want to apply to all hosts can be defined in a group called A11. Create the file
group vars/all.yml with the following content:

ansible python interpreter: /usr/bin/python3
beegfs ha ntp server pools: # Modify the NTP server addressess if
desired.

- "pool 0O.pool.ntp.org iburst maxsources 3"

- "pool 1l.pool.ntp.org iburst maxsources 3"

Step 4: Define configuration that should apply to all file nodes

The shared configuration for file nodes is defined in a group called ha cluster. The steps in this section
build out the configuration that should be included in the group vars/ha cluster.yml file.

Steps

1. At the top of the file, define the defaults, including the password to use as the sudo user on the file nodes.

ha cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources
below.

Cluster node defaults

ansible ssh user: {{ ssh ha user }}

ansible become password: {{ ssh ha become pass }}

eseries ipoib default hook templates:

- 99-multihoming.j2 # This is required for single subnet
deployments, where static IPs containing multiple IB ports are in the
same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.
If the following options are specified, then Ansible will
automatically reboot nodes when necessary for changes to take effect:
eseries common allow host reboot: true
eseries common reboot test command: "! systemctl status
eseries nvme ib.service || systemctl --state=exited | grep
eseries nvme ib.service"
eseries ib opensm options:

virt enabled: "2"

virt max ports in process: "0O"

48

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

If the ansible ssh useris already root, then you can optionally omit the
ansible become password and specify the --ask-become-pass option when running
the playbook.

2. Optionally, configure a name for the high-availability (HA) cluster and specify a user for intra-cluster
communication.

If you are modifying the private IP addressing scheme, you must also update the default
beegfs ha mgmtd floating ip. This must match what you configure later for the BeeGFS
Management resource group.

Specify one or more emails that should receive alerts for cluster events using
beegfs ha alert email list.

49

3.

50

Cluster information

beegfs ha firewall configure: True

eseries beegfs ha disable selinux: True

eseries selinux state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs ha cluster name: hacluster # BeeGFS HA cluster
name.

beegfs ha cluster username: "{{ ha cluster username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.
beegfs ha cluster password: "{{ ha cluster password }}" # Parameter for
BeeGFS HA cluster username's password in the passwords file.
beegfs ha cluster password shab5l2 salt: "{{
ha cluster password shabl2 salt }}" # Parameter for BeeGFS HA cluster
username's password salt in the passwords file.
beegfs ha mgmtd floating ip: 100.127.101.0 # BeeGFS management
service IP address.
Email Alerts Configuration
beegfs ha enable alerts: True
beegfs ha alert email list: ["email@example.com"] # E-mail recipient
list for notifications when BeeGFS HA resources change or fail. Often a
distribution list for the team responsible for managing the cluster.
beegfs ha alert conf ha group options:

mydomain: “example.com”
The mydomain parameter specifies the local internet domain name. This
is optional when the cluster nodes have fully qualified hostnames (i.e.
host.example.com) .
Adjusting the following parameters is optional:
beegfs ha alert timestamp format: "$Y-%m-%d %H:%M:%S.3%N" #%H:%M:%S.5%N
beegfs ha alert verbosity: 3
1) high-level node activity
3) high-level node activity + fencing action information + resources
(filter on X-monitor)
5) high-level node activity + fencing action information + resources

While seemingly redundant, beegfs ha mgmtd floating ip is important when you

@ scale the BeeGFS file system beyond a single HA cluster. Subsequent HA clusters are
deployed without an additional BeeGFS management service and point at the management
service provided by the first cluster.

Configure a fencing agent. (For more details, see Configure fencing in a Red Hat High Availability cluster.)
The following output shows examples for configuring common fencing agents. Choose one of these
options.

For this step, be aware that:

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

> By default, fencing is enabled, but you need to configure a fencing agent.

° The <HOSTNAME> specified in the pcmk_host map or pcmk _host 1ist must correspond with the
hostname in the Ansible inventory.

> Running the BeeGFS cluster without fencing is not supported, particularly in production. This is largely
to ensure when BeeGFS services, including any resource dependencies like block devices, fail over
due to an issue, there is no risk of concurrent access by multiple nodes that result in file system
corruption or other undesirable or unexpected behavior. If fencing must be disabled, refer to the
general notes in the BeeGFS HA role’s getting started guide and set
beegfs ha cluster crm config options["stonith-enabled"] to falsein
ha cluster.yml.

> There are multiple node-level fencing devices available, and the BeeGFS HA role can configure any
fencing agent available in the Red Hat HA package repository. When possible, use a fencing agent that
works through the uninterruptible power supply (UPS) or rack power distribution unit (rPDU), because
some fencing agents such as the baseboard management controller (BMC) or other lights-out devices
that are built into the server might not respond to the fence request under certain failure scenarios.

51

4.

52

Fencing configuration:
OPTION 1: To enable fencing using APC Power Distribution Units
(PDUS) :
beegfs ha fencing agents:
fence apc:
- ipaddr: <PDU IP ADDRESS>
login: "{{ apc_username }}" # Parameter for APC PDU username 1in
the passwords file.
passwd: "{{ apc password }}" # Parameter for APC PDU password in
the passwords file.
pcmk host map:
"<HOSTNAME>:<PDU PORT>, <PDU PORT>; <HOSTNAME>:<PDU PORT>,<PDU PORT>"
OPTION 2: To enable fencing using the Redfish APIs provided by the
Lenovo XCC (and other BMCs) :
redfish: &redfish
username: "{{ bmc username }}" # Parameter for XCC/BMC username in
the passwords file.
password: "{{ bmc password }}" # Parameter for XCC/BMC password in
the passwords file.
ssl _insecure: 1 # If a valid SSL certificate is not available
specify “1”.
beegfs ha fencing agents:
fence redfish:
- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish
- pcmk host list: <HOSTNAME>
ip: <BMC_IP>
<<: *redfish
For details on configuring other fencing agents see
https://access.redhat.com/documentation/en-
us/red hat enterprise linux/9/html/configuring and managing high avai
lability clusters/assembly configuring-fencing-configuring-and-
managing-high-availability-clusters.

Enable recommended performance tuning in the Linux OS.

While many users find the default settings for the performance parameters generally work well, you can
optionally change the default settings for a particular workload. As such, these recommendations are
included in the BeeGFS role, but are not enabled by default to ensure users are aware of the tuning

applied to their file system.

To enable performance tuning, specify:

Performance Configuration:
beegfs ha enable performance tuning: True

5. (Optional) You can adjust the performance tuning parameters in the Linux OS as needed.

For a comprehensive list of the available tuning parameters that you can adjust, see the Performance
Tuning Defaults section of the BeeGFS HA role in E-Series BeeGFS GitHub site. The default values can
be overridden for all nodes in the cluster in this file or the host_vars file for an individual node.

. To allow full 200Gb/HDR connectivity between block and file nodes, use the Open Subnet Manager
(OpenSM) package from the NVIDIA Open Fabrics Enterprise Distribution (MLNX_OFED). The
MLNX_OFED version in listed the file node requirements comes bundled with the recommended OpenSM
packages. Although deployment using Ansible is supported, you must first install the MLNX_OFED driver
on all file nodes.

a. Populate the following parameters in group vars/ha cluster.yml (adjust packages as needed):

OpenSM package and configuration information
eseries ib opensm options:
virt enabled: "2"

virt max ports in process: "0O"

. Configure the udev rule to ensure consistent mapping of logical InfiniBand port identifiers to underlying
PCle devices.

The udev rule must be unique to the PCle topology of each server platform used as a BeeGFS file node.

Use the following values for verified file nodes:

53

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml

Ensure Consistent Logical IB Port Numbering
OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:
eseries ipoib udev rules:

"0000:01:00.0": ila

"0000:01:00.1": ilb

"0000:41:00.0": i2a

"0000:41:00.1": i2b

"0000:81:00.0": i3a

"0000:81:00.1": i3Db

"0000:a21:00.0": ida

"0000:a21:00.1": i4db

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:
eseries ipoib udev rules:

"0000:41:00.0": ila

"0000:41:00.1": ilb

"0000:01:00.0": i2a

"0000:01:00.1": i2b

"0000:a21:00.0": i3a

"0000:21:00.1": i3Db

"0000:81:00.0": i4da

"0000:81:00.1": i4db

8. (Optional) Update the metadata target selection algorithm.

beegfs ha beegfs meta conf ha group options:
tuneTargetChooser: randomrobin

In verification testing, randomrobin was typically used to ensure that test files were evenly
distributed across all BeeGFS storage targets during performance benchmarking (for more

@ information on benchmarking, see the BeeGFS site for Benchmarking a BeeGFS System).
With real world use, this might cause lower numbered targets to fill up faster than higher
numbered targets. Omitting randomrobin and just using the default randomized value
has been shown to provide good performance while still utilizing all available targets.

Step 5: Define the configuration for the common block node

The shared configuration for block nodes is defined in a group called eseries storage systems. The
steps in this section build out the configuration that should be included in the group vars/
eseries storage systems.yml file.

Steps

1. Set the Ansible connection to local, provide the system password, and specify if SSL certificates should be
verified. (Normally, Ansible uses SSH to connect to managed hosts, but in the case of the NetApp E-Series
storage systems used as block nodes, the modules use the REST API for communication.) At the top of

54

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

the file, add the following:

eseries storage systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems
here:

ansible connection: local

eseries system password: {{ eseries password }} # Parameter for E-Series
storage array password in the passwords file.

eseries validate certs: false

2. To ensure optimal performance, install the versions listed for block nodes in Technical requirements.

Download the corresponding files from the NetApp Support site. You can either upgrade them manually or
include them in the packages/ directory of the Ansible control node, and then populate the following
parameters in eseries storage systems.yml to upgrade using Ansible:

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed) :
eseries firmware firmware: "packages/RCB_11.80GA 6000 64ccOee3.dlp"
eseries firmware nvsram: "packages/N6000-880834-D08.dlp"

. Download and install the latest drive firmware available for the drives installed in your block nodes from the
NetApp Support site. You can either upgrade them manually or include them in the packages/ directory of
the Ansible control node, and then populate the following parameters in

eseries storage systems.yml to upgrade using Ansible:

eseries drive firmware firmware list:
- "packages/<FILENAME>.dlp"
eseries drive firmware upgrade drives online: true

Setting eseries drive firmware upgrade drives online to false will speed up
the upgrade, but should not be done until after BeeGFS is deployed. This is because that

@ setting requires stopping all I/O to the drives before the upgrade to avoid application errors.
Although performing an online drive firmware upgrade before configuring volumes is still
quick, we recommend you always set this value to true to avoid issues later.

4. To optimize performance, make the following changes to the global configuration:

Global Configuration Defaults

eseries system cache block size: 32768

eseries system cache flush threshold: 80

eseries system default host type: linux dm-mp
eseries system autolocad balance: disabled

eseries system host connectivity reporting: disabled
eseries system controller shelf id: 99 # Required.

55

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

5. To ensure optimal volume provisioning and behavior, specify the following parameters:

Storage Provisioning Defaults

eseries volume size unit: pct

eseries volume read cache enable: true

eseries volume read ahead enable: false

eseries volume write cache enable: true

eseries volume write cache mirror enable: true

eseries volume cache without batteries: false

eseries storage pool usable drives:

990, 99:123,,99:1,99:122, 99212, 99: 21, 9913/, 99 : 210, 99 : 4,/99:19,98: 5, 99:/18/,/99: 6,
99317,9987,99816,9938,99815,9989,99214,99310, 99813, 99311, 99g12%

The value specified for eseries storage pool usable drives is specific to NetApp

(D EF600 block nodes and controls the order in which drives are assigned to new volume
groups. This ordering ensures that the 1/0 to each group is evenly distributed across
backend drive channels.

Define Ansible inventory for BeeGFS building blocks

After defining the general Ansible inventory structure, define the configuration for each
building block in the BeeGFS file system.

These deployment instructions demonstrate how to deploy a file system that consists of a base building block
including management, metadata, and storage services; a second building block with metadata and storage
services; and a third storage-only building block.

These steps are intended to show the full range of typical configuration profiles that you can use to configure
NetApp BeeGFS building blocks to meet the requirements of the overall BeeGFS file system.

In this and subsequent sections, adjust as needed to build the inventory representing the

@ BeeGFS file system that you want to deploy. In particular, use Ansible host names that
represent each block or file node and the desired IP addressing scheme for the storage network
to ensure it can scale to the number of BeeGFS file nodes and clients.

Step 1: Create the Ansible inventory file

Steps

1. Create a new inventory.yml file, and then insert the following parameters, replacing the hosts under
eseries storage systems as needed to represent the block nodes in your deployment. The names
should correspond with the name used for host vars/<FILENAME>.yml.

56

BeeGFS HA (High Availability) cluster inventory.
all:
children:
Ansible group representing all block nodes:
eseries storage systems:
hosts:
netapp 01:
netapp 02:
netapp 03:
netapp 04:
netapp 05:
netapp 06:
Ansible group representing all file nodes:
ha cluster:
children:

In the subsequent sections, you will create additional Ansible groups under ha cluster that represent
the BeeGFS services you want to run in the cluster.

Step 2: Configure the inventory for a management, metadata, and storage building block

The first building block in the cluster or base building block must include the BeeGFS management service
along with metadata and storage services:

Steps

1. In inventory.yml, populate the following parameters under ha cluster: children:

beegfs 01/beegfs 02 HA Pair (mgmt/meta/storage building block) :
mgmt:
hosts:
beegfs 01:
beegfs 02:
meta 01:
hosts:
beegfs 01:
beegfs 02:
stor 01:
hosts:
beegfs 01:
beegfs 02:
meta 02:
hosts:
beegfs 01:
beegfs 02:
stor 02:

57

hosts:
beegfs 01:
beegfs 02:
meta 03:
hosts:
beegfs 01:
beegfs 02:
stor 03:
hosts:
beegfs 01:
beegfs 02:
meta 04:
hosts:
beegfs 01:
beegfs 02:
stor 04:
hosts:
beegfs 01:
beegfs 02:
meta 05:
hosts:
beegfs 02:
beegfs 01:
stor 05:
hosts:
beegfs 02:
beegfs 01:
meta 06:
hosts:
beegfs 02:
beegfs 01:
stor 06:
hosts:
beegfs 02:
beegfs 01:
meta 07:
hosts:
beegfs 02:
beegfs 01:
stor 07:
hosts:
beegfs 02:
beegfs 01:
meta 08:
hosts:
beegfs 02:

58

beegfs 01:
stor 08:
hosts:

beegfs 02:

beegfs 01:

2. Create the file group vars/mgmt.yml and include the following:

mgmt - BeeGFS HA Management Resource Group
OPTIONAL: Override default BeeGFS management configuration:
beegfs ha beegfs mgmtd conf resource group options:
<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>
floating ips:
- ilb: 100.127.101.0/16
- i2b: 100.127.102.0/16
beegfs service: management
beegfs targets:
netapp 01:
eseries storage pool configuration:
- name: beegfs ml m2 m5 mé6
raid level: raidl
criteria drive count: 4
common volume configuration:
segment size kb: 128
volumes:
- size: 1
owning controller: A

3. Under group_vars/, create files for resource groups meta 01 through meta 08 using the following
template, and then fill in the placeholder values for each service referencing the table below:

59

meta 0X - BeeGFS HA Metadata Resource Group
beegfs ha beegfs meta conf resource group options:
connMetaPortTCP: <PORT>
connMetaPortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET> # Example: 11b:192.168.120.1/16
- <SECONDARY PORT:IP/SUBNET>
beegfs service: metadata
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidl
criteria drive count: 4
common volume configuration:
segment size kb: 128
volumes:
- size: 21.25 # SEE NOTE BELOW!
owning controller: <OWNING CONTROLLER>

The volume size is specified as a percentage of the overall storage pool (also referred to as
a volume group). NetApp highly recommends that you leave some free capacity in each pool
to allow room for SSD overprovisioning (for more information, see Introduction to NetApp
(D EF600 array). The storage pool, beegfs ml m2 m5 mé6, also allocates 1% of the pool’'s
capacity for the management service. Thus, for metadata volumes in the storage pool,
beegfs ml m2 m5 mé6, when 1.92TB or 3.84TB drives are used, set this value to 21.25;
for 7.65TB drives, set this value to 22 .25; and for 15.3TB drives, set this value to 23. 75.

File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller

meta_01.yml 8015 i1b:100.127.1 0 netapp 01 beegfs m1_ A
01.1/16 m2_m5_m6
i2b:100.127.1
02.1/16

meta_02.yml 8025 i2b:100.127.1 0 netapp_01 beegfs m1_ B
02.2/16 m2_m5_m6
i1b:100.127.1
01.2/16

meta_03.yml 8035 i3b:100.127.1 1 netapp_02 beegfs m3_ A
01.3/16 m4_m7_m8
i4b:100.127.1

02.3/16

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf
https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

File name

meta_04.yml

meta_05.yml

meta_06.yml

meta_07.yml

meta_08.yml

Port

8045

8055

8065

8075

8085

Floating IPs

i4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

i4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

NUMA zone

Block node

netapp_02

netapp_01

netapp_01

netapp_02

netapp 02

Storage pool Owning

beegfs m3_
m4_m7_m8

beegfs m1_
m2_m5_m6

beegfs m1_
m2_m5 m6

beegfs m3_
m4 _m7_m8

beegfs m3_
m4_m7_m8

template, and then fill in the placeholder values for each service referencing the example:

controller

B

4. Under group_vars/, create files for resource groups stor 01 through stor 08 using the following

61

stor 0X - BeeGFS HA Storage Resource
Groupbeegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
- <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé
criteria drive count: 10

common volume configuration:

segment size kb: 512 volumes:
- size: 21.50 # See note below! owning controller:
<OWNING CONTROLLER>
- size: 21.50 owning controller: <OWNING
CONTROLLER>
@ For the correct size to use, see Recommended storage pool overprovisioning percentages.
File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller
stor_01.yml 8013 i1b:100.127.1 0O netapp_01 beegfs_s1_s2 A
03.1/16
i2b:100.127.1
04.1/16
stor_02.yml 8023 i2b:100.127.1 0 netapp_01 beegfs s1_s2 B
04.2/16
i1b:100.127.1
03.2/16
stor_03.yml 8033 i3b:100.127.1 1 netapp_02 beegfs s3 s4 A
03.3/16
i4b:100.127.1
04.3/16
stor_04.yml 8043 i4b:100.127.1 1 netapp_02 beegfs_s3 s4 B
04.4/16
i3b:100.127.1

03.4/16

File name

stor_05.yml

stor_06.yml

stor_07.yml

stor_08.yml

Step 3: Configure the inventory for a Metadata + storage building block

Port Floating IPs NUMA zone

8053 i1b:100.127.1 0O
03.5/16
i2b:100.127.1
04.5/16

8063 i2b:100.127.1 0
04.6/16
i1b:100.127.1
03.6/16

8073 i3b:100.127.1 1
03.7/16
i4b:100.127.1
04.7/16

8083 i4b:100.127.1 1
04.8/16
i3b:100.127.1
03.8/16

Block node

netapp_01

netapp_01

netapp_02

netapp_02

Storage pool Owning
controller

beegfs s5 s6 A

beegfs s5 s6 B

beegfs s7 s8 A

beegfs s7 s8 B

These steps describe how to set up an Ansible inventory for a BeeGFS metadata + storage building block.

Steps

1. In inventory.yml, populate the following parameters under the existing configuration:

meta 09:
hosts:
beegfs 03:
beegfs 04:
stor 09:
hosts:
beegfs 03:
beegfs 04:
meta 10:
hosts:
beegfs 03:
beegfs 04:
stor 10:
hosts:
beegfs 03:
beegfs 04:
meta 11:
hosts:
beegfs 03:
beegfs 04:

2. Under group_vars/, create files for resource groups meta_ 09 through meta_16 using the following

64

stor 11:
hosts:
beegfs 03:
beegfs 04:
meta 12:
hosts:
beegfs 03:
beegfs 04:
stor 12:
hosts:
beegfs 03:
beegfs 04:
meta 13:
hosts:
beegfs 04:
beegfs 03:
stor 13:
hosts:
beegfs 04:
beegfs 03:
meta 14:
hosts:
beegfs 04:
beegfs 03:
stor 14:
hosts:
beegfs 04:
beegfs 03:
meta 15:
hosts:
beegfs 04:
beegfs 03:
stor 15:
hosts:
beegfs 04:
beegfs 03:
meta 16:
hosts:
beegfs 04:
beegfs 03:
stor 16:
hosts:
beegfs 04:
beegfs 03:

template, and then fill in the placeholder values for each service referencing the example:

meta 0OX - BeeGFS HA Metadata Resource Group
beegfs ha beegfs meta conf resource group options:

connMetaPortTCP:
connMetaPortUDP:
tuneBindToNumaZone:

<PORT>
<PORT>
<NUMA ZONE>

floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>

beegfs service:

metadata

beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:

<STORAGE POOL>
raid level: raidl

name:

criteria drive count: 4
common volume configuration:

segment size kb: 128
volumes:

- size: 21.5 # SEE NOTE BELOW!

owning controller: <OWNING CONTROLLER>

®

File name Port
meta_09.yml 8015
meta_10.yml 8025
meta_11.yml 8035
meta_12.yml 8045

Floating IPs NUMA zone

i1b:100.127.1 O
01.9/16
i2b:100.127.1
02.9/16

i2b:100.127.1 O
02.10/16
i1b:100.127.1
01.10/16

i3b:100.127.1 1
01.11/16
i4b:100.127.1
02.11/16

i4b:100.127.1 1
02.12/16
i3b:100.127.1
01.12/16

Block node

netapp_03

netapp_03

netapp_04

netapp_04

For the correct size to use, see Recommended storage pool overprovisioning percentages.

Storage pool Owning
controller

beegfs m9 A
m10_m13_m
14

beegfs m9 B
m10_m13_m
14

beegfs m11_ A
m12_m15_m
16

beegfs m11_ B
m12 m15 m
16

65

3.

66

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

meta_13.yml 8055 i1b:100.127.1 0O netapp_03 beegfs m9_ A
01.13/16 m10_m13_m
i2b:100.127.1 14
02.13/16

meta_14.yml 8065 i2b:100.127.1 0 netapp_03 beegfs m9_ B
02.14/16 m10_m13_m
i1b:100.127.1 14
01.14/16

meta_15.yml 8075 i3b:100.127.1 1 netapp_04 beegfs m11_ A
01.15/16 m12_m15_m
i4b:100.127.1 16
02.15/16

meta_16.yml 8085 i4b:100.127.1 1 netapp_04 beegfs m11_ B
02.16/16 m12_m15_m
i3b:100.127.1 16
01.16/16

Under group vars/, create files for resource groups stor 09 through stor 16 using the following
template, and then fill in the placeholder values for each service referencing the example:

stor 0X - BeeGFS HA Storage Resource Group
beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé6
criteria drive count: 10
common volume configuration:
segment size kb: 512 volumes:
- size: 21.50 # See note below!
owning controller: <OWNING CONTROLLER>
- size: 21.50 owning controller: <OWNING
CONTROLLER>

@ For the correct size to use, see Recommended storage pool overprovisioning percentages..

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_09.yml 8013 i1b:100.127.1 0O netapp_03 beegfs_s9 s1 A
03.9/16 0
i2b:100.127.1
04.9/16

stor_10.yml 8023 i2b:100.127.1 0 netapp_03 beegfs s9 s1 B
04.10/16 0
i1b:100.127.1
03.10/16

stor_11.yml 8033 i3b:100.127.1 1 netapp_04 beegfs s11 s A
03.11/16 12
i4b:100.127.1
04.11/16

stor_12.yml 8043 i4b:100.127.1 1 netapp_04 beegfs s11_s B
04.12/16 12
i3b:100.127.1
03.12/16

stor_13.yml 8053 i1b:100.127.1 0 netapp 03 beegfs s13 s A
03.13/16 14
i2b:100.127.1
04.13/16

stor_14.yml 8063 i2b:100.127.1 0 netapp_ 03 beegfs s13 s B
04.14/16 14
i1b:100.127.1
03.14/16

stor_15.yml 8073 i3b:100.127.1 1 netapp_04 beegfs s15 s A
03.15/16 16
i4b:100.127.1
04.15/16

stor_16.yml 8083 i4b:100.127.1 1 netapp_04 beegfs s15 s B
04.16/16 16
i3b:100.127.1
03.16/16

Step 4: Configure the inventory for a storage-only building block

These steps describe how to set up an Ansible inventory for a BeeGFS storage-only building block. The major
difference between setting up the configuration for a metadata + storage versus a storage-only building block is
the omission of all metadata resource groups and changing criteria drive count from 10 to 12 for each
storage pool.

Steps

1. In inventory.yml, populate the following parameters under the existing configuration:

67

beegfs 05/beegfs 06 HA Pair (storage only building block):
stor 17:
hosts:
beegfs 05:
beegfs 06:
stor 18:
hosts:
beegfs 05:
beegfs 06:
stor 19:
hosts:
beegfs 05:
beegfs 06:
stor 20:
hosts:
beegfs 05:
beegfs 06:
stor 21:
hosts:
beegfs 06:
beegfs 05:
stor 22:
hosts:
beegfs 06:
beegfs 05:
stor 23:
hosts:
beegfs 06:
beegfs 05:
stor 24:
hosts:
beegfs 06:
beegfs 05:

2. Under group vars/, create files for resource groups stor 17 through stor 24 using the following
template, and then fill in the placeholder values for each service referencing the example:

68

stor 0X - BeeGFS HA Storage Resource Group
beegfs ha beegfs storage conf resource group options:
connStoragePortTCP: <PORT>
connStoragePortUDP: <PORT>
tuneBindToNumaZone: <NUMA ZONE>
floating ips:
- <PREFERRED PORT:IP/SUBNET>
— <SECONDARY PORT:IP/SUBNET>
beegfs service: storage
beegfs targets:
<BLOCK NODE>:
eseries storage pool configuration:
- name: <STORAGE POOL>
raid level: raidé
criteria drive count: 12
common volume configuration:
segment size kb: 512
volumes:
- size: 21.50 # See note below!
owning controller: <OWNING CONTROLLER>
- size: 21.50
owning controller: <OWNING CONTROLLER>

@ For the correct size to use, see Recommended storage pool overprovisioning percentages.
File name Port Floating IPs NUMA zone Block node Storage pool Owning
controller
stor_17.yml 8013 i1b:100.127.1 0 netapp_ 05 beegfs s17 s A
03.17/16 18
i2b:100.127.1
04.17/16
stor_18.yml 8023 i2b:100.127.1 0 netapp_ 05 beegfs s17_s B
04.18/16 18
i1b:100.127.1
03.18/16
stor_19.yml 8033 i3b:100.127.1 1 netapp_06 beegfs s19 s A
03.19/16 20
i4b:100.127.1
04.19/16
stor_20.yml 8043 i4b:100.127.1 1 netapp_06 beegfs s19 s B
04.20/16 20
i3b:100.127.1
03.20/16

69

File name Port Floating IPs NUMA zone Block node Storage pool Owning

controller

stor_21.yml 8053 i1b:100.127.1 0O netapp_05 beegfs_s21_ s A
03.21/16 22
i2b:100.127.1
04.21/16

stor_22.yml 8063 i2b:100.127.1 0 netapp_05 beegfs_s21 s B
04.22/16 22
i1b:100.127.1
03.22/16

stor_ 23.yml 8073 i3b:100.127.1 1 netapp_06 beegfs s23 s A
03.23/16 24
i4b:100.127.1
04.23/16

stor_24.yml 8083 i4b:100.127.1 1 netapp_06 beegfs s23 s B
04.24/16 24
i3b:100.127.1
03.24/16

Deploy BeeGFS

Deploying and managing the configuration involves running one or more playbooks that
contain the tasks Ansible needs to execute and bring the overall system to the desired
state.

While all tasks can be included in a single playbook, for complex systems, this quickly becomes unwieldy to
manage. Ansible allows you to create and distribute roles as a way of packaging reusable playbooks and
related content (for example: default variables, tasks, and handlers). For more information, see the Ansible
documentation for Roles.

Roles are often distributed as part of an Ansible collection containing related roles and modules. Thus, these
playbooks primarily just import several roles distributed in the various NetApp E-Series Ansible collections.

Currently, at least two building blocks (four file nodes) are required to deploy BeeGFS, unless a
separate quorum device is configured as a tiebreaker to mitigate any issues when establishing
quorum with a two-node cluster.

Steps
1. Create a new playbook. yml file and include the following:

BeeGFS HA (High Availability) cluster playbook.
- hosts: eseries storage systems
gather facts: false
collections:
- netapp eseries.santricity
tasks:
- name: Configure NetApp E-Series block nodes.

70

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

import role:
name: nar santricity management
- hosts: all
any errors fatal: true
gather facts: false
collections:
- netapp eseries.beegfs
pre tasks:
- name: Ensure a supported version of Python is available on all
file nodes.
block:
- name: Check if python is installed.
failed when: false
changed when: false
raw: python --version
register: python version
- name: Check if python3 is installed.
raw: python3 --version
failed when: false
changed when: false
register: python3 version
when: 'python version["rc"] != 0 or (python version["stdout"]
| regex replace("Python ", "")) is not version("3.0", ">=")'
- name: Install python3 if needed.
raw: |
id=$(grep "~ID=" /etc/*release* | cut -d= -f 2 | tr -d '"")
case $id in
ubuntu) sudo apt install python3 ;;
rhel |centos) sudo yum -y install python3 ;;
sles) sudo zypper install python3 ;;
esac
args:
executable: /bin/bash
register: python3 install
when: python version['rc'] != 0 and python3 version['rc'] !=
become: true
- name: Create a symbolic link to python from python3.
raw: 1In -s /usr/bin/python3 /usr/bin/python
become: true
when: python version['rc'] != 0
when: inventory hostname not in
groups [beegfs ha ansible storage group]
- name: Verify any provided tags are supported.
fail:
msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun
your playbook command with --list-tags to see all valid playbook tags."

0

71

when: 'item not in ["all", "storage", "beegfs ha",
"beegfs ha package", "beegfs ha configure",
"beegfs ha configure resource", "beegfs ha performance tuning",
"beegfs ha backup", "beegfs ha client"]'
loop: "{{ ansible run tags }}"
tasks:
- name: Verify before proceeding.
pause:
prompt: "Are you ready to proceed with running the BeeGFS HA
role? Depending on the size of the deployment and network performance
between the Ansible control node and BeeGFS file and block nodes this
can take awhile (10+ minutes) to complete."
- name: Verify the BeeGFS HA cluster is properly deployed.
ansible.builtin.import role:
name: netapp eseries.beegfs.beegfs ha 7 4

(D This playbook runs a few pre tasks that verify Python 3 is installed on the file nodes and
check that the Ansible tags provided are supported.

2. Use the ansible-playbook command with the inventory and playbook files when you're ready to deploy
BeeGFS.

The deployment will run all pre_tasks, and then prompt for user confirmation before proceeding with the
actual BeeGFS deployment.

Run the following command, adjusting the number of forks as needed (see the note below):

ansible-playbook -i inventory.yml playbook.yml --forks 20

Especially for larger deployments, overriding the default number of forks (5) using the
forks parameter is recommended to increase the number of hosts that Ansible configures

(D in parallel. (For more information, see Controlling playbook execution.) The maximum value
setting depends on the processing power available on the Ansible control node. The above
example of 20 was run on a virtual Ansible control node with 4 CPUs (Intel® Xeon® Gold
6146 CPU @ 3.20GHz).

Depending on the size of the deployment and network performance between the Ansible control node and
BeeGFS file and block nodes, deployment time might vary.

Configure BeeGFS clients

You must install and configure the BeeGFS client on any hosts that need access to the
BeeGFS file system, such as compute or GPU nodes. For this task, you can use Ansible
and the BeeGFS collection.

Steps

72

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

1. If needed, set up passwordless SSH from the Ansible control node to each of the hosts you want to
configure as BeeGFS clients:

ssh-copy-id <user>@<HOSTNAME OR IP>

2. Under host_vars/, create a file for each BeeGFS client named <HOSTNAME>. ym1 with the following
content, filling in the placeholder text with the correct information for your environment:

BeeGFS Client
ansible host: <MANAGEMENT IP>
OPTIONAL: If you want to use the NetApp E-Series Host Collection’s
IPoIB role to configure InfiniBand interfaces for clients to connect to
BeeGFS file systems:
eseries ipoib interfaces:
- name: <INTERFACE>
address: <IP>/<SUBNET MASK> # Example: 100.127.1.1/16
- name: <INTERFACE>
address: <IP>/<SUBNET MASK>

If deploying with a two subnet addressing scheme, two InfiniBand interfaces must be
configured on each client, one in each of the two storage IPoIB subnets. If using the

(D example subnets and recommended ranges for each BeeGFS service listed here, clients
should have one interface configured in the range of 100.127.1.0t0100.127.99.255
and the otherin 100.128.1.0t0100.128.99.255.

3. Create a new file client inventory.yml, and then populate the following parameters at the top:

BeeGFS client inventory.
all:
vars:

ansible ssh user: <USER> # This is the user Ansible should use to
connect to each client.

ansible become password: <PASSWORD> # This is the password Ansible
will use for privilege escalation, and requires the ansible ssh user be
root, or have sudo privileges.
The defaults set by the BeeGFS HA role are based on the testing
performed as part of this NetApp Verified Architecture and differ from
the typical BeeGFS client defaults.

Do not store passwords in plain text. Instead, use the Ansible Vault (see the Ansible
documentation for Encrypting content with Ansible Vault) or use the --ask-become-pass
option when running the playbook.

4. Inthe client inventory.yml file, list all hosts that should be configured as BeeGFS clients under the
beegfs clients group, and then specify any additional configuration required to build the BeeGFS client
kernel module.

73

https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:
Ansible group representing all BeeGFS clients:
beegfs clients:
hosts:
beegfs 01:
beegfs 02:
beegfs 03:
beegfs 04:
beegfs 05:
beegfs 06:
beegfs 07:
beegfs 08:
beegfs 09:
beegfs 10:
vars:
OPTION 1: If you’re using the NVIDIA OFED drivers and they are
already installed:
eseries ib skip: True # Skip installing inbox drivers when using
the IPoIB role.
beegfs client ofed enable: True
beegfs client ofed include path:
"/usr/src/ofa kernel/default/include"
OPTION 2: If you’re using inbox IB/RDMA drivers and they are
already installed:
eseries ib skip: True # Skip installing inbox drivers when using
the IPoIB role.
OPTION 3: If you want to use inbox IB/RDMA drivers and need
them installed/configured.
eseries ib skip: False # Default value.
beegfs client ofed enable: False # Default value.

When using the NVIDIA OFED drivers, make sure that

@ beegfs client ofed include path points to the correct "header include path" for
your Linux installation. For more information, see the BeeGFS documentation for RDMA
support.

3. Inthe client inventory.yml file, list the BeeGFS file systems you want mounted at the bottom of any
previously defined vars.

74

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

beegfs client mounts:
- sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS
management service.

mount point: /mnt/beegfs # Path to mount BeeGFS on the
client.
connInterfaces:
- <INTERFACE> # Example: ibs4fl
- <INTERFACE>
beegfs client config:
Maximum number of simultaneous connections to the same
node.

connMaxInternodeNum: 128 # BeeGFS Client Default: 12

Allocates the number of buffers for transferring IO.

connRDMABufNum: 36 # BeeGFS Client Default: 70

Size of each allocated RDMA buffer

connRDMABufSize: 65536 # BeeGFS Client Default: 8192

Required when using the BeeGFS client with the shared-
disk HA solution.

This does require BeeGFS targets be mounted in the
default “sync” mode.

See the documentation included with the BeeGFS client
role for full details.

sysSessionChecksEnabled: false

The beegfs client config represents the settings that were tested. See the

@ documentation included with the netapp eseries.beegfs collection’s beegfs client
role for a comprehensive overview of all options. This includes details around mounting
multiple BeeGFS file systems or mounting the same BeeGFS file system multiple times.

6. Create anew client playbook.yml file, and then populate the following parameters:

75

BeeGFS client playbook.
- hosts: beegfs clients
any errors fatal: true
gather facts: true
collections:
- netapp eseries.beegfs
- netapp eseries.host
tasks:
- name: Ensure IPoIB is configured
import role:
name: ipoib
- name: Verify the BeeGFS clients are configured.
import role:

name: beegfs client

Omit importing the netapp eseries.host collection and ipoib role if you have already
installed the required IB/RDMA drivers and configured IPs on the appropriate IPolB
interfaces.

7. To install and build the client and mount BeeGFS, run the following command:
ansible-playbook -i client inventory.yml client playbook.yml

8. Before you place the BeeGFS file system in production, we strongly recommend that you log in to any

clients and run beegfs-fsck --checkfs to ensure that all nodes are reachable and there are no issues
reported.

Scale beyond five building blocks

You can configure Pacemaker and Corosync to scale beyond five building blocks (10 file
nodes). However, there are drawbacks to larger clusters, and eventually Pacemaker and
Corosync do impose a maximum of 32 nodes.

NetApp has only tested BeeGFS HA clusters for up to 10 nodes; scaling individual clusters beyond this limit is
not recommended or supported. However, BeeGFS file systems still need to scale far beyond 10 nodes, and
NetApp has accounted for this in the BeeGFS on NetApp solution.

By deploying multiple HA clusters containing a subset of the building blocks in each file system, you can scale
the overall BeeGFS file system independently of any recommended or hard limits on the underlying HA
clustering mechanisms. In this scenario, do the following:

 Create a new Ansible inventory representing the additional HA cluster(s), and then omit configuring
another management service. Instead, point the beegfs ha mgmtd floating ip variable in each
additional cluster ha_cluster.yml to the IP for the first BeeGFS management service.

* When adding additional HA clusters to the same file system, ensure the following:

o The BeeGFS node IDs are unique.

76

° The file names corresponding with each service under group vars is unique across all clusters.
o The BeeGFS client and server IP addresses are unique across all clusters.

o The first HA cluster containing the BeeGFS management service is running before trying to deploy or
update additional clusters.

» Maintain inventories for each HA cluster separately in their own directory tree.

Trying to mix the inventory files for multiple clusters in one directory tree might cause issues with how the
BeeGFS HA role aggregates the configuration applied to a particular cluster.

There is no requirement that each HA cluster scale to five building blocks before creating a new
@ one. In many cases, using fewer building blocks per cluster is easier to manage. One approach
is to configure the building blocks in each single rack as an HA cluster.

Recommended storage pool overprovisioning percentages

When following the standard four volumes per storage pool configuration for second
generation building blocks, refer to the following table.

This table provides recommended percentages to use as the volume size in the
eseries storage pool configuration for each BeeGFS metadata or storage target:

Drive size Size
1.92TB 18
3.84TB 21.5
7.68TB 225
15.3TB 24

The above guidance does not apply to the storage pool containing the management service,
which should reduce the sizes above by .25% to allocate 1% of the storage pool for
management data.

To understand how these values were determined, see TR-4800: Appendix A: Understanding SSD endurance
and overprovisioning.

High capacity building block

The standard BeeGFS solution deployment guide outlines procedures and
recommendations for high performance workload requirements. Customers looking to
meet high capacity requirements should observe the variations in deployment and
recommendations outlined here.

77

https://www.netapp.com/media/17009-tr4800.pdf
https://www.netapp.com/media/17009-tr4800.pdf

— InfiniBand Storage Network
(BeeGFS Client/Server Traffic)

(B = 3 ; G- m S
E — ’ BeeGFS management and
B " 2 i i 4 HA_?;IR
. s HA PAIR
>

metadata on EF300 NVMe

BeeGFS CPU Clients <

(used for validation)

> BeeGFS storage on NLSAS
IOM expansion trays

BeeGFS GPU Client ——

(used for validation)

Controllers

For high capacity building blocks EF600 controllers should be replaced with EF300 controllers, each with a
Cascade HIC installed for SAS expansion. Each block node will have a minimal number of NVMe SSDs
populated in the array enclosure for BeeGFS metadata storage and will be attached to expansion shelves
populated with NL-SAS HDDs for BeeGFS storage volumes.

File node to Block node configuration remains the same.

Drive placement

A minimum of 4 NVMe SSD'’s are required in each block node for BeeGFS metadata storage. These drives
should be placed in the outermost slots of the enclosure.

RAID 1 (2+2) Metadata

Expansion trays
The high capacity building block can be sized with 1-7, 60 drive expansion trays per storage array.

For instructions to cable each expansion tray, refer to EF300 cabling for drive shelves.

78

https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

79

http://www.netapp.com/TM

	Use verified architectures : BeeGFS on NetApp with E-Series Storage
	Table of Contents
	Use verified architectures
	Overview and requirements
	Solution overview
	Architecture overview
	Technical requirements

	Review solution design
	Design overview
	Hardware configuration
	Software configuration
	Design verification
	Sizing guidelines
	Performance tuning
	High capacity building block

	Deploy solution
	Deployment overview
	Learn about the Ansible inventory
	Review best practices
	Deploy hardware
	Deploy software
	Scale beyond five building blocks
	Recommended storage pool overprovisioning percentages
	High capacity building block

