Table of Contents

System administration ... 1
 Upgrade Cloud Volumes ONTAP software .. 1
 Registering pay-as-you-go systems .. 9
 Managing the state of Cloud Volumes ONTAP 10
 Synchronize the system time using NTP 12
 Modify system write speed ... 12
 Change the password for Cloud Volumes ONTAP 13
 Add, remove, or delete systems .. 14
AWS administration ... 18
Azure administration ... 20
Google Cloud administration .. 32
Administer Cloud Volumes ONTAP using the Advanced View 34
Administer Cloud Volumes ONTAP from the CLI 35
System administration

Upgrade Cloud Volumes ONTAP software

Upgrade Cloud Volumes ONTAP from BlueXP to gain access to the latest new features and enhancements. You should prepare Cloud Volumes ONTAP systems before you upgrade the software.

Upgrade overview

You should be aware of the following before you start the Cloud Volumes ONTAP upgrade process.

Upgrade from BlueXP only

Upgrades of Cloud Volumes ONTAP must be completed from BlueXP. You should not upgrade Cloud Volumes ONTAP by using System Manager or the CLI. Doing so can impact system stability.

How to upgrade

BlueXP provides two ways to upgrade Cloud Volumes ONTAP:

- By following upgrade notifications that appear in the working environment
- By placing the upgrade image at an HTTPS location and then providing BlueXP with the URL

Supported upgrade paths

The version of Cloud Volumes ONTAP that you can upgrade to depends on the version of Cloud Volumes ONTAP that you’re currently running.

<table>
<thead>
<tr>
<th>Current version</th>
<th>Versions that you can directly upgrade to</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.13.0</td>
<td>9.13.1</td>
</tr>
<tr>
<td>9.12.1</td>
<td>9.13.1</td>
</tr>
<tr>
<td></td>
<td>9.13.0</td>
</tr>
<tr>
<td>9.12.0</td>
<td>9.12.1</td>
</tr>
<tr>
<td>9.11.1</td>
<td>9.12.1</td>
</tr>
<tr>
<td></td>
<td>9.12.0</td>
</tr>
<tr>
<td>9.11.0</td>
<td>9.11.1</td>
</tr>
<tr>
<td>9.10.1</td>
<td>9.11.1</td>
</tr>
<tr>
<td></td>
<td>9.11.0</td>
</tr>
<tr>
<td>9.10.0</td>
<td>9.10.1</td>
</tr>
<tr>
<td>Current version</td>
<td>Versions that you can directly upgrade to</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>9.9.1</td>
<td>9.10.1</td>
</tr>
<tr>
<td></td>
<td>9.10.0</td>
</tr>
<tr>
<td>9.9.0</td>
<td>9.9.1</td>
</tr>
<tr>
<td>9.8</td>
<td>9.9.1</td>
</tr>
<tr>
<td>9.7</td>
<td>9.8</td>
</tr>
<tr>
<td>9.6</td>
<td>9.7</td>
</tr>
<tr>
<td>9.5</td>
<td>9.6</td>
</tr>
<tr>
<td>9.4</td>
<td>9.5</td>
</tr>
<tr>
<td>9.3</td>
<td>9.4</td>
</tr>
<tr>
<td>9.2</td>
<td>9.3</td>
</tr>
<tr>
<td>9.1</td>
<td>9.2</td>
</tr>
<tr>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>8.3</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Note the following:

- The supported upgrade paths for Cloud Volumes ONTAP are different than they are for an on-premises ONTAP cluster.
- If you upgrade by following the upgrade notifications that appear in a working environment, BlueXP will prompt you to upgrade to a release that follows these supported upgrade paths.
- If you upgrade by placing an upgrade image at an HTTPS location, be sure to follow these supported upgrade paths.
- In some cases, you might need to upgrade a few times to reach your target release.

For example, if you’re running version 9.8 and you want to upgrade to 9.10.1, you first need to upgrade to version 9.9.1 and then to 9.10.1.

- For patch (P) releases, you can upgrade from one version release to any P-release of the next version.

Here are a couple examples:

- $9.13.0 > 9.13.1P15$

Reverting or downgrading

Reverting or downgrading Cloud Volumes ONTAP to a previous release is not supported.

Support registration

Cloud Volumes ONTAP must be registered with NetApp support in order to upgrade the software using any of the methods described on this page. This applies to both PAYGO and BYOL. You’ll need to manually register PAYGO systems, while BYOL systems are registered by default.
A system that isn’t registered for support will still receive the software update notifications that appear in BlueXP when a new version is available. But you will need to register the system before you can upgrade the software.

Upgrades of the HA mediator

BlueXP also updates the mediator instance as needed during the Cloud Volumes ONTAP upgrade process.

Upgrades in AWS with c4, m4, and r4 EC2 instance types

Cloud Volumes ONTAP no longer supports the c4, m4, and r4 EC2 instance types. You can upgrade existing deployments to Cloud Volumes ONTAP versions 9.8-9.12.1 with these instance types. Before you upgrade we recommend that you change the instance type. If you can’t change the instance type, you need to enable enhanced networking before you upgrade. Read the following sections to learn more about changing the instance type and enabling enhanced networking.

In Cloud Volumes ONTAP running versions 9.13.0 and above, you cannot upgrade with c4, m4, and r4 EC2 instance types. In this case, you need to reduce the number of disks and then change the instance type or deploy a new HA-pair configuration with the c5, m5, and r5 EC2 instance types and migrate the data.

Change the instance type

c4, m4, and r4 EC2 instance types allow for more disks per node than the c5, m5, and r5 EC2 instance types. If the disk count per node for the c4, m4, or r4 EC2 instance you’re running is below the max disk allowance per node for c5, m5, and r5 instances, you can change the EC2 instance type to c5, m5, or r5.

Check disk and tiering limits by EC2 instance

Change the EC2 instance type for Cloud Volumes ONTAP

If you can’t change the instance type, follow the steps in Enable enhanced networking.

Enable enhanced networking

To upgrade to Cloud Volumes ONTAP versions 9.8 and later, you must enable enhanced networking on the cluster running the c4, m4, or r4 instance type. To enable ENA, refer to the Knowledge Base article "How to enable Enhanced networking like SR-IOV or ENA on AWS Cloud Volumes ONTAP instances".

Prepare to upgrade

Before performing an upgrade, you must verify that your systems are ready and make any required configuration changes.

- **Plan for downtime**
- **Verify that automatic giveback is still enabled**
- **Suspend SnapMirror transfers**
- **Verify that aggregates are online**
- **Verify that all LIFs are on home ports**

Plan for downtime

When you upgrade a single-node system, the upgrade process takes the system offline for up to 25 minutes, during which I/O is interrupted.
In many cases, upgrading an HA pair is nondisruptive and I/O is uninterrupted. During this nondisruptive upgrade process, each node is upgraded in tandem to continue serving I/O to clients.

Session-oriented protocols might cause adverse effects on clients and applications in certain areas during upgrades. For details, refer to ONTAP documentation

Verify that automatic giveback is still enabled

Automatic giveback must be enabled on a Cloud Volumes ONTAP HA pair (this is the default setting). If it isn’t, then the operation will fail.

ONTAP 9 Documentation: Commands for configuring automatic giveback

Suspend SnapMirror transfers

If a Cloud Volumes ONTAP system has active SnapMirror relationships, it is best to suspend transfers before you update the Cloud Volumes ONTAP software. Suspending the transfers prevents SnapMirror failures. You must suspend the transfers from the destination system.

Even though BlueXP backup and recovery uses an implementation of SnapMirror to create backup files (called SnapMirror Cloud), backups do not need to be suspended when a system is upgraded.

About this task

These steps describe how to use System Manager for version 9.3 and later.

Steps

1. Log in to System Manager from the destination system.

 You can log in to System Manager by pointing your web browser to the IP address of the cluster management LIF. You can find the IP address in the Cloud Volumes ONTAP working environment.

 The computer from which you are accessing BlueXP must have a network connection to Cloud Volumes ONTAP. For example, you might need to log in to BlueXP from a jump host that’s in your cloud provider network.

2. Click **Protection > Relationships**.

3. Select the relationship and click **Operations > Quiesce**.

Verify that aggregates are online

Aggregates for Cloud Volumes ONTAP must be online before you update the software. Aggregates should be online in most configurations, but if they are not, then you should bring them online.

About this task

These steps describe how to use System Manager for version 9.3 and later.

Steps

1. In the working environment, click the **Aggregates** tab.

2. Under the aggregate title, click the ellipse button, and then select **View Aggregate details**.
3. If the aggregate is offline, use System Manager to bring the aggregate online:
 a. Click **Storage > Aggregates & Disks > Aggregates**.
 b. Select the aggregate, and then click **More Actions > Status > Online**.

Verify that all LIFs are on home ports

Before you upgrade, all LIFs must be on home ports. Refer to ONTAP documentation to verify that all LIFs are on home ports.

Upgrade Cloud Volumes ONTAP

BlueXP notifies you when a new version is available for upgrade. You can start the upgrade process from this notification. For details, see [Upgrade from BlueXP notifications](#).

Another way to perform software upgrades by using an image on an external URL. This option is helpful if BlueXP can’t access the S3 bucket to upgrade the software or if you were provided with a patch. For details, see [Upgrade from an image available at a URL](#).

Upgrade from BlueXP notifications

BlueXP displays a notification in Cloud Volumes ONTAP working environments when a new version of Cloud Volumes ONTAP is available:
You can start the upgrade process from this notification, which automates the process by obtaining the software image from an S3 bucket, installing the image, and then restarting the system.

Before you begin

BlueXP operations such as volume or aggregate creation must not be in progress on the Cloud Volumes ONTAP system.

Steps

1. From the left navigation menu, select **Storage > Canvas**.
2. Select a working environment.

 A notification appears in the Overview tab if a new version is available:

3. If a new version is available, click **Upgrade Now!**

 Before you can upgrade Cloud Volumes ONTAP through the BlueXP notification, you must have a NetApp Support Site account.

4. In the Upgrade Cloud Volumes ONTAP page, read the EULA, and then select **I read and approve the EULA**.
5. Click **Upgrade**.

 The Upgrade Cloud Volumes ONTAP page selects the latest available Cloud Volumes ONTAP version for upgrade by default. If available, older versions of Cloud Volumes ONTAP can instead be selected for your upgrade by clicking **Select older versions**. Refer to the [Supported upgrade paths list](#) for the appropriate upgrade path based on your current Cloud Volumes ONTAP version.
6. To check the status of the upgrade, click the Settings icon and select **Timeline**.

Result

BlueXP starts the software upgrade. You can perform actions on the working environment when the software update is complete.

After you finish

If you suspended SnapMirror transfers, use System Manager to resume the transfers.

Upgrade from an image available at a URL

You can place the Cloud Volumes ONTAP software image on the Connector or on an HTTP server and then initiate the software upgrade from BlueXP. You might use this option if BlueXP can’t access the S3 bucket to upgrade the software.

Before you begin

- BlueXP operations such as volume or aggregate creation must not be in progress on the Cloud Volumes ONTAP system.

- If you use HTTPS to host ONTAP images, the upgrade can fail due to SSL authentication issues, which are caused by missing certificates. The workaround is to generate and install a CA-signed certificate to be used for authentication between ONTAP and BlueXP.

Go to the NetApp Knowledge Base to view step-by-step instructions:

NetApp KB: How to configure BlueXP as an HTTPS server to host upgrade images

Steps

1. Optional: Set up an HTTP server that can host the Cloud Volumes ONTAP software image.

 If you have a VPN connection to the virtual network, you can place the Cloud Volumes ONTAP software image on an HTTP server in your own network. Otherwise, you must place the file on an HTTP server in the cloud.
2. If you use your own security group for Cloud Volumes ONTAP, ensure that the outbound rules allow HTTP connections so Cloud Volumes ONTAP can access the software image.

The predefined Cloud Volumes ONTAP security group allows outbound HTTP connections by default.

3. Obtain the software image from the NetApp Support Site.

4. Copy the software image to a directory on the Connector or on an HTTP server from which the file will be served.

Two paths are available. The correct path depends on your Connector version.

- /opt/application/netapp/cloudmanager/docker_occm/data/ontap/images/
- /opt/application/netapp/cloudmanager/ontap/images/

5. From the working environment in BlueXP, click the … (ellipse icon), and then click Update Cloud Volumes ONTAP.

6. On the Update Cloud Volumes ONTAP version page, enter the URL, and then click Change Image.

If you copied the software image to the Connector in the path shown above, you would enter the following URL:

http://<Connector-private-IP-address>/ontap/images/<image-file-name>

In the URL, image-file-name must follow the format "cot.image.9.13.1P2.tgz".

7. Click Proceed to confirm.

Result
BlueXP starts the software update. You can perform actions on the working environment once the software update is complete.

After you finish
If you suspended SnapMirror transfers, use System Manager to resume the transfers.

Fix download failures when using a Google Cloud NAT gateway

The Connector automatically downloads software updates for Cloud Volumes ONTAP. The download can fail if your configuration uses a Google Cloud NAT gateway. You can correct this issue by limiting the number of parts that the software image is divided into. This step must be completed by using the BlueXP API.

Step
1. Submit a PUT request to /occm/config with the following JSON as body:

```json
{
   "maxDownloadSessions": 32
}
```

The value for maxDownloadSessions can be 1 or any integer greater than 1. If the value is 1, then the downloaded image will not be divided.
Note that 32 is an example value. The value that you should use depends on your NAT configuration and the number of sessions that you can have simultaneously.

Learn more about the /occm/config API call.

Registering pay-as-you-go systems

Support from NetApp is included with Cloud Volumes ONTAP PAYGO systems, but you must first activate support by registering the systems with NetApp.

Registering a PAYGO system with NetApp is required to upgrade ONTAP software using any of the methods described on this page.

A system that isn’t registered for support will still receive the software update notifications that appear in BlueXP when a new version is available. But you will need to register the system before you can upgrade the software.

Steps

1. If you have not yet added your NetApp Support Site account to BlueXP, go to Account Settings and add it now.

 Learn how to add NetApp Support Site accounts.

2. On the Canvas page, double-click the name of the system you want to register.

3. On the Overview tab, click the Features panel and then click the pencil icon next to Support Registration.

4. Select a NetApp Support Site account and click **Register**.

Result
BlueXP registers the system with NetApp.

Managing the state of Cloud Volumes ONTAP

You can stop and start Cloud Volumes ONTAP from BlueXP to manage your cloud compute costs.

Scheduling automatic shutdowns of Cloud Volumes ONTAP

You might want to shut down Cloud Volumes ONTAP during specific time intervals to lower your compute costs. Rather than do this manually, you can configure BlueXP to automatically shut down and then restart systems at specific times.

About this task

• When you schedule an automatic shutdown of your Cloud Volumes ONTAP system, BlueXP postpones the shutdown if an active data transfer is in progress.

 BlueXP shuts down the system after the transfer is complete.

• This task schedules automatic shutdowns of both nodes in an HA pair.

• Snapshots of boot and root disks are not created when turning off Cloud Volumes ONTAP through scheduled shutdowns.

Snapshots are automatically created only when performing a manual shutdown, as described in the next section.

Steps

1. On the Canvas page, double-click the desired working environment.

2. On the Overview tab, click the Features panel and then click the pencil icon next to Scheduled Downtime.
3. Specify the shutdown schedule:
 a. Choose whether you want to shut down the system every day, every weekday, every weekend, or any
 combination of the three options.
 b. Specify when you want to turn off the system and for how long you want it turned off.

 Example

 The following image shows a schedule that instructs BlueXP to shut down the system every Saturday
 at 20:00 P.M. (8:00 PM) for 12 hours. BlueXP restarts the system every Monday at 12:00 a.m.

4. Click **Save**.

Result

BlueXP saves the schedule. The corresponding Scheduled Downtime line item under the Features panel
displays ‘On’.

Stopping Cloud Volumes ONTAP

Stopping Cloud Volumes ONTAP saves you from accruing compute costs and creates snapshots of the root
and boot disks, which can be helpful for troubleshooting.

 - To reduce costs, BlueXP periodically deletes older snapshots of root and boot disks. Only the
two most recent snapshots are retained for both the root and boot disks.

About this task

When you stop an HA pair, BlueXP shuts down both nodes.
Steps
1. From the working environment, click the **Turn off** icon.

![Dashboard interface with Turn off button highlighted](image)

2. Keep the option to create snapshots enabled because the snapshots can enable system recovery.
3. Click **Turn Off**.

 It can take up to a few minutes to stop the system. You can restart systems at a later time from the working environment page.

 - Snapshots are created automatically upon reboot.

Synchronize the system time using NTP

Specifying an NTP server synchronizes the time between the systems in your network, which can help prevent issues due to time differences.

Specify an NTP server using the BlueXP API or from the user interface when you create a CIFS server.

Modify system write speed

BlueXP enables you to choose a normal or high write speed for Cloud Volumes ONTAP. The default write speed is normal. You can change to high write speed if fast write performance is required for your workload.

High write speed is supported with all types of single node systems and some HA pair configurations. View supported configurations in the [Cloud Volumes ONTAP Release Notes](#)

Before you change the write speed, you should understand the differences between the normal and high settings.

About this task

- Ensure that operations such as volume or aggregate creation are not in progress.
- Be aware that this change restarts the Cloud Volumes ONTAP system. This is a disruptive process that requires downtime for the entire system.

Steps

1. On the Canvas page, double-click the name of the system you configure to the write speed.
2. On the Overview tab, click the Features panel and then click the pencil icon next to **Write Speed**.
3. Select **Normal** or **High**.

If you choose High, then you’ll need to read the "I understand..." statement and confirm by checking the box.

![High write speed option](image)

- The **High** write speed option is supported with Cloud Volumes ONTAP HA pairs in Google Cloud starting with version 9.13.0.

4. Click **Save**, review the confirmation message, and then click **Approve**.

Change the password for Cloud Volumes ONTAP

Cloud Volumes ONTAP includes a cluster admin account. You can change the password for this account from BlueXP, if needed.

- You should not change the password for the admin account through System Manager or the CLI. The password will not be reflected in BlueXP. As a result, BlueXP cannot monitor the instance properly.

Steps

1. On the Canvas page, double-click the name of the Cloud Volumes ONTAP working environment.
2. On the upper right of the BlueXP console, click the ellipse icon, and select **Set password**.
The new password must be different than one of the last six passwords that you used.

Add, remove, or delete systems

Adding existing Cloud Volumes ONTAP systems to BlueXP

You can discover and add existing Cloud Volumes ONTAP systems to BlueXP. You might do this if you deployed a new BlueXP system.

Before you begin
You must know the password for the Cloud Volumes ONTAP admin user account.

Steps
1. From the left navigation menu, select Storage > Canvas.
2. On the Canvas page, click Add Working Environment.
3. Select the cloud provider in which the system resides.
4. Choose the type of Cloud Volumes ONTAP system.
5. Click the link to discover an existing system.
6. On the Region page, choose the region where the instances are running, and then select the instances.

7. On the Credentials page, enter the password for the Cloud Volumes ONTAP admin user, and then click Go.

Result

BlueXP adds the Cloud Volumes ONTAP instances to the workspace.

Removing Cloud Volumes ONTAP working environments

The Account Admin can remove a Cloud Volumes ONTAP working environment to move it to another system or to troubleshoot discovery issues.

About this task

Removing a Cloud Volumes ONTAP working environment removes it from BlueXP. It does not delete the Cloud Volumes ONTAP system. You can later rediscover the working environment.

Removing a working environment from BlueXP enables you to do the following:

- Rediscover it in another workspace
- Rediscover it from another BlueXP system
- Rediscover it if you had problems during the initial discovery

Steps

1. On the Canvas page, double-click on the working environment you want to remove.

2. On the upper right of the BlueXP console, click the ellipse icon, and select Remove from workspace.
3. In the Review from Workspace window, click **Remove**.

Result
BlueXP removes the working environment. Users can rediscover this working environment from the Canvas page at any time.

Deleting a Cloud Volumes ONTAP system

You should always delete Cloud Volumes ONTAP systems from BlueXP, rather than from your cloud provider’s console. For example, if you terminate a licensed Cloud Volumes ONTAP instance from your cloud provider, then you can’t use the license key for another instance. You must delete the working environment from BlueXP to release the license.

When you delete a working environment, BlueXP terminates Cloud Volumes ONTAP instances and deletes disks and snapshots.

Resources managed by other services like backups for BlueXP backup and recovery and instances for BlueXP classification are not deleted when you delete a working environment. You’ll need to manually delete them yourself. If you don’t, then you’ll continue to receive charges for these resources.

Steps
1. If you enabled BlueXP backup and recovery on the working environment, determine whether the backed up data is still required and then **delete the backups, if necessary**.

BlueXP backup and recovery is independent from Cloud Volumes ONTAP by design. BlueXP backup and
recovery doesn't automatically delete backups when you delete a Cloud Volumes ONTAP system, and there is no current support in the UI to delete the backups after the system has been deleted.

2. If you enabled BlueXP classification on this working environment and no other working environments use this service, then you'll need to delete the instance for the service.

 Learn more about the BlueXP classification instance.

3. Delete the Cloud Volumes ONTAP working environment.
 a. On the Canvas page, double-click the name of the Cloud Volumes ONTAP working environment that you want to delete.
 b. On the upper right of the BlueXP console, click the ellipse icon, and select **Delete**.
 c. Under the Delete Working Environment window, type the name of the working environment and then click **Delete**.

 It can take up to 5 minutes to delete the working environment.
AWS administration

Change the EC2 instance type for Cloud Volumes ONTAP

You can choose from several instance or types when you launch Cloud Volumes ONTAP in AWS. You can change the instance type at any time if you determine that it is undersized or oversized for your needs.

About this task
- Automatic giveback must be enabled on a Cloud Volumes ONTAP HA pair (this is the default setting). If it isn’t, then the operation will fail.

 ONTAP 9 Documentation: Commands for configuring automatic giveback

- Changing the instance type can affect AWS service charges.
- The operation restarts Cloud Volumes ONTAP.

For single node systems, I/O is interrupted.

For HA pairs, the change is nondisruptive. HA pairs continue to serve data.

BlueXP gracefully changes one node at a time by initiating takeover and waiting for give back. NetApp’s QA team tested both writing and reading files during this process and didn’t see any issues on the client side. As connections changed, we did see retries on the I/O level, but the application layer overcame these short "re-wire" of NFS/CIFS connections.

Reference
For a list of supported instance types in AWS, see Supported EC2 instances.

If you can’t change the instance type from c4, m4, or r4 instances, see KB article "Unable to change the instance type from r4 to r5 with disk count error”.

Steps
1. On the Canvas page, select the working environment.
2. On the Overview tab, click the Features panel and then click the pencil icon next to Instance type.
a. If you are using a node-based PAYGO license, you can optionally choose a different license and instance type by clicking the pencil icon next to License type.

3. Choose an instance type, select the check box to confirm that you understand the implications of the change, and then click Change.

Result
Cloud Volumes ONTAP reboots with the new configuration.

Change route tables for HA pairs in multiple AZs

You can modify the AWS route tables that include routes to the floating IP addresses for an HA pair that’s deployed in multiple AWS Availability Zones (AZs). You might do this if new NFS or CIFS clients need to access an HA pair in AWS.

Steps
1. On the Canvas page, select the working environment.
2. On the Overview tab, click the Features panel and then click the pencil icon next to Route tables.
3. Modify the list of selected route tables and then click **Save**.

Result
BlueXP sends an AWS request to modify the route tables.

Azure administration

Change the Azure VM type for Cloud Volumes ONTAP

You can choose from several VM types when you launch Cloud Volumes ONTAP in Microsoft Azure. You can change the VM type at any time if you determine that it is undersized or oversized for your needs.

About this task
- Automatic giveback must be enabled on a Cloud Volumes ONTAP HA pair (this is the default setting). If it isn’t, then the operation will fail.
Changing the VM type can affect Microsoft Azure service charges.

The operation restarts Cloud Volumes ONTAP.

For single node systems, I/O is interrupted.

For HA pairs, the change is nondisruptive. HA pairs continue to serve data.

BlueXP gracefully changes one node at a time by initiating takeover and waiting for give back. NetApp’s QA team tested both writing and reading files during this process and didn’t see any issues on the client side. As connections changed, we did see retries on the I/O level, but the application layer overcame these short "re-wire" of NFS/CIFS connections.

Steps

1. On the Canvas page, select the working environment.

2. On the Overview tab, click the Features panel and then click the pencil icon next to **VM type**.

 ![Feature Panel](image)

 a. If you are using a node-based PAYGO license, you can optionally choose a different license and VM type by clicking the pencil icon next to **License type**.
3. Select a VM type, select the check box to confirm that you understand the implications of the change, and then click Change.

Result
Cloud Volumes ONTAP reboots with the new configuration.

Overriding CIFS locks for Cloud Volumes ONTAP HA pairs in Azure

The Account Admin can enable a setting in BlueXP that prevents issues with Cloud Volumes ONTAP storage giveback during Azure maintenance events. When you enable this setting, Cloud Volumes ONTAP vetoes CIFS locks and resets active CIFS sessions.

About this task
Microsoft Azure schedules periodic maintenance events on its virtual machines. When a maintenance event occurs on a Cloud Volumes ONTAP HA pair, the HA pair initiates storage takeover. If there are active CIFS sessions during this maintenance event, the locks on CIFS files can prevent storage giveback.

If you enable this setting, Cloud Volumes ONTAP will veto the locks and reset the active CIFS sessions. As a result, the HA pair can complete storage giveback during these maintenance events.

This process might be disruptive to CIFS clients. Data that is not committed from CIFS clients could be lost.

What you’ll need
You need to create a Connector before you can change BlueXP settings. Learn how.

Steps
1. In the upper right of the BlueXP console, click the Settings icon, and select Connector Settings.

3. Click the checkbox to enable the feature and then click Save.

Use an Azure Private Link or service endpoints

Cloud Volumes ONTAP uses an Azure Private Link for connections to its associated storage accounts. If needed, you can disable Azure Private Links and use service endpoints instead.

Overview
By default, BlueXP enables an Azure Private Link for connections between Cloud Volumes ONTAP and its associated storage accounts. An Azure Private Link secures connections between endpoints in Azure and
provides performance benefits.

If required, you can configure Cloud Volumes ONTAP to use service endpoints instead of an Azure Private Link.

With either configuration, BlueXP always limits network access for connections between Cloud Volumes ONTAP and storage accounts. Network access is limited to the VNet where Cloud Volumes ONTAP is deployed and the VNet where the Connector is deployed.

Disable Azure Private Links and use service endpoints instead

If required by your business, you can change a setting in BlueXP so that it configures Cloud Volumes ONTAP to use service endpoints instead of an Azure Private Link. Changing this setting applies to new Cloud Volumes ONTAP systems that you create. Service endpoints are only supported in Azure region pairs between the Connector and Cloud Volumes ONTAP VNets.

The Connector should be deployed in the same Azure region as the Cloud Volumes ONTAP systems that it manages, or in the Azure region pair for the Cloud Volumes ONTAP systems.

Steps

1. In the upper right of the BlueXP console, click the Settings icon, and select **Connector Settings**.

2. Under **Azure**, click **Use Azure Private Link**.

3. Deselect **Private Link connection between Cloud Volumes ONTAP and storage accounts**.

4. Click **Save**.

After you finish

If you disabled Azure Private Links and the Connector uses a proxy server, you must enable direct API traffic.

Learn how to enable direct API traffic on the Connector

Work with Azure Private Links

In most cases, there’s nothing that you need to do to set up Azure Private links with Cloud Volumes ONTAP. BlueXP manages Azure Private Links for you. But if you use an existing Azure Private DNS zone, then you’ll need to edit a configuration file.

Requirement for custom DNS

Optionally, if you work with custom DNS, you need to create a conditional forwarder to the Azure private DNS zone from your custom DNS servers. To learn more, refer to Azure’s documentation on using a DNS forwarder.
How Private Link connections work

When BlueXP deploys Cloud Volumes ONTAP in Azure, it creates a private endpoint in the resource group. The private endpoint is associated with storage accounts for Cloud Volumes ONTAP. As a result, access to Cloud Volumes ONTAP storage travels through the Microsoft backbone network.

Client access goes through the private link when clients are within the same VNet as Cloud Volumes ONTAP, within peered VNets, or in your on-premises network when using a private VPN or ExpressRoute connection to the VNet.

Here's an example that shows client access over a private link from within the same VNet and from an on-prem network that has either a private VPN or ExpressRoute connection.

Provide BlueXP with details about your Azure Private DNS

If you use Azure Private DNS, then you need to modify a configuration file on each Connector. Otherwise, BlueXP can’t enable the Azure Private Link connection between Cloud Volumes ONTAP and its associated storage accounts.
Note that the DNS name must match Azure DNS naming requirements as shown in Azure documentation.

Steps
1. SSH to the Connector host and log in.
2. Navigate to the following directory: /opt/application/netapp/cloudmanager/docker_occm/data
3. Edit app.conf by adding the "user-private-dns-zone-settings" parameter with the following keyword-value pairs:

   ```
   "user-private-dns-zone-settings" : {
       "resource-group" : "<resource group name of the DNS zone>",
       "subscription" : "<subscription ID>",
       "use-existing" : true,
       "create-private-dns-zone-link" : true
   }
   ```

 The parameter should be entered at the same level as "system-id" like shown below:

   ```
   "system-id" : "<system ID>",
   "user-private-dns-zone-settings" : {
   ```

 Note that the subscription keyword is required only if the Private DNS Zone exists in a different subscription than the Connector.

4. Save the file and log off the Connector.

 A reboot isn’t required.

Enable rollback on failures

If BlueXP fails to create an Azure Private Link as part of specific actions, it completes the action without the Azure Private Link connection. This can happen when creating a new working environment (single node or HA pair), or when the following actions occur on an HA pair: creating a new aggregate, adding disks to an existing aggregate, or creating a new storage account when going above 32 TiB.

You can change this default behavior by enabling rollback if BlueXP fails to create the Azure Private Link. This can help to ensure that you’re fully compliant with your company’s security regulations.

If you enable rollback, BlueXP stops the action and rolls back all resources that were created as part of the action.

You can enable rollback through the API or by updating the app.conf file.

Enable rollback through the API

Step
1. Use the PUT /occm/config API call with the following request body:
Enable rollback by updating app.conf

Steps
1. SSH to the Connector host and log in.
2. Navigate to the following directory: /opt/application/netapp/cloudmanager/docker_occm/data
3. Edit app.conf by adding the following parameter and value:

 "rollback-on-private-link-failure": true

4. Save the file and log off the Connector.

 A reboot isn’t required.

Moving resource groups

Cloud Volumes ONTAP supports Azure resource groups moves but the workflow happens in the Azure console only.

You can move a working environment from one resource group to a different resource group in Azure within the same Azure subscription. Moving resource groups between different Azure subscriptions is not supported.

Steps
1. Remove the working environment from Canvas.
 To learn how to remove a working environment, see Removing Cloud Volumes ONTAP working environments.

2. Execute the resource group move in the Azure console.
 To complete the move, refer to Move resources to a new resource group or subscription in Microsoft Azure’s documentation.

3. In Canvas, discover the working environment.
4. Look for the new resource group in the information for the working environment.

Result
The working environment and its resources (VMs, disks, storage accounts, network interfaces, snapshots) are in the new resource group.

Segregate SnapMirror traffic in Azure

With Cloud Volumes ONTAP in Azure, you can segregate SnapMirror replication traffic from data and management traffic. To segregate SnapMirror replication traffic from your data traffic, you’ll add a new network interface card (NIC), an associated intercluster LIF
and a non-routable subnet.

About SnapMirror traffic segregation in Azure

By default, BlueXP configures all NICs and LIFs in a Cloud Volumes ONTAP deployment on the same subnet. In such configurations, SnapMirror replication traffic and data and management traffic use the same subnet. Segregating SnapMirror traffic leverages an additional subnet that isn’t routable to the existing subnet used for data and management traffic.

Figure 1

The following diagrams show the segregation of SnapMirror replication traffic with an additional NIC, an associated intercluster LIF and a non-routable subnet in a single node deployment. An HA pair deployment differs slightly.

Before you begin

Review the following considerations:

- You can only add a single NIC to a Cloud Volumes ONTAP single node or HA-pair deployment (VM instance) for SnapMirror traffic segregation.
- To add a new NIC, the VM instance type you deploy must have an unused NIC.
- The source and destination clusters should have access to the same Virtual Network (VNet). The destination cluster is a Cloud Volumes ONTAP system in Azure. The source cluster can be a Cloud Volumes ONTAP system in Azure or an ONTAP system.

Step 1: Create an additional NIC and attach to the destination VM

This section provides instructions for how to create an additional NIC and attach it to the destination VM. The destination VM is the single node or HA-pair system in Cloud Volumes ONTAP in Azure where you want to set up your additional NIC.

Steps

1. In the ONTAP CLI, stop the node.
dest::> halt -node <dest_node-vm>

2. In the Azure portal, check that the VM (node) status is stopped.

 az vm get-instance-view --resource-group <dest-rg> --name <dest-vm> --query instanceView.statuses[1].displayStatus

3. Use the Bash environment in Azure Cloud Shell to stop the node.
 a. Stop the node.

 az vm stop --resource-group <dest_node-rg> --name <dest_node-vm>

 b. Deallocate the node.

 az vm deallocate --resource-group <dest_node-rg> --name <dest_node-vm>

4. Configure network security group rules to make the two subnets (source cluster subnet and destination cluster subnet) non-routable to each other.
 a. Create the new NIC on the destination VM.
 b. Look up the subnet ID for the source cluster subnet.

 az network vnet subnet show -g <src_vnet-rg> -n <src_subnet> --vnet-name <vnet> --query id

 c. Create the new NIC on the destination VM with the subnet ID for the source cluster subnet. Here you enter the name for the new NIC.

 az network nic create -g <dest_node-rg> -n <dest_node-vm-nic-new> --subnet <id_from_prev_command> --accelerated-networking true

 d. Save the privatelIPAddress. This IP address, <new_added_nic_primary_addr>, is used to create an intercluster LIF in broadcast domain, intercluster LIF for the new NIC.

5. Attach the new NIC to the VM.

 az vm nic add -g <dest_node-rg> --vm-name <dest_node-vm> --nics <dest_node-vm-nic-new>

6. Start the VM (node).
7. In the Azure portal, go to **Networking** and confirm that the new NIC, e.g. nic-new, exists and accelerated networking is enabled.

```
az vm start --resource-group <dest_node-rg> --name <dest_node-vm>
```

For HA-pair deployments, repeat the steps for the partner node.

Step 2: Create a new IPspace, broadcast domain, and intercluster LIF for the new NIC

A separate IPspace for intercluster LIFs provides logical separation between networking functionality for replication between clusters.

Use the ONTAP CLI for the following steps.

Steps

1. Create the new IPspace (new_ipspace).

   ```
dest::> network ipspace create -ipspace <new_ipspace>
```

2. Create a broadcast domain on the new IPspace (new_ipspace) and add the nic-new port.

   ```
dest::> network port show
```

3. For single node systems, the newly added port is **e0b**. For HA-pair deployments with managed disks, the newly added port is **e0d**. For HA-pair deployments with page blobs, the newly added port is **e0e**. Use the node name not the VM name. Find the node name by running `node show`.

   ```
dest::> broadcast-domain create -broadcast-domain <new_bd> -mtu 1500 -ipspace <new_ipspace> -ports <dest_node-cot-vm:e0b>
```

4. Create an intercluster LIF on the new broadcast-domain (new_bd) and on the new NIC (nic-new).

   ```
dest::> net int create -vserver <new_ipspace> -lif <new_dest_node-ic-lif> -service-policy default-intercluster -address <new_added_nic_primary_addr> -home-port <e0b> -home-node <node> -netmask <new_netmask_ip> -broadcast-domain <new_bd>
```

5. Verify creation of the new intercluster LIF.
For HA-pair deployments, repeat the steps for the partner node.

Step 3: Verify cluster peering between the source and destination systems

This section provides instructions for how to verify peering between the source and destination systems.

Use the ONTAP CLI for the following steps.

Steps

1. Verify that the intercluster LIF of the destination cluster can ping the intercluster LIF of the source cluster. Because the destination cluster executes this command, the destination IP address is the intercluster LIF IP address on the source.

   ```
   dest::> ping -lif <new_dest_node-ic-lif> -vserver <new_ipspace> -destination <10.161.189.6>
   ```

2. Verify that the intercluster LIF of the source cluster can ping the intercluster LIF of the destination cluster. The destination is the IP address of the new NIC created on the destination.

   ```
   src::> ping -lif <src_node-ic-lif> -vserver <src_svm> -destination <10.161.189.18>
   ```

For HA-pair deployments, repeat the steps for the partner node.

Step 4: Create SVM peering between the source and destination system

This section provides instructions for how to create SVM peering between the source and destination system.

Use the ONTAP CLI for the following steps.

Steps

1. Create cluster peering on the destination using the source intercluster LIF IP address as the `-peer-addrs`. For HA pairs, list the source intercluster LIF IP address for both nodes as the `-peer-addrs`.

   ```
   dest::> cluster peer create -peer-addrs <10.161.189.6> -ipspace <new_ipspace>
   ```

2. Enter and confirm the passphrase.

3. Create cluster peering on the source using the destination cluster LIF IP address as the `peer-addrs`. For HA pairs, list the destination intercluster LIF IP address for both nodes as the `peer-addrs`.
4. Enter and confirm the passphrase.
5. Check that the cluster peered.

src::> cluster peer create -peer-addrs <10.161.189.18>

src::> cluster peer show

Successful peering shows **Available** in the availability field.

6. Create SVM peering on the destination. Both source and destination SVMs should be data SVMs.

dest::> vserver peer create -vserver <dest_svm> -peer-vserver <src_svm> -peer-cluster <src_cluster> -applications snapmirror``

7. Accept SVM peering.

src::> vserver peer accept -vserver <src_svm> -peer-vserver <dest_svm>

8. Check that the SVM peered.

dest::> vserver peer show

Peer state shows **peered** and peering applications shows **snapmirror**.

Step 5: Create a SnapMirror replication relationship between the source and destination system

This section provides instructions for how to create a SnapMirror replication relationship between the source and destination system.

To move an existing SnapMirror replication relationship, you must first break the existing SnapMirror replication relationship before you create a new SnapMirror replication relationship.

Use the ONTAP CLI for the following steps.

Steps

1. Create a data protected volume on the destination SVM.

 dest::> vol create -volume <new_dest_vol> -vserver <dest_svm> -type DP -size <10GB> -aggregate <aggr1>

2. Create the SnapMirror replication relationship on the destination which includes the SnapMirror policy and schedule for the replication.
dest::> snapmirror create -source-path src_svm:src_vol -destination -path dest_svm:new_dest_vol -vserver dest_svm -policy MirrorAllSnapshots -schedule 5min

3. Initialize the SnapMirror replication relationship on the destination.

dest::> snapmirror initialize -destination-path <dest_svm:new_dest_vol>

4. In the ONTAP CLI, validate the SnapMirror relationship status by running the following command:

dest::> snapmirror show

The relationship status is Snapmirrored and the health of the relationship is true.

5. Optional: In the ONTAP CLI, run the following command to view the actions history for the SnapMirror relationship.

dest::> snapmirror show-history

 Optionally, you can mount the source and destination volumes, write a file to the source, and verify the volume is replicating to the destination.

Google Cloud administration

Change the Google Cloud machine type for Cloud Volumes ONTAP

You can choose from several machine types when you launch Cloud Volumes ONTAP in Google Cloud. You can change the instance or machine type at any time if you determine that it is undersized or oversized for your needs.

About this task

- Automatic giveback must be enabled on a Cloud Volumes ONTAP HA pair (this is the default setting). If it isn’t, then the operation will fail.

 ONTAP 9 Documentation: Commands for configuring automatic giveback

- Changing the machine type can affect Google Cloud service charges.

- The operation restarts Cloud Volumes ONTAP.

 For single node systems, I/O is interrupted.

 For HA pairs, the change is nondisruptive. HA pairs continue to serve data.
BlueXP gracefully changes one node at a time by initiating takeover and waiting for give back. NetApp’s QA team tested both writing and reading files during this process and didn’t see any issues on the client side. As connections changed, we did see retries on the I/O level, but the application layer overcame these short “re-wire” of NFS/CIFS connections.

Steps
1. On the Canvas page, select the working environment.
2. On the Overview tab, click the Features panel and then click the pencil icon next to Machine type.

 ![Image]

 a. If you are using a node-based PAYGO license, you can optionally choose a different license and machine type by clicking the pencil icon next to License type.

3. Choose an machine type, select the check box to confirm that you understand the implications of the change, and then click Change.

Result
Cloud Volumes ONTAP reboots with the new configuration.
Administer Cloud Volumes ONTAP using the Advanced View

If you need to perform advanced management of Cloud Volumes ONTAP, you can do so using ONTAP System Manager, which is a management interface that’s provided with an ONTAP system. We have included the System Manager interface directly inside BlueXP so that you don’t need to leave BlueXP for advanced management.

This Advanced View is available as a Preview. We plan to refine this experience and add enhancements in upcoming releases. Please send us feedback by using the in-product chat.

Features

The Advanced View in BlueXP gives you access to additional management features:

• Advanced storage management

 Manage consistency groups, shares, qtrees, quotas, and Storage VMs.

• Networking management

 Manage IPspaces, network interfaces, portsets, and ethernet ports.

• Events and jobs

 View event logs, system alerts, jobs, and audit logs.

• Advanced data protection

 Protect storage VMs, LUNs, and consistency groups.

• Host management

 Set up SAN initiator groups and NFS clients.

Supported configurations

Advanced management through System Manager is supported with Cloud Volumes ONTAP 9.10.0 and later in standard cloud regions.

System Manager integration is not supported in GovCloud regions or in regions that have no outbound internet access.

Limitations

A few features that appear in the System Manager interface are not supported with Cloud Volumes ONTAP:

• BlueXP tiering

 The BlueXP tiering service is not supported with Cloud Volumes ONTAP. Tiering data to object storage must be set up directly from BlueXP’s Standard View when creating volumes.
• **Tiers**

Aggregate management (including local tiers and cloud tiers) is not supported from System Manager. You must manage aggregates directly from BlueXP’s Standard View.

• **Firmware upgrades**

Automatic firmware updates from the **Cluster > Settings** page is not supported with Cloud Volumes ONTAP.

In addition, role-based access control from System Manager is not supported.

How to get started

Open a Cloud Volumes ONTAP working environment and click the Advanced View option.

Steps

1. From the left navigation menu, select **Storage > Canvas**.
2. On the Canvas page, double-click the name of a Cloud Volumes ONTAP system.
3. In the top-right, click **Switch to Advanced View**.
4. If the confirmation message appears, read through it and click **Close**.
5. Use System Manager to manage Cloud Volumes ONTAP.
6. If needed, click **Switch to Standard View** to return to standard management through BlueXP.

Help with using System Manager

If you need help using System Manager with Cloud Volumes ONTAP, you can refer to ONTAP documentation for step-by-step instructions. Here are a few links that might help:

- **Volume and LUN management**
- **Network management**
- **Data protection**

Administer Cloud Volumes ONTAP from the CLI

The Cloud Volumes ONTAP CLI enables you to run all administrative commands and is a good choice for advanced tasks or if you are more comfortable using the CLI. You can connect to the CLI using Secure Shell (SSH).
Before you begin
The host from which you use SSH to connect to Cloud Volumes ONTAP must have a network connection to Cloud Volumes ONTAP. For example, you might need to SSH from a jump host that’s in your cloud provider network.

When deployed in multiple AZs, Cloud Volumes ONTAP HA configurations use a floating IP address for the cluster management interface, which means external routing is not available. You must connect from a host that is part of the same routing domain.

Steps
1. In BlueXP, identify the IP address of the cluster management interface:
 a. From the left navigation menu, select **Storage > Canvas**.
 b. On the Canvas page, select the Cloud Volumes ONTAP system.
 c. Copy the cluster management IP address that appears in the right pane.
2. Use SSH to connect to the cluster management interface IP address using the admin account.

Example
The following image shows an example using PuTTY:

3. At the login prompt, enter the password for the admin account.

Example

Password: *******
COT2: :>
Copyright information

Copyright © 2023 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.