Get started in Microsoft Azure
Cloud Volumes ONTAP

NetApp
November 17, 2022
Table of Contents

Get started in Microsoft Azure .. 1
Quick start for Cloud Volumes ONTAP in Azure ... 1
Plan your Cloud Volumes ONTAP configuration in Azure 2
Networking requirements for Cloud Volumes ONTAP in Azure 4
Set up Cloud Volumes ONTAP to use a customer-managed key in Azure 13
Set up licensing for Cloud Volumes ONTAP in Azure ... 16
Enable high availability mode in Azure ... 22
Launching Cloud Volumes ONTAP in Azure .. 23
Get started in Microsoft Azure

Quick start for Cloud Volumes ONTAP in Azure

Get started with Cloud Volumes ONTAP for Azure in a few steps.

1. **Create a Connector**

 If you don’t have a Connector yet, an Account Admin needs to create one. Learn how to create a Connector in Azure.

 When you create your first Cloud Volumes ONTAP working environment, BlueXP (formerly Cloud Manager) prompts you to deploy a Connector if you don’t have one yet.

2. **Plan your configuration**

 BlueXP offers preconfigured packages that match your workload requirements, or you can create your own configuration. If you choose your own configuration, you should understand the options available to you. Learn more.

3. **Set up your networking**

 a. Ensure that your VNet and subnets will support connectivity between the Connector and Cloud Volumes ONTAP.

 b. Enable outbound internet access from the target VNet so the Connector and Cloud Volumes ONTAP can contact several endpoints.

 This step is important because the Connector can’t manage Cloud Volumes ONTAP without outbound internet access. If you need to limit outbound connectivity, refer to the list of endpoints for the Connector and Cloud Volumes ONTAP.

 Learn more about networking requirements.

4. **Launch Cloud Volumes ONTAP using BlueXP**

 Click **Add Working Environment**, select the type of system that you would like to deploy, and complete the steps in the wizard. Read step-by-step instructions.

Related links

- Creating a Connector from BlueXP
- Creating a Connector from the Azure Marketplace
- Installing the Connector software on a Linux host
- What BlueXP does with permissions
Plan your Cloud Volumes ONTAP configuration in Azure

When you deploy Cloud Volumes ONTAP in Azure, you can choose a preconfigured system that matches your workload requirements, or you can create your own configuration. If you choose your own configuration, you should understand the options available to you.

Choose a Cloud Volumes ONTAP license

Several licensing options are available for Cloud Volumes ONTAP. Each option enables you to choose a consumption model that meets your needs.

• Learn about licensing options for Cloud Volumes ONTAP
• Learn how to set up licensing

Choose a supported region

Cloud Volumes ONTAP is supported in most Microsoft Azure regions. View the full list of supported regions.

Choose a supported VM type

Cloud Volumes ONTAP supports several VM types, depending on the license type that you choose.

Supported configurations for Cloud Volumes ONTAP in Azure

Understand storage limits

The raw capacity limit for a Cloud Volumes ONTAP system is tied to the license. Additional limits impact the size of aggregates and volumes. You should be aware of these limits as you plan your configuration.

Storage limits for Cloud Volumes ONTAP in Azure

Size your system in Azure

Sizing your Cloud Volumes ONTAP system can help you meet requirements for performance and capacity. You should be aware of a few key points when choosing a VM type, disk type, and disk size:

Virtual machine type

Look at the supported virtual machine types in the Cloud Volumes ONTAP Release Notes and then review details about each supported VM type. Be aware that each VM type supports a specific number of data disks.

• Azure documentation: General purpose virtual machine sizes
• Azure documentation: Memory optimized virtual machine sizes

Azure disk type

When you create volumes for Cloud Volumes ONTAP, you need to choose the underlying cloud storage that Cloud Volumes ONTAP uses as a disk.

HA systems use Premium page blobs. Meanwhile, single node systems can use two types of Azure Managed Disks:
• **Premium SSD Managed Disks** provide high performance for I/O-intensive workloads at a higher cost.
• **Standard SSD Managed Disks** provide consistent performance for workloads that require low IOPS.
• **Standard HDD Managed Disks** are a good choice if you don’t need high IOPS and want to reduce your costs.

For additional details about the use cases for these disks, see Microsoft Azure Documentation: What disk types are available in Azure?

Azure disk size

When you launch Cloud Volumes ONTAP instances, you must choose the default disk size for aggregates. BlueXP uses this disk size for the initial aggregate, and for any additional aggregates that it creates when you use the simple provisioning option. You can create aggregates that use a disk size different from the default by using the advanced allocation option.

All disks in an aggregate must be the same size.

When choosing a disk size, you should take several factors into consideration. The disk size impacts how much you pay for storage, the size of volumes that you can create in an aggregate, the total capacity available to Cloud Volumes ONTAP, and storage performance.

The performance of Azure Premium Storage is tied to the disk size. Larger disks provide higher IOPS and throughput. For example, choosing 1 TiB disks can provide better performance than 500 GiB disks, at a higher cost.

There are no performance differences between disk sizes for Standard Storage. You should choose disk size based on the capacity that you need.

Refer to Azure for IOPS and throughput by disk size:

• [Microsoft Azure: Managed Disks pricing](#)
• [Microsoft Azure: Page Blobs pricing](#)

View default system disks

In addition to the storage for user data, BlueXP also purchases cloud storage for Cloud Volumes ONTAP system data (boot data, root data, core data, and NVRAM). For planning purposes, it might help for you to review these details before you deploy Cloud Volumes ONTAP.

View the default disks for Cloud Volumes ONTAP system data in Azure.

The Connector also requires a system disk. View details about the Connector’s default configuration.

Collect networking information

When you deploy Cloud Volumes ONTAP in Azure, you need to specify details about your virtual network. You can use a worksheet to collect the information from your administrator.

<table>
<thead>
<tr>
<th>Azure information</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td></td>
</tr>
<tr>
<td>Azure information</td>
<td>Your value</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Virtual network (VNet)</td>
<td></td>
</tr>
<tr>
<td>Subnet</td>
<td></td>
</tr>
<tr>
<td>Network security group (if using your own)</td>
<td></td>
</tr>
</tbody>
</table>

Choose a write speed

BlueXP enables you to choose a write speed setting for Cloud Volumes ONTAP. Before you choose a write speed, you should understand the differences between the normal and high settings and risks and recommendations when using high write speed. [Learn more about write speed](#).

Choose a volume usage profile

ONTAP includes several storage efficiency features that can reduce the total amount of storage that you need. When you create a volume in BlueXP, you can choose a profile that enables these features or a profile that disables them. You should learn more about these features to help you decide which profile to use.

NetApp storage efficiency features provide the following benefits:

Thin provisioning

- Presents more logical storage to hosts or users than you actually have in your physical storage pool. Instead of preallocating storage space, storage space is allocated dynamically to each volume as data is written.

Deduplication

- Improves efficiency by locating identical blocks of data and replacing them with references to a single shared block. This technique reduces storage capacity requirements by eliminating redundant blocks of data that reside in the same volume.

Compression

- Reduces the physical capacity required to store data by compressing data within a volume on primary, secondary, and archive storage.

Networking requirements for Cloud Volumes ONTAP in Azure

Set up your Azure networking so Cloud Volumes ONTAP systems can operate properly. This includes networking for the Connector and Cloud Volumes ONTAP.

Requirements for Cloud Volumes ONTAP

The following networking requirements must be met in Azure.

Outbound internet access

Cloud Volumes ONTAP nodes require outbound internet access for NetApp AutoSupport, which proactively monitors the health of your system and sends messages to NetApp technical support.
Routing and firewall policies must allow HTTP/HTTPS traffic to the following endpoints so Cloud Volumes ONTAP can send AutoSupport messages:

- https://support.netapp.com/aods/asupmessage
- https://support.netapp.com/asupprod/post/1.0/postAsup

If an outbound internet connection isn’t available to send AutoSupport messages, BlueXP automatically configures your Cloud Volumes ONTAP systems to use the Connector as a proxy server. The only requirement is to ensure that the Connector’s security group allows inbound connections over port 3128. You’ll need to open this port after you deploy the Connector.

If you defined strict outbound rules for Cloud Volumes ONTAP, then you’ll also need to ensure that the Cloud Volumes ONTAP security group allows outbound connections over port 3128.

After you’ve verified that outbound internet access is available, you can test AutoSupport to ensure that it can send messages. For instructions, refer to ONTAP docs: Set up AutoSupport.

If BlueXP notifies you that AutoSupport messages can’t be sent, troubleshoot your AutoSupport configuration.

IP addresses

BlueXP allocates the following number of IP addresses to Cloud Volumes ONTAP in Azure:

- Single node: 5 IP addresses
- HA pair: 16 IP addresses

Note that BlueXP creates an SVM management LIF on HA pairs, but not on single node systems in Azure.

A LIF is an IP address associated with a physical port. An SVM management LIF is required for management tools like SnapCenter.

Secure connections to Azure services

By default, BlueXP enables an Azure Private Link for connections between Cloud Volumes ONTAP and Azure storage accounts.

In most cases, there’s nothing that you need to do—BlueXP manages the Azure Private Link for you. But if you use Azure Private DNS, then you’ll need to edit a configuration file. You should also be aware of a requirement for the Connector location in Azure.

You can also disable the Private Link connection, if required by your business needs. If you disable the link, BlueXP configures Cloud Volumes ONTAP to use a service endpoint instead.

Learn more about using Azure Private Links or service endpoints with Cloud Volumes ONTAP.

Connections to other ONTAP systems

To replicate data between a Cloud Volumes ONTAP system in Azure and ONTAP systems in other networks, you must have a VPN connection between the Azure VNet and the other network—for example, your corporate network.

For instructions, refer to Microsoft Azure Documentation: Create a Site-to-Site connection in the Azure portal.
Port for the HA interconnect

A Cloud Volumes ONTAP HA pair includes an HA interconnect, which allows each node to continually check whether its partner is functioning and to mirror log data for the other’s nonvolatile memory. The HA interconnect uses TCP port 10006 for communication.

By default, communication between the HA interconnect LIFs is open and there are no security group rules for this port. But if you create a firewall between the HA interconnect LIFs, then you need to ensure that TCP traffic is open for port 10006 so that the HA pair can operate properly.

Only one HA pair in an Azure resource group

You must use a dedicated resource group for each Cloud Volumes ONTAP HA pair that you deploy in Azure. Only one HA pair is supported in a resource group.

BlueXP experiences connection issues if you try to deploy a second Cloud Volumes ONTAP HA pair in an Azure resource group.

Security groups

You don’t need to create security groups because BlueXP does that for you. If you need to use your own, refer to the security group rules listed below.

Security group rules

BlueXP creates Azure security groups that include the inbound and outbound rules that Cloud Volumes ONTAP needs to operate successfully. You might want to refer to the ports for testing purposes or if you prefer your to use own security groups.

The security group for Cloud Volumes ONTAP requires both inbound and outbound rules.

Inbound rules for single node systems

When you create a working environment and choose a predefined security group, you can choose to allow traffic within one of the following:

- **Selected VNet only**: the source for inbound traffic is the subnet range of the VNet for the Cloud Volumes ONTAP system and the subnet range of the VNet where the Connector resides. This is the recommended option.

- **All VNets**: the source for inbound traffic is the 0.0.0.0/0 IP range.

<table>
<thead>
<tr>
<th>Priority and name</th>
<th>Port and protocol</th>
<th>Source and destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 inbound_ssh</td>
<td>22 TCP</td>
<td>Any to Any</td>
<td>SSH access to the IP address of the cluster management LIF or a node management LIF</td>
</tr>
<tr>
<td>1001 inbound_http</td>
<td>80 TCP</td>
<td>Any to Any</td>
<td>HTTP access to the System Manager web console using the IP address of the cluster management LIF</td>
</tr>
<tr>
<td>1002 inbound_111_tcp</td>
<td>111 TCP</td>
<td>Any to Any</td>
<td>Remote procedure call for NFS</td>
</tr>
<tr>
<td>1003 inbound_111_udp</td>
<td>111 UDP</td>
<td>Any to Any</td>
<td>Remote procedure call for NFS</td>
</tr>
<tr>
<td>Priority and name</td>
<td>Port and protocol</td>
<td>Source and destination</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1004 inbound_139</td>
<td>139 TCP</td>
<td>Any to Any</td>
<td>NetBIOS service session for CIFS</td>
</tr>
<tr>
<td>1005 inbound_161-162_tcp</td>
<td>161-162 TCP</td>
<td>Any to Any</td>
<td>Simple network management protocol</td>
</tr>
<tr>
<td>1006 inbound_161-162_udp</td>
<td>161-162 UDP</td>
<td>Any to Any</td>
<td>Simple network management protocol</td>
</tr>
<tr>
<td>1007 inbound_443</td>
<td>443 TCP</td>
<td>Any to Any</td>
<td>Connectivity with the Connector and HTTPS access to the System Manager web console using the IP address of the cluster management LIF</td>
</tr>
<tr>
<td>1008 inbound_445</td>
<td>445 TCP</td>
<td>Any to Any</td>
<td>Microsoft SMB/CIFS over TCP with NetBIOS framing</td>
</tr>
<tr>
<td>1009 inbound_635_tcp</td>
<td>635 TCP</td>
<td>Any to Any</td>
<td>NFS mount</td>
</tr>
<tr>
<td>1010 inbound_635_udp</td>
<td>635 UDP</td>
<td>Any to Any</td>
<td>NFS mount</td>
</tr>
<tr>
<td>1011 inbound_749</td>
<td>749 TCP</td>
<td>Any to Any</td>
<td>Kerberos</td>
</tr>
<tr>
<td>1012 inbound_2049_tcp</td>
<td>2049 TCP</td>
<td>Any to Any</td>
<td>NFS server daemon</td>
</tr>
<tr>
<td>1013 inbound_2049_udp</td>
<td>2049 UDP</td>
<td>Any to Any</td>
<td>NFS server daemon</td>
</tr>
<tr>
<td>1014 inbound_3260</td>
<td>3260 TCP</td>
<td>Any to Any</td>
<td>iSCSI access through the iSCSI data LIF</td>
</tr>
<tr>
<td>1015 inbound_4045-4046_tcp</td>
<td>4045-4046 TCP</td>
<td>Any to Any</td>
<td>NFS lock daemon and network status monitor</td>
</tr>
<tr>
<td>1016 inbound_4045-4046_udp</td>
<td>4045-4046 UDP</td>
<td>Any to Any</td>
<td>NFS lock daemon and network status monitor</td>
</tr>
<tr>
<td>1017 inbound_10000</td>
<td>10000 TCP</td>
<td>Any to Any</td>
<td>Backup using NDMP</td>
</tr>
<tr>
<td>1018 inbound_11104-11105</td>
<td>11104-11105 TCP</td>
<td>Any to Any</td>
<td>SnapMirror data transfer</td>
</tr>
<tr>
<td>3000 inbound_deny_all_tcp</td>
<td>Any port TCP</td>
<td>Any to Any</td>
<td>Block all other TCP inbound traffic</td>
</tr>
<tr>
<td>Priority and name</td>
<td>Port and protocol</td>
<td>Source and destination</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3001 inbound_deny_all_udp</td>
<td>Any port UDP</td>
<td>Any to Any</td>
<td>Block all other UDP inbound traffic</td>
</tr>
<tr>
<td>65000 AllowVnetInBound</td>
<td>Any port Any protocol</td>
<td>VirtualNetwork to VirtualNetwork</td>
<td>Inbound traffic from within the VNet</td>
</tr>
<tr>
<td>65001 AllowAzureLoadBalancerInBound</td>
<td>Any port Any protocol</td>
<td>AzureLoadBalancer to Any</td>
<td>Data traffic from the Azure Standard Load Balancer</td>
</tr>
<tr>
<td>65500 DenyAllInBound</td>
<td>Any port Any protocol</td>
<td>Any to Any</td>
<td>Block all other inbound traffic</td>
</tr>
</tbody>
</table>

Inbound rules for HA systems

When you create a working environment and choose a predefined security group, you can choose to allow traffic within one of the following:

- **Selected VNet only**: the source for inbound traffic is the subnet range of the VNet for the Cloud Volumes ONTAP system and the subnet range of the VNet where the Connector resides. This is the recommended option.

- **All VNets**: the source for inbound traffic is the 0.0.0.0/0 IP range.

HA systems have less inbound rules than single node systems because inbound data traffic goes through the Azure Standard Load Balancer. Because of this, traffic from the Load Balancer should be open, as shown in the "AllowAzureLoadBalancerInBound" rule.

<table>
<thead>
<tr>
<th>Priority and name</th>
<th>Port and protocol</th>
<th>Source and destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 inbound_443</td>
<td>443 Any protocol</td>
<td>Any to Any</td>
<td>Connectivity with the Connector and HTTPS access to the System Manager web console using the IP address of the cluster management LIF</td>
</tr>
<tr>
<td>101 inbound_111_tcp</td>
<td>111 Any protocol</td>
<td>Any to Any</td>
<td>Remote procedure call for NFS</td>
</tr>
<tr>
<td>102 inbound_2049_tcp</td>
<td>2049 Any protocol</td>
<td>Any to Any</td>
<td>NFS server daemon</td>
</tr>
<tr>
<td>111 inbound_ssh</td>
<td>22 Any protocol</td>
<td>Any to Any</td>
<td>SSH access to the IP address of the cluster management LIF or a node management LIF</td>
</tr>
<tr>
<td>121 inbound_53</td>
<td>53 Any protocol</td>
<td>Any to Any</td>
<td>DNS and CIFS</td>
</tr>
<tr>
<td>Priority and name</td>
<td>Port and protocol</td>
<td>Source and destination</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>65000 AllowVnetInBound</td>
<td>Any port</td>
<td>VirtualNetwork to VirtualNetwork</td>
<td>Inbound traffic from within the VNet</td>
</tr>
<tr>
<td>65001 AllowAzureLoadBalancerInBound</td>
<td>Any port</td>
<td>AzureLoadBalancer to Any</td>
<td>Data traffic from the Azure Standard Load Balancer</td>
</tr>
<tr>
<td>65500 DenyAllInBound</td>
<td>Any port</td>
<td>Any to Any</td>
<td>Block all other inbound traffic</td>
</tr>
</tbody>
</table>

Outbound rules

The predefined security group for Cloud Volumes ONTAP opens all outbound traffic. If that is acceptable, follow the basic outbound rules. If you need more rigid rules, use the advanced outbound rules.

Basic outbound rules

The predefined security group for Cloud Volumes ONTAP includes the following outbound rules.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All TCP</td>
<td>All outbound traffic</td>
</tr>
<tr>
<td>All</td>
<td>All UDP</td>
<td>All outbound traffic</td>
</tr>
</tbody>
</table>

Advanced outbound rules

If you need rigid rules for outbound traffic, you can use the following information to open only those ports that are required for outbound communication by Cloud Volumes ONTAP.

> The source is the interface (IP address) on the Cloud Volumes ONTAP system.
<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Directory</td>
<td>88</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>Kerberos V authentication</td>
</tr>
<tr>
<td>137</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>NetBIOS name service</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>NetBIOS datagram service</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>NetBIOS service session</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>TCP & UDP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>LDAP</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>Microsoft SMB/CIFS over TCP with NetBIOS framing</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>Kerberos V change & set password (SET_CHANGE)</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>Kerberos key administration</td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Active Directory forest</td>
<td>Kerberos V change & set Password (RPCSEC_GSS)</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>TCP</td>
<td>Data LIF (NFS, CIFS, iSCSI)</td>
<td>Active Directory forest</td>
<td>Kerberos V authentication</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>UDP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>NetBIOS name service</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>UDP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>NetBIOS datagram service</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>TCP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>NetBIOS service session</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>TCP & UDP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>LDAP</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>TCP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>Microsoft SMB/CIFS over TCP with NetBIOS framing</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>TCP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>Kerberos V change & set password (SET_CHANGE)</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>UDP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>Kerberos key administration</td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>TCP</td>
<td>Data LIF (NFS, CIFS)</td>
<td>Active Directory forest</td>
<td>Kerberos V change & set password (RPCSEC_GSS)</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Port</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>AutoSupport</td>
<td>HTTPS 443</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>support.netapp.com</td>
<td>AutoSupport (HTTPS is the default)</td>
</tr>
<tr>
<td>AutoSupport</td>
<td>HTTP 80</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>support.netapp.com</td>
<td>AutoSupport (only if the transport protocol is changed from HTTPS to HTTP)</td>
</tr>
<tr>
<td>TCP 3128</td>
<td></td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Connector</td>
<td>Sending AutoSupport messages through a proxy server on the Connector, if an outbound internet connection isn’t available</td>
</tr>
<tr>
<td>DHCP</td>
<td>68</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>DHCP</td>
<td>DHCP client for first-time setup</td>
</tr>
<tr>
<td>DHCPS</td>
<td>67</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>DHCP</td>
<td>DHCP server</td>
</tr>
<tr>
<td>DNS</td>
<td>53</td>
<td>UDP</td>
<td>Node management LIF and data LIF (NFS, CIFS)</td>
<td>DNS</td>
<td>DNS</td>
</tr>
<tr>
<td>NDMP</td>
<td>18600–18699</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Destination servers</td>
<td>NDMP copy</td>
</tr>
<tr>
<td>SMTP</td>
<td>25</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Mail server</td>
<td>SMTP alerts, can be used for AutoSupport</td>
</tr>
<tr>
<td>SNMP</td>
<td>161</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Monitor server</td>
<td>Monitoring by SNMP traps</td>
</tr>
<tr>
<td>SNMP</td>
<td>161</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Monitor server</td>
<td>Monitoring by SNMP traps</td>
</tr>
<tr>
<td>SNMP</td>
<td>162</td>
<td>TCP</td>
<td>Node management LIF</td>
<td>Monitor server</td>
<td>Monitoring by SNMP traps</td>
</tr>
<tr>
<td>SNMP</td>
<td>162</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Monitor server</td>
<td>Monitoring by SNMP traps</td>
</tr>
<tr>
<td>SnapMirror</td>
<td>11104</td>
<td>TCP</td>
<td>Intercluster LIF</td>
<td>ONTAP intercluster LIFs</td>
<td>Management of intercluster communication sessions for SnapMirror</td>
</tr>
<tr>
<td>SnapMirror</td>
<td>11105</td>
<td>TCP</td>
<td>Intercluster LIF</td>
<td>ONTAP intercluster LIFs</td>
<td>SnapMirror data transfer</td>
</tr>
<tr>
<td>Syslog</td>
<td>514</td>
<td>UDP</td>
<td>Node management LIF</td>
<td>Syslog server</td>
<td>Syslog forward messages</td>
</tr>
</tbody>
</table>

Requirements for the Connector

Set up your networking so that the Connector can manage resources and processes within your public cloud environment. The most important step is ensuring outbound internet access to various endpoints.
If your network uses a proxy server for all communication to the internet, you can specify the proxy server from the Settings page. Refer to Configuring the Connector to use a proxy server.

Connections to target networks

A Connector requires a network connection to the VPCs and VNets in which you want to deploy Cloud Volumes ONTAP.

For example, if you install a Connector in your corporate network, then you must set up a VPN connection to the VPC or VNet in which you launch Cloud Volumes ONTAP.

Outbound internet access

The Connector requires outbound internet access to manage resources and processes within your public cloud environment.

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://support.netapp.com</td>
<td>To obtain licensing information and to send AutoSupport messages to NetApp support.</td>
</tr>
<tr>
<td>https://*.cloudmanager.cloud.netapp.com</td>
<td>To provide SaaS features and services within BlueXP.</td>
</tr>
<tr>
<td>https://cloudmanager.cloud.netapp.com</td>
<td></td>
</tr>
<tr>
<td>https://cloudmanagerinfraprod.azurecr.io</td>
<td>To upgrade the Connector and its Docker components.</td>
</tr>
<tr>
<td>https://*.blob.core.windows.net</td>
<td></td>
</tr>
</tbody>
</table>

Security group rules

The security group for the Connector requires both inbound and outbound rules.

Inbound rules

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>SSH</td>
<td>Provides SSH access to the Connector host</td>
</tr>
<tr>
<td>80</td>
<td>HTTP</td>
<td>Provides HTTP access from client web browsers to the local user interface</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>Provides HTTPS access from client web browsers to the local user interface</td>
</tr>
<tr>
<td>TCP</td>
<td>3128</td>
<td>Provides Cloud Volumes ONTAP with internet access to send AutoSupport messages to NetApp Support. You must manually open this port after deploying the Connector.</td>
</tr>
</tbody>
</table>

Outbound rules

The predefined security group for the Connector opens all outbound traffic. If that is acceptable, follow the basic outbound rules. If you need more rigid rules, use the advanced outbound rules.

Basic outbound rules

The predefined security group for the Connector includes the following outbound rules.
Advanced outbound rules

If you need rigid rules for outbound traffic, you can use the following information to open only those ports that are required for outbound communication by the Connector.

- The source IP address is the Connector host.

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Protocol</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>API calls and AutoSupport</td>
<td>44</td>
<td>HTTP</td>
<td>Outbound internet and ONTAP cluster management LIF</td>
<td>API calls to Azure and ONTAP, to Cloud Data Sense, to the Ransomware service, and sending AutoSupport messages to NetApp</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS</td>
<td>53</td>
<td>UDP</td>
<td>DNS</td>
<td>Used for DNS resolve by BlueXP</td>
</tr>
</tbody>
</table>

Set up Cloud Volumes ONTAP to use a customer-managed key in Azure

Data is automatically encrypted on Cloud Volumes ONTAP in Azure using Azure Storage Service Encryption with a Microsoft-managed key. But you can use your own encryption key instead by following the steps on this page.

Data encryption overview

Cloud Volumes ONTAP data is automatically encrypted in Azure using Azure Storage Service Encryption. The default implementation uses a Microsoft-managed key. No setup is required.

If you want to use a customer-managed key with Cloud Volumes ONTAP, then you need to complete the following steps:

1. From Azure, create a key vault and then generate a key in that vault.
2. From BlueXP, use the API to create a Cloud Volumes ONTAP working environment that uses the key.

Key rotation

If you create a new version of your key, Cloud Volumes ONTAP automatically uses the latest key version.

How data is encrypted

After you create a Cloud Volumes ONTAP working environment that is configured to use a customer-managed key, Cloud Volumes ONTAP data is encrypted as follows.
Azure HA single availability zone

- All Azure storage accounts for Cloud Volumes ONTAP are encrypted using a customer-managed key.¹
- Any new storage accounts (for example, when you add disks or aggregates) also use the same key.¹
- From ONTAP 9.10.1P3, for NVRAM and the core disk, BlueXP uses a disk encryption set, which enables management of encryption keys with managed disks. Lower versions will use Microsoft-managed key, instead of the customer-managed key.

Single node

- All Azure storage accounts for Cloud Volumes ONTAP are encrypted using a customer-managed key.¹
- For root, boot, and data disks, BlueXP uses a disk encryption set, which enables management of encryption keys with managed disks.
- Any new data disks also use the same disk encryption set.
- From ONTAP 9.9.1P7, For NVRAM and the core disk, BlueXP uses a disk encryption set, which enables management of encryption keys with managed disks. Lower versions will use Microsoft-managed key, instead of the customer-managed key.

Footnote

¹. If you want to encrypt your storage accounts during their creation, you must create and provide the ID of the resource in the Cloud Volumes ONTAP creation request. This applies for all type of deployments. If you do not provide this, the storage accounts still will be encrypted, but BlueXP will first create the storage accounts with Microsoft-managed key encryption and then will update the storage accounts to use the customer-managed key.

Create a key vault and generate a key

The key vault must reside in the same Azure subscription and region in which you plan to create the Cloud Volumes ONTAP system.

Steps

1. **Create a key vault in your Azure subscription.**

 Note the following requirements for the key vault:
 - The key vault must reside in the same region as the Cloud Volumes ONTAP system.
 - The following options should be enabled:
 - **Soft-delete** (this option is enabled by default, but must not be disabled)
 - **Purge protection**
 - **Azure Disk Encryption for volume encryption**

2. **Generate a key in the key vault.**

 Note the following requirements for the key:
 - The key type must be **RSA**.
 - The recommended RSA key size is **2048**, but other sizes are supported.

Create a working environment that uses the encryption key

After you create the key vault and generate an encryption key, you can create a new Cloud Volumes ONTAP
system that is configured to use the key. These steps are supported by using the BlueXP API.

Required permissions

If you want to use a customer-managed key with a single node Cloud Volumes ONTAP system, ensure that the BlueXP Connector has the following permissions:

```
"Microsoft.Compute/diskEncryptionSets/read",
"Microsoft.Compute/diskEncryptionSets/write",
"Microsoft.Compute/diskEncryptionSets/delete",
"Microsoft.KeyVault/vaults/deploy/action",
"Microsoft.KeyVault/vaults/read",
"Microsoft.KeyVault/vaults/accessPolicies/write",
"Microsoft.ManagedIdentity/userAssignedIdentities/assign/action"
```

View the latest list of permissions

The first three permissions aren’t required for HA pairs.

Steps

1. Obtain the list of key vaults in your Azure subscription by using the following BlueXP API call.

 For an HA pair: GET /azure/ha/metadata/vaults

 For single node: GET /azure/vsa/metadata/vaults

 Make note of the **name** and **resourceGroup**. You’ll need to specify those values in the next step.

 Learn more about this API call.

2. Obtain the list of keys within the vault by using the following BlueXP API call.

 For an HA pair: GET /azure/ha/metadata/keys-vault

 For single node: GET /azure/vsa/metadata/keys-vault

 Make note of the **keyName**. You’ll need to specify that value (along with the vault name) in the next step.

 Learn more about this API call.

3. Create a Cloud Volumes ONTAP system by using the following BlueXP API call.
 a. For an HA pair:

 POST /azure/ha/working-environments

 The request body must include the following fields:
Learn more about this API call.

b. For a single node system:

POST /azure/vsa/working-environments

The request body must include the following fields:

```
"azureEncryptionParameters": {
  "key": "keyName",
  "vaultName": "vaultName",
  "userAssignedIdentity": "userAssignedIdentityId",
  [Optional] ***
}
```

Learn more about this API call.

Result
You have a new Cloud Volumes ONTAP system that is configured to use your customer-managed key for data encryption.

Set up licensing for Cloud Volumes ONTAP in Azure
After you decide which licensing option you want to use with Cloud Volumes ONTAP, a few steps are required before you can choose that licensing option when creating a new working environment.

Freemium
Select the Freemium offering to use Cloud Volumes ONTAP free of charge with up to 500 GiB of provisioned capacity. Learn more about the Freemium offering.

Steps
1. From the left navigation menu, select Storage > Canvas.
2. On the Canvas page, click Add Working Environment and follow the steps in BlueXP.
 a. On the Details and Credentials page, click Edit Credentials > Add Subscription and then follow the prompts to subscribe to the pay-as-you-go offering in the Azure Marketplace.

 You won’t be charged through the marketplace subscription unless you exceed 500 GiB of provisioned...
capacity, at which time the system is automatically converted to the Essentials package.

After you return to BlueXP, select Freemium when you reach the charging methods page.

Capacity-based license

Capacity-based licensing enables you to pay for Cloud Volumes ONTAP per TiB of capacity. Capacity-based licensing is available in the form of a package: the Essentials package or the Professional package.
The Essentials and Professional packages are available with the following consumption models:

- A license (BYOL) purchased from NetApp
- An hourly, pay-as-you-go (PAYGO) subscription from the Azure Marketplace
- An annual contract

Learn more about capacity-based licensing.

The following sections describe how to get started with each of these consumption models.

BYOL

Pay upfront by purchasing a license (BYOL) from NetApp to deploy Cloud Volumes ONTAP systems in any cloud provider.

Steps

1. Contact NetApp Sales to obtain a license
2. Add your NetApp Support Site account to BlueXP

 BlueXP automatically queries NetApp’s licensing service to obtain details about the licenses associated with your NetApp Support Site account. If there are no errors, BlueXP automatically adds the licenses to the Digital Wallet.

 Your license must be available from the Digital Wallet before you can use it with Cloud Volumes ONTAP. If needed, you can manually add the license to the Digital Wallet.

3. On the Canvas page, click Add Working Environment and follow the steps in BlueXP.
 a. On the Details and Credentials page, click Edit Credentials > Add Subscription and then follow the prompts to subscribe to the pay-as-you-go offering in the Azure Marketplace.

 The license that you purchased from NetApp is always charged first, but you’ll be charged from the hourly rate in the marketplace if you exceed your licensed capacity or if the term of your license expires.
b. After you return to BlueXP, select a capacity-based package when you reach the charging methods page.

PAYGO subscription

Pay hourly by subscribing to the offer from your cloud provider’s marketplace.

When you create a Cloud Volumes ONTAP working environment, BlueXP prompts you to subscribe to the agreement that’s available in the Azure Marketplace. That subscription is then associated with the working
environment for charging. You can use that same subscription for additional working environments.

Steps

1. From the left navigation menu, select **Storage > Canvas**.

2. On the Canvas page, click **Add Working Environment** and follow the steps in BlueXP.

 a. On the **Details and Credentials** page, click **Edit Credentials > Add Subscription** and then follow the prompts to subscribe to the pay-as-you-go offering in the Azure Marketplace.

 ![Edit Credentials & Add Subscription](image)

 b. After you return to BlueXP, select a capacity-based package when you reach the charging methods page.

 ![Select Charging Method](image)
You can manage the Azure Marketplace subscriptions associated with your Azure accounts from the Settings > Credentials page. Learn how to manage your Azure accounts and subscriptions.

Annual contract

Pay for Cloud Volumes ONTAP annually by purchasing an annual contract.

Steps

1. Contact your NetApp sales representative to purchase an annual contract.

 The contract is available as a *private* offer in the Azure Marketplace.

 After NetApp shares the private offer with you, you can select the annual plan when you subscribe from the Azure Marketplace during working environment creation.

2. On the Canvas page, click **Add Working Environment** and follow the steps in BlueXP.

 a. On the **Details and Credentials** page, click **Edit Credentials > Add Subscription > Continue**.

 b. In the Azure portal, select the annual plan that was shared with your Azure account and then click **Subscribe**.

 c. After you return to BlueXP, select a capacity-based package when you reach the charging methods page.

![Select Charging Method](image)

Keystone Flex Subscription

A Keystone Flex Subscription is a pay-as-you-grow subscription-based service. Learn more about Keystone Flex Subscriptions.

Steps

1. If you don’t have a subscription yet, contact NetApp.
2. Contact NetApp to authorize your BlueXP user account with one or more Keystone Flex Subscriptions.
3. After NetApp authorizes your account, link your subscriptions for use with Cloud Volumes ONTAP.
4. On the Canvas page, click Add Working Environment and follow the steps in BlueXP.
 a. Select the Keystone Flex Subscription charging method when prompted to choose a charging method.

![Select Charging Method](image)

Enable high availability mode in Azure

Microsoft Azure’s high availability mode should be enabled to reduce unplanned failover times and to enable NFSv4 support for Cloud Volumes ONTAP.

Starting with the Cloud Volumes ONTAP 9.10.1 release, we reduced the unplanned failover time for Cloud Volumes ONTAP HA pairs running in Microsoft Azure and added support for NFSv4. To make these enhancements available to Cloud Volumes ONTAP, you need to enable the high availability feature on your Azure subscription.

BlueXP will prompt you with these details in an Action Required message when the feature needs to be enabled on an Azure subscription.

Note the following:

- There are no problems with the high availability of your Cloud Volumes ONTAP HA pair. This Azure feature works in concert with ONTAP to reduce the client observed application outage time for NFS protocols that...
result from unplanned failover events.

• Enabling this feature is non-disruptive to Cloud Volumes ONTAP HA pairs.
• Enabling this feature on your Azure subscription won’t cause issues to other VMs.

An Azure user who has "Owner" privileges can enable the feature from the Azure CLI.

Steps

1. **Access the Azure Cloud Shell from the Azure Portal**
2. **Register the high availability mode feature:**

   ```
   az account set -s AZURE_SUBSCRIPTION_NAME_OR_ID
   az feature register --name EnableHighAvailabilityMode --namespace Microsoft.Network
   az provider register -n Microsoft.Network
   ```

3. **Optionally verify that the feature is now registered:**

   ```
   az feature show --name EnableHighAvailabilityMode --namespace Microsoft.Network
   ```

The Azure CLI should return a result similar to the following:

```
{
   "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/providers/Microsoft.Features/providers/Microsoft.Network/features/EnableHighAvailabilityMode",
   "name": "Microsoft.Network/EnableHighAvailabilityMode",
   "properties": {
      "state": "Registered"
   },
   "type": "Microsoft.Features/providers/features"
}
```

Launching Cloud Volumes ONTAP in Azure

You can launch a single node system or an HA pair in Azure by creating a Cloud Volumes ONTAP working environment in BlueXP.

What you'll need

You need the following to create a working environment.

• A Connector that’s up and running.
 ◦ You should have a **Connector that is associated with your workspace.**
• You should be prepared to leave the Connector running at all times.

• An understanding of the configuration that you want to use.

You should have chosen a configuration and obtained Azure networking information from your administrator. For details, see Planning your Cloud Volumes ONTAP configuration.

• An understanding of what’s required to set up licensing for Cloud Volumes ONTAP.

Learn how to set up licensing.

About this task

When BlueXP creates a Cloud Volumes ONTAP system in Azure, it creates several Azure objects, such as a resource group, network interfaces, and storage accounts. You can review a summary of the resources at the end of the wizard.

Potential for Data Loss

The best practice is to use a new, dedicated resource group for each Cloud Volumes ONTAP system.

Deploying Cloud Volumes ONTAP in an existing, shared resource group is not recommended due to the risk of data loss. While BlueXP can remove Cloud Volumes ONTAP resources from a shared resource group in case of deployment failure or deletion, an Azure user might accidentally delete Cloud Volumes ONTAP resources from a shared resource group.

Steps

1. From the left navigation menu, select Storage > Canvas.

2. On the Canvas page, click Add Working Environment and follow the prompts.

4. If you’re prompted, create a Connector.

5. Details and Credentials: Optionally change the Azure credentials and subscription, specify a cluster name, add tags if needed, and then specify credentials.

The following table describes fields for which you might need guidance:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Environment Name</td>
<td>BlueXP uses the working environment name to name both the Cloud Volumes ONTAP system and the Azure virtual machine. It also uses the name as the prefix for the predefined security group, if you select that option.</td>
</tr>
<tr>
<td>Resource Group Tags</td>
<td>Tags are metadata for your Azure resources. When you enter tags in this field, BlueXP adds them to the resource group associated with the Cloud Volumes ONTAP system. You can add up to four tags from the user interface when creating a working environment, and then you can add more after it's created. Note that the API does not limit you to four tags when creating a working environment. For information about tags, refer to Microsoft Azure Documentation: Using tags to organize your Azure resources.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>User name and password</td>
<td>These are the credentials for the Cloud Volumes ONTAP cluster administrator account. You can use these credentials to connect to Cloud Volumes ONTAP through System Manager or its CLI. Keep the default admin user name or change it to a custom user name.</td>
</tr>
<tr>
<td>Edit Credentials</td>
<td>You can choose different Azure credentials and a different Azure subscription to use with this Cloud Volumes ONTAP system. You need to associate an Azure Marketplace subscription with the selected Azure subscription in order to deploy a pay-as-you-go Cloud Volumes ONTAP system. Learn how to add credentials.</td>
</tr>
</tbody>
</table>

The following video shows how to associate a Marketplace subscription to an Azure subscription:

6. **Services:** Keep the services enabled or disable the individual services that you don’t want to use with Cloud Volumes ONTAP.
 - Learn more about Cloud Data Sense
 - Learn more about Cloud Backup

7. **Location:** Select a region, availability zone, VNet, and subnet, and then select the checkbox to confirm network connectivity between the Connector and the target location.

 For single node systems, you can choose the Availability Zone in which you’d like to deploy Cloud Volumes ONTAP. If you don’t select an AZ, BlueXP will select one for you.

8. **Connectivity:** Choose a new or existing resource group and then choose whether to use the predefined security group or to use your own.

The following table describes fields for which you might need guidance:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability Zone</td>
<td>For single node systems, you can choose the Availability Zone in which you’d like to deploy Cloud Volumes ONTAP. If you don't select an AZ, BlueXP will select one for you.</td>
</tr>
<tr>
<td>Resource Group</td>
<td>Create a new resource group for Cloud Volumes ONTAP or use an existing resource group. The best practice is to use a new, dedicated resource group for Cloud Volumes ONTAP. While it is possible to deploy Cloud Volumes ONTAP in an existing, shared resource group, it’s not recommended due to the risk of data loss. See the warning above for more details. You must use a dedicated resource group for each Cloud Volumes ONTAP HA pair that you deploy in Azure. Only one HA pair is supported in a resource group. BlueXP experiences connection issues if you try to deploy a second Cloud Volumes ONTAP HA pair in an Azure resource group.</td>
</tr>
</tbody>
</table>
| Generated security group | If the Azure account that you’re using has the required permissions, BlueXP removes Cloud Volumes ONTAP resources from a resource group, in case of deployment failure or deletion. If you let BlueXP generate the security group for you, you need to choose how you’ll allow traffic:
 - If you choose **Selected VNet only**, the source for inbound traffic is the subnet range of the selected VNet and the subnet range of the VNet where the Connector resides. This is the recommended option.
 - If you choose **All VNets**, the source for inbound traffic is the 0.0.0.0/0 IP range. |
| Use existing | If you choose an existing security group, then it must meet Cloud Volumes ONTAP requirements. [View the default security group](#). |

9. **Charging Methods and NSS Account:** Specify which charging option would you like to use with this
system, and then specify a NetApp Support Site account.

- Learn about licensing options for Cloud Volumes ONTAP.
- Learn how to set up licensing.

10. **Preconfigured Packages**: Select one of the packages to quickly deploy a Cloud Volumes ONTAP system, or click Create my own configuration.

If you choose one of the packages, you only need to specify a volume and then review and approve the configuration.

11. **Licensing**: Change the Cloud Volumes ONTAP version as needed and select a virtual machine type.

 If a newer Release Candidate, General Availability, or patch release is available for the selected version, then BlueXP updates the system to that version when creating the working environment. For example, the update occurs if you select Cloud Volumes ONTAP 9.10.1 and 9.10.1 P4 is available. The update does not occur from one release to another—for example, from 9.6 to 9.7.

12. **Subscribe from the Azure Marketplace**: Follow the steps if BlueXP could not enable programmatic deployments of Cloud Volumes ONTAP.

13. **Underlying Storage Resources**: Choose settings for the initial aggregate: a disk type, a size for each disk, and whether data tiering to Blob storage should be enabled.

 Note the following:

 - The disk type is for the initial volume. You can choose a different disk type for subsequent volumes.
 - The disk size is for all disks in the initial aggregate and for any additional aggregates that BlueXP creates when you use the simple provisioning option. You can create aggregates that use a different disk size by using the advanced allocation option.

 For help choosing a disk type and size, see [Sizing your system in Azure](#).

 - You can choose a specific volume tiering policy when you create or edit a volume.
 - If you disable data tiering, you can enable it on subsequent aggregates.

 [Learn more about data tiering](#).

14. **Write Speed & WORM** (single node systems only): Choose Normal or High write speed, and activate write once, read many (WORM) storage, if desired.

 [Learn more about write speed](#).

 WORM can’t be enabled if data tiering was enabled.

 [Learn more about WORM storage](#).

15. **Secure Communication to Storage & WORM** (HA only): Choose whether to enable an HTTPS connection to Azure storage accounts, and activate write once, read many (WORM) storage, if desired.

 The HTTPS connection is from a Cloud Volumes ONTAP 9.7 HA pair to Azure storage accounts. Note that enabling this option can impact write performance. You can’t change the setting after you create the working environment.
Learn more about WORM storage.

16. **Create Volume**: Enter details for the new volume or click **Skip**.

Learn about supported client protocols and versions.

Some of the fields in this page are self-explanatory. The following table describes fields for which you might need guidance:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>The maximum size that you can enter largely depends on whether you enable thin provisioning, which enables you to create a volume that is bigger than the physical storage currently available to it.</td>
</tr>
<tr>
<td>Access control (for NFS only)</td>
<td>An export policy defines the clients in the subnet that can access the volume. By default, BlueXP enters a value that provides access to all instances in the subnet.</td>
</tr>
<tr>
<td>Permissions and Users / Groups (for CIFS only)</td>
<td>These fields enable you to control the level of access to a share for users and groups (also called access control lists or ACLs). You can specify local or domain Windows users or groups, or UNIX users or groups. If you specify a domain Windows user name, you must include the user’s domain using the format domain\username.</td>
</tr>
<tr>
<td>Snapshot Policy</td>
<td>A Snapshot copy policy specifies the frequency and number of automatically created NetApp Snapshot copies. A NetApp Snapshot copy is a point-in-time file system image that has no performance impact and requires minimal storage. You can choose the default policy or none. You might choose none for transient data: for example, tempdb for Microsoft SQL Server.</td>
</tr>
<tr>
<td>Advanced options (for NFS only)</td>
<td>Select an NFS version for the volume: either NFSv3 or NFSv4.</td>
</tr>
<tr>
<td>Initiator group and IQN (for iSCSI only)</td>
<td>iSCSI storage targets are called LUNs (logical units) and are presented to hosts as standard block devices.</td>
</tr>
<tr>
<td></td>
<td>Initiator groups are tables of iSCSI host node names and control which initiators have access to which LUNs.</td>
</tr>
<tr>
<td></td>
<td>iSCSI targets connect to the network through standard Ethernet network adapters (NICs), TCP offload engine (TOE) cards with software initiators, converged network adapters (CNAs) or dedicated host bust adapters (HBAs) and are identified by iSCSI qualified names (IQNs).</td>
</tr>
<tr>
<td></td>
<td>When you create an iSCSI volume, BlueXP automatically creates a LUN for you. We’ve made it simple by creating just one LUN per volume, so there’s no management involved. After you create the volume, use the IQN to connect to the LUN from your hosts.</td>
</tr>
</tbody>
</table>

The following image shows the Volume page filled out for the CIFS protocol:
17. **CIFS Setup**: If you chose the CIFS protocol, set up a CIFS server.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Primary and Secondary IP Address</td>
<td>The IP addresses of the DNS servers that provide name resolution for the CIFS server. The listed DNS servers must contain the service location records (SRV) needed to locate the Active Directory LDAP servers and domain controllers for the domain that the CIFS server will join.</td>
</tr>
<tr>
<td>Active Directory Domain to join</td>
<td>The FQDN of the Active Directory (AD) domain that you want the CIFS server to join.</td>
</tr>
<tr>
<td>Credentials authorized to join the domain</td>
<td>The name and password of a Windows account with sufficient privileges to add computers to the specified Organizational Unit (OU) within the AD domain.</td>
</tr>
<tr>
<td>CIFS server NetBIOS name</td>
<td>A CIFS server name that is unique in the AD domain.</td>
</tr>
<tr>
<td>Organizational Unit</td>
<td>The organizational unit within the AD domain to associate with the CIFS server. The default is CN=Computers. To configure Azure AD Domain Services as the AD server for Cloud Volumes ONTAP, you should enter OU=AADDC Computers or OU=AADDC Users in this field. Azure Documentation: Create an Organizational Unit (OU) in an Azure AD Domain Services managed domain</td>
</tr>
<tr>
<td>DNS Domain</td>
<td>The DNS domain for the Cloud Volumes ONTAP storage virtual machine (SVM). In most cases, the domain is the same as the AD domain.</td>
</tr>
<tr>
<td>NTP Server</td>
<td>Select Use Active Directory Domain to configure an NTP server using the Active Directory DNS. If you need to configure an NTP server using a different address, then you should use the API. See the BlueXP automation docs for details. Note that you can configure an NTP server only when creating a CIFS server. It’s not configurable after you create the CIFS server.</td>
</tr>
</tbody>
</table>

18. **Usage Profile, Disk Type, and Tiering Policy**: Choose whether you want to enable storage efficiency
features and change the volume tiering policy, if needed.

For more information, see Understanding volume usage profiles and Data tiering overview.

19. **Review & Approve**: Review and confirm your selections.
 a. Review details about the configuration.
 b. Click **More information** to review details about support and the Azure resources that BlueXP will purchase.
 c. Select the **I understand...** check boxes.
 d. Click **Go**.

Result
BlueXP deploys the Cloud Volumes ONTAP system. You can track the progress in the timeline.

If you experience any issues deploying the Cloud Volumes ONTAP system, review the failure message. You can also select the working environment and click **Re-create environment**.

For additional help, go to NetApp Cloud Volumes ONTAP Support.

After you finish
- If you provisioned a CIFS share, give users or groups permissions to the files and folders and verify that those users can access the share and create a file.
- If you want to apply quotas to volumes, use System Manager or the CLI.

 Quotas enable you to restrict or track the disk space and number of files used by a user, group, or qtree.