Table of Contents

Cloud Sync Documentation ... 1
 Discover what’s new .. 1
 Get started ... 1
 Automate with APIs .. 1
 Learn about Cloud Sync .. 1
 Get help and connect with peers ... 1
Release notes .. 2
 What’s new in Cloud Sync ... 2
 Known limitations .. 16
Concepts ... 18
 Cloud Sync overview ... 18
 How Cloud Sync works .. 18
 How Cloud Sync licenses work ... 19
 Accounts .. 20
 Data privacy ... 22
Get started ... 23
 Quick start for Cloud Sync ... 23
 Networking overview ... 24
 Preparing the source and target ... 25
 Install the data broker .. 35
 Creating a sync relationship ... 45
 Paying for sync relationships after your free trial ends 49
Tutorials .. 51
 Copying ACLs between SMB shares 51
 Syncing data between NFS servers using data-in-flight encryption 53
Managing sync relationships .. 58
 Performing an immediate data sync 58
 Accelerating sync performance .. 58
 Changing the settings for a sync relationship 59
 Deleting relationships ... 61
Cloud Sync APIs ... 62
 Getting started ... 62
 API reference .. 63
 Using list APIs .. 63
Cloud Sync technical FAQ ... 66
 Getting started ... 66
Cloud Sync Documentation

Cloud Sync offers a simple, secure, and automated way to migrate your data from any source destination to any target destination, in the cloud or on your premises.

Discover what’s new

What’s new in Cloud Sync

Get started

• View supported sync relationships
• Quick start

Automate with APIs

• Get started with APIs
• API reference

Learn about Cloud Sync

• What it is
• How it works
• Licensing

Get help and connect with peers

• FAQ
• NetApp Community: Cloud Data Services
Release notes

What’s new in Cloud Sync

NetApp periodically updates Cloud Sync to bring you new features, enhancements, and bug fixes.

5 Apr 2020

When you create a sync relationship, Cloud Sync might be unable to retrieve the shares for an SMB server. If this happens, you can now click Add Share Manually and enter the name of an SMB share.

24 Mar 2020

Last month, we released a feature that enables Cloud Sync to copy access control lists (ACLs) between source SMB shares and target SMB shares. Prior to this update, the only data broker supported with this feature was the On-Prem Data Broker option with a CentOS 7.0 host.

Starting today, this feature works with any type of data broker: the AWS, Azure, Google Cloud Platform, or on-prem data broker. The on-prem data broker can run any supported operating system.
8 Mar 2020

• Credentials are now locally encrypted on the data broker machine.

The credentials that you provide while using the Cloud Sync service are stored directly on the data broker machine. These credentials are now encrypted using HashiCorp Vault.

• You can now download data broker logs at any time. Just click the download button that’s available from each sync relationship.

23 Feb 2020

• Cloud Sync now supports multi-tenancy through Cloud Central accounts. Accounts enable multiple users to manage the same sync relationships in an account.

Learn more about accounts.

• We enhanced how Cloud Sync copies access control lists (ACLs) between SMB servers.

You no longer need to set up a Windows server to copy ACLs. You simply need to check a box when you create a relationship or after you create a relationship. Note that you’ll need a data broker running on CentOS 7.0.

Learn more about copying ACLs between SMB servers and review the requirements.

• New sync relationships are supported:
 ◦ Azure Blob Storage to Google Cloud Storage
 ◦ Google Cloud Storage to Azure Blob Storage

View supported sync relationships
14 Jan 2020

- NFS 4.1 is now supported with Azure NetApp Files.

- We improved the sync performance of folders that contain greater than 10,000 files.

- A data broker that uses a proxy server can now be part of a sync relationship that includes an Azure Blob container.

- The on-prem data broker is now supported with additional Linux distributions:
 - CentOS 7.7 and 8.0
 - Red Hat Enterprise Linux 7.7 and 8.0
 - Ubuntu Server 16.04 LTS and 18.04 LTS
 - SUSE Linux Enterprise Server 12.4 SP5 and 15 SP1

- We simplified the installation steps for the on-premises data broker.

You now choose whether the data broker should have AWS access, GCP access, or both, and the type of proxy configuration that you have. Cloud Sync then shows you the right commands to use.
We improved how to schedule data syncs.

The settings for each sync relationship enables you to schedule recurring syncs. The following image shows the Schedule setting for a new sync relationship:

While this image shows the Schedule setting for an existing sync relationship:

You can schedule a relationship to sync data as often as every 1 minute.

Additional statistics are available for each sync relationship on the **Sync Relationships** page. These stats enable you to see more details about the most recent data sync.

Here's an example:
• Cloud Sync now shows you details about failures that occurred in the most recent data sync. If errors occur, you can use the failure reason to correct the issue.

Click **View details about sync failures** (as shown in the image above) and you’ll see a page similar to the following:

Click **Download Data Broker Logs** to download logs that can help with troubleshooting.

• The sync status for an in-progress sync now shows an estimated time remaining that is more precise.
17 Nov 2019

- You can now contact NetApp technical support to get help with Cloud Sync. You will need to register your support serial number to activate support before you can contact NetApp technical support.

 Learn how to activate support and contact NetApp technical support.

- The deployment of the Azure data broker has been simplified. You no longer need to manually enter commands to install the data broker in Azure. Cloud Sync now provides a Microsoft Azure login form and a quick deployment wizard.

 Learn more about installing the data broker in Azure.

- When a sync is in progress, Cloud Sync now displays the remaining estimated time to finish syncing the data.

- Two new regions are now supported in AWS: Middle East (Bahrain) and Asia Pacific (Hong Kong).

4 Nov 2019

File metadata is now copied between sync relationships that include an S3 bucket and StorageGRID.

Cloud Sync doesn’t sync any metadata that includes special characters.

8 Sept 2019

- You can now set up sync relationships to sync data between:
 - An AWS S3 bucket and an Azure Blob container
 - An AWS S3 bucket and a Google Cloud Storage bucket
- Azure NetApp Files (SMB) is now supported as the source or target in a sync relationship.

View the list of supported sync relationships.
• A new sync relationship setting enables you to sync files based on the last modified date. Choose all files regardless of their last modified date, files modified after a specific date, before a specific date, or between a time range.

![Date Modified]

- Sync files modified between a time range
- From: 04/01/2019
- To: 09/08/2019

15 July 2019

• You can now subscribe to Cloud Sync from Azure where you can pay as-you-go with hourly rates, or pay up front for a year.
 - Learn more about paying for sync relationships
 - Learn how to subscribe from Azure

• You can now deploy a data broker in AWS using your own IAM role, rather than the IAM role that Cloud Sync creates for you. You might use this option if your organization has strict security policies.

 Review details about using your own IAM role.

• Cloud Sync now supports NFSv4 ACLs. When syncing data, Cloud Sync copies ACLs between NFS servers that use NFS versions 4.0, 4.1, or 4.2.

• When you create a sync relationship to or from Google Cloud Storage, Cloud Sync no longer prompts you to provide a project ID, client email, and private key for a Cloud Storage service account. GCP access must now be provided through the data broker.

Sync relationships that include GCP storage require a GCP data broker or an on-prem data broker that has GCP access:

 - When you create a GCP data broker, Cloud Sync now prompts you for a service account that has "Storage Admin" permissions, along with the previously required permissions.
 - Learn how to deploy the data broker in GCP.

 - When you deploy the data broker on an existing Linux host and GCP storage is the source or target in the relationship, Cloud Sync now prompts you to prepare the Linux host for GCP access.
 - Learn how to install the data broker on an existing Linux host.
20 June 2019

- New sync relationships are supported:
 - Azure NetApp Files to Azure Blob Storage
 - Azure Blob Storage to Azure NetApp Files

 View supported sync relationships

- Additional S3 storage classes are now supported when AWS S3 is the target in a sync relationship:
 - Glacier
 - Glacier Deep Archive

 Learn about S3 storage classes

- New settings enable you to define the number of retries and file types for a sync relationship.

- Sync relationship settings were moved to a new page when setting up a relationship and when editing a relationship.

Here's the Settings page when creating a new relationship:

![Sync Relationship Settings](image)

Here's where to access the Settings option for an existing relationship:
• We improved the speed of the user interface.
• A few bugs were fixed.

16 May 2019

You can now accelerate the performance of a sync relationship by adding an additional data broker to the relationship.

Learn how to accelerate sync performance.

21 Mar 2019

• You can now sync data between NFS servers using data-in-flight encryption.

Learn more about data-in-flight encryption.

• Two new sync relationships are supported:
 ◦ Azure NetApp Files to Azure NetApp Files
 ◦ AWS EFS to Azure NetApp Files

25 Feb 2019

Two new sync relationships are supported:

• StorageGRID to StorageGRID
• IBM Cloud Object Storage to IBM Cloud Object Storage

2 Dec 2018

• S3 to S3 sync relationships are now supported.
• When an S3 bucket is the target in a sync relationship, you can now choose an S3 storage classes:
 ◦ Standard (this is the default class)
 ◦ Intelligent-Tiering
 ◦ Standard-Infrequent Access
Google Cloud Storage is now supported as the source or target in a sync relationship with an NFS server.

When setting up a relationship, you need to provide a project ID, client email, and private key for a Cloud Storage service account.

Google Cloud Documentation: Creating and Managing Service Account Keys

You can now sync data between two Azure Blob containers.

When you set up the sync relationship, you need to provide a storage account connection string that includes a shared access signature (SAS).

View requirements for Azure Blob storage

When creating a sync relationship between an Azure Blob container and an NFS or SMB server, you must now provide the storage account connection string.

View requirements for Azure Blob storage
Cloud Sync now provides additional stats about the last data sync for each sync relationship:

- How many directories and files were scanned
- How many directories failed to scan
- How many directories and files were marked for copy and marked for deletion

For example, the following image shows that 684 directories were scanned and no files were marked for copy or for deletion:

Cloud Sync now supports deploying a data broker in Google Cloud Platform.

Just follow the prompts in Cloud Sync to deploy a virtual machine in Google Cloud Platform that runs the data broker software.
21 Aug 2018

- IBM Cloud Object Storage is now supported as the source or target in a sync relationship with an NFS or SMB server.
- When creating a new sync relationship, you can choose an S3 bucket that is not associated with your AWS account.

14 Aug 2018

Cloud Sync can now preserve access control lists (ACLs) between a source SMB/CIFS share and a target SMB/CIFS share when creating a new sync relationship.

Learn more about copying ACLs between SMB/CIFS shares.

17 July 2018

- You can now change the sync schedule for a relationship to as frequently as 5 minutes. The default is 24 hours.
- StorageGRID Webscale is now supported as the source in a sync relationship. The target can be an NFS or SMB server.
An Azure Blob container is now supported as the source or target in a sync relationship with an NFS or SMB server.

When setting up the sync relationship, you simply need to enter the Azure storage account name and the access key for the storage account. Then you can select the Blob container.

You must now select an NFS version or SMB version when setting up a new sync relationship for an NFS or SMB server.

- For NFS, you can select version 3, 4.1, or 4.2.
- For SMB, you can select version 1.0, 2.0, 2.1, or 3.0.

You can now filter source objects when setting up a new sync relationship.

Filtering source objects enables you to define how source files and folders are synced and maintained in the target location.

You can access the option when selecting a directory:

The following options are available when filtering source objects:
- Incremental updates from an S3 bucket to an NFS or SMB server are no longer event-driven—they are based on a sync schedule.

April 2018

Cloud Sync now supports the NetApp Cloud Volumes Service as an NFS or SMB server in a sync relationship.

February 2018

- EFS to S3 and S3 to EFS sync relationships are now supported.
- Bugs were fixed.

January 2018

- You can now abort an in-progress sync.
This does not break the sync relationship. Cloud Sync syncs data at the next scheduled time.

- You can now view and select objects from S3 buckets that belong to other AWS accounts if they are shared with your account.
- You can now use Cloud Sync with S3 buckets that are protected with AWS KMS encryption.
- A few bugs were fixed. Most notably, you no longer have to enter AWS credentials when using the on-premises data broker.

December 2017

- Cloud Sync now supports installing the data broker in Microsoft Azure, which enables you to sync data in and out of Azure.
- A few bugs were fixed.

November 2017

- Cloud Sync is now integrated with NetApp Cloud Central, which enables centralized user authentication.
- EFS to NFS and NFS to EFS sync relationships are now supported.
- SMB to SMB sync relationships are now supported.
- A few bugs were fixed.

October 2017

- NFS to NFS sync relationships are now supported.
- You can now specify whether files modified prior to the scheduled sync should be excluded.

 For example, you can exclude files modified 30 seconds before the scheduled sync. This setting helps avoid copying partial changes to files that frequently change.

- Cloud Sync now displays the number of failed transfers.
- A few bugs were fixed.

Known limitations

These known limitations identify platforms or features that are not supported.

- Cloud Sync is not supported in China.
- In addition to China, the Cloud Sync data broker is not supported in the following regions:
 - AWS GovCloud (US)
 - Azure US Gov
Azure US DoD
Concepts

Cloud Sync overview

The NetApp Cloud Sync service offers a simple, secure, and automated way to migrate your data to any target, in the cloud or on your premises. Whether it’s a file-based NAS dataset (NFS or SMB), Amazon Simple Storage Service (S3) object format, a NetApp StorageGRID® appliance, or any other cloud provider object store, Cloud Sync can convert and move it for you.

Watch the following video for an overview of Cloud Sync:

For more details about the value that Cloud Sync provides, read the datasheet.

How Cloud Sync works

Cloud Sync is a software-as-a-service (SaaS) platform that consists of a data broker, a cloud-based portal, and a source and target.

The following image shows the relationship between Cloud Sync components:
The NetApp data broker software syncs data from a source to a target (this is called a sync relationship). You can run the data broker in AWS, Azure, Google Cloud Platform, or on your premises. The data broker needs an outbound internet connection over port 443 so it can communicate with the Cloud Sync service and contact a few other services and repositories. View the list of endpoints.

After the initial copy, the service syncs any changed data based on the schedule that you set.

How Cloud Sync licenses work

There are two ways to pay for sync relationships after your 14-day free trial ends. The first option is to subscribe from AWS or Azure, which enables you to pay-as-you-go or to pay annually. The second option is to purchase licenses directly from NetApp.

AWS or Azure subscriptions

Subscribing to the Cloud Sync service from AWS or Azure enables you to pay at an hourly rate, or to pay annually. You can subscribe through either AWS or Azure, depending on where you want to be billed.

Pay-as-you-go subscriptions

With a pay-as-you-go subscription, the Cloud Sync service charges hourly based on the number of
sync relationships that you create. For pricing details, go to the Cloud Sync service page.

Annual subscriptions

An annual subscription provides a license for 20 sync relationships that you pay for up front.

If you go above 20 sync relationships and you’ve subscribed through Azure, you pay for the additional relationships by the hour.

- View pay-as-you-go pricing in AWS
- View annual pricing in AWS
- View pricing in Azure
- Learn how to subscribe through AWS or Azure

Licenses from NetApp

Another way to pay for sync relationships up front is by purchasing licenses directly from NetApp. Each license enables you to create up to 20 sync relationships.

You can use these licenses with an AWS or Azure subscription. For example, if you have 25 sync relationships, you can pay for the first 20 sync relationships using a license and then pay-as-you-go from AWS or Azure with the remaining 5 sync relationships.

Learn how to purchase licenses and add them to Cloud Sync.

License terms

Customers who purchase a Bring Your Own License (BYOL) to the Cloud Sync service should be aware of limitations associated with the license entitlement.

- Customers are entitled to leverage the BYOL license for a term not to exceed one year from the date of delivery.
- Customers are entitled to leverage the BYOL license to establish and not to exceed a total of 20 individual connections between a source and a target (each a “sync relationship”).
- A customer’s entitlement expires at the conclusion of the one-year license term, irrespective as to whether Customer has reached the 20 sync relationship limitation.
- In the event the Customer chooses to renew its license, unused sync relationships associated from the previous license grant DO NOT roll over to the license renewal.

Accounts

Each Cloud Central user is associated with one or more Cloud Central accounts. An account enables multi-tenancy: multiple users can manage the sync relationships in a single account.
For example, two users might be associated with the same Cloud Central account. Both of those users can see the same sync relationships and data brokers that are created in that account.

But if those two users are associated with separate Cloud Central accounts, then the users would only see the sync relationships and data brokers in the account that they are associated with.

If a user is associated with multiple Cloud Central accounts, you can change to a different account at any time from the User Settings menu in Cloud Sync.

If you want to associate a user to a specific account, you can use Cloud Central APIs, Cloud Manager’s user interface, or contact us for help using the in-product chat.

NetApp Cloud Central Services API
Data privacy

NetApp doesn’t have access to any credentials that you provide while using the Cloud Sync service. The credentials are stored directly on the data broker machine, which resides in your network.

Depending on the configuration that you choose, Cloud Sync might prompt you for credentials when you create a new relationship. For example, when setting up a relationship that includes an SMB server, or when deploying the data broker in AWS.

These credentials are always saved directly to the data broker itself. The data broker resides on a machine in your network, whether it’s on premises or in your cloud account. The credentials are never made available to NetApp.

The credentials are locally encrypted on the data broker machine using HashiCorp Vault.
Get started

Quick start for Cloud Sync

Getting started with the Cloud Sync service includes a few steps.

1. Prepare your source and target

Verify that your source and target are supported and setup. The most important requirement is to verify connectivity between the data broker and the source and target locations. Learn more.

2. Prepare a location for the NetApp data broker

The NetApp data broker software syncs data from a source to a target (this is called a sync relationship). You can run the data broker in AWS, Azure, Google Cloud Platform, or on your premises. The data broker needs an outbound internet connection over port 443 so it can communicate with the Cloud Sync service and contact a few other services and repositories. View the list of endpoints.

Cloud Sync guides you through the installation process when you create a sync relationship, at which point you can deploy the data broker in the cloud or download an install script for your own Linux host.

- Review AWS installation
- Review Azure installation
- Review GCP installation
- Review Linux host installation

3. Create your first sync relationship

Start your free trial from NetApp Cloud Central, drag and drop your selections for the source and target, and follow the prompts to complete the setup. Learn more.

4. Pay for your sync relationships after your free trial ends

Subscribe from AWS or Azure to pay-as-you-go or to pay annually. Or purchase licenses directly from NetApp. Just go to the License Settings page in Cloud Sync to set it up. Learn more.
Networking overview

Networking for Cloud Sync includes connectivity between the data broker and the source and target locations, and an outbound internet connection from the data broker over port 443.

Data broker in the cloud

The following image shows the data broker running in the cloud, in either AWS, GCP, or Azure. The source and target can be in any location, as long as there’s a connection to the data broker. For example, you might have a VPN connection from your data center to your cloud provider.

When Cloud Sync deploys the data broker in AWS, Azure, or GCP, it creates a security group that enables the required outbound communication.

Data broker on your premises

The following image shows the data broker running on-prem, in a data center. Again, the source and target can be in any location, as long as there’s a connection to the data broker.
Preparing the source and target

Prepare to sync data by verifying that your source and target are supported and setup.

Supported sync relationships

Cloud Sync enables you to sync data from a source to a target (this is called a sync relationship). You should understand the supported relationships before you get started.

An NFS server or SMB server can be a NetApp system or a non-NetApp system. For example, Cloud Volumes ONTAP or an AFF cluster.
<table>
<thead>
<tr>
<th>Source location</th>
<th>Supported target locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS EFS</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>AWS S3</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• SMB Server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Source location</td>
<td>Supported target locations</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Azure Blob</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• SMB Server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Azure NetApp Files (SMB)</td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• SMB Server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Azure NetApp Files (NFS)</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Source location</td>
<td>Supported target locations</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cloud Volumes Service (NFS)</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Google Cloud Storage</td>
<td>• AWS EFS</td>
</tr>
<tr>
<td></td>
<td>• AWS S3</td>
</tr>
<tr>
<td></td>
<td>• Azure Blob</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>• Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>• Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>• IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>• NFS server</td>
</tr>
<tr>
<td></td>
<td>• SMB Server</td>
</tr>
<tr>
<td></td>
<td>• StorageGRID</td>
</tr>
<tr>
<td>Source location</td>
<td>Supported target locations</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>IBM Cloud Object Storage</td>
<td>- AWS EFS</td>
</tr>
<tr>
<td></td>
<td>- AWS S3</td>
</tr>
<tr>
<td></td>
<td>- Azure Blob</td>
</tr>
<tr>
<td></td>
<td>- Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>- Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>- Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>- IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>- Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>- NFS server</td>
</tr>
<tr>
<td></td>
<td>- SMB Server</td>
</tr>
<tr>
<td></td>
<td>- StorageGRID</td>
</tr>
<tr>
<td>NFS server</td>
<td>- AWS EFS</td>
</tr>
<tr>
<td></td>
<td>- AWS S3</td>
</tr>
<tr>
<td></td>
<td>- Azure Blob</td>
</tr>
<tr>
<td></td>
<td>- Azure NetApp Files (NFS)</td>
</tr>
<tr>
<td></td>
<td>- Cloud Volumes Service (NFS)</td>
</tr>
<tr>
<td></td>
<td>- IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>- Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>- NFS server</td>
</tr>
<tr>
<td></td>
<td>- SMB Server</td>
</tr>
<tr>
<td></td>
<td>- StorageGRID</td>
</tr>
<tr>
<td>SMB server</td>
<td>- AWS S3</td>
</tr>
<tr>
<td></td>
<td>- Azure Blob</td>
</tr>
<tr>
<td></td>
<td>- Azure NetApp Files (SMB)</td>
</tr>
<tr>
<td></td>
<td>- IBM Cloud Object Storage</td>
</tr>
<tr>
<td></td>
<td>- Google Cloud Storage</td>
</tr>
<tr>
<td></td>
<td>- SMB Server</td>
</tr>
<tr>
<td></td>
<td>- StorageGRID</td>
</tr>
<tr>
<td>Source location</td>
<td>Supported target locations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| StorageGRID | • AWS EFS
| | • AWS S3
| | • Azure Blob
| | • Azure NetApp Files (SMB)
| | • Azure NetApp Files (NFS)
| | • Cloud Volumes Service (NFS)
| | • IBM Cloud Object Storage
| | • Google Cloud Storage
| | • NFS server
| | • SMB Server
| | • StorageGRID |

Notes:

1. An NFS server or SMB server can be a NetApp system or a non-NetApp system. For example, Cloud Volumes ONTAP or an AFF cluster.

2. To sync SMB data between Cloud Volumes Service and an SMB server, you’ll need to choose SMB to SMB.

3. You can choose a specific Azure Blob storage tier when a Blob container is the target:
 - Hot storage
 - Cool storage

4. You can choose a specific S3 storage class when AWS S3 is the target:
 - Standard (this is the default class)
 - Intelligent-Tiering
 - Standard-Infrequent Access
 - One Zone-Infrequent Access
 - Glacier
 - Glacier Deep Archive

Networking requirements

- The source and target must have a network connection to the data broker.

 For example, if an NFS server is in your data center and the data broker is in AWS, then you need a network connection (VPN or Direct Connect) from your network to the VPC.
NetApp recommends configuring the source, target, and data broker to use a Network Time Protocol (NTP) service. The time difference between the three components should not exceed 5 minutes.

NFS server requirements

- The NFS server can be a NetApp system or a non-NetApp system. For example, Cloud Volumes ONTAP or an AFF cluster.
- The file server must allow the data broker host to access the exports.
- NFS versions 3, 4.0, 4.1, and 4.2 are supported.

 The desired version must be enabled on the server.

- If you want to sync NFS data from an ONTAP system, ensure that access to the NFS export list for an SVM is enabled (vserver nfs modify -vserver svm_name -showmount enabled).

 The default setting for showmount is *enabled* starting with ONTAP 9.2.

SMB server requirements

- The SMB server can be a NetApp system or a non-NetApp system. For example, Cloud Volumes ONTAP or an AFF cluster.
- The file server must allow the data broker host to access the exports.
- SMB versions 1.0, 2.0, 2.1, and 3.0 are supported.

AWS S3 bucket requirements

Make sure that your AWS S3 bucket meets the following requirements.

Supported data broker locations for AWS S3

Sync relationships that include S3 storage require a data broker deployed in AWS or on your premises. In either case, Cloud Sync prompts you to associate the data broker with an AWS account during installation.

- Learn how to deploy the AWS data broker
- Learn how to install the data broker on a Linux host

Supported AWS regions

All regions are supported except for the China and GovCloud (US) regions.
Permissions required for S3 buckets in other AWS accounts

When setting up a sync relationship, you can specify an S3 bucket that resides in an AWS account that isn’t associated with the data broker.

The permissions included in this JSON file must be applied to that S3 bucket so the data broker can access it. These permissions enable the data broker to copy data to and from the bucket and to list the objects in the bucket.

Note the following about the permissions included in the JSON file:

1. `<BucketName>` is the name of the bucket that resides in the AWS account that isn’t associated with the data broker.

2. `<RoleARN>` should be replaced with one of the following:
 - If the data broker was manually installed on a Linux host, `RoleARN` should be the ARN of the AWS user for which you provided AWS credentials when deploying the data broker.
 - If the data broker was deployed in AWS using the CloudFormation template, `RoleARN` should be the ARN of the IAM role created by the template.

You can find the Role ARN by going to the EC2 console, selecting the data broker instance, and clicking the IAM role from the Description tab. You should then see the Summary page in the IAM console that contains the Role ARN.

Summary

| Role ARN | arn:aws:iam::1234567890:role/Tanya-Broker-0304-Data-Broker-lamRole-1VMHWXMW3AQ65 |

Azure Blob storage requirements

Make sure that your Azure Blob storage meets the following requirements.

Supported data broker locations for Azure Blob

The data broker can reside in any location when a sync relationship includes Azure Blob storage.

Supported Azure regions

All regions are supported except for the China, US Gov, and US DoD regions.

Connection string required for relationships that include Azure Blob and NFS/SMB

When creating a sync relationship between an Azure Blob container and an NFS or SMB server, you need to provide Cloud Sync with the storage account connection string:
If you want to sync data between two Azure Blob containers, then the connection string must include a **shared access signature** (SAS). You also have the option to use a SAS when syncing between a Blob container and an NFS or SMB server.

The SAS must allow access to the Blob service and all resource types (Service, Container, and Object). The SAS must also include the following permissions:

- For the source Blob container: Read and List
- For the target Blob container: Read, Write, List, Add, and Create
Google Cloud Storage bucket requirements

Make sure that your Google Cloud Storage bucket meets the following requirements.

Supported data broker locations for Google Cloud Storage

Sync relationships that include Google Cloud Storage require a data broker deployed in GCP or on your premises. Cloud Sync guides you through the data broker installation process when you create a sync relationship.

- Learn how to deploy the GCP data broker
- Learn how to install the data broker on a Linux host

Supported GCP regions

All regions are supported.
Install the data broker

Endpoints that the data broker contacts

The NetApp data broker requires outbound internet access over port 443 to communicate with the Cloud Sync service and to contact a few other services and repositories. If you need to limit outbound connectivity, refer to the following list of endpoints when configuring your firewall for outbound traffic.

The data broker contacts the following endpoints:

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>olcentgbl.trafficmanager.net:443</td>
<td>To contact a repository for updating CentOS packages for the data broker host. This endpoint is contacted only if you manually install the data broker on a CentOS host.</td>
</tr>
<tr>
<td>rpm.nodesource.com:443</td>
<td>To contact repositories for updating Node.js, npm, and other 3rd party packages used in development.</td>
</tr>
<tr>
<td>registry.npmjs.org:443</td>
<td></td>
</tr>
<tr>
<td>nodejs.org:443</td>
<td></td>
</tr>
<tr>
<td>tgz.pm2.io:443</td>
<td>To access a repository for updating PM2, which is a 3rd party package used to monitor Cloud Sync.</td>
</tr>
<tr>
<td>sqs.us-east-1.amazonaws.com:443</td>
<td>To contact the AWS services that Cloud Sync uses for operations (queuing files, registering actions, and delivering updates to the data broker).</td>
</tr>
<tr>
<td>kinesis.us-east-1.amazonaws.com:443</td>
<td></td>
</tr>
<tr>
<td>s3.region.amazonaws.com:443</td>
<td>To contact Amazon S3 when a sync relationship includes an S3 bucket.</td>
</tr>
<tr>
<td>For example: s3.us-east-2.amazonaws.com:443</td>
<td></td>
</tr>
<tr>
<td>s3.region.amazonaws.com:443</td>
<td></td>
</tr>
<tr>
<td>See AWS documentation for a list of S3 endpoints</td>
<td></td>
</tr>
<tr>
<td>cf.cloudsync.netapp.com:443</td>
<td>To contact the Cloud Sync service.</td>
</tr>
<tr>
<td>repo.cloudsync.netapp.com:443</td>
<td></td>
</tr>
<tr>
<td>support.netapp.com:443</td>
<td>To contact NetApp support when using a BYOL license for sync relationships.</td>
</tr>
<tr>
<td>fedoraproject.org:443</td>
<td>To install 7z on the data broker virtual machine during installation and updates. 7z is needed to send AutoSupport messages to NetApp technical support.</td>
</tr>
</tbody>
</table>

Installing the data broker in AWS

When you create a sync relationship, choose the AWS Data Broker option to deploy
the data broker software on a new EC2 instance in a VPC. Cloud Sync guides you through the installation process, but the requirements and steps are repeated on this page to help you prepare for installation.

You also have the option to install the data broker on an existing Linux host in the cloud or on your premises. Learn more.

Supported AWS regions

All regions are supported except for the China and GovCloud (US) regions.

Networking requirements

- The data broker needs an outbound internet connection so it can poll the Cloud Sync service for tasks over port 443.

 When Cloud Sync deploys the data broker in AWS, it creates a security group that enables the required outbound communication. Note that you can configure the data broker to use a proxy server during the installation process.

 If you need to limit outbound connectivity, see the list of endpoints that the data broker contacts.

- NetApp recommends configuring the source, target, and data broker to use a Network Time Protocol (NTP) service. The time difference between the three components should not exceed 5 minutes.

Permissions required to deploy the data broker in AWS

The AWS user account that you use to deploy the data broker must have the permissions included in this NetApp-provided policy.

Requirements to use your own IAM role with the AWS data broker

When Cloud Sync deploys the data broker, it creates an IAM role for the data broker instance. You can deploy the data broker using your own IAM role, if you prefer. You might use this option if your organization has strict security policies.

The IAM role must meet the following requirements:

- The EC2 service must be allowed to assume the IAM role as a trusted entity.
- The permissions defined in this JSON file must be attached to the IAM role so the data broker can function properly.

Follow the steps below to specify the IAM role when creating the AWS CloudFormation stack.
Installing the data broker

You can install a data broker in AWS when you create a sync relationship.

Steps

1. Click Create New Sync Relationship.

2. On the Define Sync Relationship page, choose a source and target and click Continue.
 Complete the steps until you reach the Data Broker page.

3. On the Data Broker page, click AWS Data Broker.
 If you already have a data broker, you'll need to click the icon first.

4. Enter a name for the data broker and click Continue.
 The AWS CloudFormation Console loads in a separate browser tab. The Cloud Sync service uses a CloudFormation template to quickly provision the data broker instance. The Cloud Sync service does not have access to your AWS credentials because you are logging in directly to AWS.

5. Follow the instructions to install the data broker.
 To use your own IAM role, enter the name of the role when you specify details for the AWS CloudFormation stack:

 IAM role name (Optional)
 The name of an existing IAM role to use with NetApp Data Broker

 The following video shows how to launch the data broker instance:

 ▶ media/video_cloud_sync.mp4 (video)

 The instance takes approximately 5 to 10 minutes to deploy. You can monitor the progress from the AWS CloudFormation console, or you can return to the Cloud Sync service website, which automatically refreshes when the instance is available.

6. After the data broker is available, click Continue in Cloud Sync.
 The following image shows a successfully deployed instance in AWS:
7. Complete the pages in the wizard to create the new sync relationship.

Result
You have deployed a data broker in AWS and created a new sync relationship. You can use this data broker with additional sync relationships.

Installing the data broker in Azure

When you create a sync relationship, choose the Azure Data Broker option to deploy the data broker software on a new virtual machine in a VNet. Cloud Sync guides you through the installation process, but the requirements and steps are repeated on this page to help you prepare for installation.

You also have the option to install the data broker on an existing Linux host in the cloud or on your premises. [Learn more.](#)

Supported Azure regions

All regions are supported except for the China, US Gov, and US DoD regions.

Networking requirements

- The data broker needs an outbound internet connection so it can poll the Cloud Sync service for tasks over port 443.

 When Cloud Sync deploys the data broker in Azure, it creates a security group that enables the required outbound communication.

 If you need to limit outbound connectivity, see [the list of endpoints that the data broker contacts](#).

- NetApp recommends configuring the source, target, and data broker to use a Network Time Protocol (NTP) service. The time difference between the three components should not exceed 5
Authentication method

When you deploy the data broker, you’ll need to choose an authentication method: a password or an SSH public-private key pair.

For help with creating a key pair, refer to Azure Documentation: Create and use an SSH public-private key pair for Linux VMs in Azure.

Installing the data broker

You can install a data broker in Azure when you create a sync relationship.

Steps

1. Click Create New Sync Relationship.
2. On the Define Sync Relationship page, choose a source and target and click Continue.
 Complete the pages until you reach the Data Broker page.
 If you already have a data broker, you’ll need to click the icon first.
4. Enter a name for the data broker and click Continue.
 The deployment page loads in a separate browser tab.
5. If you’re prompted, log in to your Microsoft account. If you’re not prompted, click Log in to Azure.
 The form is owned and hosted by Microsoft. Your credentials are not provided to NetApp.
6. Choose a location for the data broker and enter basic details about the virtual machine.
7. Click Deploy and keep the page open until the deployment is complete.
 The process can take up to 7 minutes.
8. In Cloud Sync, click Continue once the data broker is available.
9. Complete the pages in the wizard to create the new sync relationship.

Result

You have deployed a data broker in Azure and created a new sync relationship. You can use this data
Installing the data broker in Google Cloud Platform

When you create a sync relationship, choose the GCP Data Broker option to deploy the data broker software on a new virtual machine instance in a VPC. Cloud Sync guides you through the installation process, but the requirements and steps are repeated on this page to help you prepare for installation.

You also have the option to install the data broker on an existing Linux host in the cloud or on your premises. Learn more.

Supported GCP regions

All regions are supported.

Networking requirements

- The data broker needs an outbound internet connection so it can poll the Cloud Sync service for tasks over port 443.

When Cloud Sync deploys the data broker in GCP, it creates a security group that enables the required outbound communication.

If you need to limit outbound connectivity, see the list of endpoints that the data broker contacts.

- NetApp recommends configuring the source, target, and data broker to use a Network Time Protocol (NTP) service. The time difference between the three components should not exceed 5 minutes.

Permissions required to deploy the data broker in GCP

Ensure that the following GCP permissions are in place for the service account that you use to create the data broker:

- Compute Admin
- Deployment Manager Editor
- Service Account User
- Storage Admin

Installing the data broker

You can install a data broker in GCP when you create a sync relationship.

Steps
1. Click **Create New Sync Relationship**.

2. On the **Define Sync Relationship** page, choose a source and target and click **Continue**.

 Complete the steps until you reach the **Data Broker** page.

3. On the **Data Broker** page, click **GCP Data Broker**.

 If you already have a data broker, you'll need to click the icon first.

4. Enter a name for the data broker and click **Continue**.

 The instructions load in a separate browser tab.

5. Follow the instructions to install the data broker in GCP. The instructions are repeated here for your convenience.
 a. In the GCP Console, click **Activate Cloud Shell**.
 b. Run the following command:

   ```
gcloud deployment-manager deployments create --template <TEMPLATE> <DEPLOYMENT_NAME> --automatic-rollback-on-error --properties "network:<NETWORK>,subnetwork:<SUBNETWORK>,region:<REGION>,zone:<ZONE>,project:<PROJECT>,service-account:<SERVICE_ACCOUNT>"
```

 For help with this command, refer to Google Cloud SDK documentation. Note the following about the --template parameter:

 --template

 Cloud Sync displays the URI of the template file when you follow the prompts to deploy the GCP Data Broker. That URI isn't repeated here because the link is generated dynamically and can be used only once. Follow steps 1-4 to obtain the URI from Cloud Sync.

6. Once the data broker is available, click **Continue** in Cloud Sync.

 The instance takes approximately 5 to 10 minutes to deploy. You can monitor the progress from the Cloud Sync service, which automatically refreshes when the instance is available.

7. Complete the pages in the wizard to create the new sync relationship.

Result

You have deployed a data broker in GCP and created a new sync relationship. You can use this data broker with additional sync relationships.
Installing the data broker on a Linux host

When you create a sync relationship, choose the On-Prem Data Broker option to install the data broker software on an on-premises Linux host, or on an existing Linux host in the cloud. Cloud Sync guides you through the installation process, but the requirements and steps are repeated on this page to help you prepare for installation.

Linux host requirements

- **Operating system:**
 - CentOS 7.0, 7.7, and 8.0
 - Red Hat Enterprise Linux 7.7 and 8.0
 - Ubuntu Server 18.04 LTS
 - SUSE Linux Enterprise Server 15 SP1

 The command `yum update all` must be run on the host before you install the data broker.

 A Red Hat Enterprise Linux system must be registered with Red Hat Subscription Management. If it is not registered, the system cannot access repositories to update required 3rd party software during installation.

- **RAM:** 16 GB
- **CPU:** 4 cores
- **Free disk space:** 10 GB

Networking requirements

- The Linux host must have a connection to the source and target.
- The file server must allow the Linux host to access the exports.
- Port 443 must be open on the Linux host for outbound traffic to AWS (the data broker constantly communicates with the Amazon SQS service).
- NetApp recommends configuring the source, target, and data broker to use a Network Time Protocol (NTP) service. The time difference between the three components should not exceed 5 minutes.

Enabling access to AWS

If you plan to use the data broker with a sync relationship that includes an S3 bucket, then you should prepare the Linux host for AWS access. When you install the data broker, you'll need to provide AWS keys for an AWS user that has programmatic access and specific permissions.
Steps
1. Create an IAM policy using this NetApp-provided policy. View AWS instructions.
2. Create an IAM user that has programmatic access. View AWS instructions.

 Be sure to copy the AWS keys because you need to specify them when you install the data broker software.

Enabling access to Google Cloud

If you plan to use the data broker with a sync relationship that includes a Google Cloud Storage bucket, then you should prepare the Linux host for GCP access. When you install the data broker, you’ll need to provide a key for a service account that has specific permissions.

Steps
1. Create a GCP service account that has Storage Admin permissions, if you don’t already have one.
2. Create a service account key saved in JSON format. View GCP instructions.

 The file should contain at least the following properties: "project_id", "private_key", and "client_email"

 When you create a key, the file gets generated and downloaded to your machine.

3. Save the JSON file to the Linux host.

Enabling access to Microsoft Azure

Access to Azure is defined per relationship by providing a storage account and a connection string in the Sync Relationship wizard.

Installing the data broker

You can install a data broker on a Linux host when you create a sync relationship.

Steps
1. Click Create New Sync Relationship.
2. On the Define Sync Relationship page, choose a source and target and click Continue.

 Complete the steps until you reach the Data Broker page.

3. On the Data Broker page, click On-Prem Data Broker.

 If you already have a data broker, you’ll need to click the icon first.
Even though the option is labeled **On-Prem Data Broker**, it applies to a Linux host on your premises or in the cloud.

4. Enter a name for the data broker and click **Continue**.

 The instructions page loads in a separate browser tab. You’ll need to follow these instructions—they include a unique link to download the installer.

5. On Step 3 of the instructions page, select whether to enable access to **AWS**, **Google Cloud**, or both.

6. Follow Step 4 on the instructions page to download and install the data broker.

 The following steps provide details about each possible installation option. Follow the instructions page to get the exact command based on your installation option.

 a. Select an installation option: **No proxy**, **Use proxy server**, or **Use proxy server with authentication**.

 b. Download the installer:

 - No proxy:

        ```
curl <URI> -o data_broker_installer.sh
        ```

 - Use proxy server:

        ```
curl <URI> -o data_broker_installer.sh -x <proxy_host>:<proxy_port>
        ```

 - Use proxy server with authentication:

        ```
curl <URI> -o data_broker_installer.sh -x <proxy_username>:<proxy_password>@<proxy_host>:<proxy_port>
        ```

 URI

 Cloud Sync displays the URI of the installation file on the instructions page, which loads when you follow the prompts to deploy the On-Prem Data Broker. That URI isn't repeated here because the link is generated dynamically and can be used only once. **Follow these steps to obtain the URI from Cloud Sync.**

 c. Switch to superuser, make the installer executable and install the software:

   ```
   Each command listed below includes parameters for AWS access and GCP access. Follow the instructions page to get the exact command based on your installation option.
   ```

 - No proxy configuration:

     ```
sudo -s
chmod +x data_broker_installer.sh
./data_broker_installer.sh -a <aws_access_key> -s <aws_secret_key> -g
```
Proxy configuration:

```bash
sudo -s
chmod +x data_broker_installer.sh
./data_broker_installer.sh -a <aws_access_key> -s <aws_secret_key> -g <absolute_path_to_the_json_file> -h <proxy_host> -p <proxy_port>
```

Proxy configuration with authentication:

```bash
sudo -s
chmod +x data_broker_installer.sh
./data_broker_installer.sh -a <aws_access_key> -s <aws_secret_key> -g <absolute_path_to_the_json_file> -h <proxy_host> -p <proxy_port> -u <proxy_username> -w <proxy_password>
```

AWS keys

These are the keys for the user that you should have prepared following these steps. The AWS keys are stored on the data broker, which runs in your on-premises or cloud network. NetApp doesn't use the keys outside of the data broker.

JSON file

This is the JSON file that contains a service account key that you should have prepared following these steps.

7. Once the data broker is available, click Continue in Cloud Sync.
8. Complete the pages in the wizard to create the new sync relationship.

Demo video

Watch the following video to learn how to install the data broker when S3 is the source or target.

▶ /media/video_on_prem_data_broker.mp4 (video)

Creating a sync relationship

When you create a sync relationship, the Cloud Sync service copies files from the source to the target. After the initial copy, the service syncs any changed data every 24 hours.

The steps below provide an example that shows how to set up a sync relationship from an NFS server to an S3 bucket.

Steps

1. Go to NetApp Cloud Central.
2. Sign up or log in and then start a free trial of Cloud Sync.
3. After you log in, review details about using the service after the free trial ends, and then click **OK**.

4. On the **Select Source & Target** page, choose a source and target.

 The following steps provide an example of how to create a sync relationship from an NFS server to an S3 bucket.

5. Review the details about how the service works and then click **Continue**.

6. On the **NFS Server** page, enter the IP address or fully qualified domain name of the NFS server that you want to sync to AWS.

7. On the **Data Broker** page, follow the prompts to create a data broker virtual machine in AWS, Azure, or Google Cloud Platform, or to install the data broker software on an existing Linux host.

 For more details, refer to the following pages:
 - Installing the data broker in AWS
 - Installing the data broker in Azure
 - Installing the data broker in GCP
 - Installing the data broker on a Linux host

8. After you install the data broker, click **Continue**.

 The following image shows a successfully deployed data broker in AWS:
9. On the **Directories** page, select a top-level directory or subdirectory.

If Cloud Sync is unable to retrieve the exports, click **Add Export Manually** and enter the name of an NFS export.

If you want to sync more than one directory on the NFS server, then you must create additional sync relationships after you are done.

10. On the **AWS S3 Bucket** page, select a bucket:

 ◦ Drill down to select an existing folder within the bucket or to select a new folder that you create inside the bucket.

 ◦ Click **Add to the list** to select an S3 bucket that is not associated with your AWS account. **Specific permissions must be applied to the S3 bucket.**

11. On the **Bucket Setup** page, set up the bucket:

 ◦ Choose whether to encrypt the data using AWS KMS encryption. You'll need to provide the ARN of an encryption key.

 ◦ Select an S3 storage class. **View the supported storage classes.**
12. On the **Settings** page, define how source files and folders are synced and maintained in the target location:

Schedule
Choose a recurring schedule for future syncs or turn off the sync schedule. You can schedule a relationship to sync data as often as every 1 minute.

Retries
Define the number of times that Cloud Sync should retry to sync a file before skipping it.

Recently Modified Files
Choose to exclude files that were recently modified prior to the scheduled sync.

Delete Files on Target
Choose to delete files from the target location, if they were deleted from the source. The default is to never deletes files from the target location.

File Types
Define the file types to include in each sync: files, directories, and symbolic links.

Exclude File Extensions
Specify file extensions to exclude from the sync by typing the file extension and pressing **Enter**. For example, type *log* or *log* to exclude *.log* files. A separator isn’t required for multiple extensions. The following video provides a short demo:

► /media/video_file_extensions.mp4 (video)

File Size
Choose to sync all files regardless of their size or just files that are in a specific size range.

Date Modified
Choose all files regardless of their last modified date, files modified after a specific date, before a
specific date, or between a time range.

13. On the Relationship Tags page, enter up to 9 relationship tags and then click Continue.

The Cloud Sync service assigns the tags to each object that it syncs to the S3 bucket.

14. Review the details of the sync relationship and then click Create Relationship.

15. After the Cloud Sync service successfully creates the relationship, click View in Dashboard to view details about the data sync relationship.

Result

Cloud Sync starts syncing data between the source and target.

Paying for sync relationships after your free trial ends

There are two ways to pay for sync relationships after your 14-day free trial ends. The first option is to subscribe from AWS or Azure to pay-as-you-go or to pay annually. The second option is to purchase licenses directly from NetApp.

You can use licenses from NetApp with an AWS or Azure subscription. For example, if you have 25 sync relationships, you can pay for the first 20 sync relationships using a license and then pay-as-you-go from AWS or Azure with the remaining 5 sync relationships.

Learn more about how licenses work.

What if I don’t immediately pay after my free trial ends?

You won’t be able to create any additional relationships. Existing relationships are not deleted, but you cannot make any changes to them until you subscribe or enter a license.

Subscribing from AWS

AWS enables you to pay-as-you-go or to pay annually.

Steps to pay-as-you-go

1. Go to the License Settings page.
2. Select AWS Marketplace
3. Click Subscribe and then click Continue.
4. Subscribe from the AWS Marketplace, and then log back in to the Cloud Sync service to complete the registration.

The following video shows the process:
Steps to pay annually

1. Go to the AWS Marketplace page.
2. Click **Continue to Subscribe**.
3. Select your contract options and click **Create contract**.

Subscribing from Azure

Azure enables you to pay-as-you-go or to pay annually.

What you’ll need

An Azure user account that has Contributor or Owner permissions in the relevant subscription.

Steps

1. Go to the **License Settings** page.
2. Select **Azure Marketplace**.
3. Click **Subscribe** and then click **Continue**.
4. In the Azure portal, click **Create**, select your options, and click **Subscribe**.
 - Select **Monthly** to pay by the hour, or **Yearly** to pay for a year up front.
5. When deployment is complete, click the name of the SaaS resource in the notification pop-up.
6. Click **Configure Account** to return to Cloud Sync.

 The following video shows the process:

 ➤ /media/video_cloud_sync_registering_azure.mp4

Purchasing licenses from NetApp and adding them to Cloud Sync

To pay for your sync relationships up front, you must purchase one or more licenses and add them to the Cloud Sync service.

Steps

1. Purchase a license by **contacting NetApp**.
2. Go to the **License Settings** page and add the license.
Tutorials

Copying ACLs between SMB shares

Cloud Sync can copy access control lists (ACLs) between a source SMB share and a target SMB share. If needed, you can manually preserve the ACLs yourself by using robocopy.

Choices

- Set up Cloud Sync to automatically copy ACLs
- Manually copy the ACLs yourself

Setting up Cloud Sync to copy ACLs between SMB servers

Copy ACLs between SMB servers by enabling a setting when you create a relationship or after you create a relationship.

Note that this feature is available for new sync relationships created after the 23 Feb 2020 release. If you’d like to use this feature with existing relationships created prior to that date, then you’ll need to recreate the relationship.

What you’ll need

- A new sync relationship or an existing sync relationship created after the 23 Feb 2020 release.
- Any type of data broker.

This feature works with *any* type of data broker: the AWS, Azure, Google Cloud Platform, or on-prem data broker. The on-prem data broker can run any supported operating system.

Steps for a new relationship

1. From Cloud Sync, click **Create New Sync Relationship**.
2. Drag and drop **SMB Server** to the source and target and click **Continue**.
3. On the **SMB Server** page:
 a. Enter a new SMB server or select an existing server and click **Continue**.
 b. Enter credentials for the SMB server.
 c. Select **Copy Access Control Lists to the target** and click **Continue**.
4. Follow the remaining prompts to create the sync relationship.

Steps for an existing relationship

1. Hover over the sync relationship and click the action menu.
2. Click **Settings**.
3. Select **Copy Access Control Lists to the target**.
4. Click **Save Settings**.

Result

When syncing data, Cloud Sync preserves the ACLs between the source and target SMB shares.

Manually copying ACLs

You can manually preserve ACLs between SMB shares by using the Windows robocopy command.

Steps

1. Identify a Windows host that has full access to both SMB shares.
2. If either of the endpoints require authentication, use the **net use** command to connect to the endpoints from the Windows host.

 You must perform this step before you use robocopy.
3. From Cloud Sync, create a new relationship between the source and target SMB shares or sync an existing relationship.

4. After the data sync is complete, run the following command from the Windows host to sync the ACLs and ownership:

   ```bash
   robocopy /E /COPY:SOU /secfix \[source\] \[target\] /w:0 /r:0 /XD ~snapshots /UNILOG:\[logfilepath\]
   ```

 Both source and target should be specified using the UNC format. For example: `\\<server\\<share\\<path>`

Syncing data between NFS servers using data-in-flight encryption

If your business has strict security policies, sync data between NFS servers in different networks using data-in-flight encryption.

How data-in-flight encryption works

Data-in-flight encryption encrypts NFS data when it’s sent over the network between two data brokers.

![Diagram showing data-in-flight encryption]

One data broker functions as the *initiator*. When it’s time to sync data, it sends a connection request to the other data broker, which is the *listener*. That data broker listens for requests on port 443. You can use a different port, if needed, but be sure to check that the port is not in use by another service.

For example, if you sync data from an on-premises NFS server to a cloud-based NFS server, you can choose which data broker listens for the connection requests and which sends them.

Here’s how in-flight encryption works:

1. After you create the sync relationship, the initiator starts an encrypted connection with the other data broker.
2. The source data broker encrypts data from the source NFS server using TLS 1.3.

3. It then sends the data over the network to the target data broker.

4. The target data broker decrypts the data before sending it to the target NFS server.

5. After the initial copy, the service syncs any changed data every 24 hours. If there is data to sync, the process starts with the initiator opening an encrypted connection with the other data broker.

 If you prefer to sync data more frequently, you can change the schedule after you create the relationship.

Supported NFS versions

Data-in-flight encryption is supported with NFS versions 3, 4.1, and 4.2.

What you’ll need to get started

Be sure to have the following:

- Two NFS servers that meet source and target requirements.
- The IP addresses or fully qualified domain names of the NFS servers.
- Network locations for two data brokers.

You can select an existing data broker but it must function as the initiator. The listener data broker must be a new data broker.

If you have not yet deployed a data broker, review the data broker requirements. Because you have strict security policies, be sure to review the networking requirements, which includes outbound traffic from port 443 and the internet endpoints that the data broker contacts.

- Review AWS installation
- Review Azure installation
- Review GCP installation
- Review Linux host installation

Syncing data between NFS servers using data-in-flight encryption

Create a new sync relationship between two NFS servers, enable the in-flight encryption option, and follow the prompts.

Steps

1. Log in to NetApp Cloud Central and select Cloud Sync.

2. Click Create New Sync Relationship.

3. Drag and drop NFS Server to the source and target locations and select Yes to enable data-in-flight
4. Follow the prompts to create the relationship:

a. **NFS Server**: Choose the NFS version and then specify a new NFS server or select an existing NFS server.

b. **Define Data Broker Functionality**: Define which data broker listens for connection requests on a port and which one initiates the connection. Make your choice based on your networking requirements.

c. **Data Broker**: Follow the prompts to add a new source data broker or select an existing data broker.

 If the source data broker acts as the listener, then it must be a new data broker.

 If you need a new data broker, Cloud Sync prompts you with the installation instructions. You can deploy the data broker in the cloud or download an installation script for your own Linux host.

d. **Directories**: Choose the directories that you want to sync by selecting all directories, or by drilling down and selecting a subdirectory.
Click **Filter Source Objects** to modify settings that define how source files and folders are synced and maintained in the target location.

![Select Directory](image)

Target NFS Server: Choose the NFS version and then enter a new NFS server or select an existing NFS server.

Target Data Broker: Follow the prompts to add a new source data broker or select an existing data broker.

If the target data broker acts as the listener, then it must be a new data broker.

Here's an example of the prompt when the target data broker functions as the listener. Notice the option to specify the port.

![Add a NetApp Data Broker](image)
g. **Target Directories**: Select a top-level directory, or drill down to select an existing subdirectory or to create a new folder inside an export.

h. **Review**: Review the details of the sync relationship and then click **Create Relationship**.

Result

Cloud Sync starts creating the new sync relationship. When it's done, click **View in Dashboard** to view details about the new relationship.
Managing sync relationships

You can manage sync relationships at any time by immediately syncing data, changing schedules, and more.

Performing an immediate data sync

Rather than wait for the next scheduled sync, you can press a button to immediately sync data between the source and target.

Steps

1. Hover over the sync relationship and click the action menu.

2. Click **Sync Now** and then click **Sync** to confirm.

Result

Cloud Sync starts the data sync process for the relationship.

Accelerating sync performance

Accelerate the performance of a sync relationship by adding an additional data broker to the relationship. The additional data broker must be a *new* data broker.

How this works

If the existing data brokers in the relationship are used in other sync relationships, then Cloud Sync automatically adds the new data broker to those relationships, as well.

For example, let’s say you have three relationships:
• Relationship 1 uses data broker A
• Relationship 2 uses data broker B
• Relationship 3 uses data broker A

You want to accelerate the performance of relationship 1 so you add a new data broker to that relationship (data broker C). Because data broker A is also used in relationship 3, the new data broker is automatically added to relationship 3, as well.

Steps
1. Go to the **Sync Relationships** dashboard.
2. Ensure that at least one of the existing data brokers in the relationship are online.
3. Hover over the sync relationship and click the action menu.
4. Click **Accelerate**.
5. Follow the prompts to create a new data broker.

Result
Cloud Sync adds the new data broker to the sync relationships. The performance of the next data sync should be accelerated.

Changing the settings for a sync relationship

Modify settings that define how source files and folders are synced and maintained in the target location.

1. Hover over the sync relationship and click the action menu.
2. Click **Settings**.
3. Modify any of the settings.
Here’s a brief description of each setting:

Schedule
Choose a recurring schedule for future syncs or turn off the sync schedule. You can schedule a relationship to sync data as often as every 1 minute.

Retries
Define the number of times that Cloud Sync should retry to sync a file before skipping it.

Recently Modified Files
Choose to exclude files that were recently modified prior to the scheduled sync.

Delete Files on Target
Choose to delete files from the target location, if they were deleted from the source. The default is to never deletes files from the target location.
File Types
Define the file types to include in each sync: files, directories, and symbolic links.

Exclude File Extensions
Specify file extensions to exclude from the sync by typing the file extension and pressing Enter. For example, type log or .log to exclude *.log files. A separator isn’t required for multiple extensions. The following video provides a short demo:

▶ /media/video_file_extensions.mp4 (video)

File Size
Choose to sync all files regardless of their size or just files that are in a specific size range.

Date Modified
Choose all files regardless of their last modified date, files modified after a specific date, before a specific date, or between a time range.

Copy Access Control Lists to the target
Choose to copy access control lists (ACLs) between source SMB shares and target SMB shares. Note that this option is only available for sync relationships created after the 23 Feb 2020 release.

4. Click Save Settings.

Result
Cloud Sync modifies the sync relationship with the new settings.

Deleting relationships
You can delete a sync relationship, if you no longer need to sync data between the source and target. This action does not delete the data broker instance and it does not delete data from the target.

Steps
1. Hover over the sync relationship and click the action menu.
2. Click Delete and then click Delete again to confirm.

Result
Cloud Sync deletes the sync relationship.
Cloud Sync APIs

The Cloud Sync capabilities that are available through the web UI are also available through RESTful APIs.

Getting started

To get started with the Cloud Sync APIs, you need to obtain a user token and your Cloud Central account ID. You’ll need to add the token and account ID to the Authorization header when making API calls.

Steps

1. Obtain a user token from NetApp Cloud Central.

   ```
   POST https://netapp-cloud-account.auth0.com/oauth/token
   Header: Content-Type: application/json
   Body:
   {
       "username": "<user_email>",
       "scope": "profile",
       "audience": "https://api.cloud.netapp.com",
       "client_id": "UaVhOIXMWQs5i1WdDxauXe5Mqkb34N3Q",
       "grant_type": "password",
       "password": "<user_password>"
   }
   ```

2. Obtain your Cloud Central account ID.

   ```
   GET https://cloudsync.netapp.com/api/accounts
   Headers: Authorization: Bearer <user_token>
   Content-Type: application/json
   ```

 This API will return a response like the following:

   ```
   [
       {
           "accountId": "account-JeL97Ry3",
           "name": "Test"
       }
   ]
   ```

3. Add the user token and account ID in the Authorization header of each API call.
Example

The following example shows an API call to create a data broker in Microsoft Azure. You would simply replace `<user_token>` and `<accountId>` with the token and ID that you obtained in the previous steps.

```
POST https://cloudsync.netapp.com/api/data-brokers
Headers: Authorization: Bearer <user_token>
Content-Type: application/json
x-account-id: <accountId>
Body: { "name": "databroker1", "type": "AZURE" }
```

What should I do when the token expires?

The user token from NetApp Cloud Central has an expiration date. To refresh the token, you need to call the API from step 1 again.

The API response includes an "expires_in" field that states when the token expires.

API reference

Documentation for each Cloud Sync API is available from NetApp Cloud Central.

Using list APIs

List APIs are asynchronous APIs, so the result does not return immediately (for example: GET /data-brokers/{id}/list-nfs-export-folders and GET /data-brokers/{id}/list-s3-buckets). The only response from the server is HTTP status 202. To get the actual result, you must use the GET /messages/client API.

Steps

1. Call the list API that you want to use.
2. Use the GET /messages/client API to view the result of the operation.
3. Use the same API by appending it with the ID that you just received: GET http://cloudsync.netapp.com/api/messages/client?last=<id_from_step_2>

 Note that the ID changes each time that you call the GET /messages/client API.

Example

When you call the list-s3-buckets API, a result is not immediately returned:
GET http://cloudsync.netapp.com/api/data-brokers/<data-broker-id>/list-s3-buckets
Headers: Authorization: Bearer <user_token>
Content-Type: application/json
x-account-id: <accountId>

The result is HTTP status code 202, which means the message was accepted, but was not processed yet.

To get the result of the operation, you need to use the following API:

GET http://cloudsync.netapp.com/api/messages/client
Headers: Authorization: Bearer <user_token>
Content-Type: application/json
x-account-id: <accountId>

The result is an array with one object that includes an ID field. The ID field represents the last message that the server sent. For example:

```
[
  {
    "header": {
      "requestId": "init",
      "clientId": "init",
      "agentId": "init"
    },
    "payload": {
      "init": {}
    },
    "id": "5801"
  }
]
```

You would now make the following API call using the ID that you just received:

GET http://cloudsync.netapp.com/api/messages/client?last=<id_from_step_2>
Headers: Authorization: Bearer <user_token>
Content-Type: application/json
x-account-id: <accountId>

The result is an array of messages. Inside each message is a payload object, which consists of the name of the operation (as key) and its result (as value). For example:
{
 "payload": {
 "list-s3-buckets": [
 {
 "tags": [
 {
 "Value": "100$",
 "Key": "price"
 }
],
 "region": {
 "displayName": "US West (Oregon)",
 "name": "us-west-2"
 },
 "name": "small"
 }
],
 "header": {
 "requestId": "f687ac55-2f0c-40e3-9fa6-57fb8c4094a3",
 "clientId": "5beb032f548e6e35f4ed1ba9",
 "agentId": "5bed61f4489fb04e34a9aac6"
 },
 "id": "5802"
 }
}

Cloud Sync technical FAQ

This FAQ can help if you’re just looking for a quick answer to a question.

Getting started

The following questions relate to getting started with Cloud sync.

How does Cloud Sync work?

Cloud Sync uses the NetApp data broker software to sync data from a source to a target (this is called a sync relationship).

The data broker controls the sync relationships between your sources and targets. After you set up a sync relationship, Cloud Sync analyzes your source system and breaks it up into multiple replication streams to push to your selected target data.

After the initial copy, the service syncs any changed data based on the schedule that you set.

How does the 14-day free trial work?

The 14-day free trial starts when you sign up for the Cloud Sync service. You're not subject to NetApp charges for Cloud Sync relationships you create for 14 days. However, all resource charges for any data broker that you deploy still applies.

How much does Cloud Sync cost?

There are two types of costs associated with using Cloud Sync: service charges and resource charges.

Service charges

For pay-as-you-go pricing, Cloud Sync service charges are hourly, based on the number of sync relationships that you create.

- View pay-as-you-go pricing in AWS
- View annual pricing in AWS
- View pricing in Azure

Cloud Sync licenses are also available through your NetApp representative. Each license enables 20 sync relationships for 12 months.

Learn more about licenses.

Resource charges
The resource charges are related to the compute and storage costs for running the data broker in the cloud.

How is Cloud Sync billed?

There are two ways to pay for sync relationships after your 14-day free trial ends. The first option is to subscribe from AWS or Azure, which enables you to pay-as-you-go or to pay annually. The second option is to purchase licenses directly from NetApp.

Can I use Cloud Sync outside the cloud?

Yes, you can use Cloud Sync in a non-cloud architecture. The source and target can reside on-premises and so can the data broker.

Note the following key points about using Cloud Sync outside of the cloud:

- For on-premises synchronization, a private Amazon S3 bucket is available through NetApp StorageGRID.
- The data broker does need an internet connection to communicate with the Cloud Sync service.
- If you don't purchase a license directly from NetApp, you will need an AWS or Azure account for the PAYGO Cloud Sync service billing.

How do I access Cloud Sync?

Go to the [Cloud Sync page on NetApp Cloud Central](#) and click **Start Free Trial**. Log in or sign up to Cloud Central. After you've authenticated, you're ready to get started using the Cloud Sync service.

Supported sources and targets

The following questions related to the source and targets that are supported in a sync relationship.

Which sources and targets does Cloud Sync support?

Cloud Sync supports many different types of sync relationships. [View the entire list.](#)

What versions of NFS and SMB does Cloud Sync support?

Cloud Sync supports NFS version 3 and later, and SMB version 1 and later.

[Learn more about sync requirements.](#)

When Amazon S3 is the target, can the data be tiered to a specific S3 storage class?

Yes, you can choose a specific S3 storage class when AWS S3 is the target:
What about storage tiers for Azure Blob storage?

You can choose a specific Azure Blob storage tier when a Blob container is the target:

- Hot storage
- Cool storage

Networking

The following questions relate to networking requirements for Cloud Sync.

What are the networking requirements for Cloud Sync?

The Cloud Sync environment requires that the data broker is connected with the source and the target through the selected protocol (NFS, SMB, EFS) or object storage API (Amazon S3, Azure Blob, IBM Cloud Object Storage).

In addition, the data broker needs an outbound internet connection over port 443 so it can communicate with the Cloud Sync service and contact a few other services and repositories.

For more details:

- Review the networking overview
- Review the list of endpoints that the data broker contacts

Are there networking limitations related to data broker connectivity?

Data brokers require internet access. We don’t support a proxy server when deploying the data broker in Azure or in Google Cloud Platform.

Data synchronization

The following questions relate to how data synchronization works.
How often does synchronization occur?

The default schedule is set for daily synchronization. After the initial synchronization, you can:

• Modify the sync schedule to your desired number of days, hours, or minutes
• Disable the sync schedule
• Delete the sync schedule (no data will be lost; only the sync relationship will be removed)

What is the minimum sync schedule?

You can schedule a relationship to sync data as often as every 1 minute.

Does the data broker retry when a file fails to sync? Or does it timeout?

The data broker doesn’t timeout when a single file fails to transfer. Instead, the data broker retries 3 times before skipping the file. The retry value is configurable in the settings for a sync relationship.

Learn how to change the settings for a sync relationship.

What if I have a very large dataset?

If a single directory contains 600,000 files or more, contact us so we can help you configure the data broker to handle the payload. We might need to add additional memory to the data broker machine.

Security

The following questions related to security.

Is Cloud Sync secure?

Yes. All Cloud Sync service networking connectivity is done using Amazon Simple Queue Service (SQS).

All communication between the data broker and Amazon S3, Azure Blob, Google Cloud Storage, and IBM Cloud Object Storage is done through the HTTPS protocol.

If you're using Cloud Sync with on-premises (source or destination) systems, here’s a few recommended connectivity options:

• An AWS Direct Connect, Azure ExpressRoute, or Google Cloud Interconnect connection, which is non-internet routed (and can only communicate with the cloud networks that you specify)
• A VPN connection between your on-premises gateway device and your cloud networks
• For extra secure data transfer with S3 buckets, Azure Blob storage, or Google Cloud Storage, an Amazon Private S3 Endpoint, Azure Virtual Network service endpoints, or Private Google Access may be established.
Any of these methods establishes a secure connection between your on-premises NAS servers and a Cloud Sync data broker.

Is data encrypted by Cloud Sync?

Cloud Sync supports data-in-flight encryption between source and target NFS servers. Learn more. Encryption is not supported with SMB.

Permissions

The following questions relate to data permissions.

Are SMB data permissions synced to the target location?

You can set up Cloud Sync to preserve access control lists (ACLs) between a source SMB share and a target SMB share. Or you can manually copy the ACLs yourself. Learn how to copy ACLs between SMB shares.

Are NFS data permissions synced to the target location?

Cloud Sync automatically copies NFS permissions between NFS servers as follows:

- NFS version 3: Cloud Sync copies the permissions and the user group owner.
- NFS version 4: Cloud Sync copies the ACLs.

Performance

The following questions relate to Cloud Sync performance.

What does the progress indicator for a sync relationship represent?

The sync relationship shows the throughput of the data broker's network adapter. If you accelerated sync performance by using multiple data brokers, then the throughput is the sum of all traffic. This throughput refreshes every 20 seconds.

I’m experiencing performance issues. Can we limit the number of concurrent transfers?

The data broker can sync 4 files at a time. If you have very large files (multiple TBs each), it can take a long time to complete the transfer process and performance might be impacted.

Limiting the number of concurrent transfers can help. Contact us for help.
Why am I experiencing low performance with Cloud Volumes Service for AWS?

When you sync data to or from a cloud volume, you might experience failures and performance issues if the level of performance for the cloud volume is Standard.

Change the Service level to Premium or Extreme to enhance the sync performance.

How many data brokers are required?

When you create a new relationship, you start with a single data broker (unless you selected an existing data broker that belongs to an accelerated sync relationship). In many cases, a single data broker can meet the performance requirements for a sync relationship. If it doesn't, you can accelerate sync performance by adding additional data brokers. But you should first check other factors that can impact sync performance.

Multiple factors can impact data transfer performance. The overall sync performance might be impacted due to network bandwidth, latency, and network topology, as well as the data broker VM specs and storage system performance. For example, a single data broker in a sync relationship can reach 100 MB/s, while disk throughput on the target might only allow 64 MB/s. As a result, the data broker keeps trying to copy the data, but the target can't meet the performance of the data broker.

So be sure to check the performance of your networking and the disk throughput on the target.

Then you can consider accelerating sync performance by adding an additional data broker to share the load of that relationship. Learn how to accelerate sync performance.

Deleting things

The following questions relate to deleting sync relationships and data from sources and targets.

What happens if I delete my Cloud Sync relationship?

Deleting a relationship stops all future data syncs and terminates payment. Any data that was synced to the target remains as-is.

What happens if I delete something from my source server? Is it removed from the target too?

By default, if you have an active sync relationship, the item deleted on the source server is not deleted from the target during the next synchronization. But there is an option in the sync settings for each relationship, where you can define that Cloud Sync will delete files in the target location if they were deleted from the source.

Learn how to change the settings for a sync relationship.
What happens if I delete something from my target? Is it removed from my source too?

If an item is deleted from the target, it will not be removed from the source. The relationship is one-way—from source to target. On the next sync cycle, Cloud Sync compares the source to the target, identifies that the item is missing, and Cloud Sync copies it again from the source to the target.

Troubleshooting

NetApp Knowledgebase: Cloud Sync Support and Troubleshooting FAQ

Data broker deep dive

The following question relates to the data broker.

Can you explain the architecture of the data broker?

Sure. Here are the most important points:

• The data broker is a node.js application running on a Linux host.
• Cloud Sync deploys the data broker as follows:
 ◦ AWS: From an AWS CloudFormation template
 ◦ Azure: From Azure Resource Manager
 ◦ Google: From Google Cloud Deployment Manager
 ◦ If you use your own Linux host, you need to manually install the software
• The data broker software automatically upgrades itself to the latest version.
• The data broker uses AWS SQS as a reliable and secure communication channel and for control and monitoring. SQS also provides a persistency layer.
• You can add additional data brokers to a relationship to increase transfer speed and add high availability. There is service resiliency if one data broker fails.
How to get help and find more information

NetApp has several resources available for Cloud Sync assistance. You will need to register your support serial number to activate support before you can contact NetApp technical support.

Self-support resources

Several resources are available to help you find the answers to your questions.

- Frequently asked questions

 This FAQ can help if you're just looking for a quick answer to a question.

- NetApp Community forum: Cloud Data Services

 In this forum, use labels and filters to look at Cloud Tiering topics. If you'd like to ask a question, click Register in the upper-right corner to sign up.

- NetApp Cloud Central

 Find more information about Cloud Tiering, as well as additional NetApp products and solutions for the cloud.

- NetApp Product Documentation

 Search NetApp product documentation for instructions, resources, and answers.

Chatting with NetApp cloud experts

Our inline chat is available for product or pricing related questions, or just general feedback with our NetApp cloud experts. While these experts can answer your questions in a timely manner, they aren't NetApp support personnel and there isn't a strict SLA. It's best to register for support and open a web ticket for technical support related issues.

Just click the chat icon available in the lower right of the interface and ask your question.
Activating NetApp support

Registering your support serial number will activate support entitlement and enable you to contact NetApp technical support for help.

Steps

1. In Cloud Sync, click the support icon in the upper-right of the interface. This is where your support serial number is located.

2. If you don’t have a NetApp Support site account yet:
 - If you are an existing NetApp customer, create your account here.
 - If you are new to NetApp with no existing products, then go to Cloud Data Services Support Registration to activate your serial number and create your account.

3. When you have a NetApp Support Site account, enter your user name and password and click Activate Support.

 Note that your account can’t be a temp or guest level account.
The registration process takes a couple minutes. If you experience any issues registering from within Cloud Sync, try registering from this NetApp website instead.

Result

Once the activation is complete, you will see the following:
Contacting NetApp support

Contact NetApp technical support through our web ticketing system or by phone. Web tickets will get a call back. For more efficient support, open a web ticket first. If urgent, call NetApp using the case number from the web ticket.

Steps

1. In Cloud Sync, click the support icon in the upper-right of the interface.
2. Make note of your NetApp serial number, which you'll need to provide to technical support.

3. Click the menu and select one of the available options to get support.
Here are the links for contacting support by web ticketing and phone:

- Create Support Ticket
- Phone Support

Sending AutoSupport messages to NetApp

To assist in troubleshooting, Cloud Sync can remotely trigger AutoSupport messages from each data broker back to NetApp. This action is triggered only when you click the **Send ASUP** button. The data broker instance must have outbound HTTPS internet access to support.netapp.com to transmit troubleshooting information to NetApp.

It’s a good practice to send an AutoSupport message when creating a support ticket or when calling NetApp support. NetApp should be able to find your AutoSupport with the “915” serial number provided.

Access to *fedoraproject.org:443* is needed from the data broker virtual machine during data broker installation and software updates. This endpoint is contacted to install 7z, which is needed to send AutoSupport messages. Learn more about endpoint requirements.

Steps

1. In Cloud Sync, click the support icon in the upper-right of the interface.
2. Click **Send ASUP**.

 The **Send ASUP** button appears only after you activate NetApp support.
Legal notices

Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

Patents

A current list of NetApp owned patents can be found at:

Privacy policy

Open source

Notice files provide information about third-party copyright and licenses used in NetApp software.

Notice for Cloud Sync