Table of Contents

Tutorials ... 1
 Copying ACLs between SMB shares 1
 Syncing data between NFS servers using data-in-flight encryption 3
Tutorials

Copying ACLs between SMB shares

Cloud Sync can copy access control lists (ACLs) between a source SMB share and a target SMB share. If needed, you can manually preserve the ACLs yourself by using robocopy.

Choices

- Set up Cloud Sync to automatically copy ACLs
- Manually copy the ACLs yourself

Setting up Cloud Sync to copy ACLs between SMB servers

Copy ACLs between SMB servers by enabling a setting when you create a relationship or after you create a relationship.

Note that this feature is available for new sync relationships created after the 23 Feb 2020 release. If you'd like to use this feature with existing relationships created prior to that date, then you'll need to recreate the relationship.

What you'll need

- A new sync relationship or an existing sync relationship created after the 23 Feb 2020 release.
- Any type of data broker.

This feature works with any type of data broker: the AWS, Azure, Google Cloud Platform, or on-prem data broker. The on-prem data broker can run any supported operating system.

Steps for a new relationship

1. From Cloud Sync, click Create New Sync Relationship.
2. Drag and drop SMB Server to the source and target and click Continue.
3. On the SMB Server page:
 a. Enter a new SMB server or select an existing server and click Continue.
 b. Enter credentials for the SMB server.
 c. Select Copy Access Control Lists to the target and click Continue.
4. Follow the remaining prompts to create the sync relationship.

Steps for an existing relationship

1. Hover over the sync relationship and click the action menu.
2. Click Settings.
3. Select **Copy Access Control Lists to the target**.
4. Click **Save Settings**.

Result

When syncing data, Cloud Sync preserves the ACLs between the source and target SMB shares.

Manually copying ACLs

You can manually preserve ACLs between SMB shares by using the Windows robocopy command.

Steps

1. Identify a Windows host that has full access to both SMB shares.
2. If either of the endpoints require authentication, use the **net use** command to connect to the endpoints from the Windows host.

 You must perform this step before you use robocopy.
3. From Cloud Sync, create a new relationship between the source and target SMB shares or sync an existing relationship.

4. After the data sync is complete, run the following command from the Windows host to sync the ACLs and ownership:

   ```bash
   robocopy /E /COPY:SOU /secfix [source] [target] /w:0 /r:0 /XD ~snapshots /UNILOG:[][logfilepath]
   
   Both source and target should be specified using the UNC format. For example: \\<server>\<share>\<path>```

**Syncing data between NFS servers using data-in-flight encryption**

If your business has strict security policies, sync data between NFS servers in different networks using data-in-flight encryption.

**How data-in-flight encryption works**

Data-in-flight encryption encrypts NFS data when it's sent over the network between two data brokers.

One data broker functions as the *initiator*. When it's time to sync data, it sends a connection request to the other data broker, which is the *listener*. That data broker listens for requests on port 443. You can use a different port, if needed, but be sure to check that the port is not in use by another service.

For example, if you sync data from an on-premises NFS server to a cloud-based NFS server, you can choose which data broker listens for the connection requests and which sends them.

Here's how in-flight encryption works:

1. After you create the sync relationship, the initiator starts an encrypted connection with the other data broker.
2. The source data broker encrypts data from the source NFS server using TLS 1.3.
3. It then sends the data over the network to the target data broker.
4. The target data broker decrypts the data before sending it to the target NFS server.
5. After the initial copy, the service syncs any changed data every 24 hours. If there is data to sync, the process starts with the initiator opening an encrypted connection with the other data broker.

   If you prefer to sync data more frequently, you can change the schedule after you create the relationship.

**Supported NFS versions**

Data-in-flight encryption is supported with NFS versions 3, 4.1, and 4.2.

**What you’ll need to get started**

Be sure to have the following:

- Two NFS servers that meet source and target requirements.
- The IP addresses or fully qualified domain names of the NFS servers.
- Network locations for two data brokers.

You can select an existing data broker but it must function as the initiator. The listener data broker must be a new data broker.

If you have not yet deployed a data broker, review the data broker requirements. Because you have strict security policies, be sure to review the networking requirements, which includes outbound traffic from port 443 and the internet endpoints that the data broker contacts.

- Review AWS installation
- Review Azure installation
- Review GCP installation
- Review Linux host installation

**Syncing data between NFS servers using data-in-flight encryption**

Create a new sync relationship between two NFS servers, enable the in-flight encryption option, and follow the prompts.

*Steps*

1. Log in to NetApp Cloud Central and select Cloud Sync.
2. Click **Create New Sync Relationship**.
3. Drag and drop **NFS Server** to the source and target locations and select **Yes** to enable data-in-flight
4. Follow the prompts to create the relationship:

a. **NFS Server**: Choose the NFS version and then specify a new NFS server or select an existing NFS server.

b. **Define Data Broker Functionality**: Define which data broker listens for connection requests on a port and which one initiates the connection. Make your choice based on your networking requirements.

c. **Data Broker**: Follow the prompts to add a new source data broker or select an existing data broker.

   If the source data broker acts as the listener, then it must be a new data broker.

   If you need a new data broker, Cloud Sync prompts you with the installation instructions. You can deploy the data broker in the cloud or download an installation script for your own Linux host.

d. **Directories**: Choose the directories that you want to sync by selecting all directories, or by drilling down and selecting a subdirectory.
Click **Filter Source Objects** to modify settings that define how source files and folders are synced and maintained in the target location.

![Select Directory](image)

- **Target NFS Server**: Choose the NFS version and then enter a new NFS server or select an existing NFS server.
- **Target Data Broker**: Follow the prompts to add a new source data broker or select an existing data broker.

If the target data broker acts as the listener, then it must be a new data broker.

Here’s an example of the prompt when the target data broker functions as the listener. Notice the option to specify the port.

![Add a NetApp Data Broker](image)
g. **Target Directories**: Select a top-level directory, or drill down to select an existing subdirectory or to create a new folder inside an export.

h. **Review**: Review the details of the sync relationship and then click **Create Relationship**.

![Review Sync Relationship diagram]

### Result

Cloud Sync starts creating the new sync relationship. When it's done, click **View in Dashboard** to view details about the new relationship.
Copyright Information

Copyright © 2019–2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.