
AI Inferencing on the Edge Data Center with
H615c and NVIDIA T4
NetApp HCI Solutions
NetApp
August 29, 2024

This PDF was generated from https://docs.netapp.com/us-en/hci-solutions/hciaiedge_use_cases.html on
August 29, 2024. Always check docs.netapp.com for the latest.

Table of Contents

NVA-1144: NetApp HCI AI Inferencing at the Edge Data Center with H615c and NVIDIA T4 1

Customer Value . 1

Use Cases . 2

Architecture . 3

Design Considerations . 6

Overview . 13

Validation Results. 57

Additional Information . 57

NVA-1144: NetApp HCI AI Inferencing at the Edge
Data Center with H615c and NVIDIA T4
Arvind Ramakrishnan, NetApp

This document describes how NetApp HCI can be designed to host artificial intelligence (AI) inferencing

workloads at edge data center locations. The design is based on NVIDIA T4 GPU-powered NetApp HCI

compute nodes, an NVIDIA Triton Inference Server, and a Kubernetes infrastructure built using NVIDIA

DeepOps. The design also establishes the data pipeline between the core and edge data centers and

illustrates implementation to complete the data lifecycle path.

Modern applications that are driven by AI and machine learning (ML) have pushed the limits of the internet.

End users and devices demand access to applications, data, and services at any place and any time, with

minimal latency. To meet these demands, data centers are moving closer to their users to boost performance,

reduce back-and-forth data transfer, and provide cost-effective ways to meet user requirements.

In the context of AI, the core data center is a platform that provides centralized services, such as machine

learning and analytics, and the edge data centers are where the real-time production data is subject to

inferencing. These edge data centers are usually connected to a core data center. They provide end-user

services and serve as a staging layer for data generated by IoT devices that need additional processing and

that is too time sensitive to be transmitted back to a centralized core.

This document describes a reference architecture for AI inferencing that uses NetApp HCI as the base

platform.

Customer Value

NetApp HCI offers differentiation in the hyperconverged market for this inferencing solution, including the

following advantages:

• A disaggregated architecture allows independent scaling of compute and storage and lowers the

virtualization licensing costs and performance tax on independent NetApp HCI storage nodes.

• NetApp Element storage provides quality of service (QoS) for each storage volume, which provides

guaranteed storage performance for workloads on NetApp HCI. Therefore, adjacent workloads do not

negatively affect inferencing performance.

• A data fabric powered by NetApp allows data to be replicated from core to edge to cloud data centers,

which moves data closer to where application needs it.

• With a data fabric powered by NetApp and NetApp FlexCache software, AI deep learning models trained

on NetApp ONTAP AI can be accessed from NetApp HCI without having to export the model.

• NetApp HCI can host inference servers on the same infrastructure concurrently with multiple workloads,

either virtual-machine (VM) or container-based, without performance degradation.

• NetApp HCI is certified as NVIDIA GPU Cloud (NGC) ready for NVIDIA AI containerized applications.

• NGC-ready means that the stack is validated by NVIDIA, is purpose built for AI, and enterprise support is

available through NGC Support Services.

• With its extensive AI portfolio, NetApp can support the entire spectrum of AI use cases from edge to core to

cloud, including ONTAP AI for training and inferencing, Cloud Volumes Service and Azure NetApp Files for

training in the cloud, and inferencing on the edge with NetApp HCI.

Next: Use Cases

1

Use Cases

Although all applications today are not AI driven, they are evolving capabilities that allow

them to access the immense benefits of AI. To support the adoption of AI, applications

need an infrastructure that provides them with the resources needed to function at an

optimum level and support their continuing evolution.

For AI-driven applications, edge locations act as a major source of data. Available data can be used for training

when collected from multiple edge locations over a period of time to form a training dataset. The trained model

can then be deployed back to the edge locations where the data was collected, enabling faster inferencing

without the need to repeatedly transfer production data to a dedicated inferencing platform.

The NetApp HCI AI inferencing solution, powered by NetApp H615c compute nodes with NVIDIA T4 GPUs and

NetApp cloud-connected storage systems, was developed and verified by NetApp and NVIDIA. NetApp HCI

simplifies the deployment of AI inferencing solutions at edge data centers by addressing areas of ambiguity,

eliminating complexities in the design and ending guesswork.

This solution gives IT organizations a prescriptive architecture that:

• Enables AI inferencing at edge data centers

• Optimizes consumption of GPU resources

• Provides a Kubernetes-based inferencing platform for flexibility and scalability

• Eliminates design complexities

Edge data centers manage and process data at locations that are very near to the generation point. This

proximity increases the efficiency and reduces the latency involved in handling data. Many vertical markets

have realized the benefits of an edge data center and are heavily adopting this distributed approach to data

processing.

The following table lists the edge verticals and applications.

Vertical Applications

Medical Computer-aided diagnostics assist medical staff in

early disease detection

Oil and gas Autonomous inspection of remote production facilities,

video, and image analytics

Aviation Air traffic control assistance and real-time video feed

analytics

Media and entertainment Audio/video content filtering to deliver family-friendly

content

Business analytics Brand recognition to analyze brand appearance in

live-streamed televised events

E-Commerce Smart bundling of supplier offers to find ideal

merchant and warehouse combinations

Retail Automated checkout to recognize items a customer

placed in cart and facilitate digital payment

Smart city Improve traffic flow, optimize parking, and enhance

pedestrian and cyclist safety

2

Vertical Applications

Manufacturing Quality control, assembly-line monitoring, and defect

identification

Customer service Customer service automation to analyze and triage

inquiries (phone, email, and social media)

Agriculture Intelligent farm operation and activity planning, to

optimize fertilizer and herbicide application

Target Audience

The target audience for the solution includes the following groups:

• Data scientists

• IT architects

• Field consultants

• Professional services

• IT managers

• Anyone else who needs an infrastructure that delivers IT innovation and robust data and application

services at edge locations

Next: Architecture

Architecture

Solution Technology

This solution is designed with a NetApp HCI system that contains the following components:

• Two H615c compute nodes with NVIDIA T4 GPUs

• Two H410c compute nodes

• Two H410s storage nodes

• Two Mellanox SN2010 10GbE/25GbE switches

Architectural Diagram

The following diagram illustrates the solution architecture for the NetApp HCI AI inferencing solution.

3

The following diagram illustrates the virtual and physical elements of this solution.

A VMware infrastructure is used to host the management services required by this inferencing solution. These

services do not need to be deployed on a dedicated infrastructure; they can coexist with any existing

workloads. The NetApp Deployment Engine (NDE) uses the H410c and H410s nodes to deploy the VMware

infrastructure.

After NDE has completed the configuration, the following components are deployed as VMs in the virtual

infrastructure:

4

• Deployment Jump VM. Used to automate the deployment of NVIDIA DeepOps. See NVIDIA DeepOps

and storage management using NetApp Trident.

• ONTAP Select. An instance of ONTAP Select is deployed to provide NFS file services and persistent

storage to the AI workload running on Kubernetes.

• Kubernetes Masters. During deployment, three VMs are installed and configured with a supported Linux

distribution and configured as Kubernetes master nodes. After the management services have been set

up, two H615c compute nodes with NVIDIA T4 GPUs are installed with a supported Linux distribution.

These two nodes function as the Kubernetes worker nodes and provide the infrastructure for the

inferencing platform.

Hardware Requirements

The following table lists the hardware components that are required to implement the solution. The hardware

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Product Family Quantity Details

Compute H615c 2 3 NVIDIA Tesla T4 GPUs

per node

H410c 2 Compute nodes for

management

infrastructure

Storage H410s 2 Storage for OS and

workload

Network Mellanox SN2010 2 10G/25G switches

Software Requirements

The following table lists the software components that are required to implement the solution. The software

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Software Version

Storage NetApp Element software 12.0.0.333

ONTAP Select 9.7

NetApp Trident 20.07

NetApp HCI engine NDE 1.8

Hypervisor Hypervisor VMware vSphere ESXi 6.7U1

Hypervisor Management System VMware vCenter Server 6.7U1

Inferencing Platform NVIDIA DeepOps 20.08

NVIDIA GPU Operator 1.1.7

Ansible 2.9.5

Kubernetes 1.17.9

5

Layer Software Version

Docker Docker CE 18.09.7

CUDA Version 10.2

GPU Device Plugin 0.6.0

Helm 3.1.2

NVIDIA Tesla Driver 440.64.00

NVIDIA Triton Inference Server 2.1.0 – NGC Container v20.07

K8 Master VMs Linux Any supported distribution across

NetApp IMT, NVIDIA DeepOps, and

GPUOperator

Ubuntu 18.04.4 LTS was used in

this solution

Kernel version: 4.15

Host OS/ K8 Worker Nodes Linux Any supported distribution across

NetApp IMT, NVIDIA DeepOps, and

GPUOperator

Ubuntu 18.04.4 LTS was used in

this solution

Kernel version: 4.15

Next: Design Considerations

Design Considerations

Network Design

The switches used to handle the NetApp HCI traffic require a specific configuration for successful deployment.

Consult the NetApp HCI Network Setup Guide for the physical cabling and switch details. This solution uses a

two-cable design for compute nodes. Optionally, compute nodes can be configured in a six-node cable design

affording options for deployment of compute nodes.

The diagram under Architecture depicts the network topology of this NetApp HCI solution with a two-cable

design for the compute nodes.

Compute Design

The NetApp HCI compute nodes are available in two form factors, half-width and full-width, and in two rack unit

sizes, 1 RU and 2 RU. The 410c nodes used in this solution are half-width and 1 RU and are housed in a

chassis that can hold a maximum of four such nodes. The other compute node that is used in this solution is

the H615c, which is a full-width node, 1 RU in size. The H410c nodes are based on Intel Skylake processors,

and the H615c nodes are based on the second-generation Intel Cascade Lake processors. NVIDIA GPUs can

be added to the H615c nodes, and each node can host a maximum of three NVIDIA Tesla T4 16GB GPUs.

The H615c nodes are the latest series of compute nodes for NetApp HCI and the second series that can

support GPUs. The first model to support GPUs is the H610c node (full width, 2RU), which can support two

6

NVIDIA Tesla M10 GPUs.

In this solution, H615c nodes are preferred over H610c nodes because of the following advantages:

• Reduced data center footprint, critical for edge deployments

• Support for a newer generation of GPUs designed for faster inferencing

• Reduced power consumption

• Reduced heat dissipation

NVIDIA T4 GPUs

The resource requirements of inferencing are nowhere close to those of training workloads. In fact, most

modern hand-held devices are capable of handling small amounts of inferencing without powerful resources

like GPUs. However, for mission-critical applications and data centers that are dealing with a wide variety of

applications that demand very low inferencing latencies while subject to extreme parallelization and massive

input batch sizes, the GPUs play a key role in reducing inference time and help to boost application

performance.

The NVIDIA Tesla T4 is an x16 PCIe Gen3 single-slot low-profile GPU based on the Turing architecture. The

T4 GPUs deliver universal inference acceleration that spans applications such as image classification and

tagging, video analytics, natural language processing, automatic speech recognition, and intelligent search.

The breadth of the Tesla T4’s inferencing capabilities enables it to be used in enterprise solutions and edge

devices.

These GPUs are ideal for deployment in edge infrastructures due to their low power consumption and small

PCIe form factor. The size of the T4 GPUs enables the installation of two T4 GPUs in the same space as a

double-slot full-sized GPU. Although they are small, with 16GB memory, the T4s can support large ML models

or run inference on multiple smaller models simultaneously.

The Turing- based T4 GPUs include an enhanced version of Tensor Cores and support a full range of

precisions for inferencing FP32, FP16, INT8, and INT4. The GPU includes 2,560 CUDA cores and 320 Tensor

Cores, delivering up to 130 tera operations per second (TOPS) of INT8 and up to 260 TOPS of INT4

inferencing performance. When compared to CPU-based inferencing, the Tesla T4, powered by the new Turing

Tensor Cores, delivers up to 40 times higher inference performance.

The Turing Tensor Cores accelerate the matrix-matrix multiplication at the heart of neural network training and

inferencing functions. They particularly excel at inference computations in which useful and relevant

information can be inferred and delivered by a trained deep neural network based on a given input.

The Turing GPU architecture inherits the enhanced Multi-Process Service (MPS) feature that was introduced in

the Volta architecture. Compared to Pascal-based Tesla GPUs, MPS on Tesla T4 improves inference

performance for small batch sizes, reduces launch latency, improves QoS, and enables the servicing of higher

numbers of concurrent client requests.

The NVIDIA T4 GPU is a part of the NVIDIA AI Inference Platform that supports all AI frameworks and provides

comprehensive tooling and integrations to drastically simplify the development and deployment of advanced

AI.

Storage Design: Element Software

NetApp Element software powers the storage of the NetApp HCI systems. It delivers agile automation through

scale-out flexibility and guaranteed application performance to accelerate new services.

7

Storage nodes can be added to the system non-disruptively in increments of one, and the storage resources

are made available to the applications instantly. Every new node added to the system delivers a precise

amount of additional performance and capacity to a usable pool. The data is automatically load balanced in the

background across all nodes in the cluster, maintaining even utilization as the system grows.

Element software supports the NetApp HCI system to comfortably host multiple workloads by guaranteeing

QoS to each workload. By providing fine-grained performance control with minimum, maximum, and burst

settings for each workload, the software allows well-planned consolidations while protecting application

performance. It decouples performance from capacity and allows each volume to be allocated with a specific

amount of capacity and performance. These specifications can be modified dynamically without any

interruption to data access.

As illustrated in the following figure, Element software integrates with NetApp ONTAP to enable data mobility

between NetApp storage systems that are running different storage operating systems. Data can be moved

from the Element software to ONTAP or vice versa by using NetApp SnapMirror technology. Element uses the

same technology to provide cloud connectivity by integrating with NetApp Cloud Volumes ONTAP, which

enables data mobility from the edge to the core and to multiple public cloud service providers.

In this solution, the Element-backed storage provides the storage services that are required to run the

workloads and applications on the NetApp HCI system.

Storage Design: ONTAP Select

NetApp ONTAP Select introduces a software-defined data storage service model on top of NetApp HCI. It

builds on NetApp HCI capabilities, adding a rich set of file and data services to the HCI platform while

extending the data fabric.

Although ONTAP Select is an optional component for implementing this solution, it does provide a host of

8

benefits, including data gathering, protection, mobility, and so on, that are extremely useful in the context of the

overall AI data lifecycle. It helps to simplify several day-to-day challenges for data handling, including ingestion,

collection, training, deployment, and tiering.

ONTAP Select can run as a VM on VMware and still bring in most of the ONTAP capabilities that are available

when it is running on a dedicated FAS platform, such as the following:

• Support for NFS and CIFS

• NetApp FlexClone technology

• NetApp FlexCache technology

• NetApp ONTAP FlexGroup volumes

• NetApp SnapMirror software

ONTAP Select can be used to leverage the FlexCache feature, which helps to reduce data-read latencies by

caching frequently read data from a back-end origin volume, as is shown in the following figure. In the case of

high-end inferencing applications with a lot of parallelization, multiple instances of the same model are

deployed across the inferencing platform, leading to multiple reads of the same model. Newer versions of the

trained model can be seamlessly introduced to the inferencing platform by verifying that the desired model is

available in the origin or source volume.

9

NetApp Trident

NetApp Trident is an open-source dynamic storage orchestrator that allows you to manage storage resources

across all major NetApp storage platforms. It integrates with Kubernetes natively so that persistent volumes

(PVs) can be provisioned on demand with native Kubernetes interfaces and constructs. Trident enables

microservices and containerized applications to use enterprise-class storage services such as QoS, storage

efficiencies, and cloning to meet the persistent storage demands of applications.

Containers are among the most popular methods of packaging and deploying applications, and Kubernetes is

one of the most popular platforms for hosting containerized applications. In this solution, the inferencing

platform is built on top of a Kubernetes infrastructure.

Trident currently supports storage orchestration across the following platforms:

• ONTAP: NetApp AFF, FAS, and Select

• Element software: NetApp HCI and NetApp SolidFire all-flash storage

• NetApp SANtricity software: E-Series and EF-series

• Cloud Volumes ONTAP

• Azure NetApp Files

• NetApp Cloud Volumes Service: AWS and Google Cloud

Trident is a simple but powerful tool to enable storage orchestration not just across multiple storage platforms,

but also across the entire spectrum of the AI data lifecycle, ranging from the edge to the core to the cloud.

Trident can be used to provision a PV from a NetApp Snapshot copy that makes up the trained model. The

following figure illustrates the Trident workflow in which a persistent volume claim (PVC) is created by referring

to an existing Snapshot copy. Following this, Trident creates a volume by using the Snapshot copy.

10

This method of introducing trained models from a Snapshot copy supports robust model versioning. It

simplifies the process of introducing newer versions of models to applications and switching inferencing

between different versions of the model.

NVIDIA DeepOps

NVIDIA DeepOps is a modular collection of Ansible scripts that can be used to automate the deployment of a

Kubernetes infrastructure. There are multiple deployment tools available that can automate the deployment of

a Kubernetes cluster. In this solution, DeepOps is the preferred choice because it does not just deploy a

Kubernetes infrastructure, it also installs the necessary GPU drivers, NVIDIA Container Runtime for Docker

(nvidia-docker2), and various other dependencies for GPU-accelerated work. It encapsulates the best

practices for NVIDIA GPUs and can be customized or run as individual components as needed.

DeepOps internally uses Kubespray to deploy Kubernetes, and it is included as a submodule in DeepOps.

Therefore, common Kubernetes cluster management operations such as adding nodes, removing nodes, and

cluster upgrades should be performed using Kubespray.

A software based L2 LoadBalancer using MetalLb and an Ingress Controller based on NGINX are also

deployed as part of this solution by using the scripts that are available with DeepOps.

In this solution, three Kubernetes master nodes are deployed as VMs, and the two H615c compute nodes with

NVIDIA Tesla T4 GPUs are set up as Kubernetes worker nodes.

NVIDIA GPU Operator

The GPU operator deploys the NVIDIA k8s-device-plugin for GPU support and runs the NVIDIA drivers as

containers. It is based on the Kubernetes operator framework, which helps to automate the management of all

NVIDIA software components that are needed to provision GPUs. The components include NVIDIA drivers,

Kubernetes device plug-in for GPUs, the NVIDIA container runtime, and automatic node labeling, which is

used in tandem with Kubernetes Node Feature Discovery.

11

The GPU operator is an important component of the NVIDIA EGX software-defined platform that is designed to

make large-scale hybrid-cloud and edge operations possible and efficient. It is specifically useful when the

Kubernetes cluster needs to scale quickly—for example, when provisioning additional GPU-based worker

nodes and managing the lifecycle of the underlying software components. Because the GPU operator runs

everything as containers, including NVIDIA drivers, administrators can easily swap various components by

simply starting or stopping containers.

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server (Triton Server) simplifies the deployment of AI inferencing solutions in

production data centers. This microservice is specifically designed for inferencing in production data centers. It

maximizes GPU utilization and integrates seamlessly into DevOps deployments with Docker and Kubernetes.

Triton Server provides a common solution for AI inferencing. Therefore, researchers can focus on creating

high-quality trained models, DevOps engineers can focus on deployment, and developers can focus on

applications without the need to redesign the platform for each AI-powered application.

Here are some of the key features of Triton Server:

• Support for multiple frameworks. Triton Server can handle a mix of models, and the number of models is

limited only by system disk and memory resources. It can support the TensorRT, TensorFlow GraphDef,

TensorFlow SavedModel, ONNX, PyTorch, and Caffe2 NetDef model formats.

• *Concurrent model execution. *Multiple models or multiple instances of the same model can be run

simultaneously on a GPU.

• Multi-GPU support. Triton Server can maximize GPU utilization by enabling inference for multiple models

on one or more GPUs.

• Support for batching. Triton Server can accept requests for a batch of inputs and respond with the

corresponding batch of outputs. The inference server supports multiple scheduling and batching algorithms

that combine individual inference requests together to improve inference throughput. Batching algorithms

are available for both stateless and stateful applications and need to be used appropriately. These

scheduling and batching decisions are transparent to the client that is requesting inference.

• Ensemble support. An ensemble is a pipeline with multiple models with connections of input and output

tensors between those models. An inference request can be made to an ensemble, which results in the

execution of the complete pipeline.

• Metrics. Metrics are details about GPU utilization, server throughput, server latency, and health for auto

scaling and load balancing.

NetApp HCI is a hybrid multi-cloud infrastructure that can host multiple workloads and applications, and the

Triton Inference Server is well equipped to support the inferencing requirements of multiple applications.

In this solution, Triton Server is deployed on the Kubernetes cluster using a deployment file. With this method,

the default configuration of Triton Server can be overridden and customized as required. Triton Server also

provides an inference service using an HTTP or GRPC endpoint, allowing remote clients to request inferencing

for any model that is being managed by the server.

A Persistent Volume is presented via NetApp Trident to the container that runs the Triton Inference Server and

this persistent volume is configured as the model repository for the Inference server.

The Triton Inference Server is deployed with varying sets of resources using Kubernetes deployment files, and

each server instance is presented with a LoadBalancer front end for seamless scalability. This approach also

illustrates the flexibility and simplicity with which resources can be allocated to the inferencing workloads.

Next: Deploying NetApp HCI – AI Inferencing at the Edge

12

https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/

Overview

This section describes the steps required to deploy the AI inferencing platform using

NetApp HCI. The following list provides the high-level tasks involved in the setup:

1. Configure network switches

2. Deploy the VMware virtual infrastructure on NetApp HCI using NDE

3. Configure the H615c compute nodes to be used as K8 worker nodes

4. Set up the deployment jump VM and K8 master VMs

5. Deploy a Kubernetes cluster with NVIDIA DeepOps

6. Deploy ONTAP Select within the virtual infrastructure

7. Deploy NetApp Trident

8. Deploy NVIDIA Triton inference Server

9. Deploy the client for the Triton inference server

10. Collect inference metrics from the Triton inference server

Next: Configure Network Switches

Configure Network Switches (Automated Deployment)

Prepare Required VLAN IDs

The following table lists the necessary VLANs for deployment, as outlined in this solution validation. You should

configure these VLANs on the network switches prior to executing NDE.

Network Segment Details VLAN ID

Out-of-band management network Network for HCI terminal user

interface (TUI)

16

In-band management network Network for accessing

management interfaces of nodes,

hosts, and guests

3488

VMware vMotion Network for live migration of VMs 3489

iSCSI SAN storage Network for iSCSI storage traffic 3490

Application Network for Application traffic 3487

NFS Network for NFS storage traffic 3491

IPL* Interpeer link between Mellanox

switches

4000

Native Native VLAN 2

*Only for Mellanox switches

Switch Configuration

This solution uses Mellanox SN2010 switches running Onyx. The Mellanox switches are configured using an

13

Ansible playbook. Prior to running the Ansible playbook, you should perform the initial configuration of the

switches manually:

1. Install and cable the switches to the uplink switch, compute, and storage nodes.

2. Power on the switches and configure them with the following details:

a. Host name

b. Management IP and gateway

c. NTP

3. Log into the Mellanox switches and run the following commands:

configuration write to pre-ansible

configuration write to post-ansible

The pre-ansible configuration file created can be used to restore the switch’s configuration to the state

before the Ansible playbook execution.

The switch configuration for this solution is stored in the post-ansible configuration file.

4. The configuration playbook for Mellanox switches that follows best practices and requirements for NetApp

HCI can be downloaded from the NetApp HCI Toolkit.

The HCI Toolkit also provides a playbook to setup Cisco Nexus switches with similar best

practices and requirements for NetApp HCI.

Additional guidance on populating the variables and executing the playbook is available in

the respective switch README.md file.

5. Fill out the credentials to access the switches and variables needed for the environment. The following text

is a sample of the variable file for this solution.

vars file for nar_hci_mellanox_deploy

#These set of variables will setup the Mellanox switches for NetApp HCI

that uses a 2-cable compute connectivity option.

#Ansible connection variables for mellanox

ansible_connection: network_cli

ansible_network_os: onyx

#--------------------

Primary Variables

#--------------------

#Necessary VLANs for Standard NetApp HCI Deployment [native, Management,

iSCSI_Storage, vMotion, VM_Network, IPL]

#Any additional VLANs can be added to this in the prescribed format

below

netapp_hci_vlans:

- {vlan_id: 2 , vlan_name: "Native" }

- {vlan_id: 3488 , vlan_name: "IB-Management" }

14

https://mysupport.netapp.com/site/tools/tool-eula/hci-toolkit

- {vlan_id: 3490 , vlan_name: "iSCSI_Storage" }

- {vlan_id: 3489 , vlan_name: "vMotion" }

- {vlan_id: 3491 , vlan_name: "NFS " }

- {vlan_id: 3487 , vlan_name: "App_Network" }

- {vlan_id: 4000 , vlan_name: "IPL" }#Modify the VLAN IDs to suit your

environment

#Spanning-tree protocol type for uplink connections.

#The valid options are 'network' and 'normal'; selection depends on the

uplink switch model.

uplink_stp_type: network

#----------------------

IPL variables

#----------------------

#Inter-Peer Link Portchannel

#ipl_portchannel to be defined in the format - Po100

ipl_portchannel: Po100

#Inter-Peer Link Addresses

#The IPL IP address should not be part of the management network. This

is typically a private network

ipl_ipaddr_a: 10.0.0.1

ipl_ipaddr_b: 10.0.0.2

#Define the subnet mask in CIDR number format. Eg: For subnet /22, use

ipl_ip_subnet: 22

ipl_ip_subnet: 24

#Inter-Peer Link Interfaces

#members to be defined with Eth in the format. Eg: Eth1/1

peer_link_interfaces:

 members: ['Eth1/20', 'Eth1/22']

 description: "peer link interfaces"

#MLAG VIP IP address should be in the same subnet as that of the

switches' mgmt0 interface subnet

#mlag_vip_ip to be defined in the format - <vip_ip>/<subnet_mask>. Eg:

x.x.x.x/y

mlag_vip_ip: <<mlag_vip_ip>>

#MLAG VIP Domain Name

#The mlag domain must be unique name for each mlag domain.

#In case you have more than one pair of MLAG switches on the same

network, each domain (consist of two switches) should be configured with

different name.

mlag_domain_name: MLAG-VIP-DOM

#---------------------

Interface Details

#---------------------

#Storage Bond10G Interface details

#members to be defined with Eth in the format. Eg: Eth1/1

#Only numerical digits between 100 to 1000 allowed for mlag_id

15

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G

and 25G]

#Interface descriptions append storage node data port numbers assuming

all Storage Nodes' Port C -> Mellanox Switch A and all Storage Nodes'

Port D -> Mellanox Switch B

#List the storage Bond10G interfaces, their description, speed and MLAG

IDs in list of dictionaries format

storage_interfaces:

- {members: "Eth1/1", description: "HCI_Storage_Node_01", mlag_id: 101,

speed: 25G}

- {members: "Eth1/2", description: "HCI_Storage_Node_02", mlag_id: 102,

speed: 25G}

#In case of additional storage nodes, add them here

#Storage Bond1G Interface

#Mention whether or not these Mellanox switches will also be used for

Storage Node Mgmt connections

#Possible inputs for storage_mgmt are 'yes' and 'no'

storage_mgmt: <<yes or no>>

#Storage Bond1G (Mgmt) interface details. Only if 'storage_mgmt' is set

to 'yes'

#Members to be defined with Eth in the format. Eg: Eth1/1

#Interface descriptions append storage node management port numbers

assuming all Storage Nodes' Port A -> Mellanox Switch A and all Storage

Nodes' Port B -> Mellanox Switch B

#List the storage Bond1G interfaces and their description in list of

dictionaries format

storage_mgmt_interfaces:

- {members: "Ethx/y", description: "HCI_Storage_Node_01"}

- {members: "Ethx/y", description: "HCI_Storage_Node_02"}

#In case of additional storage nodes, add them here

#LACP load balancing algorithm for IP hash method

#Possible options are: 'destination-mac', 'destination-ip',

'destination-port', 'source-mac', 'source-ip', 'source-port', 'source-

destination-mac', 'source-destination-ip', 'source-destination-port'

#This variable takes multiple options in a single go

#For eg: if you want to configure load to be distributed in the port-

channel based on the traffic source and destination IP address and port

number, use 'source-destination-ip source-destination-port'

#By default, Mellanox sets it to source-destination-mac. Enter the

values below only if you intend to configure any other load balancing

algorithm

#Make sure the load balancing algorithm that is set here is also

replicated on the host side

#Recommended algorithm is source-destination-ip source-destination-port

16

#Fill the lacp_load_balance variable only if you are using configuring

interfaces on compute nodes in bond or LAG with LACP

lacp_load_balance: "source-destination-ip source-destination-port"

#Compute Interface details

#Members to be defined with Eth in the format. Eg: Eth1/1

#Fill the mlag_id field only if you intend to configure interfaces of

compute nodes into bond or LAG with LACP

#In case you do not intend to configure LACP on interfaces of compute

nodes, either leave the mlag_id field unfilled or comment it or enter NA

in the mlag_id field

#In case you have a mixed architecture where some compute nodes require

LACP and some don't,

#1. Fill the mlag_id field with appropriate MLAG ID for interfaces that

connect to compute nodes requiring LACP

#2. Either fill NA or leave the mlag_id field blank or comment it for

interfaces connecting to compute nodes that do not require LACP

#Only numerical digits between 100 to 1000 allowed for mlag_id.

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G

and 25G]

#Interface descriptions append compute node port numbers assuming all

Compute Nodes' Port D -> Mellanox Switch A and all Compute Nodes' Port E

-> Mellanox Switch B

#List the compute interfaces, their speed, MLAG IDs and their

description in list of dictionaries format

compute_interfaces:

- members: "Eth1/7"#Compute Node for ESXi, setup by NDE

 description: "HCI_Compute_Node_01"

 mlag_id: #Fill the mlag_id only if you wish to use LACP on interfaces

towards compute nodes

 speed: 25G

- members: "Eth1/8"#Compute Node for ESXi, setup by NDE

 description: "HCI_Compute_Node_02"

 mlag_id: #Fill the mlag_id only if you wish to use LACP on interfaces

towards compute nodes

 speed: 25G

#In case of additional compute nodes, add them here in the same format

as above- members: "Eth1/9"#Compute Node for Kubernetes Worker node

 description: "HCI_Compute_Node_01"

 mlag_id: 109 #Fill the mlag_id only if you wish to use LACP on

interfaces towards compute nodes

 speed: 10G

- members: "Eth1/10"#Compute Node for Kubernetes Worker node

 description: "HCI_Compute_Node_02"

 mlag_id: 110 #Fill the mlag_id only if you wish to use LACP on

17

interfaces towards compute nodes

 speed: 10G

#Uplink Switch LACP support

#Possible options are 'yes' and 'no' - Set to 'yes' only if your uplink

switch supports LACP

uplink_switch_lacp: <<yes or no>>

#Uplink Interface details

#Members to be defined with Eth in the format. Eg: Eth1/1

#Only numerical digits between 100 to 1000 allowed for mlag_id.

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values in

Mellanox are 1G, 10G and 25G]

#List the uplink interfaces, their description, MLAG IDs and their speed

in list of dictionaries format

uplink_interfaces:

- members: "Eth1/18"

 description_switch_a: "SwitchA:Ethx/y -> Uplink_Switch:Ethx/y"

 description_switch_b: "SwitchB:Ethx/y -> Uplink_Switch:Ethx/y"

 mlag_id: 118 #Fill the mlag_id only if 'uplink_switch_lacp' is set to

'yes'

 speed: 10G

 mtu: 1500

The fingerprint for the switch’s key must match with that present in the host machine from

where the playbook is being executed. To ensure this, add the key to /root/.

ssh/known_host or any other appropriate location.

Rollback the Switch Configuration

1. In case of any timeout failures or partial configuration, run the following command to roll back the switch to

the initial state.

configuration switch-to pre-ansible

This operation requires a reboot of the switch.

2. Switch the configuration to the state before running the Ansible playbook.

configuration delete post-ansible

3. Delete the post-ansible file that had the configuration from the Ansible playbook.

18

configuration write to post-ansible

4. Create a new file with the same name post-ansible, write the pre-ansible configuration to it, and switch to

the new configuration to restart configuration.

IP Address Requirements

The deployment of the NetApp HCI inferencing platform with VMware and Kubernetes requires multiple IP

addresses to be allocated. The following table lists the number of IP addresses required. Unless otherwise

indicated, addresses are assigned automatically by NDE.

IP Address Quantity Details VLAN ID IP Address

One per storage and

compute node*

HCI terminal user

interface (TUI) addresses

16

One per vCenter Server

(VM)

vCenter Server

management address

3488

One per management

node (VM)

Management node IP

address

One per ESXi host ESXi compute

management addresses

One per storage/witness

node

NetApp HCI storage node

management addresses

One per storage cluster Storage cluster

management address

One per ESXi host VMware vMotion address 3489

Two per ESXi host ESXi host initiator address

for iSCSI storage traffic

3490

Two per storage node Storage node target

address for iSCSI storage

traffic

Two per storage cluster Storage cluster target

address for iSCSI storage

traffic

Two for mNode mNode iSCSI storage

access

The following IPs are assigned manually when the respective components are configured.

19

IP Address Quantity Details VLAN ID IP Address

One for Deployment Jump

Management network

Deployment Jump VM to

execute Ansible

playbooks and configure

other parts of the system

– management

connectivity

3488

One per Kubernetes

master node –

management network

Kubernetes master node

VMs (three nodes)

3488

One per Kubernetes

worker node –

management network

Kubernetes worker nodes

(two nodes)

3488

One per Kubernetes

worker node – NFS

network

Kubernetes worker nodes

(two nodes)

3491

One per Kubernetes

worker node – application

network

Kubernetes worker nodes

(two nodes)

3487

Three for ONTAP Select –

management network

ONTAP Select VM 3488

One for ONTAP Select –

NFS network

ONTAP Select VM – NFS

data traffic

3491

At least two for Triton

Inference Server Load

Balancer – application

network

Load balancer IP range

for Kubernetes load

balancer service

3487

*This validation requires the initial setup of the first storage node TUI address. NDE automatically assigns the

TUI address for subsequent nodes.

DNS and Timekeeping Requirement

Depending on your deployment, you might need to prepare DNS records for your NetApp HCI system. NetApp

HCI requires a valid NTP server for timekeeping; you can use a publicly available time server if you do not

have one in your environment.

This validation involves deploying NetApp HCI with a new VMware vCenter Server instance using a fully

qualified domain name (FQDN). Before deployment, you must have one Pointer (PTR) record and one

Address (A) record created on the DNS server.

Next: Virtual Infrastructure with Automated Deployment

Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated
Deployment)

20

NDE Deployment Prerequisites

Consult the NetApp HCI Prerequisites Checklist to see the requirements and recommendations for NetApp

HCI before you begin deployment.

1. Network and switch requirements and configuration

2. Prepare required VLAN IDs

3. Switch configuration

4. IP Address Requirements for NetApp HCI and VMware

5. DNS and time-keeping requirements

6. Final preparations

NDE Execution

Before you execute the NDE, you must complete the rack and stack of all components, configuration of the

network switches, and verification of all prerequisites. You can execute NDE by connecting to the management

address of a single storage node if you plan to allow NDE to automatically configure all addresses.

NDE performs the following tasks to bring an HCI system online:

1. Installs the storage node (NetApp Element software) on a minimum of two storage nodes.

2. Installs the VMware hypervisor on a minimum of two compute nodes.

3. Installs VMware vCenter to manage the entire NetApp HCI stack.

4. Installs and configures the NetApp storage management node (mNode) and NetApp Monitoring Agent.

This validation uses NDE to automatically configure all addresses. You can also set up

DHCP in your environment or manually assign IP addresses for each storage node and

compute node. These steps are not covered in this guide.

As mentioned previously, this validation uses a two-cable configuration for compute nodes.

Detailed steps for the NDE are not covered in this document.

For step-by-step guidance on completing the deployment of the base NetApp HCI platform, see the

Deployment guide.

5. After NDE has finished, login to the vCenter and create a Distributed Port Group NetApp HCI VDS 01-

NFS_Network for the NFS network to be used by ONTAP Select and the application.

Next: Configure NetApp H615c (Manual Deployment)

Configure NetApp H615c (Manual Deployment)

In this solution, the NetApp H615c compute nodes are configured as Kubernetes worker

nodes. The Inferencing workload is hosted on these nodes.

Deploying the compute nodes involves the following tasks:

• Install Ubuntu 18.04.4 LTS.

21

https://library.netapp.com/ecm/ecm_download_file/ECMLP2798490
http://docs.netapp.com/hci/topic/com.netapp.doc.hci-ude-180/home.html?cp=3_0

• Configure networking for data and management access.

• Prepare the Ubuntu instances for Kubernetes deployment.

Install Ubuntu 18.04.4 LTS

The following high-level steps are required to install the operating system on the H615c compute nodes:

1. Download Ubuntu 18.04.4 LTS from Ubuntu releases.

2. Using a browser, connect to the IPMI of the H615c node and launch Remote Control.

3. Map the Ubuntu ISO using the Virtual Media Wizard and start the installation.

4. Select one of the two physical interfaces as the Primary network interface when prompted.

An IP from a DHCP source is allocated when available, or you can switch to a manual IP configuration

later. The network configuration is modified to a bond-based setup after the OS has been installed.

5. Provide a hostname followed by a domain name.

6. Create a user and provide a password.

7. Partition the disks according to your requirements.

8. Under Software Selection, select OpenSSH server and click Continue.

9. Reboot the node.

Configure Networking for Data and Management Access

The two physical network interfaces of the Kubernetes worker nodes are set up as a bond and VLAN

interfaces for management and application, and NFS data traffic is created on top of it.

The inferencing applications and associated containers use the application network for

connectivity.

1. Connect to the console of the Ubuntu instance as a user with root privileges and launch a terminal session.

2. Navigate to /etc/netplan and open the 01-netcfg.yaml file.

3. Update the netplan file based on the network details for the management, application, and NFS traffic in

your environment.

The following template of the netplan file was used in this solution:

This file describes the network interfaces available on your system

For more information, see netplan(5).

network:

 version: 2

 renderer: networkd

 ethernets:

 enp59s0f0: #Physical Interface 1

 match:

 macaddress: <<mac_address Physical Interface 1>>

 set-name: enp59s0f0

22

http://cdimage.ubuntu.com/ubuntu/releases/18.04/release/

 mtu: 9000

 enp59s0f1: # Physical Interface 2

 match:

 macaddress: <<mac_address Physical Interface 2>>

 set-name: enp59s0f1

 mtu: 9000

 bonds:

 bond0:

 mtu: 9000

 dhcp4: false

 dhcp6: false

 interfaces: [enp59s0f0, enp59s0f1]

 parameters:

 mode: 802.3ad

 mii-monitor-interval: 100

 vlans:

 vlan.3488: #Management VLAN

 id: 3488

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.232.111

 metric: 100

 table: 3488

 - to: x.x.x.x/x # Additional routes if any

 via: y.y.y.y

 metric: <<metric>>

 table: <<table #>>

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32768#Higher Priority than table 3487

 table: 3488

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

 mtu: 1500

 vlan.3487:

 id: 3487

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.231.111

23

 metric: 101

 table: 3487

 - to: x.x.x.x/x

 via: y.y.y.y

 metric: <<metric>>

 table: <<table #>>

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32769#Lower Priority

 table: 3487

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

 mtu: 1500 vlan.3491:

 id: 3491

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 mtu: 9000

4. Confirm that the priorities for the routing policies are lower than the priorities for the main and default

tables.

5. Apply the netplan.

sudo netplan -–debug apply

6. Make sure that there are no errors.

7. If Network Manager is running, stop and disable it.

systemctl stop NetworkManager

systemctl disable NetworkManager

8. Add a host record for the server in DNS.

9. Open a VI editor to /etc/iproute2/rt_tables and add the two entries.

24

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep

101 3488

102 3487

10. Match the table number to what you used in the netplan.

11. Open a VI editor to /etc/sysctl.conf and set the value of the following parameters.

net.ipv4.conf.default.rp_filter=0

net.ipv4.conf.all.rp_filter=0net.ipv4.ip_forward=1

12. Update the system.

sudo apt-get update && sudo apt-get upgrade

13. Reboot the system

14. Repeat steps 1 through 13 for the other Ubuntu instance.

Next: Set Up the Deployment Jump and the Kubernetes Master Node VMs (Manual Deployment)

Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual
Deployment)

A Deployment Jump VM running a Linux distribution is used for the following purposes:

• Deploying ONTAP Select using an Ansible playbook

• Deploying the Kubernetes infrastructure with NVIDIA DeepOps and GPU Operator

• Installing and configuring NetApp Trident

Three more VMs running Linux are set up; these VMs are configured as Kubernetes Master Nodes in this

solution.

Ubuntu 18.04.4 LTS was used in this solution deployment.

1. Deploy the Ubuntu 18.04.4 LTS VM with VMware tools

25

You can refer to the high-level steps described in section Install Ubuntu 18.04.4 LTS.

2. Configure the in-band management network for the VM. See the following sample netplan template:

This file describes the network interfaces available on your system

For more information, see netplan(5).

network:

 version: 2

 renderer: networkd

 ethernets:

 ens160:

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.232.111

 metric: 100

 table: 3488

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32768

 table: 3488

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

 mtu: 1500

This template is not the only way to setup the network. You can use any other approach that you prefer.

3. Apply the netplan.

sudo netplan –-debug apply

4. Stop and disable Network Manager if it is running.

systemctl stop NetworkManager

systemctl disable NetworkManager

5. Open a VI editor to /etc/iproute2/rt_tables and add a table entry.

26

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep

101 3488

6. Add a host record for the VM in DNS.

7. Verify outbound internet access.

8. Update the system.

sudo apt-get update && sudo apt-get upgrade

9. Reboot the system.

10. Repeat steps 1 through 9 to set up the other three VMs.

Next: Deploy a Kubernetes Cluster with NVIDIA DeepOps (Automated Deployment)

Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment

To deploy and configure the Kubernetes Cluster with NVIDIA DeepOps, complete the

following steps:

1. Make sure that the same user account is present on all the Kubernetes master and worker nodes.

2. Clone the DeepOps repository.

git clone https://github.com/NVIDIA/deepops.git

3. Check out a recent release tag.

cd deepops

git checkout tags/20.08

If this step is skipped, the latest development code is used, not an official release.

4. Prepare the Deployment Jump by installing the necessary prerequisites.

27

./scripts/setup.sh

5. Create and edit the Ansible inventory by opening a VI editor to deepops/config/inventory.

a. List all the master and worker nodes under [all].

b. List all the master nodes under [kube-master]

c. List all the master nodes under [etcd]

d. List all the worker nodes under [kube-node]

6. Enable GPUOperator by opening a VI editor to deepops/config/group_vars/k8s-cluster.yml.

28

7. Set the value of deepops_gpu_operator_enabled to true.

8. Verify the permissions and network configuration.

ansible all -m raw -a "hostname" -k -K

◦ If SSH to the remote hosts requires a password, use -k.

◦ If sudo on the remote hosts requires a password, use -K.

9. If the previous step passed without any issues, proceed with the setup of Kubernetes.

ansible-playbook --limit k8s-cluster playbooks/k8s-cluster.yml -k -K

10. To verify the status of the Kubernetes nodes and the pods, run the following commands:

kubectl get nodes

kubectl get pods -A

It can take a few minutes for all the pods to run.

29

11. Verify that the Kubernetes setup can access and use the GPUs.

./scripts/k8s_verify_gpu.sh

Expected sample output:

rarvind@deployment-jump:~/deepops$./scripts/k8s_verify_gpu.sh

job_name=cluster-gpu-tests

Node found with 3 GPUs

Node found with 3 GPUs

total_gpus=6

Creating/Deleting sandbox Namespace

updating test yml

downloading containers ...

30

job.batch/cluster-gpu-tests condition met

executing ...

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

31

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

32

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

33

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

34

| No running processes found

|

+---

------+

Number of Nodes: 2

Number of GPUs: 6

6 / 6 GPU Jobs COMPLETED

job.batch "cluster-gpu-tests" deleted

namespace "cluster-gpu-verify" deleted

12. Install Helm on the Deployment Jump.

./scripts/install_helm.sh

13. Remove the taints on the master nodes.

kubectl taint nodes --all node-role.kubernetes.io/master-

This step is required to run the LoadBalancer pods.

14. Deploy LoadBalancer.

15. Edit the config/helm/metallb.yml file and provide a range of IP ddresses in the Application

Network to be used as LoadBalancer.

Default address range matches private network for the virtual cluster

defined in virtual/.

You should set this address range based on your site's infrastructure.

configInline:

 address-pools:

 - name: default

 protocol: layer2

 addresses:

 - 172.21.231.130-172.21.231.140#Application Network

controller:

 nodeSelector:

 node-role.kubernetes.io/master: ""

16. Run a script to deploy LoadBalancer.

./scripts/k8s_deploy_loadbalancer.sh

35

17. Deploy an Ingress Controller.

./scripts/k8s_deploy_ingress.sh

Next: Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure
(Automated Deployment)

To deploy and configure an ONTAP Select instance within the VMware Virtual

Infrastructure, complete the following steps:

1. From the Deployment Jump VM, login to the NetApp Support Site and download the ONTAP Select OVA

for ESXi.

2. Create a directory OTS and obtain the Ansible roles for deploying ONTAP Select.

mkdir OTS

cd OTS

git clone https://github.com/NetApp/ansible.git

cd ansible

3. Install the prerequisite libraries.

36

https://mysupport.netapp.com/site/products/all/details/ontap-select/downloads-tab/download/62293/9.7

pip install requests

pip install pyvmomi

Open a VI Editor and create a playbook ‘`ots_setup.yaml`’ with the below

content to deploy the ONTAP Select OVA and initialize the ONTAP cluster.

- name: Create ONTAP Select Deploy VM from OVA (ESXi)

 hosts: localhost

 gather_facts: false

 connection: 'local'

 vars_files:

 - ots_deploy_vars.yaml

 roles:

 - na_ots_deploy

- name: Wait for 1 minute before starting cluster setup

 hosts: localhost

 gather_facts: false

 tasks:

 - pause:

 minutes: 1

- name: Create ONTAP Select cluster (ESXi)

 hosts: localhost

 gather_facts: false

 vars_files:

 - ots_cluster_vars.yaml

 roles:

 - na_ots_cluster

4. Open a VI editor, create a variable file ots_deploy_vars.yaml, and fill in hte following parameters:

37

target_vcenter_or_esxi_host: "10.xxx.xx.xx"# vCenter IP

host_login: "yourlogin@yourlab.local" # vCenter Username

ovf_path: "/run/deploy/ovapath/ONTAPdeploy.ova"# Path to OVA on

Deployment Jump VM

datacenter_name: "your-Lab"# Datacenter name in vCenter

esx_cluster_name: "your Cluster"# Cluster name in vCenter

datastore_name: "your-select-dt"# Datastore name in vCenter

mgt_network: "your-mgmt-network"# Management Network to be used by OVA

deploy_name: "test-deploy-vm"# Name of the ONTAP Select VM

deploy_ipAddress: "10.xxx.xx.xx"# Management IP Address of ONTAP Select

VM

deploy_gateway: "10.xxx.xx.1"# Default Gateway

deploy_proxy_url: ""# Proxy URL (Optional and if used)

deploy_netMask: "255.255.255.0"# Netmask

deploy_product_company: "NetApp"# Name of Organization

deploy_primaryDNS: "10.xxx.xx.xx"# Primary DNS IP

deploy_secondaryDNS: ""# Secondary DNS (Optional)

deploy_searchDomains: "your.search.domain.com"# Search Domain Name

Update the variables to match your environment.

5. Open a VI editor, create a variable file ots_cluster_vars.yaml, and fill it out with the following

parameters:

38

node_count: 1#Number of nodes in the ONTAP Cluster

monitor_job: truemonitor_deploy_job: true

deploy_api_url: #Use the IP of the ONTAP Select VM

deploy_login: "admin"

vcenter_login: "administrator@vsphere.local"

vcenter_name: "172.21.232.100"

esxi_hosts:

 - host_name: 172.21.232.102

 - host_name: 172.21.232.103

cluster_name: "hci-ai-ots"# Name of ONTAP Cluster

cluster_ip: "172.21.232.118"# Cluster Management IP

cluster_netmask: "255.255.255.0"

cluster_gateway: "172.21.232.1"

cluster_ontap_image: "9.7"

cluster_ntp:

 - "10.61.186.231"

cluster_dns_ips:

 - "10.61.186.231"

cluster_dns_domains:

 - "sddc.netapp.com"

mgt_network: "NetApp HCI VDS 01-Management_Network"# Name of VM Port

Group for Mgmt Network

data_network: "NetApp HCI VDS 01-NFS_Network"# Name of VM Port Group for

NFS Network

internal_network: ""# Not needed for Single Node Cluster

instance_type: "small"

cluster_nodes:

 - node_name: "{{ cluster_name }}-01"

 ipAddress: 172.21.232.119# Node Management IP

 storage_pool: NetApp-HCI-Datastore-02 # Name of Datastore in vCenter

to use

 capacityTB: 1# Usable capacity will be ~700GB

 host_name: 172.21.232.102# IP Address of an ESXi host to deploy node

Update the variables to match your environment.

6. Start ONTAP Select setup.

ansible-playbook ots_setup.yaml --extra-vars deploy_pwd=$'"P@ssw0rd"'

--extra-vars vcenter_password=$'"P@ssw0rd"' --extra-vars

ontap_pwd=$'"P@ssw0rd"' --extra-vars host_esx_password=$'"P@ssw0rd"'

--extra-vars host_password=$'"P@ssw0rd"' --extra-vars

deploy_password=$'"P@ssw0rd"'

39

7. Update the command with deploy_pwd `(ONTAP Select VM instance),

`vcenter_password(vCenter), ontap_pwd (ONTAP login password), host_esx_password (VMware

ESXi), host_password (vCenter), and deploy_password (ONTAP Select VM instance).

Configure the ONTAP Select Cluster – Manual Deployment

To configure the ONTAP Select cluster, complete the following steps:

1. Open a browser and log into the ONTAP cluster’s System Manager using its cluster management IP.

2. On the DASHBOARD page, click Prepare Storage under Capacity.

3. Select the radio button to continue without onboard key manager, and click Prepare Storage.

4. On the NETWORK page, click the + sign in the Broadcast Domains window.

5. Enter the Name as NFS, set the MTU to 9000, and select the port e0b. Click Save.

40

6. On the DASHBOARD page, click Configure Protocols under Network.

41

7. Enter a name for the SVM, select Enable NFS, provide an IP and subnet mask for the NFS LIF, set the

Broadcast Domain to NFS, and click Save.

8. Click STORAGE in the left pane, and from the dropdown select Storage VMs

a. Edit the SVM.

42

b. Select the checkbox under Resource Allocation, make sure that the local tier is listed, and click Save.

43

9. Click the SVM name, and on the right panel scroll down to Policies.

10. Click the arrow within the Export Policies tile, and click the default policy.

11. If there is a rule already defined, you can edit it; if no rule exists, then create a new one.

a. Select NFS Network Clients as the Client Specification.

b. Select the Read-Only and Read/Write checkboxes.

c. Select the checkbox to Allow Superuser Access.

44

Next: Deploy NetApp Trident (Automated Deployment)

Deploy NetApp Trident (Automated Deployment)

NetApp Trident is deployed by using an Ansible playbook that is available with NVIDIA DeepOps. Follow these

steps to set up NetApp Trident:

1. From the Deployment Jump VM, navigate to the DeepOps directory and open a VI editor to

config/group_vars/netapp-trident.yml. The file from DeepOps lists two backends and two

storage classes. In this solution only one backend and storage class are used.

Use the following template to update the file and its parameters (highlighted in yellow) to match your

environment.

45

vars file for netapp-trident playbook

URL of the Trident installer package that you wish to download and use

trident_version: "20.07.0"# Version of Trident desired

trident_installer_url:

"https://github.com/NetApp/trident/releases/download/v{{ trident_version

}}/trident-installer-{{ trident_version }}.tar.gz"

Kubernetes version

Note: Do not include patch version, e.g. provide value of 1.16, not

1.16.7.

Note: Versions 1.14 and above are supported when deploying Trident

with DeepOps.

If you are using an earlier version, you must deploy Trident

manually.

k8s_version: 1.17.9# Version of Kubernetes running

Denotes whether or not to create new backends after deploying trident

For more info, refer to: https://netapp-

trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-

install.html#creating-a-trident-backend

create_backends: true

List of backends to create

For more info on parameter values, refer to: https://netapp-

trident.readthedocs.io/en/stable-

v20.04/kubernetes/operations/tasks/backends/ontap.html

Note: Parameters other than those listed below are not avaible when

creating a backend via DeepOps

If you wish to use other parameter values, you must create your

backend manually.

backends_to_create:

 - backendName: ontap-flexvol

 storageDriverName: ontap-nas # only 'ontap-nas' and 'ontap-nas-

flexgroup' are supported when creating a backend via DeepOps

 managementLIF: 172.21.232.118# Cluster Management IP or SVM Mgmt LIF

IP

 dataLIF: 172.21.235.119# NFS LIF IP

 svm: infra-NFS-hci-ai# Name of SVM

 username: admin# Username to connect to the ONTAP cluster

 password: P@ssw0rd# Password to login

 storagePrefix: trident

 limitAggregateUsage: ""

 limitVolumeSize: ""

 nfsMountOptions: ""

 defaults:

 spaceReserve: none

 snapshotPolicy: none

 snapshotReserve: 0

46

 splitOnClone: false

 encryption: false

 unixPermissions: 777

 snapshotDir: false

 exportPolicy: default

 securityStyle: unix

 tieringPolicy: none

Add additional backends as needed

Denotes whether or not to create new StorageClasses for your NetApp

storage

For more info, refer to: https://netapp-

trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-

install.html#creating-a-storage-class

create_StorageClasses: true

List of StorageClasses to create

Note: Each item in the list should be an actual K8s StorageClass

definition in yaml format

For more info on StorageClass definitions, refer to https://netapp-

trident.readthedocs.io/en/stable-

v20.04/kubernetes/concepts/objects.html#kubernetes-storageclass-objects.

storageClasses_to_create:

 - apiVersion: storage.k8s.io/v1

 kind: StorageClass

 metadata:

 name: ontap-flexvol

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

 provisioner: csi.trident.netapp.io

 parameters:

 backendType: "ontap-nas"

Add additional StorageClasses as needed

Denotes whether or not to copy tridenctl binary to localhost

copy_tridentctl_to_localhost: true

Directory that tridentctl will be copied to on localhost

tridentctl_copy_to_directory: ../ # will be copied to 'deepops/'

directory

2. Setup NetApp Trident by using the Ansible playbook.

ansible-playbook -l k8s-cluster playbooks/netapp-trident.yml

3. Verify that Trident is running.

./tridentctl -n trident version

47

The expected output is as follows:

rarvind@deployment-jump:~/deepops$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 20.07.0 | 20.07.0 |

+----------------+----------------+

Next: Deploy NVIDIA Triton Inference Server (Automated Deployment)

Deploy NVIDIA Triton Inference Server (Automated Deployment)

To set up automated deployment for the Triton Inference Server, complete the following steps:

1. Open a VI editor and create a PVC yaml file vi pvc-triton-model- repo.yaml.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: triton-pvc namespace: triton

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 storageClassName: ontap-flexvol

2. Create the PVC.

kubectl create -f pvc-triton-model-repo.yaml

3. Open a VI editor, create a deployment for the Triton Inference Server, and call the file

triton_deployment.yaml.

apiVersion: v1

kind: Service

metadata:

 labels:

 app: triton-3gpu

 name: triton-3gpu

48

 namespace: triton

spec:

 ports:

 - name: grpc-trtis-serving

 port: 8001

 targetPort: 8001

 - name: http-trtis-serving

 port: 8000

 targetPort: 8000

 - name: prometheus-metrics

 port: 8002

 targetPort: 8002

 selector:

 app: triton-3gpu

 type: LoadBalancer

apiVersion: v1

kind: Service

metadata:

 labels:

 app: triton-1gpu

 name: triton-1gpu

 namespace: triton

spec:

 ports:

 - name: grpc-trtis-serving

 port: 8001

 targetPort: 8001

 - name: http-trtis-serving

 port: 8000

 targetPort: 8000

 - name: prometheus-metrics

 port: 8002

 targetPort: 8002

 selector:

 app: triton-1gpu

 type: LoadBalancer

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-3gpu

 name: triton-3gpu

 namespace: triton

spec:

49

 replicas: 1

 selector:

 matchLabels:

 app: triton-3gpu version: v1

 template:

 metadata:

 labels:

 app: triton-3gpu

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07-v1-py3

 command: ["/bin/sh", "-c"]

 args: ["trtserver --model-store=/mnt/model-repo"]

 imagePullPolicy: IfNotPresent

 name: triton-3gpu

 ports:

 - containerPort: 8000

 - containerPort: 8001

 - containerPort: 8002

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 3

 requests:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 3

 volumeMounts:

 - name: triton-model-repo

 mountPath: /mnt/model-repo nodeSelector:

 gpu-count: “3”

 volumes:

 - name: triton-model-repo

 persistentVolumeClaim:

 claimName: triton-pvc---

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-1gpu

 name: triton-1gpu

 namespace: triton

spec:

 replicas: 3

50

 selector:

 matchLabels:

 app: triton-1gpu

 version: v1

 template:

 metadata:

 labels:

 app: triton-1gpu

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07-v1-py3

 command: ["/bin/sh", "-c", “sleep 1000”]

 args: ["trtserver --model-store=/mnt/model-repo"]

 imagePullPolicy: IfNotPresent

 name: triton-1gpu

 ports:

 - containerPort: 8000

 - containerPort: 8001

 - containerPort: 8002

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 1

 requests:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 1

 volumeMounts:

 - name: triton-model-repo

 mountPath: /mnt/model-repo nodeSelector:

 gpu-count: “1”

 volumes:

 - name: triton-model-repo

 persistentVolumeClaim:

 claimName: triton-pvc

Two deployments are created here as an example. The first deployment spins up a pod that uses three

GPUs and has replicas set to 1. The other deployment spins up three pods each using one GPU while the

replica is set to 3. Depending on your requirements, you can change the GPU allocation and replica

counts.

Both of the deployments use the PVC created earlier and this persistent storage is provided to the Triton

inference servers as the model repository.

For each deployment, a service of type LoadBalancer is created. The Triton Inference Server can be

51

accessed by using the LoadBalancer IP which is in the application network.

A nodeSelector is used to ensure that both deployments get the required number of GPUs without any

issues.

4. Label the K8 worker nodes.

kubectl label nodes hci-ai-k8-worker-01 gpu-count=3

kubectl label nodes hci-ai-k8-worker-02 gpu-count=1

5. Create the deployment.

kubectl apply -f triton_deployment.yaml

6. Make a note of the LoadBalancer service external LPS.

kubectl get services -n triton

The expected sample output is as follows:

7. Connect to any one of the pods that were created from the deployment.

kubectl exec -n triton --stdin --tty triton-1gpu-86c4c8dd64-545lx --

/bin/bash

8. Set up the model repository by using the example model repository.

git clone

cd triton-inference-server

git checkout r20.07

9. Fetch any missing model definition files.

cd docs/examples

./fetch_models.sh

10. Copy all the models to the model repository location or just a specific model that you wish to use.

52

cp -r model_repository/resnet50_netdef/ /mnt/model-repo/

In this solution, only the resnet50_netdef model is copied over to the model repository as an example.

11. Check the status of the Triton Inference Server.

curl -v <<LoadBalancer_IP_recorded earlier>>:8000/api/status

The expected sample output is as follows:

curl -v 172.21.231.132:8000/api/status

* Trying 172.21.231.132...

* TCP_NODELAY set

* Connected to 172.21.231.132 (172.21.231.132) port 8000 (#0)

> GET /api/status HTTP/1.1

> Host: 172.21.231.132:8000

> User-Agent: curl/7.58.0

> Accept: */*

>

< HTTP/1.1 200 OK

< NV-Status: code: SUCCESS server_id: "inference:0" request_id: 9

< Content-Length: 1124

< Content-Type: text/plain

<

id: "inference:0"

version: "1.15.0"

uptime_ns: 377890294368

model_status {

 key: "resnet50_netdef"

 value {

 config {

 name: "resnet50_netdef"

 platform: "caffe2_netdef"

 version_policy {

 latest {

 num_versions: 1

 }

 }

 max_batch_size: 128

 input {

 name: "gpu_0/data"

 data_type: TYPE_FP32

 format: FORMAT_NCHW

 dims: 3

53

 dims: 224

 dims: 224

 }

 output {

 name: "gpu_0/softmax"

 data_type: TYPE_FP32

 dims: 1000

 label_filename: "resnet50_labels.txt"

 }

 instance_group {

 name: "resnet50_netdef"

 count: 1

 gpus: 0

 gpus: 1

 gpus: 2

 kind: KIND_GPU

 }

 default_model_filename: "model.netdef"

 optimization {

 input_pinned_memory {

 enable: true

 }

 output_pinned_memory {

 enable: true

 }

 }

 }

 version_status {

 key: 1

 value {

 ready_state: MODEL_READY

 ready_state_reason {

 }

 }

 }

 }

}

ready_state: SERVER_READY

* Connection #0 to host 172.21.231.132 left intact

Next: Deploy the Client for Triton Inference Server (Automated Deployment)

Deploy the Client for Triton Inference Server (Automated Deployment)

To deploy the client for the Triton Inference Server, complete the following steps:

54

1. Open a VI editor, create a deployment for the Triton client, and call the file triton_client.yaml.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-client

 name: triton-client

 namespace: triton

spec:

 replicas: 1

 selector:

 matchLabels:

 app: triton-client

 version: v1

 template:

 metadata:

 labels:

 app: triton-client

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07- v1- py3-clientsdk

 imagePullPolicy: IfNotPresent

 name: triton-client

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: "2"

 memory: 4Gi

2. Deploy the client.

kubectl apply -f triton_client.yaml

Next: Collect Inference Metrics from Triton Inference Server

Collect Inference Metrics from Triton Inference Server

The Triton Inference Server provides Prometheus metrics indicating GPU and request

statistics.

55

By default, these metrics are available at <a href="http://[triton_inference_server_IP]:8002/metrics"

class="bare">http://[triton_inference_server_IP]:8002/

metrics.

The Triton Inference Server IP is the LoadBalancer IP that was recorded earlier.

The metrics are only available by accessing the endpoint and are not pushed or published to any remote

server.

56

Next: Validation Results

Validation Results

To run a sample inference request, complete the following steps:

1. Get a shell to the client container/pod.

kubectl exec --stdin --tty <<client_pod_name>> -- /bin/bash

2. Run a sample inference request.

image_client -m resnet50_netdef -s INCEPTION -u

<<LoadBalancer_IP_recorded earlier>>:8000 -c 3 images/mug.jpg

This inferencing request calls the resnet50_netdef model that is used for image recognition. Other

clients can also send inferencing requests concurrently by following a similar approach and calling out the

appropriate model.

Next: Where to Find Additional Information

Additional Information

To learn more about the information that is described in this document, review the

following documents and/or websites:

57

https://docs.netapp.com/us-en/hci-solutions/hcvdivds_where_to_find_additional_information.html

• NetApp HCI Theory of Operations

https://www.netapp.com/us/media/wp-7261.pdf

• NetApp Product Documentation

docs.netapp.com

• NetApp HCI Solution Catalog Documentation

https://docs.netapp.com/us-en/hci/solutions/index.html

• HCI Resources page

https://mysupport.netapp.com/info/web/ECMLP2831412.html

• ONTAP Select

https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx

• NetApp Trident

https://netapp-trident.readthedocs.io/en/stable-v20.01/

• NVIDIA DeepOps

https://github.com/NVIDIA/deepops

• NVIDIA Triton Inference Server

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

58

https://www.netapp.com/us/media/wp-7261.pdf
https://docs.netapp.com/us-en/hci/solutions/index.html
https://mysupport.netapp.com/info/web/ECMLP2831412.html
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx
https://netapp-trident.readthedocs.io/en/stable-v20.01/
https://github.com/NVIDIA/deepops
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

59

http://www.netapp.com/TM

	AI Inferencing on the Edge Data Center with H615c and NVIDIA T4 : NetApp HCI Solutions
	Table of Contents
	NVA-1144: NetApp HCI AI Inferencing at the Edge Data Center with H615c and NVIDIA T4
	Customer Value
	Use Cases
	Architecture
	Design Considerations
	Overview
	Validation Results
	Additional Information

