Artificial Intelligence (Al)
NetApp HCI Solutions

NetApp
November 09, 2025

This PDF was generated from https://docs.netapp.com/us-en/hci-solutions/hciaiedge_use_cases.html on
November 09, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Artificial Intelligence (Al)
NVA-1144: NetApp HCI Al Inferencing at the Edge Data Center with H615¢c and NVIDIA T4
Customer Value
Use Cases
Architecture
Design Considerations
Overview 1
Validation Results 57
Additional Information 57

W o WN -~ 2

Artificial Intelligence (Al)

NVA-1144: NetApp HCI Al Inferencing at the Edge Data
Center with H615¢c and NVIDIA T4

Arvind Ramakrishnan, NetApp

This document describes how NetApp HCI can be designed to host artificial intelligence (Al) inferencing
workloads at edge data center locations. The design is based on NVIDIA T4 GPU-powered NetApp HCI
compute nodes, an NVIDIA Triton Inference Server, and a Kubernetes infrastructure built using NVIDIA
DeepOps. The design also establishes the data pipeline between the core and edge data centers and
illustrates implementation to complete the data lifecycle path.

Modern applications that are driven by Al and machine learning (ML) have pushed the limits of the internet.
End users and devices demand access to applications, data, and services at any place and any time, with
minimal latency. To meet these demands, data centers are moving closer to their users to boost performance,
reduce back-and-forth data transfer, and provide cost-effective ways to meet user requirements.

In the context of Al, the core data center is a platform that provides centralized services, such as machine
learning and analytics, and the edge data centers are where the real-time production data is subject to
inferencing. These edge data centers are usually connected to a core data center. They provide end-user
services and serve as a staging layer for data generated by loT devices that need additional processing and
that is too time sensitive to be transmitted back to a centralized core.

This document describes a reference architecture for Al inferencing that uses NetApp HCI as the base
platform.

Customer Value

NetApp HCI offers differentiation in the hyperconverged market for this inferencing solution, including the
following advantages:

« A disaggregated architecture allows independent scaling of compute and storage and lowers the
virtualization licensing costs and performance tax on independent NetApp HCI storage nodes.

» NetApp Element storage provides quality of service (QoS) for each storage volume, which provides
guaranteed storage performance for workloads on NetApp HCI. Therefore, adjacent workloads do not
negatively affect inferencing performance.

« A data fabric powered by NetApp allows data to be replicated from core to edge to cloud data centers,
which moves data closer to where application needs it.

» With a data fabric powered by NetApp and NetApp FlexCache software, Al deep learning models trained
on NetApp ONTAP Al can be accessed from NetApp HCI without having to export the model.

* NetApp HCI can host inference servers on the same infrastructure concurrently with multiple workloads,
either virtual-machine (VM) or container-based, without performance degradation.

* NetApp HCI is certified as NVIDIA GPU Cloud (NGC) ready for NVIDIA Al containerized applications.

* NGC-ready means that the stack is validated by NVIDIA, is purpose built for Al, and enterprise support is
available through NGC Support Services.

« With its extensive Al portfolio, NetApp can support the entire spectrum of Al use cases from edge to core to
cloud, including ONTAP Al for training and inferencing, Google Cloud NetApp Volumes and Azure NetApp
Files for training in the cloud, and inferencing on the edge with NetApp HCI.

Next: Use Cases

Use Cases

Although all applications today are not Al driven, they are evolving capabilities that allow
them to access the immense benefits of Al. To support the adoption of Al, applications
need an infrastructure that provides them with the resources needed to function at an
optimum level and support their continuing evolution.

For Al-driven applications, edge locations act as a major source of data. Available data can be used for training
when collected from multiple edge locations over a period of time to form a training dataset. The trained model
can then be deployed back to the edge locations where the data was collected, enabling faster inferencing
without the need to repeatedly transfer production data to a dedicated inferencing platform.

The NetApp HCI Al inferencing solution, powered by NetApp H615¢c compute nodes with NVIDIA T4 GPUs and
NetApp cloud-connected storage systems, was developed and verified by NetApp and NVIDIA. NetApp HCI
simplifies the deployment of Al inferencing solutions at edge data centers by addressing areas of ambiguity,
eliminating complexities in the design and ending guesswork.

This solution gives IT organizations a prescriptive architecture that:

« Enables Al inferencing at edge data centers

» Optimizes consumption of GPU resources

* Provides a Kubernetes-based inferencing platform for flexibility and scalability

 Eliminates design complexities
Edge data centers manage and process data at locations that are very near to the generation point. This
proximity increases the efficiency and reduces the latency involved in handling data. Many vertical markets

have realized the benefits of an edge data center and are heavily adopting this distributed approach to data
processing.

The following table lists the edge verticals and applications.

Vertical Applications

Medical Computer-aided diagnostics assist medical staff in
early disease detection

Oil and gas Autonomous inspection of remote production facilities,
video, and image analytics

Aviation Air traffic control assistance and real-time video feed
analytics

Media and entertainment Audio/video content filtering to deliver family-friendly
content

Business analytics Brand recognition to analyze brand appearance in

live-streamed televised events

E-Commerce Smart bundling of supplier offers to find ideal
merchant and warehouse combinations

Retail Automated checkout to recognize items a customer
placed in cart and facilitate digital payment

Vertical Applications

Smart city Improve traffic flow, optimize parking, and enhance
pedestrian and cyclist safety

Manufacturing Quality control, assembly-line monitoring, and defect
identification

Customer service Customer service automation to analyze and triage

inquiries (phone, email, and social media)

Agriculture Intelligent farm operation and activity planning, to
optimize fertilizer and herbicide application
Target Audience

The target audience for the solution includes the following groups:
 Data scientists
* IT architects
* Field consultants
 Professional services
* IT managers

* Anyone else who needs an infrastructure that delivers IT innovation and robust data and application
services at edge locations

Next: Architecture

Architecture

Solution Technology

This solution is designed with a NetApp HCI system that contains the following components:

» Two H615¢c compute nodes with NVIDIA T4 GPUs
* Two H410c compute nodes

* Two H410s storage nodes

* Two Mellanox SN2010 10GbE/25GbE switches

Architectural Diagram

The following diagram illustrates the solution architecture for the NetApp HCI Al inferencing solution.

H410C i
Compute Nodes g1

Physical Network
Mellanox SN2010
Switches

H4108
Storage Nodes

NetApp HCI Architecture design for Al Inferencing

VMware vCenter

Management Cluster

HB15C
Compute Nodes w/
NVIDIA T4 GPUs

Legend

256 1SL

Bothiol Hotbol] Hobbol

Management -4 &B

| g

- o (e {8 il

Management- A § B

25G - Mgmt, Storage
& vMotion to Switch A

256G - Mgmt, Storage
& vMotion to Switch B

— 250 - Storage to Switch A

. 25 — Storage fo Switch B

The following diagram illustrates the virtual and physical elements of this solution.

ESXi Cluster

VMware vCenter

T R

NetApp® Deployment Engine

ESXi Server 1
H410c

ESXi Server 2

H410c

Deployment Jump VM -
* Ansible
* NVIDIA DeepOps
* NetApp® Trident

Virtual Machines

K8 Master 1

K8 Master 2 K8 Master 2

NetApp HCI Element® software - Datastore for VMs

H615c K8 Worker Node 1

NVIDIA T4 GPUs

H615c K8 Worker Node 2

NVIDIA T4 GPUs

A VMware infrastructure is used to host the management services required by this inferencing solution. These
services do not need to be deployed on a dedicated infrastructure; they can coexist with any existing
workloads. The NetApp Deployment Engine (NDE) uses the H410c and H410s nodes to deploy the VMware

infrastructure.

After NDE has completed the configuration, the following components are deployed as VMs in the virtual

infrastructure:

* Deployment Jump VM. Used to automate the deployment of NVIDIA DeepOps. See NVIDIA DeepOps
and storage management using NetApp Trident.

* ONTAP Select. An instance of ONTAP Select is deployed to provide NFS file services and persistent
storage to the Al workload running on Kubernetes.

* Kubernetes Masters. During deployment, three VMs are installed and configured with a supported Linux

distribution and configured as Kubernetes master nodes. After the management services have been set
up, two H615¢c compute nodes with NVIDIA T4 GPUs are installed with a supported Linux distribution.
These two nodes function as the Kubernetes worker nodes and provide the infrastructure for the

inferencing platform.

Hardware Requirements

The following table lists the hardware components that are required to implement the solution. The hardware
components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Product Family Quantity
Compute H615c 2

H410c 2
Storage H410s 2
Network Mellanox SN2010 2

Software Requirements

Details

3 NVIDIA Tesla T4 GPUs

per node

Compute nodes for
management
infrastructure

Storage for OS and
workload

10G/25G switches

The following table lists the software components that are required to implement the solution. The software
components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer
Storage

NetApp HCI engine

Hypervisor

Inferencing Platform

Software

NetApp Element software
ONTAP Select

NetApp Trident

NDE

Hypervisor

Hypervisor Management System
NVIDIA DeepOps
NVIDIA GPU Operator
Ansible

Kubernetes

Docker

Version

12.0.0.333

9.7

20.07

1.8

VMware vSphere ESXi 6.7U1
VMware vCenter Server 6.7U1
20.08

1.1.7

295

1.17.9

Docker CE 18.09.7

Layer Software Version

CUDA Version 10.2
GPU Device Plugin 0.6.0
Helm 3.1.2
NVIDIA Tesla Driver 440.64.00

NVIDIA Triton Inference Server 2.1.0 —= NGC Container v20.07

K8 Master VMs Linux Any supported distribution across
NetApp IMT, NVIDIA DeepOps, and
GPUOperator

Ubuntu 18.04.4 LTS was used in
this solution
Kernel version: 4.15

Host OS/ K8 Worker Nodes Linux Any supported distribution across
NetApp IMT, NVIDIA DeepOps, and
GPUOperator

Ubuntu 18.04.4 LTS was used in
this solution
Kernel version: 4.15

Next: Design Considerations

Design Considerations

Network Design

The switches used to handle the NetApp HCI traffic require a specific configuration for successful deployment.

Consult the NetApp HCI Network Setup Guide for the physical cabling and switch details. This solution uses a
two-cable design for compute nodes. Optionally, compute nodes can be configured in a six-node cable design
affording options for deployment of compute nodes.

The diagram under Architecture depicts the network topology of this NetApp HCI solution with a two-cable
design for the compute nodes.

Compute Design

The NetApp HCI compute nodes are available in two form factors, half-width and full-width, and in two rack unit
sizes, 1 RU and 2 RU. The 410c nodes used in this solution are half-width and 1 RU and are housed in a
chassis that can hold a maximum of four such nodes. The other compute node that is used in this solution is
the H615c, which is a full-width node, 1 RU in size. The H410c nodes are based on Intel Skylake processors,
and the H615c¢ nodes are based on the second-generation Intel Cascade Lake processors. NVIDIA GPUs can
be added to the H615¢c nodes, and each node can host a maximum of three NVIDIA Tesla T4 16GB GPUs.

The H615c¢ nodes are the latest series of compute nodes for NetApp HCI and the second series that can
support GPUs. The first model to support GPUs is the H610c¢ node (full width, 2RU), which can support two
NVIDIA Tesla M10 GPUs.

In this solution, H615¢ nodes are preferred over H610c nodes because of the following advantages:

* Reduced data center footprint, critical for edge deployments
» Support for a newer generation of GPUs designed for faster inferencing
* Reduced power consumption

* Reduced heat dissipation

NVIDIA T4 GPUs

The resource requirements of inferencing are nowhere close to those of training workloads. In fact, most
modern hand-held devices are capable of handling small amounts of inferencing without powerful resources
like GPUs. However, for mission-critical applications and data centers that are dealing with a wide variety of
applications that demand very low inferencing latencies while subject to extreme parallelization and massive
input batch sizes, the GPUs play a key role in reducing inference time and help to boost application
performance.

The NVIDIA Tesla T4 is an x16 PCle Gen3 single-slot low-profile GPU based on the Turing architecture. The
T4 GPUs deliver universal inference acceleration that spans applications such as image classification and
tagging, video analytics, natural language processing, automatic speech recognition, and intelligent search.
The breadth of the Tesla T4’s inferencing capabilities enables it to be used in enterprise solutions and edge
devices.

These GPUs are ideal for deployment in edge infrastructures due to their low power consumption and small
PCle form factor. The size of the T4 GPUs enables the installation of two T4 GPUs in the same space as a
double-slot full-sized GPU. Although they are small, with 16GB memory, the T4s can support large ML models
or run inference on multiple smaller models simultaneously.

The Turing- based T4 GPUs include an enhanced version of Tensor Cores and support a full range of
precisions for inferencing FP32, FP16, INT8, and INT4. The GPU includes 2,560 CUDA cores and 320 Tensor
Cores, delivering up to 130 tera operations per second (TOPS) of INT8 and up to 260 TOPS of INT4
inferencing performance. When compared to CPU-based inferencing, the Tesla T4, powered by the new Turing
Tensor Cores, delivers up to 40 times higher inference performance.

The Turing Tensor Cores accelerate the matrix-matrix multiplication at the heart of neural network training and
inferencing functions. They particularly excel at inference computations in which useful and relevant
information can be inferred and delivered by a trained deep neural network based on a given input.

The Turing GPU architecture inherits the enhanced Multi-Process Service (MPS) feature that was introduced in
the Volta architecture. Compared to Pascal-based Tesla GPUs, MPS on Tesla T4 improves inference
performance for small batch sizes, reduces launch latency, improves QoS, and enables the servicing of higher
numbers of concurrent client requests.

The NVIDIA T4 GPU is a part of the NVIDIA Al Inference Platform that supports all Al frameworks and provides
comprehensive tooling and integrations to drastically simplify the development and deployment of advanced
Al.

Storage Design: Element Software

NetApp Element software powers the storage of the NetApp HCI systems. It delivers agile automation through
scale-out flexibility and guaranteed application performance to accelerate new services.

Storage nodes can be added to the system non-disruptively in increments of one, and the storage resources
are made available to the applications instantly. Every new node added to the system delivers a precise
amount of additional performance and capacity to a usable pool. The data is automatically load balanced in the
background across all nodes in the cluster, maintaining even utilization as the system grows.

Element software supports the NetApp HCI system to comfortably host multiple workloads by guaranteeing
QoS to each workload. By providing fine-grained performance control with minimum, maximum, and burst
settings for each workload, the software allows well-planned consolidations while protecting application
performance. It decouples performance from capacity and allows each volume to be allocated with a specific
amount of capacity and performance. These specifications can be modified dynamically without any
interruption to data access.

As illustrated in the following figure, Element software integrates with NetApp ONTAP to enable data mobility
between NetApp storage systems that are running different storage operating systems. Data can be moved
from the Element software to ONTAP or vice versa by using NetApp SnapMirror technology. Element uses the
same technology to provide cloud connectivity by integrating with NetApp Cloud Volumes ONTAP, which
enables data mobility from the edge to the core and to multiple public cloud service providers.

In this solution, the Element-backed storage provides the storage services that are required to run the
workloads and applications on the NetApp HCI system.

2,
H

o

=)
AR

= q Ge ?L‘:."it‘
Cloud Volumes ONTAP

SnapMirror®

amazon

webservices™

SnapMirror®

ONTAP® All Flash FAS

Storage Design: ONTAP Select

NetApp ONTAP Select introduces a software-defined data storage service model on top of NetApp HCI. It
builds on NetApp HCI capabilities, adding a rich set of file and data services to the HCI platform while
extending the data fabric.

Although ONTAP Select is an optional component for implementing this solution, it does provide a host of
benefits, including data gathering, protection, mobility, and so on, that are extremely useful in the context of the
overall Al data lifecycle. It helps to simplify several day-to-day challenges for data handling, including ingestion,
collection, training, deployment, and tiering.

m

DG

- = =

ONTAP® Select

[mal

CORE

CAOB R0E

NetApp® Al

ONTAP® Select
end points and mobile data centers

ONTAP Select can run as a VM on VMware and still bring in most of the ONTAP capabilities that are available
when it is running on a dedicated FAS platform, such as the following:

» Support for NFS and CIFS

* NetApp FlexClone technology

* NetApp FlexCache technology

* NetApp ONTAP FlexGroup volumes

* NetApp SnapMirror software
ONTAP Select can be used to leverage the FlexCache feature, which helps to reduce data-read latencies by
caching frequently read data from a back-end origin volume, as is shown in the following figure. In the case of
high-end inferencing applications with a lot of parallelization, multiple instances of the same model are
deployed across the inferencing platform, leading to multiple reads of the same model. Newer versions of the

trained model can be seamlessly introduced to the inferencing platform by verifying that the desired model is
available in the origin or source volume.

CORE
fr—

1]

A
f
/
/ A

| .
== F =
| . X

Origin A
v ONTAP® Select ;.f/-‘/// - i

FlexGroup/FlexVol® _
" FlexCache® volume i

Trained Model, Training Read Trained Model
Dataset, Test Dataset, etc.

m
M

E

Clients

NetApp® Al

NetApp Trident

NetApp Trident is an open-source dynamic storage orchestrator that allows you to manage storage resources
across all major NetApp storage platforms. It integrates with Kubernetes natively so that persistent volumes
(PVs) can be provisioned on demand with native Kubernetes interfaces and constructs. Trident enables
microservices and containerized applications to use enterprise-class storage services such as QoS, storage
efficiencies, and cloning to meet the persistent storage demands of applications.

Containers are among the most popular methods of packaging and deploying applications, and Kubernetes is
one of the most popular platforms for hosting containerized applications. In this solution, the inferencing
platform is built on top of a Kubernetes infrastructure.

Trident currently supports storage orchestration across the following platforms:

* ONTAP: NetApp AFF, FAS, and Select

» Element software: NetApp HCI and NetApp SolidFire all-flash storage
* NetApp SANtricity software: E-Series and EF-series

» Cloud Volumes ONTAP

* Azure NetApp Files

» Amazon FSx for NetApp ONTAP

» Google Cloud NetApp Volumes

Trident is a simple but powerful tool to enable storage orchestration not just across multiple storage platforms,
but also across the entire spectrum of the Al data lifecycle, ranging from the edge to the core to the cloud.

Trident can be used to provision a PV from a NetApp Snapshot copy that makes up the trained model. The

following figure illustrates the Trident workflow in which a persistent volume claim (PVC) is created by referring
to an existing Snapshot copy. Following this, Trident creates a volume by using the Snapshot copy.

10

POD 1

Container 1

Triton Inference Server
POD 2

Container 2

Triton Inference Server
POD 3

Container 3

Triton Inference Server
POD 4

Container 4
Triton Inference Server

POD 5

TRIDENT
PVC using Snapshot™ name

Volume FlexVol®/ FlexGroup
e Snapshot™
rained Model rained Model rained Model

Volume created using Snapshot™ NetApp® All Flash FAS
B

Container 5
Triton Inference Server

POD 6

Container 6
Triton Inference Server

This method of introducing trained models from a Snapshot copy supports robust model versioning. It
simplifies the process of introducing newer versions of models to applications and switching inferencing
between different versions of the model.

NVIDIA DeepOps

NVIDIA DeepOps is a modular collection of Ansible scripts that can be used to automate the deployment of a
Kubernetes infrastructure. There are multiple deployment tools available that can automate the deployment of
a Kubernetes cluster. In this solution, DeepOps is the preferred choice because it does not just deploy a
Kubernetes infrastructure, it also installs the necessary GPU drivers, NVIDIA Container Runtime for Docker
(nvidia-docker2), and various other dependencies for GPU-accelerated work. It encapsulates the best
practices for NVIDIA GPUs and can be customized or run as individual components as needed.

DeepOps internally uses Kubespray to deploy Kubernetes, and it is included as a submodule in DeepOps.
Therefore, common Kubernetes cluster management operations such as adding nodes, removing nodes, and
cluster upgrades should be performed using Kubespray.

A software based L2 LoadBalancer using MetalLb and an Ingress Controller based on NGINX are also
deployed as part of this solution by using the scripts that are available with DeepOps.

In this solution, three Kubernetes master nodes are deployed as VMs, and the two H615¢c compute nodes with
NVIDIA Tesla T4 GPUs are set up as Kubernetes worker nodes.

NVIDIA GPU Operator

The GPU operator deploys the NVIDIA k8s-device-plugin for GPU support and runs the NVIDIA drivers as
containers. It is based on the Kubernetes operator framework, which helps to automate the management of all
NVIDIA software components that are needed to provision GPUs. The components include NVIDIA drivers,
Kubernetes device plug-in for GPUs, the NVIDIA container runtime, and automatic node labeling, which is
used in tandem with Kubernetes Node Feature Discovery.

11

The GPU operator is an important component of the NVIDIA EGX software-defined platform that is designed to
make large-scale hybrid-cloud and edge operations possible and efficient. It is specifically useful when the
Kubernetes cluster needs to scale quickly—for example, when provisioning additional GPU-based worker
nodes and managing the lifecycle of the underlying software components. Because the GPU operator runs
everything as containers, including NVIDIA drivers, administrators can easily swap various components by
simply starting or stopping containers.

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server (Triton Server) simplifies the deployment of Al inferencing solutions in
production data centers. This microservice is specifically designed for inferencing in production data centers. It
maximizes GPU utilization and integrates seamlessly into DevOps deployments with Docker and Kubernetes.

Triton Server provides a common solution for Al inferencing. Therefore, researchers can focus on creating
high-quality trained models, DevOps engineers can focus on deployment, and developers can focus on
applications without the need to redesign the platform for each Al-powered application.

Here are some of the key features of Triton Server:

» Support for multiple frameworks. Triton Server can handle a mix of models, and the number of models is
limited only by system disk and memory resources. It can support the TensorRT, TensorFlow GraphDef,
TensorFlow SavedModel, ONNX, PyTorch, and Caffe2 NetDef model formats.

» *Concurrent model execution. *Multiple models or multiple instances of the same model can be run
simultaneously on a GPU.

* Multi-GPU support. Triton Server can maximize GPU utilization by enabling inference for multiple models
on one or more GPUs.

« Support for batching. Triton Server can accept requests for a batch of inputs and respond with the
corresponding batch of outputs. The inference server supports multiple scheduling and batching algorithms
that combine individual inference requests together to improve inference throughput. Batching algorithms
are available for both stateless and stateful applications and need to be used appropriately. These
scheduling and batching decisions are transparent to the client that is requesting inference.

* Ensemble support. An ensembile is a pipeline with multiple models with connections of input and output
tensors between those models. An inference request can be made to an ensemble, which results in the
execution of the complete pipeline.

* Metrics. Metrics are details about GPU utilization, server throughput, server latency, and health for auto
scaling and load balancing.

NetApp HCl is a hybrid multi-cloud infrastructure that can host multiple workloads and applications, and the
Triton Inference Server is well equipped to support the inferencing requirements of multiple applications.

In this solution, Triton Server is deployed on the Kubernetes cluster using a deployment file. With this method,
the default configuration of Triton Server can be overridden and customized as required. Triton Server also
provides an inference service using an HTTP or GRPC endpoint, allowing remote clients to request inferencing
for any model that is being managed by the server.

A Persistent Volume is presented via NetApp Trident to the container that runs the Triton Inference Server and
this persistent volume is configured as the model repository for the Inference server.

The Triton Inference Server is deployed with varying sets of resources using Kubernetes deployment files, and
each server instance is presented with a LoadBalancer front end for seamless scalability. This approach also
illustrates the flexibility and simplicity with which resources can be allocated to the inferencing workloads.

Next: Deploying NetApp HCI — Al Inferencing at the Edge

12

https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/

Overview

This section describes the steps required to deploy the Al inferencing platform using
NetApp HCI. The following list provides the high-level tasks involved in the setup:

—_

. Configure network switches

Deploy the VMware virtual infrastructure on NetApp HCI using NDE
Configure the H615¢c compute nodes to be used as K8 worker nodes
Set up the deployment jump VM and K8 master VMs

Deploy a Kubernetes cluster with NVIDIA DeepOps

Deploy ONTAP Select within the virtual infrastructure

Deploy NetApp Trident

Deploy NVIDIA Triton inference Server

© © N o g~ 0D

Deploy the client for the Triton inference server

-_—
©

Collect inference metrics from the Triton inference server

Next: Configure Network Switches

Configure Network Switches (Automated Deployment)

Prepare Required VLAN IDs

The following table lists the necessary VLANSs for deployment, as outlined in this solution validation. You should
configure these VLANs on the network switches prior to executing NDE.

Network Segment Details VLAN ID

Out-of-band management network Network for HCI terminal user 16
interface (TUI)

In-band management network Network for accessing 3488
management interfaces of nodes,
hosts, and guests

VMware vMotion Network for live migration of VMs 3489

iSCSI SAN storage Network for iSCSI storage traffic 3490

Application Network for Application traffic 3487

NFS Network for NFS storage traffic 3491

IPL* Interpeer link between Mellanox 4000
switches

Native Native VLAN 2

*Only for Mellanox switches

Switch Configuration

This solution uses Mellanox SN2010 switches running Onyx. The Mellanox switches are configured using an
Ansible playbook. Prior to running the Ansible playbook, you should perform the initial configuration of the

13

switches manually:

1. Install and cable the switches to the uplink switch, compute, and storage nodes.

2. Power on the switches and configure them with the following details:

a. Host name
b. Management IP and gateway
c. NTP

3. Log into the Mellanox switches and run the following commands:

configuration write to pre-ansible
configuration write to post-ansible

The pre-ansible configuration file created can be used to restore the switch’s configuration to the state
before the Ansible playbook execution.

The switch configuration for this solution is stored in the post-ansible configuration file.

4. The configuration playbook for Mellanox switches that follows best practices and requirements for NetApp

HCI can be downloaded from the NetApp HCI Toolkit.

@ The HCI Toolkit also provides a playbook to setup Cisco Nexus switches with similar best
practices and requirements for NetApp HCI.

@ Additional guidance on populating the variables and executing the playbook is available in
the respective switch README.md file.

5. Fill out the credentials to access the switches and variables needed for the environment. The following text

14

is a sample of the variable file for this solution.

vars file for nar hci mellanox deploy

#These set of variables will setup the Mellanox switches for NetApp HCI
that uses a 2-cable compute connectivity option.

#Ansible connection variables for mellanox

ansible connection: network cli

ansible network os: onyx

#Necessary VLANs for Standard NetApp HCI Deployment [native, Management,
1SCSI Storage, vMotion, VM Network, IPL]

#Any additional VLANs can be added to this in the prescribed format
below

netapp hci vlans:

- {vlan_id: 2 , vlan name: "Native" }

- {vlan id: 3488 , vlan name: "IB-Management" }

https://mysupport.netapp.com/site/tools/tool-eula/hci-toolkit

- {vlan id: 3490 , vlan name: "iSCSI Storage" }

- {vlan id: 3489 , vlan name: "vMotion" }

- {vlan_id: 3491 , vlan name: "NFS " }

- {vlan id: 3487 , vlan name: "App Network" }

- {vlan id: 4000 , vlan name: "IPL" }#Modify the VLAN IDs to suit your
environment

#Spanning-tree protocol type for uplink connections.

#The valid options are 'network' and 'normal'; selection depends on the
uplink switch model.

uplink stp type: network

#Inter-Peer Link Portchannel
#ipl portchannel to be defined in the format - Pol00
ipl portchannel: Pol00
#Inter-Peer Link Addresses
#The IPL IP address should not be part of the management network. This
is typically a private network
ipl ipaddr _a: 10.0.0.1
ipl ipaddr b: 10.0.0.2
#Define the subnet mask in CIDR number format. Eg: For subnet /22, use
ipl ip subnet: 22
ipl ip subnet: 24
#Inter-Peer Link Interfaces
#members to be defined with Eth in the format. Eg: Ethl/1
peer link interfaces:
members: ['Ethl/20', 'Ethl/22']
description: "peer link interfaces"
#MLAG VIP IP address should be in the same subnet as that of the
switches' mgmtO interface subnet
#mlag vip ip to be defined in the format - <vip ip>/<subnet mask>. Eg:
X.X.X.X/y
mlag vip ip: <<mlag vip ip>>
#MLAG VIP Domain Name
#The mlag domain must be unique name for each mlag domain.
#In case you have more than one pair of MLAG switches on the same
network, each domain (consist of two switches) should be configured with
different name.
mlag domain name: MLAG-VIP-DOM

#Storage Bondl0G Interface details
#members to be defined with Eth in the format. Eg: Ethl/1
#0nly numerical digits between 100 to 1000 allowed for mlag id

15

16

#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]

#Interface descriptions append storage node data port numbers assuming
all Storage Nodes' Port C -> Mellanox Switch A and all Storage Nodes'
Port D -> Mellanox Switch B

#List the storage Bondl0G interfaces, their description, speed and MLAG
IDs in list of dictionaries format

storage interfaces:

- {members: "Ethl/1", description: "HCI Storage Node 01", mlag id: 101,
speed: 25G}

- {members: "Ethl/2", description: "HCI Storage Node 02", mlag id: 102,
speed: 25G}

#In case of additional storage nodes, add them here

#Storage BondlG Interface

#Mention whether or not these Mellanox switches will also be used for
Storage Node Mgmt connections

#Possible inputs for storage mgmt are 'yes' and 'no'

storage mgmt: <<yes or no>>

#Storage BondlG (Mgmt) interface details. Only if 'storage mgmt' is set
to 'yes'

#Members to be defined with Eth in the format. Eg: Ethl/1

#Interface descriptions append storage node management port numbers
assuming all Storage Nodes' Port A -> Mellanox Switch A and all Storage
Nodes' Port B -> Mellanox Switch B

#List the storage BondlG interfaces and their description in list of
dictionaries format

storage mgmt interfaces:

- {members: "Ethx/y", description: "HCI Storage Node 01"}

- {members: "Ethx/y", description: "HCI Storage Node 02"}

#In case of additional storage nodes, add them here

#LACP load balancing algorithm for IP hash method

#Possible options are: 'destination-mac', 'destination-ip',
'destination-port', 'source-mac', 'source-ip', 'source-port',6 'source-
destination-mac', 'source-destination-ip', 'source-destination-port'
#This variable takes multiple options in a single go

#For eg: if you want to configure load to be distributed in the port-
channel based on the traffic source and destination IP address and port
number, use 'source-destination-ip source-destination-port'

#By default, Mellanox sets it to source-destination-mac. Enter the
values below only if you intend to configure any other load balancing
algorithm

#Make sure the load balancing algorithm that is set here is also
replicated on the host side

#Recommended algorithm is source-destination-ip source-destination-port

#Fill the lacp load balance variable only if you are using configuring
interfaces on compute nodes in bond or LAG with LACP
lacp load balance: "source-destination-ip source-destination-port"
#Compute Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#Fill the mlag id field only if you intend to configure interfaces of
compute nodes into bond or LAG with LACP
#In case you do not intend to configure LACP on interfaces of compute
nodes, either leave the mlag id field unfilled or comment it or enter NA
in the mlag id field
#In case you have a mixed architecture where some compute nodes require
LACP and some don't,
#1. Fill the mlag id field with appropriate MLAG ID for interfaces that
connect to compute nodes requiring LACP
#2. Either fill NA or leave the mlag id field blank or comment it for
interfaces connecting to compute nodes that do not require LACP
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]
#Interface descriptions append compute node port numbers assuming all
Compute Nodes' Port D -> Mellanox Switch A and all Compute Nodes' Port E
-> Mellanox Switch B
#List the compute interfaces, their speed, MLAG IDs and their
description in list of dictionaries format
compute interfaces:
- members: "Ethl/7"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 01"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
- members: "Ethl/8"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 02"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
#In case of additional compute nodes, add them here in the same format
as above- members: "Ethl/9"#Compute Node for Kubernetes Worker node

description: "HCI Compute Node 01"

mlag id: 109 #Fill the mlag id only if you wish to use LACP on
interfaces towards compute nodes

speed: 10G
- members: "Ethl/10"#Compute Node for Kubernetes Worker node

description: "HCI Compute Node 02"

mlag id: 110 #Fill the mlag id only if you wish to use LACP on

17

interfaces towards compute nodes

speed: 10G
#Uplink Switch LACP support
#Possible options are 'yes' and 'no' - Set to 'yes' only if your uplink

switch supports LACP
uplink switch lacp: <<yes or no>>
#Uplink Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values in
Mellanox are 1G, 10G and 25G]
#List the uplink interfaces, their description, MLAG IDs and their speed
in list of dictionaries format
uplink interfaces:
- members: "Ethl/18"
description switch a: "SwitchA:Ethx/y -> Uplink Switch:Ethx/y"
description switch b: "SwitchB:Ethx/y -> Uplink Switch:Ethx/y"
mlag id: 118 #Fill the mlag id only if 'uplink switch lacp' is set to

’yes’
speed: 10G
mtu: 1500

The fingerprint for the switch’s key must match with that present in the host machine from
where the playbook is being executed. To ensure this, add the key to /root/.
ssh/known host or any other appropriate location.

Rollback the Switch Configuration

1. In case of any timeout failures or partial configuration, run the following command to roll back the switch to
the initial state.

configuration switch-to pre-ansible

@ This operation requires a reboot of the switch.

2. Switch the configuration to the state before running the Ansible playbook.
configuration delete post-ansible

3. Delete the post-ansible file that had the configuration from the Ansible playbook.

18

configuration write to post-ansible

4. Create a new file with the same name post-ansible, write the pre-ansible configuration to it, and switch to

the new configuration to restart configuration.

IP Address Requirements

The deployment of the NetApp HCI inferencing platform with VMware and Kubernetes requires multiple IP
addresses to be allocated. The following table lists the number of IP addresses required. Unless otherwise

indicated, addresses are assigned automatically by NDE.

IP Address Quantity

One per storage and
compute node*

One per vCenter Server
(VM)

One per management
node (VM)

One per ESXi host

One per storage/witness
node

One per storage cluster

One per ESXi host
Two per ESXi host

Two per storage node

Two per storage cluster

Two for mNode

Details VLAN ID

HCI terminal user 16
interface (TUI) addresses

vCenter Server 3488
management address

Management node IP
address

ESXi compute
management addresses

NetApp HCI storage node
management addresses

Storage cluster
management address

VVMware vMotion address 3489

ESXi host initiator address 3490
for iSCSI storage traffic

Storage node target
address for iISCSI storage
traffic

Storage cluster target
address for iISCSI storage
traffic

mNode iSCSI storage
access

IP Address

The following IPs are assigned manually when the respective components are configured.

IP Address Quantity

One for Deployment Jump

Management network

Details VLAN ID

Deployment Jump VM to 3488
execute Ansible

playbooks and configure

other parts of the system

— management

connectivity

IP Address

19

IP Address Quantity Details VLAN ID IP Address

One per Kubernetes Kubernetes master node 3488
master node — VMs (three nodes)

management network

One per Kubernetes Kubernetes worker nodes 3488
worker node — (two nodes)

management network

One per Kubernetes Kubernetes worker nodes 3491
worker node — NFS (two nodes)

network

One per Kubernetes Kubernetes worker nodes 3487
worker node — application (two nodes)

network

Three for ONTAP Select — ONTAP Select VM 3488

management network

One for ONTAP Select— ONTAP Select VM — NFS 3491

NFS network data traffic

At least two for Triton Load balancer IP range 3487
Inference Server Load for Kubernetes load

Balancer — application balancer service

network

*This validation requires the initial setup of the first storage node TUI address. NDE automatically assigns the
TUI address for subsequent nodes.

DNS and Timekeeping Requirement

Depending on your deployment, you might need to prepare DNS records for your NetApp HCI system. NetApp
HCI requires a valid NTP server for timekeeping; you can use a publicly available time server if you do not
have one in your environment.

This validation involves deploying NetApp HCI with a new VMware vCenter Server instance using a fully
qualified domain name (FQDN). Before deployment, you must have one Pointer (PTR) record and one
Address (A) record created on the DNS server.

Next: Virtual Infrastructure with Automated Deployment

Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated Deployment)

NDE Deployment Prerequisites

Consult the NetApp HCI Prerequisites Checklist to see the requirements and recommendations for NetApp
HCI before you begin deployment.

—_

. Network and switch requirements and configuration

2. Prepare required VLAN IDs

3. Switch configuration

4. IP Address Requirements for NetApp HCI and VMware

20

https://library.netapp.com/ecm/ecm_download_file/ECMLP2798490

5. DNS and time-keeping requirements
6. Final preparations
NDE Execution

Before you execute the NDE, you must complete the rack and stack of all components, configuration of the
network switches, and verification of all prerequisites. You can execute NDE by connecting to the management
address of a single storage node if you plan to allow NDE to automatically configure all addresses.

NDE performs the following tasks to bring an HCI system online:

1. Installs the storage node (NetApp Element software) on a minimum of two storage nodes.
2. Installs the VMware hypervisor on a minimum of two compute nodes.
3. Installs VMware vCenter to manage the entire NetApp HCI stack.

4. Installs and configures the NetApp storage management node (mNode) and NetApp Monitoring Agent.

This validation uses NDE to automatically configure all addresses. You can also set up
DHCP in your environment or manually assign IP addresses for each storage node and
compute node. These steps are not covered in this guide.

As mentioned previously, this validation uses a two-cable configuration for compute nodes.
Detailed steps for the NDE are not covered in this document.

For step-by-step guidance on completing the deployment of the base NetApp HCI platform, see the
Deployment guide.

5. After NDE has finished, login to the vCenter and create a Distributed Port Group NetApp HCI VDS 01-
NFS_Network for the NFS network to be used by ONTAP Select and the application.

Next: Configure NetApp H615¢ (Manual Deployment)

Configure NetApp H615c (Manual Deployment)

In this solution, the NetApp H615¢c compute nodes are configured as Kubernetes worker
nodes. The Inferencing workload is hosted on these nodes.

Deploying the compute nodes involves the following tasks:

* Install Ubuntu 18.04.4 LTS.

« Configure networking for data and management access.

* Prepare the Ubuntu instances for Kubernetes deployment.
Install Ubuntu 18.04.4 LTS

The following high-level steps are required to install the operating system on the H615¢c compute nodes:

1. Download Ubuntu 18.04.4 LTS from Ubuntu releases.
2. Using a browser, connect to the IPMI of the H615¢c node and launch Remote Control.
3. Map the Ubuntu ISO using the Virtual Media Wizard and start the installation.

21

http://docs.netapp.com/hci/topic/com.netapp.doc.hci-ude-180/home.html?cp=3_0
http://cdimage.ubuntu.com/ubuntu/releases/18.04/release/

4. Select one of the two physical interfaces as the Primary network interface when prompted.

An IP from a DHCP source is allocated when available, or you can switch to a manual IP configuration
later. The network configuration is modified to a bond-based setup after the OS has been installed.
Provide a hostname followed by a domain name.

Create a user and provide a password.

Partition the disks according to your requirements.

Under Software Selection, select OpenSSH server and click Continue.

© o N o o

Reboot the node.

Configure Networking for Data and Management Access

The two physical network interfaces of the Kubernetes worker nodes are set up as a bond and VLAN
interfaces for management and application, and NFS data traffic is created on top of it.

@ The inferencing applications and associated containers use the application network for
connectivity.

1. Connect to the console of the Ubuntu instance as a user with root privileges and launch a terminal session.
2. Navigate to /etc/netplan and open the 01-netcfg.yaml file.

3. Update the netplan file based on the network details for the management, application, and NFS traffic in
your environment.

The following template of the netplan file was used in this solution:

This file describes the network interfaces available on your system
For more information, see netplan (5).
network:
version: 2
renderer: networkd
ethernets:
enp59s0f0: #Physical Interface 1
match:
macaddress: <<mac_address Physical Interface 1>>
set-name: enp59s0£f0
mtu: 9000
enp59s0fl: # Physical Interface 2
match:
macaddress: <<mac_ address Physical Interface 2>>
set-name: enpb59s0fl

mtu: 9000
bonds:
bond0:
mtu: 9000

dhcp4: false

22

dhcp6: false
interfaces: [enp59s0f0, enp59s0fl]
parameters:
mode: 802.3ad
mii-monitor-interval: 100

vlans:
vlan.3488: #Management VLAN
id: 3488

xref:{relative path}bond0
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
- to: x.x.x.x/x # Additional routes if any
via: y.y.y.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32768#Higher Priority than table 3487
table: 3488
nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500
vlan.3487:
id: 3487
xref:{relative path}bond0
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.231.111
metric: 101
table: 3487
- to: xXx.x.x.x/X
via: y.v.y.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32769#Lower Priority
table: 3487

23

nameservers:

addresses: [nameserver 1ip]
search: [search domain]
mtu: 1500 vlan.3491:
id: 3491

xref:{relative path}bond0l

dhcp4: false

addresses: [ipv4_address/subnet]
mtu: 9000

4. Confirm that the priorities for the routing policies are lower than the priorities for the main and default
tables.

5. Apply the netplan.

sudo netplan --debug apply

6. Make sure that there are no errors.

7. If Network Manager is running, stop and disable it.

systemctl stop NetworkManager
systemctl disable NetworkManager

8. Add a host record for the server in DNS.

9. Open a Vl editor to /etc/iproute2/rt_tables and add the two entries.

#

reserved values
#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep
101 3488

102 3487

10. Match the table number to what you used in the netplan.

11. Open a VI editor to /etc/sysctl.conf and set the value of the following parameters.

24

net.ipvé4.conf.default.rp filter=0
net.ipv4.conf.all.rp filter=Onet.ipv4.ip forward=1

12. Update the system.

sudo apt-get update && sudo apt-get upgrade

13. Reboot the system
14. Repeat steps 1 through 13 for the other Ubuntu instance.

Next: Set Up the Deployment Jump and the Kubernetes Master Node VMs (Manual Deployment)

Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual Deployment)

A Deployment Jump VM running a Linux distribution is used for the following purposes:

* Deploying ONTAP Select using an Ansible playbook
» Deploying the Kubernetes infrastructure with NVIDIA DeepOps and GPU Operator
+ Installing and configuring NetApp Trident

Three more VMs running Linux are set up; these VMs are configured as Kubernetes Master Nodes in this
solution.

Ubuntu 18.04.4 LTS was used in this solution deployment.
1. Deploy the Ubuntu 18.04.4 LTS VM with VMware tools
You can refer to the high-level steps described in section Install Ubuntu 18.04.4 LTS.

2. Configure the in-band management network for the VM. See the following sample netplan template:

25

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
version: 2
renderer: networkd
ethernets:
ensl60:
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
routing-policy:
- from: 0.0.0.0/0
priority: 32768
table: 3488

nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500

This template is not the only way to setup the network. You can use any other approach that you prefer.

3. Apply the netplan.

sudo netplan —--debug apply

4. Stop and disable Network Manager if it is running.

systemctl stop NetworkManager
systemctl disable NetworkManager

5. Open a Vl editor to /etc/iproute2/rt tables and add a table entry.

26

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep
101 3488

6. Add a host record for the VM in DNS.
7. Verify outbound internet access.

8. Update the system.
sudo apt-get update && sudo apt-get upgrade

9. Reboot the system.
10. Repeat steps 1 through 9 to set up the other three VMs.

Next: Deploy a Kubernetes Cluster with NVIDIA DeepOps (Automated Deployment)

Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment

To deploy and configure the Kubernetes Cluster with NVIDIA DeepOps, complete the
following steps:

1. Make sure that the same user account is present on all the Kubernetes master and worker nodes.

2. Clone the DeepOps repository.

git clone https://github.com/NVIDIA/deepops.git

3. Check out a recent release tag.

cd deepops
git checkout tags/20.08

If this step is skipped, the latest development code is used, not an official release.

4. Prepare the Deployment Jump by installing the necessary prerequisites.

27

./scripts/setup.sh

9. Create and edit the Ansible inventory by opening a VI editor to deepops/config/inventory.
. List all the master and worker nodes under [all].

a
b. List all the master nodes under [kube-master]

9]

List all the master nodes under [etcd]

d. List all the worker nodes under [kube-node]

6. Enable GPUOperator by opening a VI editor to deepops/config/group vars/k8s-cluster.yml.

28

7. Set the value of deepops gpu operator enabled to true.

8. Verify the permissions and network configuration.
ansible all -m raw -a "hostname" -k -K

o If SSH to the remote hosts requires a password, use -k.
o If sudo on the remote hosts requires a password, use -K.

9. If the previous step passed without any issues, proceed with the setup of Kubernetes.

ansible-playbook --limit k8s-cluster playbooks/k8s-cluster.yml -k -K

10. To verify the status of the Kubernetes nodes and the pods, run the following commands:

kubectl get nodes

kubectl get pods -A

It can take a few minutes for all the pods to run.

29

11. Verify that the Kubernetes setup can access and use the GPUs.

./scripts/k8s verify gpu.sh

Expected sample output:

rarvind@deployment-jump:~/deepops$./scripts/k8s verify gpu.sh
job name=cluster-gpu-tests

Node found with 3 GPUs

Node found with 3 GPUs

total gpus=6

Creating/Deleting sandbox Namespace

updating test yml

downloading containers

30

job.batch/cluster—-gpu-tests condition met

executing

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m e

e it e e R +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

B e ———————— e ——— . ——————————————
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

e et e e e B e it PP
o +

o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| e ——— ——— = — —— — — — — — — — — — — — — — — —— — — —— — —— ——— — —— — —————————————————
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| = m e e oo
o +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

e e R

31

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

+--— = -

t———_—— +
o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| T T T T T Y T T
======|

| No running processes found

|
o
—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| ————— e ———— Fom e
+--— 1

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

|mmmmmmm e e e e e
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

o et
- +
S
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage

| No running processes found

—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| e e o o
—_ +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| ==============================={======================{================
—=====|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

- -
—_ +

o
—————— 1

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| m——=—===========—
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m Fmm

R ettt P +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| S===========c==c=cc=csescecaesas i s==esesssssssssssssessdessssaassossese=

33

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o\°

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0
Default |

| Processes: GPU
Memory |
| GPU PID Type Process name Usage

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o°

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0

| GPU PID Type Process name Usage

| No running processes found

Number of Nodes: 2

Number of GPUs: 6

6 / 6 GPU Jobs COMPLETED

job.batch "cluster-gpu-tests" deleted
namespace "cluster-gpu-verify" deleted

12. Install Helm on the Deployment Jump.

./scripts/install helm.sh

13. Remove the taints on the master nodes.

kubectl taint nodes --all node-role.kubernetes.io/master-

This step is required to run the LoadBalancer pods.

14. Deploy LoadBalancer.

15. Edit the config/helm/metallb.yml file and provide a range of IP ddresses in the Application
Network to be used as LoadBalancer.

Default address range matches private network for the virtual cluster
defined in virtual/.
You should set this address range based on your site's infrastructure.
configInline:
address-pools:
- name: default
protocol: layer?
addresses:
- 172.21.231.130-172.21.231.140#Application Network
controller:
nodeSelector:
node-role.kubernetes.io/master: ""

16. Run a script to deploy LoadBalancer.

./scripts/k8s deploy loadbalancer.sh

35

17. Deploy an Ingress Controller.

./scripts/k8s_deploy ingress.sh

Next: Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

To deploy and configure an ONTAP Select instance within the VMware Virtual
Infrastructure, complete the following steps:

1. From the Deployment Jump VM, login to the NetApp Support Site and download the ONTAP Select OVA
for ESXi.

2. Create a directory OTS and obtain the Ansible roles for deploying ONTAP Select.

mkdir OTS
cd OTS

git clone https://github.com/NetApp/ansible.git
cd ansible

3. Install the prerequisite libraries.

36

https://mysupport.netapp.com/site/products/all/details/ontap-select/downloads-tab/download/62293/9.7

pip install requests
pip install pyvmomi
Open a VI Editor and create a playbook ‘"ots setup.yaml’’ with the below
content to deploy the ONTAP Select OVA and initialize the ONTAP cluster.
- name: Create ONTAP Select Deploy VM from OVA (ESXi)

hosts: localhost

gather facts: false

connection: 'local'

vars files:

- ots deploy vars.yaml
roles:
- na_ots deploy

- name: Wait for 1 minute before starting cluster setup

hosts: localhost

gather facts: false

tasks:

- pause:

minutes: 1

- name: Create ONTAP Select cluster (ESX1)

hosts: localhost

gather facts: false

vars files:

- ots cluster vars.yaml

roles:

- na ots cluster

4. Open a VI editor, create a variable file ots deploy vars.yaml, and fill in hte following parameters:

37

target vcenter or esxi host: "10.xxx.xx.xx"# vCenter IP

host login: "yourlogin@yourlab.local" # vCenter Username

ovf path: "/run/deploy/ovapath/ONTAPdeploy.ova"# Path to OVA on
Deployment Jump VM

datacenter name: "your-Lab"# Datacenter name in vCenter
esx cluster name: "your Cluster"# Cluster name in vCenter
datastore name: "your-select-dt"# Datastore name in vCenter

mgt network: "your-mgmt-network"# Management Network to be used by OVA
deploy name: "test-deploy-vm"# Name of the ONTAP Select VM

deploy ipAddress: "10.xxx.xx.xx"# Management IP Address of ONTAP Select
VM

deploy gateway: "10.xxx.xx.l"# Default Gateway

deploy proxy url: ""# Proxy URL (Optional and if used)

deploy netMask: "255.255.255.0"# Netmask

deploy product company: "NetApp"# Name of Organization

deploy primaryDNS: "10.xxx.xx.xx"# Primary DNS IP

deploy secondaryDNS: ""# Secondary DNS (Optional)

deploy searchDomains: "your.search.domain.com"# Search Domain Name

Update the variables to match your environment.

3. Open a VI editor, create a variable file ots_cluster vars.yaml, and fill it out with the following
parameters:

38

node count: 1l#Number of nodes in the ONTAP Cluster
monitor job: truemonitor deploy job: true
deploy api url: #Use the IP of the ONTAP Select VM
deploy login: "admin"
vcenter login: "administrator@vsphere.local"
vcenter name: "172.21.232.100"
esxi hosts:
- host name: 172.21.232.102
- host name: 172.21.232.103
cluster name: "hci-ai-ots"# Name of ONTAP Cluster
cluster ip: "172.21.232.118"# Cluster Management IP
cluster netmask: "255.255.255.0"
cluster gateway: "172.21.232.1"
cluster ontap image: "9.7"
cluster ntp:
- "10.61.186.231"
cluster dns ips:
- "10.61.186.231"
cluster dns domains:
- "sddc.netapp.com"
mgt network: "NetApp HCI VDS Ol-Management Network"# Name of VM Port
Group for Mgmt Network
data network: "NetApp HCI VDS 01-NFS Network"# Name of VM Port Group for
NEF'S Network
internal network: ""# Not needed for Single Node Cluster
instance type: "small"
cluster nodes:
- node name: "{{ cluster name }}-01"
ipAddress: 172.21.232.119# Node Management IP
storage pool: NetApp-HCI-Datastore-02 # Name of Datastore in vCenter
to use
capacityTB: 1# Usable capacity will be ~700GB
host name: 172.21.232.102# IP Address of an ESXi host to deploy node

Update the variables to match your environment.

6. Start ONTAP Select setup.

ansible-playbook ots setup.yaml --extra-vars deploy pwd=$'"PQ@sswOrd"'

--extra-vars vcenter password=$'"P@sswOrd"' --extra-vars
ontap pwd=$'"P@sswOrd"' --extra-vars host esx password=$'"P@sswOrd"'
--extra-vars host password=$'"P@sswOrd"' --extra-vars

deploy password=$'"P@sswOrd"'

7. Update the command with deploy pwd ° (ONTAP Select VM instance),
‘vcenter password(vCenter), ontap pwd (ONTAP login password), host esx password (VMware
ESXi), host password (vCenter), and deploy password (ONTAP Select VM instance).

Configure the ONTAP Select Cluster — Manual Deployment

To configure the ONTAP Select cluster, complete the following steps:

1. Open a browser and log into the ONTAP cluster’s System Manager using its cluster management IP.

2. On the DASHBOARD page, click Prepare Storage under Capacity.

Capacity >

The system discovered 1 disks. When you prepare the disks for

provisioning, the system will group the disks for optimum performance
and resiliency.

Prepare Storage

3. Select the radio button to continue without onboard key manager, and click Prepare Storage.

4. On the NETWORK page, click the + sign in the Broadcast Domains window.

Broadcast Domains
Cluster 3000 MTU IPspace: Cluster
Default 1500 MTU IPspace: Default
hei-ai-ots-01 e0b elc
Mgmt 1500 MTU |Pspace: Default

hci-ai-ots-01 e0a

5. Enter the Name as NFs, set the MTU to 9000, and select the port e0b. Click Save.

40

Add Broadcast Domain

Specify the following details to add a new broadcast domain.

MAME

NFS

assigNPoRTS (3)

Port Name hci-ai-ots-01
e0b

elc

Save Cancel

6. On the DASHBOARD page, click Configure Protocols under Network.

Network

No protocols are enabled. To begin serving data to clients, enable the
required protocols and assign the protocol addresses.

Configure Protocols

41

7. Enter a name for the SVM, select Enable NFS, provide an IP and subnet mask for the NFS LIF, set the
Broadcast Domain to NFS, and click Save.

Configure Protocols x

ONTAP exposes protocol services through storage VMs. More details
STORAGE VM NAME

infra-NFS-hci-ai

Access Protocol

& SMB/CIFS and NFS iSCSI

Enable SMB/CIFS
B Enable NFS
DEFAULT LANGUAGE @

c.utf 8 w

METWORK INTERFACE
One network interface per node is recommended.

hci-ai-ots-01
IP ADDRESS SUBMET MASK GATEWAY BROADCAST DOMAIN
172.21.235.119 255.255.255.0 Add optional gateway NFS v

8. Click STORAGE in the left pane, and from the dropdown select Storage VMs
a. Edit the SVM.

42

Storage VMs

MName State
infra-NFS-hci-ai : running
Edit
Delete
Stop

b. Select the checkbox under Resource Allocation, make sure that the local tier is listed, and click Save.

43

Edit Storage VM X

STORAGE VM NAME

infra-NFS-hei-ai

DEFAULT LANGUAGE

c.utf 8 e

Resource Allocation

Limit volume creation to preferred local tiers

LOCAL TIERS

hci_ai_ots 01 SSD 1 M

9. Click the SVM name, and on the right panel scroll down to Policies.

10. Click the arrow within the Export Policies tile, and click the default policy.

11. If there is a rule already defined, you can edit it; if no rule exists, then create a new one.
a. Select NFS Network Clients as the Client Specification.
b. Select the Read-Only and Read/Write checkboxes.

c. Select the checkbox to Allow Superuser Access.

44

New Rule "

NT SFELCIFICATION

172.21.235.0/24

SMB/CIFS

FlexCache

B s B NFSvs B NFSvs

Y B Rread-Only [Read/Write
UNIX =
Kerberos 5 B =
Karbaros 5i] =
Karbaros 5p = =
NTLM]]

B Allow Superuser Acoess

Next: Deploy NetApp Trident (Automated Deployment)

Deploy NetApp Trident (Automated Deployment)

NetApp Trident is deployed by using an Ansible playbook that is available with NVIDIA DeepOps. Follow these
steps to set up NetApp Trident:

1. From the Deployment Jump VM, navigate to the DeepOps directory and open a VI editor to
config/group vars/netapp-trident.yml. The file from DeepOps lists two backends and two
storage classes. In this solution only one backend and storage class are used.

Use the following template to update the file and its parameters (highlighted in yellow) to match your
environment.

45

46

vars file for netapp-trident playbook
URL of the Trident installer package that you wish to download and use
trident version: "20.07.0"# Version of Trident desired
trident installer url:
"https://github.com/NetApp/trident/releases/download/v{{ trident version
}}/trident-installer-{{ trident version }}.tar.gz"
Kubernetes version
Note: Do not include patch version, e.g. provide value of 1.16, not
1.16.7.
Note: Versions 1.14 and above are supported when deploying Trident
with DeepOps.
If you are using an earlier version, you must deploy Trident
manually.
k8s version: 1.17.9# Version of Kubernetes running
Denotes whether or not to create new backends after deploying trident
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-trident-backend
create backends: true
List of backends to create
For more info on parameter values, refer to: https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/operations/tasks/backends/ontap.html
Note: Parameters other than those listed below are not avaible when
creating a backend via DeepOps
If you wish to use other parameter values, you must create your
backend manually.
backends to create:
- backendName: ontap-flexvol
storageDriverName: ontap-nas # only 'ontap-nas' and 'ontap-nas-
flexgroup' are supported when creating a backend via DeepOps
managementLIF: 172.21.232.118# Cluster Management IP or SVM Mgmt LIF
IP
datalIF: 172.21.235.119# NFS LIF IP
svm: infra-NFS-hci-ai# Name of SVM
username: admin# Username to connect to the ONTAP cluster
password: P@sswOrd# Password to login
storagePrefix: trident
limitAggregateUsage: ""
limitVolumeSize: ""
nfsMountOptions: ""
defaults:
spaceReserve: none
snapshotPolicy: none
snapshotReserve: 0

splitOnClone: false
encryption: false
unixPermissions: 777
snapshotDir: false
exportPolicy: default
securityStyle: unix
tieringPolicy: none
Add additional backends as needed
Denotes whether or not to create new StorageClasses for your NetApp
storage
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-storage-class
create StorageClasses: true
List of StorageClasses to create
Note: Each item in the list should be an actual K8s StorageClass
definition in yaml format
For more info on StorageClass definitions, refer to https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/concepts/objects.html#kubernetes-storageclass-objects.
storageClasses to create:
- apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-flexvol
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
Add additional StorageClasses as needed
Denotes whether or not to copy tridenctl binary to localhost
copy tridentctl to localhost: true
Directory that tridentctl will be copied to on localhost
tridentctl copy to directory: ../ # will be copied to 'deepops/'
directory

2. Setup NetApp Trident by using the Ansible playbook.

ansible-playbook -1 k8s-cluster playbooks/netapp-trident.yml

3. Verify that Trident is running.

./tridentctl -n trident version

The expected output is as follows:

rarvind@deployment-jump:~/deepops$./tridentctl -n trident version

Fom e oo +
| SERVER VERSION | CLIENT VERSION |
Fom e e +
| 20.07.0 | 20.07.0 |
fom e frmm e +

Next: Deploy NVIDIA Triton Inference Server (Automated Deployment)

Deploy NVIDIA Triton Inference Server (Automated Deployment)

To set up automated deployment for the Triton Inference Server, complete the following steps:

1. Open a VI editor and create a PVC yaml file vi pvc-triton-model- repo.yaml.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: triton-pvc namespace: triton
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
storageClassName: ontap-flexvol

2. Create the PVC.

kubectl create -f pvc-triton-model-repo.yaml

3. Open a VI editor, create a deployment for the Triton Inference Server, and call the file
triton deployment.yaml.

apiVersion: vl
kind: Service
metadata:
labels:
app: triton-3gpu
name: triton-3gpu
namespace: triton

48

spec:
ports:

- name: grpc-trtis-serving

port: 8001
targetPort:

- name: http-trtis-serving

port: 8000
targetPort:

- name: prometheus-metrics

port: 8002
targetPort:
selector:

8001

8000

8002

app: triton-3gpu

type: LoadBalancer

apiVersion: vl

kind: Service

metadata:
labels:

app: triton-lgpu

name: triton-lgpu

namespace: triton

spec:
ports:

- name: grpc-trtis-serving

port: 8001
targetPort:

- name: http-trtis-serving

port: 8000
targetPbPort:

- name: prometheus-metrics

port: 8002
targetPbPort:

selector:

8001

8000

8002

app: triton-lgpu

type: LoadBalancer

apivVersion: apps/vl

kind: Deployment

metadata:
labels:

app: triton-3gpu

name: triton-3gpu

namespace: triton

spec:
replicas: 1

49

50

selector:
matchLabels:
app: triton-3gpu
template:

version:

metadata:
labels:
app:
version: vl

triton-3gpu

spec:
containers:

vl

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3

command: ["/bin/sh", "-c"]
args:
imagePullPolicy: IfNotPresent
name: triton-3gpu
ports:
- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi

nvidia.com/gpu: 3
requests:
HZH

memory:

cpu:
4Gi
nvidia.com/gpu: 3
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo
gpu-count: “3”
volumes:
- name: triton-model-repo
persistentVolumeClaim:
claimName: triton-pvc---
apps/vl

kind: Deployment

apiVersion:

metadata:

labels:

app:
name:

triton-lgpu
triton-1lgpu
namespace: triton
spec:
replicas: 3
selector:

["trtserver —--model-store=/mnt/model-repo"]

nodeSelector:

matchLabels:
app: triton-lgpu
version: vl
template:
metadata:
labels:
app: triton-1lgpu
version: vl
spec:
containers:

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3
command: ["/bin/sh", "-c", “sleep 1000”]

args: ["trtserver --model-store=/mnt/model-repo"]

imagePullPolicy: IfNotPresent
name: triton-lgpu
ports:
- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
requests:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo
gpu-count: “1”
volumes:
- name: triton-model-repo
persistentVolumeClaim:

claimName: triton-pvc

nodeSelector:

Two deployments are created here as an example. The first deployment spins up a pod that uses three
GPUs and has replicas set to 1. The other deployment spins up three pods each using one GPU while the
replica is set to 3. Depending on your requirements, you can change the GPU allocation and replica
counts.

Both of the deployments use the PVC created earlier and this persistent storage is provided to the Triton
inference servers as the model repository.

For each deployment, a service of type LoadBalancer is created. The Triton Inference Server can be
accessed by using the LoadBalancer IP which is in the application network.

51

10.

52

A nodeSelector is used to ensure that both deployments get the required number of GPUs without any

issues.

. Label the K8 worker nodes.

kubectl label nodes hci-ai-k8-worker-01 gpu-count=3
kubectl label nodes hci-ai-k8-worker-02 gpu-count=l

. Create the deployment.

kubectl apply -f triton deployment.yaml

. Make a note of the LoadBalancer service external LPS.

kubectl get services -n triton

The expected sample output is as follows:

TYPE CLUSTER-IP EXTERNAL-IP PCRT (S)
riton-1lgpu-v20-07-v1 LoadBalancer 10.233.21.185 172.21.231.133 8001:31238/TCP,8000:30171/TCP, 8002:32348/TCP

arvind@deployment-jump:~/triton-inference-server$ kubectl get services -n triton
riton-3gpu-v20-07-vl LoadBalancer 10.233.13.17 172.21.231.132 §001:31549/TCP,8000:30220/TCP, 8002:31517/TCP

AGE
10h
ioh

. Connect to any one of the pods that were created from the deployment.

kubectl exec -n triton --stdin --tty triton-lgpu-86c4c8dd64-5451x --
/bin/bash

. Set up the model repository by using the example model repository.

git clone
cd triton-inference-server
git checkout r20.07

. Fetch any missing model definition files.

cd docs/examples
./fetch models.sh

Copy all the models to the model repository location or just a specific model that you wish to use.

cp -r model repository/resnet50 netdef/ /mnt/model-repo/

In this solution, only the resnet50_netdef model is copied over to the model repository as an example.

11. Check the status of the Triton Inference Server.

curl -v <<LoadBalancer IP recorded earlier>>:8000/api/status

The expected sample output is as follows:

curl -v 172.21.231.132:8000/api/status

o Trying 172.21.231.132...

* TCP_NODELAY set

Connected to 172.21.231.132 (172.21.231.132) port 8000 (#0)
GET /api/status HTTP/1.1

Host: 172.21.231.132:8000

User-Agent: curl/7.58.0

Accept: */*

*

HTTP/1.1 200 OK

NV-Status: code: SUCCESS server id: "inference:0" request id: 9
Content-Length: 1124

Content-Type: text/plain

AN N AN ANV V V VYV

id: "inference:0"
version: "1.15.0"
uptime ns: 377890294368
model status {
key: "resnet50 netdef"
value {
config {
name: "resnet50 netdef"
platform: "caffe2 netdef"
version policy {
latest {
num versions: 1

}
max batch size: 128
input {
name: "gpu 0/data"
data type: TYPE FP32
format: FORMAT NCHW
dims: 3
dims: 224
dims: 224

output {

name: "gpu 0/softmax"

data type: TYPE FP32

dims: 1000

label filename: "resnet50 labels.txt"

}

instance group {

name: "resnet50 netdef"
count: 1
gpus: 0O
gpus: 1
gpus: 2

kind: KIND GPU
}
default model filename: "model.netdef"
optimization {
input pinned memory {
enable: true
}
output pinned memory {
enable: true

}
version status {
key: 1
value {
ready state: MODEL READY
ready state reason {

}

}
ready state: SERVER READY

* Connection #0 to host 172.21.231.132 left intact
Next: Deploy the Client for Triton Inference Server (Automated Deployment)

Deploy the Client for Triton Inference Server (Automated Deployment)

To deploy the client for the Triton Inference Server, complete the following steps:

1. Open a VI editor, create a deployment for the Triton client, and call the file triton client.yaml.

54

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: triton-client
name: triton-client

namespace: triton

spec:
replicas: 1
selector:
matchLabels:

app: triton-client

version: vl

template:
metadata:

labels:
app: triton-client
version: vl

spec:

containers:

- image: nvcr.io/nvidia/tritonserver:20.07- vl- py3-clientsdk
imagePullPolicy: IfNotPresent
name: triton-client
resources:

limits:
cpu: "2"
memory: 4Gi
requests:
cpu: "2"

memory: 4Gi

2. Deploy the client.

kubectl apply -f triton client.yaml

Next: Collect Inference Metrics from Triton Inference Server

Collect Inference Metrics from Triton Inference Server

The Triton Inference Server provides Prometheus metrics indicating GPU and request
statistics.

By default, these metrics are available at <a href="http://[triton_inference_server_ IP]:8002/metrics"

55

class="bare">http://[triton_inference_server IP]:8002/metrics.

The Triton Inference Server IP is the LoadBalancer IP that was recorded earlier.

The metrics are only available by accessing the endpoint and are not pushed or published to any remote
server.

@ 172.21.231.132:8002/metrics x EE

& > C (@ Notsecure | 172.21.231.132:8002/metrics

HELP nv_inference_request_success Number of successful inference requests, all batch sizes

TYPE nv_inference_request_success counter

nv_inference_request_success{gpu_uuid="GPU-28a3f@dc-480f-2494-809c-f43%aclafc4f",model="resnet5@_netdef",version="1"} &

nv_inference_request_success{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet5e_netdef",version="1"} 4.e0e000

nv_inference_request_success{gpu_uuid="GPU-b882@76d-@b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5e_netdef",version="1"} 5

HELP nv_inference_request_failure Number of failed inference requests, all batch sizes

TYPE nv_inference_request_failure counter

HELP nv_inference_count Number of inferences performed

TYPE nv_inference_count counter

nv_inference_count{gpu_uuid="GPU-28a3fadc-400f-2494-809c-f439aclafc4f” ,model="resnet5@_netdef",version="1"} 260.00e200

nv_inference_count{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2e91a4332958" ,model="resnet5@_netdef”,version="1"} 4.000000

nv_inference_count{gpu_uuid="GPU-b882076d-@b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5@_netdef”,version="1"} 5.000000

HELP nv_inference_exec_count Number of model executions performed

TYPE nv_inference_exec_count counter

nv_inference_exec_count{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%aclafcaf" ,model="resnet58_netdef",version="1"} 6.000000

nv_inference_exec_count{gpu_uuid="GPU-aefB8cff6-9325-8ald-0937-291a4332958" ,model="resnet58_netdef",version="1"} 4.000000

nv_inference_exec_count{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-9762986e8eel" ,model="resnet58_netdef",version="1"} 5.000000

HELP nv_inference_request_duration_us Cummulative inference reguest duration in microseconds

TYPE nv_inference_request_duration_us counter

nv_inference_request_duration_us{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%aclafcaf" ,model="resnet50_netdef",version="1"} 2172236.000000

nv_inference_request_duration_us{gpu_uuid="GPU-aef8cff6-9325-8ald-8937-e291a4332958" ,model="resnet50_netdef”, ,version="1"} 1042062.000000

nv_inference_request_duration_us{gpu_uuid="GPU-b882076d-8b82-1b8b-5b0@5-9762986e8eel” ,model="resnet50_netdef”,version="1"} 1476198.000000

HELP nv_inference_compute_duration_us Cummulative inference compute duration in microseconds

TYPE nv_inference_compute_duration_us counter

nv_inference_compute_duration_us{gpu_uuid="GPU-28a3fedc-400f-e494-809c-f439aclafcaf" ,model="resnet50_netdef",version="1"} 2159478.000000

nv_inference_compute_duration_us{gpu_uuid="GPU-aef8cff6-9325-8ald-0937-ee91a4332958" ,model="resnet50_netdef”,version="1"} 1041291.000000

nv_inference_compute_duration_us{gpu_uuid="GPU-bB882076d-8b82-1b8b-5b05-9762986e8eel" ,model="resnet50_netdef",version="1"} 1475336.000000

HELP nv_inference_queue_duration_us Cummulative inference queuing duration in microseconds

TYPE nv_inference_queue_duration_us counter

nv_inference_queue_duration_us{gpu_uuid="GPU-28a3f@dc-4@ef-e494-809c-f439aclafcaf”,model="resnet5@_netdef",version="1"} 514.000000

nv_inference_queue_duration_us{gpu_uvuid="GPU-aef8cff6-9325-8ald-0937-2291a4332958" ,model="resnet5@_netdef",version="1"} 378.000220

nv_inference_queue_duration_us{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-976298628eel" ,model="resnet5@_netdef",version="1"} 366.0002202

TYPE nv_inference_load_ratio histogram

nv_inference_load_ratio_count{gpu_uuid="GPU-28a3fodc-408f-2494-809c-f43%aclafc4f" ,model="resnet50_netdef",version="1"} 6

nv_inference_load_ratio_sum{gpu_uuid="GPU-28a3f@dc-4@0f-e494-809c-f439aclafcaf"”,model="resnet5@_netdef",version="1"} 6.053677

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f439aclafcaf”,model="resnet56_netdef"”,version="1",le="1.050000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf",model="resnet5@_netdef",version="1",le="1.100000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-40@f-e494-809c-f439aclafcaf"”,model="resnet50_netdef",version="1",le="1.250000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf"” ,model="resnet5@_netdef",version="1",le="1.500000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f43%aclafcaf"”,model="resnet5@_netdef",version="1",le="2.000000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf",model="resnet5@_netdef"”,version="1",le="10.000000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-40@f-e494-809c-f43%9aclafcaf",model="resnet5@_netdef"”,version="1",le="50.000000"} 6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0odc-400f-e494-809¢c-f43%clafcaf",model="resnet5@_netdef",version="1",le="+Inf"} 6

nv_inference_load_ratio_count{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-229124332958" ,model="resnet50_netdef",version="1"} 4

nv_inference_load_ratio_sum{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet50_netdef",version="1"} 4.032081

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2e91a4332958" ,model="resnet5@_netdef",version="1",le="1.050000"} 4

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-8a1d-0937-€€91a4332958" ,model="resnet5@_netdef",version="1",le="1.100000"} 4

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="1.250000"} 4
14
} 4

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-8ald-0937-2e21a4332958" ,model="resnet5@_netdef",version="1",le=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-ee91a4332958" ,model="resnet5@_netdef",version="1",le="2.0600000"

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0al1d-0937-2291a4332958" ,model="resnet5@_netdef",version="1",1le="10.020000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-2£91a4332958" ,model="resnet5@_netdef"”,version="1",le="50.000000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="+Inf"} 4

nv_inference_load_ratio_count{gpu_uuid="GPU-bB882076d-0b82-1b8b-5b05-9762986e8eel” ,model="resnet50_netdef",version
nv_inference_load_ratio_sum{gpu_uuid="GPU-b882@76d-0b82-1b8b-5b85-9762986e8eel" ,model="resnet5@_netdef",version=

1"}s

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-8b82-1b8b-5b85-9762986e8eel" ,model="resnet5@_netdef",version=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-8b82-1b8b-5b05-9762986e8eel"” ,model="resnet5@_netdef",version=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b85-9762986e8eel" ,model="resnet5@_netdef",version=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel" ,model="resnet5@_netdef",version=

"1 le

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel” ,model="resnet5@_netdef",version= 50.000000" }

56

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-9762986e8eel" ,model="resnet50_netdef"”,version="1",le="+Inf"} 5
HELP nv_gpu_utilization GPU utilization rate [©.0 - 1.0)

TYPE nv_gpu_utilization gauge
nv_gpu_utilization{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@S-9762986e3eel"} 0.000000
nv_gpu_utilization{gpu_uuid="GPU-2853f@dc-400f-e494-809c-f439aclafc4f"} @.200000
nv_gpu_utilization{gpu_uuid="GPU-aef8cff6-9325-0a1d-8937-2e9124332953"} 0.000000

HELP nv_gpu_memory_total_ bytes GPU total memory, in bytes

TYPE nv_gpu_memory_total_ bytes gauge
nv_gpu_memory_total_bytes{gpu_uuid="GPU-b882076d-0b82-1b8b-5b25-9762986e8eel"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafc4f"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-aef8cff6-9325-0a1d-08937-2291a4332958"} 15843721216.000000
HELP nv_gpu_memory_used_bytes GPU used memory, in bytes

TYPE nv_gpu_memory_used_bytes gauge
nv_gpu_memory_used_bytes{gpu_uuid="GPU-b882076d-Bb82-1b8b-5b@5-9762986e8eel"} 1466236928 .000000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-28a3fadc-400f-2494-809c-f43%aclafc4f"} 13004767232.000000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2e9184332958"} 1466236928.000000

HELP nv_gpu_power_usage GPU power usage in watts

TYPE nv_gpu_power_usage gauge
nv_gpu_power_usage{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"} 27.99%000
nv_gpu_power_usage{gpu_uuid="GPU-28a3fadc-400f-e494-809¢c-f439aclafcaf"} 28.428000
nv_gpu_power_usage{gpu_uuid="GPU-aef8cff6-2325-0a1d-0937-229134332958"} 27.6320002

HELP nv_gpu_power_limit GPU power management limit in watts

TYPE nv_gpu_power_limit gauge
nv_gpu_power_limit{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"} 70.000000
nv_gpu_power_limit{gpu_uuid="GPU-28a3fodc-400f-e494-829c-f43%aclafcaf"} 70.000000
nv_gpu_power_limit{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-e291a4332958"} 70.000000

HELP nv_energy_consumption GPU energy consumption in joules since the Triton Server started

TYPE nv_energy_consumption counter
nv_energy_consumption{gpu_uuid="GPU-b852076d-@b32-1b8b-5b@5-9762986e8eel"} 9796.449000
nv_energy_consumption{gpu_uuid="GPU-28a3f@dc-480f-e494-809c-f43%aclafcaf"} 9997.533000
nv_energy_consumption{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958"} 9669.536000

Next: Validation Results

Validation Results
To run a sample inference request, complete the following steps:

1. Get a shell to the client container/pod.
kubectl exec --stdin --tty <<client pod name>> -- /bin/bash
2. Run a sample inference request.

image client -m resnet50 netdef -s INCEPTION -u
<<LoadBalancer IP recorded earlier>>:8000 -c 3 images/mug.jpg

This inferencing request calls the resnet50 netdef model that is used for image recognition. Other
clients can also send inferencing requests concurrently by following a similar approach and calling out the
appropriate model.

Next: Where to Find Additional Information

Additional Information

To learn more about the information that is described in this document, review the
following documents and/or websites:

57

https://docs.netapp.com/us-en/hci-solutions/hcvdivds_where_to_find_additional_information.html

58

NetApp HCI Theory of Operations
https://www.netapp.com/us/media/wp-7261.pdf

NetApp Product Documentation

docs.netapp.com

NetApp HCI Solution Catalog Documentation
https://docs.netapp.com/us-en/hci/solutions/index.html

HCI Resources page
https://mysupport.netapp.com/info/web/ECMLP2831412.html
ONTAP Select
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx
NetApp Trident
https://netapp-trident.readthedocs.io/en/stable-v20.01/
NVIDIA DeepOps

https://github.com/NVIDIA/deepops

NVIDIA Triton Inference Server

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

https://www.netapp.com/us/media/wp-7261.pdf
https://docs.netapp.com/us-en/hci/solutions/index.html
https://mysupport.netapp.com/info/web/ECMLP2831412.html
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx
https://netapp-trident.readthedocs.io/en/stable-v20.01/
https://github.com/NVIDIA/deepops
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

59

http://www.netapp.com/TM

	Artificial Intelligence (AI) : NetApp HCI Solutions
	Table of Contents
	Artificial Intelligence (AI)
	NVA-1144: NetApp HCI AI Inferencing at the Edge Data Center with H615c and NVIDIA T4
	Customer Value
	Use Cases
	Architecture
	Design Considerations
	Overview
	Validation Results
	Additional Information

