Deploying NetApp HCI — Al Inferencing at
the Edge
NetApp HCI Solutions

NetApp
November 09, 2025

This PDF was generated from https://docs.netapp.com/us-en/hci-
solutions/hciaiedge_configure_network_switches_automated_deployment.html on November 09, 2025.
Always check docs.netapp.com for the latest.

Table of Contents

Overview

Configure Network Switches (Automated Deployment)
Prepare Required VLAN IDs
Switch Configuration
Rollback the Switch Configuration
IP Address Requirements
DNS and Timekeeping Requirement
Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated Deployment)
NDE Deployment Prerequisites
NDE Execution
Configure NetApp H615¢ (Manual Deployment)
Install Ubuntu 18.04.4 LTS
Configure Networking for Data and Management Access
Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual Deployment)
Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment
Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)
Configure the ONTAP Select Cluster — Manual Deployment
Deploy NetApp Trident (Automated Deployment)
Deploy NVIDIA Triton Inference Server (Automated Deployment)
Deploy the Client for Triton Inference Server (Automated Deployment)
Collect Inference Metrics from Triton Inference Server

© © © 0 00 N O N =~ ~

P B W WDNDN-_22 O QA
A WO W oo PO WO Oo

Overview

This section describes the steps required to deploy the Al inferencing platform using
NetApp HCI. The following list provides the high-level tasks involved in the setup:

—_

. Configure network switches

Deploy the VMware virtual infrastructure on NetApp HCI using NDE
Configure the H615¢c compute nodes to be used as K8 worker nodes
Set up the deployment jump VM and K8 master VMs

Deploy a Kubernetes cluster with NVIDIA DeepOps

Deploy ONTAP Select within the virtual infrastructure

Deploy NetApp Trident

Deploy NVIDIA Triton inference Server

© © N o o bk~ WD

Deploy the client for the Triton inference server

-_—
©

Collect inference metrics from the Triton inference server

Next: Configure Network Switches

Configure Network Switches (Automated Deployment)

Prepare Required VLAN IDs

The following table lists the necessary VLANSs for deployment, as outlined in this solution validation. You should
configure these VLANs on the network switches prior to executing NDE.

Network Segment Details VLAN ID

Out-of-band management network Network for HCI terminal user 16
interface (TUI)

In-band management network Network for accessing 3488
management interfaces of nodes,
hosts, and guests

VMware vMotion Network for live migration of VMs 3489

iSCSI SAN storage Network for iSCSI storage traffic 3490

Application Network for Application traffic 3487

NFS Network for NFS storage traffic 3491

IPL* Interpeer link between Mellanox 4000
switches

Native Native VLAN 2

*Only for Mellanox switches

Switch Configuration

This solution uses Mellanox SN2010 switches running Onyx. The Mellanox switches are configured using an
Ansible playbook. Prior to running the Ansible playbook, you should perform the initial configuration of the
switches manually:

1. Install and cable the switches to the uplink switch, compute, and storage nodes.
2. Power on the switches and configure them with the following details:

a. Host name

b. Management IP and gateway

c. NTP

3. Log into the Mellanox switches and run the following commands:

configuration write to pre-ansible
configuration write to post-ansible

The pre-ansible configuration file created can be used to restore the switch’s configuration to the state
before the Ansible playbook execution.

The switch configuration for this solution is stored in the post-ansible configuration file.

4. The configuration playbook for Mellanox switches that follows best practices and requirements for NetApp
HCI can be downloaded from the NetApp HCI Toolkit.

@ The HCI Toolkit also provides a playbook to setup Cisco Nexus switches with similar best
practices and requirements for NetApp HCI.

@ Additional guidance on populating the variables and executing the playbook is available in
the respective switch README.md file.

5. Fill out the credentials to access the switches and variables needed for the environment. The following text
is a sample of the variable file for this solution.

vars file for nar hci mellanox deploy

#These set of variables will setup the Mellanox switches for NetApp HCI
that uses a 2-cable compute connectivity option.

#Ansible connection variables for mellanox

ansible connection: network cli

ansible network os: onyx

#Necessary VLANs for Standard NetApp HCI Deployment [native, Management,
1SCSI Storage, vMotion, VM Network, IPL]

#Any additional VLANs can be added to this in the prescribed format
below

https://mysupport.netapp.com/site/tools/tool-eula/hci-toolkit

netapp hci vlans:

- {vlan_id: 2 , vlan name: "Native" }

- {vlan_id: 3488 , vlan name: "IB-Management" }

- {vlan id: 3490 , vlan name: "iSCSI Storage" }

- {vlan id: 3489 , vlan name: "vMotion" }

- {vlan id: 3491 , vlan name: "NFS " }

- {vlan id: 3487 , vlan name: "App Network" }

- {vlan id: 4000 , vlan name: "IPL" }#Modify the VLAN IDs to suit your
environment

#Spanning-tree protocol type for uplink connections.

#The valid options are 'network' and 'normal'; selection depends on the
uplink switch model.

uplink stp type: network

#Inter-Peer Link Portchannel
#ipl portchannel to be defined in the format - Pol00
ipl portchannel: Pol00
#Inter-Peer Link Addresses
#The IPL IP address should not be part of the management network. This
is typically a private network
ipl ipaddr _a: 10.0.0.1
ipl ipaddr b: 10.0.0.2
#Define the subnet mask in CIDR number format. Eg: For subnet /22, use
ipl ip subnet: 22
ipl ip subnet: 24
#Inter-Peer Link Interfaces
#members to be defined with Eth in the format. Eg: Ethl/1
peer link interfaces:
members: ['Ethl/20', 'Ethl/22']
description: "peer link interfaces"
#MLAG VIP IP address should be in the same subnet as that of the
switches' mgmt0O interface subnet
#mlag vip ip to be defined in the format - <vip ip>/<subnet mask>. Eg:
X.X.X.X/y
mlag vip ip: <<mlag vip ip>>
#MLAG VIP Domain Name
#The mlag domain must be unique name for each mlag domain.
#In case you have more than one pair of MLAG switches on the same
network, each domain (consist of two switches) should be configured with
different name.
mlag domain name: MLAG-VIP-DOM

#Storage Bondl0G Interface details

fmembers to be defined with Eth in the format. Eg: Ethl/1

#0nly numerical digits between 100 to 1000 allowed for mlag id
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]

#Interface descriptions append storage node data port numbers assuming
all Storage Nodes' Port C -> Mellanox Switch A and all Storage Nodes'
Port D -> Mellanox Switch B

#List the storage Bondl0G interfaces, their description, speed and MLAG
IDs in list of dictionaries format

storage interfaces:

- {members: "Ethl/1", description: "HCI Storage Node 01", mlag id: 101,

speed: 25G}
- {members: "Ethl/2", description: "HCI Storage Node 02", mlag id: 102,
speed: 25G}

#In case of additional storage nodes, add them here

#Storage BondlG Interface

#Mention whether or not these Mellanox switches will also be used for
Storage Node Mgmt connections

#Possible inputs for storage mgmt are 'yes' and 'no'

storage mgmt: <<yes or no>>

#Storage BondlG (Mgmt) interface details. Only if 'storage mgmt' is set
to 'yes'

#Members to be defined with Eth in the format. Eg: Ethl/1

#Interface descriptions append storage node management port numbers
assuming all Storage Nodes' Port A -> Mellanox Switch A and all Storage
Nodes' Port B -> Mellanox Switch B

#List the storage BondlG interfaces and their description in list of
dictionaries format

storage mgmt interfaces:

- {members: "Ethx/y", description: "HCI Storage Node 01"}

- {members: "Ethx/y", description: "HCI Storage Node 02"}

#In case of additional storage nodes, add them here

#LACP load balancing algorithm for IP hash method

#Possible options are: 'destination-mac', 'destination-ip',
'destination-port', 'source-mac', 'source-ip', 'source-port', 'source-
destination-mac', 'source-destination-ip', 'source-destination-port'
#This variable takes multiple options in a single go

#For eg: if you want to configure load to be distributed in the port-
channel based on the traffic source and destination IP address and port
number, use 'source-destination-ip source-destination-port'

#By default, Mellanox sets it to source-destination-mac. Enter the
values below only if you intend to configure any other load balancing
algorithm

#Make sure the load balancing algorithm that is set here is also
replicated on the host side
#Recommended algorithm is source-destination-ip source-destination-port
#Fill the lacp load balance variable only if you are using configuring
interfaces on compute nodes in bond or LAG with LACP
lacp load balance: "source-destination-ip source-destination-port"
#Compute Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#Fill the mlag id field only if you intend to configure interfaces of
compute nodes into bond or LAG with LACP
#In case you do not intend to configure LACP on interfaces of compute
nodes, either leave the mlag id field unfilled or comment it or enter NA
in the mlag id field
#In case you have a mixed architecture where some compute nodes require
LACP and some don't,
#1. Fill the mlag id field with appropriate MLAG ID for interfaces that
connect to compute nodes requiring LACP
#2. Either fill NA or leave the mlag id field blank or comment it for
interfaces connecting to compute nodes that do not require LACP
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]
#Interface descriptions append compute node port numbers assuming all
Compute Nodes' Port D -> Mellanox Switch A and all Compute Nodes' Port E
-> Mellanox Switch B
#List the compute interfaces, their speed, MLAG IDs and their
description in list of dictionaries format
compute interfaces:
- members: "Ethl/7"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 01"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
- members: "Ethl/8"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 02"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
#In case of additional compute nodes, add them here in the same format
as above- members: "Ethl/9"#Compute Node for Kubernetes Worker node

description: "HCI Compute Node 01"

mlag id: 109 #Fill the mlag id only if you wish to use LACP on
interfaces towards compute nodes

speed: 10G

- members: "Ethl/10"#Compute Node for Kubernetes Worker node
description: "HCI Compute Node 02"
mlag id: 110 #Fill the mlag id only if you wish to use LACP on
interfaces towards compute nodes

speed: 10G
#Uplink Switch LACP support
#Possible options are 'yes' and 'no' - Set to 'yes' only if your uplink

switch supports LACP
uplink switch lacp: <<yes or no>>
#Uplink Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values in
Mellanox are 1G, 10G and 25G]
#List the uplink interfaces, their description, MLAG IDs and their speed
in list of dictionaries format
uplink interfaces:
- members: "Ethl/18"
description switch a: "SwitchA:Ethx/y -> Uplink Switch:Ethx/y"
description switch b: "SwitchB:Ethx/y -> Uplink Switch:Ethx/y"
mlag id: 118 #Fill the mlag id only if 'uplink switch lacp' is set to

lyesl
speed: 10G
mtu: 1500

The fingerprint for the switch’s key must match with that present in the host machine from
where the playbook is being executed. To ensure this, add the key to /root/.
ssh/known host or any other appropriate location.

Rollback the Switch Configuration
1. In case of any timeout failures or partial configuration, run the following command to roll back the switch to

the initial state.

configuration switch-to pre-ansible

@ This operation requires a reboot of the switch.

2. Switch the configuration to the state before running the Ansible playbook.

configuration delete post-ansible

3. Delete the post-ansible file that had the configuration from the Ansible playbook.

configuration write to post-ansible

4. Create a new file with the same name post-ansible, write the pre-ansible configuration to it, and switch to
the new configuration to restart configuration.

IP Address Requirements

The deployment of the NetApp HCI inferencing platform with VMware and Kubernetes requires multiple IP
addresses to be allocated. The following table lists the number of IP addresses required. Unless otherwise
indicated, addresses are assigned automatically by NDE.

IP Address Quantity Details VLAN ID IP Address
One per storage and HCI terminal user 16

compute node* interface (TUI) addresses

One per vCenter Server vCenter Server 3488

(VM)

One per management
node (VM)

One per ESXi host

One per storage/witness
node

One per storage cluster

One per ESXi host
Two per ESXi host

Two per storage node

Two per storage cluster

Two for mNode

The following IPs are assigned manually when the respective components are configured.

management address

Management node IP
address

ESXi compute
management addresses

NetApp HCI storage node
management addresses

Storage cluster
management address

VVMware vMotion address 3489

ESXi host initiator address 3490
for iSCSI storage traffic

Storage node target
address for iISCSI storage
traffic

Storage cluster target
address for iISCSI storage
traffic

mNode iSCSI storage
access

IP Address Quantity Details VLAN ID IP Address

One for Deployment Jump Deployment Jump VM to 3488
Management network execute Ansible

playbooks and configure

other parts of the system

— management

connectivity
One per Kubernetes Kubernetes master node 3488
master node — VMs (three nodes)
management network
One per Kubernetes Kubernetes worker nodes 3488
worker node — (two nodes)
management network
One per Kubernetes Kubernetes worker nodes 3491
worker node — NFS (two nodes)
network
One per Kubernetes Kubernetes worker nodes 3487
worker node — application (two nodes)
network
Three for ONTAP Select — ONTAP Select VM 3488

management network

One for ONTAP Select— ONTAP Select VM — NFS 3491

NFS network data traffic

At least two for Triton Load balancer IP range 3487
Inference Server Load for Kubernetes load

Balancer — application balancer service

network

*This validation requires the initial setup of the first storage node TUI address. NDE automatically assigns the
TUI address for subsequent nodes.

DNS and Timekeeping Requirement

Depending on your deployment, you might need to prepare DNS records for your NetApp HCI system. NetApp
HCI requires a valid NTP server for timekeeping; you can use a publicly available time server if you do not
have one in your environment.

This validation involves deploying NetApp HCI with a new VMware vCenter Server instance using a fully
qualified domain name (FQDN). Before deployment, you must have one Pointer (PTR) record and one
Address (A) record created on the DNS server.

Next: Virtual Infrastructure with Automated Deployment

Deploy VMware Virtual Infrastructure on NetApp HCI with
NDE (Automated Deployment)

NDE Deployment Prerequisites

Consult the NetApp HCI Prerequisites Checklist to see the requirements and recommendations for NetApp
HCI before you begin deployment.
1. Network and switch requirements and configuration
Prepare required VLAN IDs
Switch configuration
IP Address Requirements for NetApp HCI and VMware

DNS and time-keeping requirements

o g k~ WD

Final preparations

NDE Execution

Before you execute the NDE, you must complete the rack and stack of all components, configuration of the
network switches, and verification of all prerequisites. You can execute NDE by connecting to the management
address of a single storage node if you plan to allow NDE to automatically configure all addresses.

NDE performs the following tasks to bring an HCI system online:

1. Installs the storage node (NetApp Element software) on a minimum of two storage nodes.
2. Installs the VMware hypervisor on a minimum of two compute nodes.
3. Installs VMware vCenter to manage the entire NetApp HCI stack.

4. Installs and configures the NetApp storage management node (mNode) and NetApp Monitoring Agent.

This validation uses NDE to automatically configure all addresses. You can also set up
DHCP in your environment or manually assign IP addresses for each storage node and
compute node. These steps are not covered in this guide.

As mentioned previously, this validation uses a two-cable configuration for compute nodes.
Detailed steps for the NDE are not covered in this document.

For step-by-step guidance on completing the deployment of the base NetApp HCI platform, see the
Deployment guide.

5. After NDE has finished, login to the vCenter and create a Distributed Port Group NetApp HCI VDS 01-
NFS_Network for the NFS network to be used by ONTAP Select and the application.

Next: Configure NetApp H615¢ (Manual Deployment)

Configure NetApp H615¢c (Manual Deployment)

In this solution, the NetApp H615¢c compute nodes are configured as Kubernetes worker
nodes. The Inferencing workload is hosted on these nodes.

Deploying the compute nodes involves the following tasks:

* Install Ubuntu 18.04.4 LTS.

https://library.netapp.com/ecm/ecm_download_file/ECMLP2798490
http://docs.netapp.com/hci/topic/com.netapp.doc.hci-ude-180/home.html?cp=3_0

« Configure networking for data and management access.

* Prepare the Ubuntu instances for Kubernetes deployment.

Install Ubuntu 18.04.4 LTS

The following high-level steps are required to install the operating system on the H615¢c compute nodes:

1. Download Ubuntu 18.04.4 LTS from Ubuntu releases.
Using a browser, connect to the IPMI of the H615¢c node and launch Remote Control.
Map the Ubuntu ISO using the Virtual Media Wizard and start the installation.

> 0N

Select one of the two physical interfaces as the Primary network interface when prompted.

An IP from a DHCP source is allocated when available, or you can switch to a manual IP configuration
later. The network configuration is modified to a bond-based setup after the OS has been installed.
Provide a hostname followed by a domain name.

Create a user and provide a password.

Partition the disks according to your requirements.

Under Software Selection, select OpenSSH server and click Continue.

© ®©® N o o

Reboot the node.

Configure Networking for Data and Management Access

The two physical network interfaces of the Kubernetes worker nodes are set up as a bond and VLAN
interfaces for management and application, and NFS data traffic is created on top of it.

@ The inferencing applications and associated containers use the application network for
connectivity.

1. Connect to the console of the Ubuntu instance as a user with root privileges and launch a terminal session.
2. Navigate to /etc/netplan and open the 01-netcfg.yaml file.

3. Update the netplan file based on the network details for the management, application, and NFS traffic in
your environment.

The following template of the netplan file was used in this solution:

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
version: 2
renderer: networkd
ethernets:
enp59s0f0: #Physical Interface 1
match:
macaddress: <<mac_ address Physical Interface 1>>
set-name: enp59s0£f0

10

http://cdimage.ubuntu.com/ubuntu/releases/18.04/release/

mtu: 9000
enp59s0fl: # Physical Interface 2
match:
macaddress: <<mac_ address Physical Interface 2>>
set-name: enpb59s0fl

mtu: 9000
bonds:
bond0:
mtu: 9000

dhcp4: false
dhcp6: false
interfaces: [enp59s0£f0, enp59s0fl]
parameters:
mode: 802.3ad

mii-monitor—-interval: 100

vlans:
vlan.3488: #Management VLAN
id: 3488

xref:{relative path}bond0l
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
- to: x.x.x.x/x # Additional routes if any
via: y.y.vy.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32768#Higher Priority than table 3487
table: 3488
nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500
vlan.3487:
id: 3487
xref:{relative path}bond0
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.231.111

11

12

metric: 101
table: 3487
- to: x.xX.X.X/x
via: y.y.y.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32769#Lower Priority
table: 3487

nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500 vlan.3491:
id: 3491

xref:{relative path}bond0l

dhcp4: false

addresses: [ipv4_address/subnet]
mtu: 9000

. Confirm that the priorities for the routing policies are lower than the priorities for the main and default

tables.

. Apply the netplan.

sudo netplan --debug apply

. Make sure that there are no errors.

. If Network Manager is running, stop and disable it.

systemctl stop NetworkManager
systemctl disable NetworkManager

Add a host record for the server in DNS.

Open a Vl editor to /etc/iproute2/rt tables and add the two entries.

#

reserved values

#

255 local
254 main
253 default
0 unspec
#

local

#

#1 inr.ruhep
101 3488
102 3487

10. Match the table number to what you used in the netplan.

11. Open a VI editor to /etc/sysctl.conf and set the value of the following parameters.

net.ipvé4.conf.default.rp filter=0
net.ipv4.conf.all.rp filter=Onet.ipv4.ip forward=1

12. Update the system.
sudo apt-get update && sudo apt-get upgrade

13. Reboot the system
14. Repeat steps 1 through 13 for the other Ubuntu instance.

Next: Set Up the Deployment Jump and the Kubernetes Master Node VMs (Manual Deployment)

Set Up the Deployment Jump VM and the Kubernetes
Master Node VMs (Manual Deployment)

A Deployment Jump VM running a Linux distribution is used for the following purposes:

* Deploying ONTAP Select using an Ansible playbook
» Deploying the Kubernetes infrastructure with NVIDIA DeepOps and GPU Operator
+ Installing and configuring NetApp Trident

Three more VMs running Linux are set up; these VMs are configured as Kubernetes Master Nodes in this
solution.

Ubuntu 18.04.4 LTS was used in this solution deployment.

13

1. Deploy the Ubuntu 18.04.4 LTS VM with VMware tools
You can refer to the high-level steps described in section Install Ubuntu 18.04.4 LTS.

2. Configure the in-band management network for the VM. See the following sample netplan template:

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
version: 2
renderer: networkd
ethernets:
ensl160:
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
routing-policy:
- from: 0.0.0.0/0
priority: 32768
table: 3488

nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500

This template is not the only way to setup the network. You can use any other approach that you prefer.

3. Apply the netplan.

sudo netplan --debug apply

4. Stop and disable Network Manager if it is running.

systemctl stop NetworkManager

systemctl disable NetworkManager

5. Open a Vl editor to /etc/iproute2/rt tables and add a table entry.

14

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep
101 3488

6. Add a host record for the VM in DNS.
7. Verify outbound internet access.

8. Update the system.
sudo apt-get update && sudo apt-get upgrade

9. Reboot the system.
10. Repeat steps 1 through 9 to set up the other three VMs.

Next: Deploy a Kubernetes Cluster with NVIDIA DeepOps (Automated Deployment)

Deploy a Kubernetes Cluster with NVIDIA DeepOps
Automated Deployment

To deploy and configure the Kubernetes Cluster with NVIDIA DeepOps, complete the
following steps:

1. Make sure that the same user account is present on all the Kubernetes master and worker nodes.

2. Clone the DeepOps repository.
git clone https://github.com/NVIDIA/deepops.git
3. Check out a recent release tag.

cd deepops
git checkout tags/20.08

If this step is skipped, the latest development code is used, not an official release.

15

4. Prepare the Deployment Jump by installing the necessary prerequisites.

./scripts/setup.sh

5. Create and edit the Ansible inventory by opening a VI editor to deepops/config/inventory.
. List all the master and worker nodes under [all].

a
b. List all the master nodes under [kube-master]

o

. List all the master nodes under [etcd]

o

. List all the worker nodes under [kube-node]

16

6. Enable GPUOperator by opening a VI editor to deepops/config/group vars/k8s-cluster.yml.

7. Set the value of deepops gpu operator enabled to true.

8. Verify the permissions and network configuration.
ansible all -m raw -a "hostname" -k -K
o If SSH to the remote hosts requires a password, use -k.
o If sudo on the remote hosts requires a password, use -K.
9. If the previous step passed without any issues, proceed with the setup of Kubernetes.
ansible-playbook --limit k8s-cluster playbooks/k8s-cluster.yml -k -K

10. To verify the status of the Kubernetes nodes and the pods, run the following commands:

kubectl get nodes

kubectl get pods -A

It can take a few minutes for all the pods to run.

17

11. Verify that the Kubernetes setup can access and use the GPUs.

./scripts/k8s verify gpu.sh

Expected sample output:

rarvind@deployment-jump:~/deepops$./scripts/k8s verify gpu.sh
job name=cluster-gpu-tests

Node found with 3 GPUs

Node found with 3 GPUs

total gpus=6

Creating/Deleting sandbox Namespace

updating test yml

downloading containers

18

job.batch/cluster—-gpu-tests condition met

executing

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m e

e it e e R +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

B e ———————— e ——— . ——————————————
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

e et e e e B e it PP
o +

o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| e ——— ——— = — —— — — — — — — — — — — — — — — —— — — —— — —— ——— — —— — —————————————————
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| = m e e oo
o +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

e e R

19

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

+--— = -

t———_—— +
o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| T T T T T Y T T
======|

| No running processes found

|
o
—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| ————— e ———— Fom e
+--— 1

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

|mmmmmmm e e e e e
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

o et
- +
S
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage

| No running processes found

—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| e e o o
—_ +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| ==============================={======================{================
—=====|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

- -
—_ +

o
—————— 1

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| m——=—===========—
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m Fmm

R ettt P +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| S===========c==c=cc=csescecaesas i s==esesssssssssssssessdessssaassossese=

21

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o\°

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0
Default |

| Processes: GPU
Memory |
| GPU PID Type Process name Usage

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o°

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0

| GPU PID Type Process name Usage

| No running processes found

Number of Nodes: 2

Number of GPUs: 6

6 / 6 GPU Jobs COMPLETED

job.batch "cluster-gpu-tests" deleted
namespace "cluster-gpu-verify" deleted

12. Install Helm on the Deployment Jump.

./scripts/install helm.sh

13. Remove the taints on the master nodes.

kubectl taint nodes --all node-role.kubernetes.io/master-

This step is required to run the LoadBalancer pods.

14. Deploy LoadBalancer.

15. Edit the config/helm/metallb.yml file and provide a range of IP ddresses in the Application
Network to be used as LoadBalancer.

Default address range matches private network for the virtual cluster
defined in virtual/.
You should set this address range based on your site's infrastructure.
configInline:
address-pools:
- name: default
protocol: layer?
addresses:
- 172.21.231.130-172.21.231.140#Application Network
controller:
nodeSelector:
node-role.kubernetes.io/master: ""

16. Run a script to deploy LoadBalancer.

./scripts/k8s deploy loadbalancer.sh

23

17. Deploy an Ingress Controller.

./scripts/k8s_deploy ingress.sh

Next: Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

Deploy and Configure ONTAP Select in the VMware Virtual
Infrastructure (Automated Deployment)

To deploy and configure an ONTAP Select instance within the VMware Virtual
Infrastructure, complete the following steps:

1. From the Deployment Jump VM, login to the NetApp Support Site and download the ONTAP Select OVA
for ESXi.

2. Create a directory OTS and obtain the Ansible roles for deploying ONTAP Select.

mkdir OTS
cd OTS

git clone https://github.com/NetApp/ansible.git
cd ansible

3. Install the prerequisite libraries.

24

https://mysupport.netapp.com/site/products/all/details/ontap-select/downloads-tab/download/62293/9.7

pip install requests
pip install pyvmomi
Open a VI Editor and create a playbook ‘"ots setup.yaml’’ with the below
content to deploy the ONTAP Select OVA and initialize the ONTAP cluster.
- name: Create ONTAP Select Deploy VM from OVA (ESXi)

hosts: localhost

gather facts: false

connection: 'local'

vars files:

- ots deploy vars.yaml
roles:
- na_ots deploy

- name: Wait for 1 minute before starting cluster setup

hosts: localhost

gather facts: false

tasks:

- pause:

minutes: 1

- name: Create ONTAP Select cluster (ESX1)

hosts: localhost

gather facts: false

vars files:

- ots cluster vars.yaml

roles:

- na ots cluster

4. Open a VI editor, create a variable file ots deploy vars.yaml, and fill in hte following parameters:

25

target vcenter or esxi host: "10.xxx.xx.xx"# vCenter IP

host login: "yourlogin@yourlab.local" # vCenter Username

ovf path: "/run/deploy/ovapath/ONTAPdeploy.ova"# Path to OVA on
Deployment Jump VM

datacenter name: "your-Lab"# Datacenter name in vCenter
esx cluster name: "your Cluster"# Cluster name in vCenter
datastore name: "your-select-dt"# Datastore name in vCenter

mgt network: "your-mgmt-network"# Management Network to be used by OVA
deploy name: "test-deploy-vm"# Name of the ONTAP Select VM

deploy ipAddress: "10.xxx.xx.xx"# Management IP Address of ONTAP Select
VM

deploy gateway: "10.xxx.xx.l"# Default Gateway

deploy proxy url: ""# Proxy URL (Optional and if used)

deploy netMask: "255.255.255.0"# Netmask

deploy product company: "NetApp"# Name of Organization

deploy primaryDNS: "10.xxx.xx.xx"# Primary DNS IP

deploy secondaryDNS: ""# Secondary DNS (Optional)

deploy searchDomains: "your.search.domain.com"# Search Domain Name

Update the variables to match your environment.

3. Open a VI editor, create a variable file ots_cluster vars.yaml, and fill it out with the following
parameters:

26

node count: 1l#Number of nodes in the ONTAP Cluster
monitor job: truemonitor deploy job: true
deploy api url: #Use the IP of the ONTAP Select VM
deploy login: "admin"
vcenter login: "administrator@vsphere.local"
vcenter name: "172.21.232.100"
esxi hosts:
- host name: 172.21.232.102
- host name: 172.21.232.103
cluster name: "hci-ai-ots"# Name of ONTAP Cluster
cluster ip: "172.21.232.118"# Cluster Management IP
cluster netmask: "255.255.255.0"
cluster gateway: "172.21.232.1"
cluster ontap image: "9.7"
cluster ntp:
- "10.61.186.231"
cluster dns ips:
- "10.61.186.231"
cluster dns domains:
- "sddc.netapp.com"
mgt network: "NetApp HCI VDS Ol-Management Network"# Name of VM Port
Group for Mgmt Network
data network: "NetApp HCI VDS 01-NFS Network"# Name of VM Port Group for
NEF'S Network
internal network: ""# Not needed for Single Node Cluster
instance type: "small"
cluster nodes:
- node name: "{{ cluster name }}-01"
ipAddress: 172.21.232.119# Node Management IP
storage pool: NetApp-HCI-Datastore-02 # Name of Datastore in vCenter
to use
capacityTB: 1# Usable capacity will be ~700GB
host name: 172.21.232.102# IP Address of an ESXi host to deploy node

Update the variables to match your environment.

6. Start ONTAP Select setup.

ansible-playbook ots setup.yaml --extra-vars deploy pwd=$'"PQ@sswOrd"'

--extra-vars vcenter password=$'"P@sswOrd"' --extra-vars
ontap pwd=$'"P@sswOrd"' --extra-vars host esx password=$'"P@sswOrd"'
--extra-vars host password=$'"P@sswOrd"' --extra-vars

deploy password=$'"P@sswOrd"'

7. Update the command with deploy pwd ° (ONTAP Select VM instance),
‘vcenter password(vCenter), ontap pwd (ONTAP login password), host esx password (VMware
ESXi), host password (vCenter), and deploy password (ONTAP Select VM instance).

Configure the ONTAP Select Cluster — Manual Deployment
To configure the ONTAP Select cluster, complete the following steps:

1. Open a browser and log into the ONTAP cluster’s System Manager using its cluster management IP.
2. On the DASHBOARD page, click Prepare Storage under Capacity.

Capacity >

The system discovered 1 disks. When you prepare the disks for

provisioning, the system will group the disks for optimum performance
and resiliency.

Prepare Storage

3. Select the radio button to continue without onboard key manager, and click Prepare Storage.

4. On the NETWORK page, click the + sign in the Broadcast Domains window.

Broadcast Domains
Cluster 9000 MTU IPspace: Cluster
Default 1500 MTU IPspace: Default
heci-ai-ots-01 e0b elc
Mgmt 1500 MTU IPspace: Default

hci-ai-ots-01 e0a

5. Enter the Name as NFs, set the MTU to 9000, and select the port e0b. Click Save.

28

Add Broadcast Domain

Specify the following details to add a new broadcast domain.

MAME

NFS

assigNPoRTS (3)

Port Name hci-ai-ots-01
e0b

elc

Save Cancel

6. On the DASHBOARD page, click Configure Protocols under Network.

Network

No protocols are enabled. To begin serving data to clients, enable the
required protocols and assign the protocol addresses.

Configure Protocols

29

7. Enter a name for the SVM, select Enable NFS, provide an IP and subnet mask for the NFS LIF, set the
Broadcast Domain to NFS, and click Save.

Configure Protocols x

ONTAP exposes protocol services through storage VMs. More details
STORAGE VM NAME

infra-NFS-hci-ai

Access Protocol

& SMB/CIFS and NFS iSCSI

Enable SMB/CIFS
B Enable NFS
DEFAULT LANGUAGE @

c.utf 8 w

METWORK INTERFACE
One network interface per node is recommended.

hci-ai-ots-01
IP ADDRESS SUBMET MASK GATEWAY BROADCAST DOMAIN
172.21.235.119 255.255.255.0 Add optional gateway NFS v

8. Click STORAGE in the left pane, and from the dropdown select Storage VMs
a. Edit the SVM.

30

Storage VMs

MName State
infra-NFS-hci-ai : running
Edit
Delete
Stop

b. Select the checkbox under Resource Allocation, make sure that the local tier is listed, and click Save.

31

Edit Storage VM X

STORAGE VM NAME

infra-NFS-hei-ai

DEFAULT LANGUAGE

c.utf 8 e

Resource Allocation

Limit volume creation to preferred local tiers

LOCAL TIERS

hci_ai_ots 01 SSD 1 M

9. Click the SVM name, and on the right panel scroll down to Policies.

10. Click the arrow within the Export Policies tile, and click the default policy.

11. If there is a rule already defined, you can edit it; if no rule exists, then create a new one.
a. Select NFS Network Clients as the Client Specification.
b. Select the Read-Only and Read/Write checkboxes.

c. Select the checkbox to Allow Superuser Access.

32

New Rule "

¥ SFELIFICATION

172.21.235.0/24

SMB/CIFS
FlexCache
B nrs B wFsve: B NFSwa

ACCESS DETAILS

Type B Rread-Only [Read/Write
LINIX =
Kerberos & B =
Karberos 5i = =
Karbaros 5p = =
NTLM]]

B Allow Superuser Acoess

Next: Deploy NetApp Trident (Automated Deployment)

Deploy NetApp Trident (Automated Deployment)

NetApp Trident is deployed by using an Ansible playbook that is available with NVIDIA DeepOps. Follow these
steps to set up NetApp Trident:

1. From the Deployment Jump VM, navigate to the DeepOps directory and open a VI editor to
config/group vars/netapp-trident.yml. The file from DeepOps lists two backends and two
storage classes. In this solution only one backend and storage class are used.

Use the following template to update the file and its parameters (highlighted in yellow) to match your
environment.

33

34

vars file for netapp-trident playbook
URL of the Trident installer package that you wish to download and use
trident version: "20.07.0"# Version of Trident desired
trident installer url:
"https://github.com/NetApp/trident/releases/download/v{{ trident version
}}/trident-installer-{{ trident version }}.tar.gz"
Kubernetes version
Note: Do not include patch version, e.g. provide value of 1.16, not
1.16.7.
Note: Versions 1.14 and above are supported when deploying Trident
with DeepOps.
If you are using an earlier version, you must deploy Trident
manually.
k8s version: 1.17.9# Version of Kubernetes running
Denotes whether or not to create new backends after deploying trident
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-trident-backend
create backends: true
List of backends to create
For more info on parameter values, refer to: https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/operations/tasks/backends/ontap.html
Note: Parameters other than those listed below are not avaible when
creating a backend via DeepOps
If you wish to use other parameter values, you must create your
backend manually.
backends to create:
- backendName: ontap-flexvol
storageDriverName: ontap-nas # only 'ontap-nas' and 'ontap-nas-
flexgroup' are supported when creating a backend via DeepOps
managementLIF: 172.21.232.118# Cluster Management IP or SVM Mgmt LIF
IP
datalIF: 172.21.235.119# NFS LIF IP
svm: infra-NFS-hci-ai# Name of SVM
username: admin# Username to connect to the ONTAP cluster
password: P@sswOrd# Password to login
storagePrefix: trident
limitAggregateUsage: ""
limitVolumeSize: ""
nfsMountOptions: ""
defaults:
spaceReserve: none
snapshotPolicy: none
snapshotReserve: 0

splitOnClone: false
encryption: false
unixPermissions: 777
snapshotDir: false
exportPolicy: default
securityStyle: unix
tieringPolicy: none
Add additional backends as needed
Denotes whether or not to create new StorageClasses for your NetApp
storage
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-storage-class
create StorageClasses: true
List of StorageClasses to create
Note: Each item in the list should be an actual K8s StorageClass
definition in yaml format
For more info on StorageClass definitions, refer to https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/concepts/objects.html#kubernetes-storageclass-objects.
storageClasses to create:
- apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-flexvol
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
Add additional StorageClasses as needed
Denotes whether or not to copy tridenctl binary to localhost
copy tridentctl to localhost: true
Directory that tridentctl will be copied to on localhost
tridentctl copy to directory: ../ # will be copied to 'deepops/'
directory

2. Setup NetApp Trident by using the Ansible playbook.

ansible-playbook -1 k8s-cluster playbooks/netapp-trident.yml

3. Verify that Trident is running.

./tridentctl -n trident version

The expected output is as follows:

rarvind@deployment-jump:~/deepops$./tridentctl -n trident version

Next: Deploy NVIDIA Triton Inference Server (Automated Deployment)

Deploy NVIDIA Triton Inference Server (Automated
Deployment)

To set up automated deployment for the Triton Inference Server, complete the following steps:

1. Open a VI editor and create a PVC yaml file vi pvc-triton-model- repo.yaml.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: triton-pvc namespace: triton
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
storageClassName: ontap-flexvol

2. Create the PVC.
kubectl create -f pvc-triton-model-repo.yaml

3. Open a VI editor, create a deployment for the Triton Inference Server, and call the file
triton deployment.yaml.

apiVersion: vl
kind: Service
metadata:
labels:
app: triton-3gpu

36

name: triton-3gpu

namespace: triton
spec:

ports:

- name: grpc-trtis-serving

port: 8001
targetPort: 8001

- name: http-trtis-serving

port: 8000
targetPort: 8000

- name: prometheus-metrics

port: 8002
targetPort: 8002
selector:
app: triton-3gpu
type: LoadBalancer
apiVersion: vl
kind: Service
metadata:
labels:
app: triton-1lgpu
name: triton-lgpu
namespace: triton
spec:
ports:

- name: grpc-trtis-serving

port: 8001
targetPort: 8001

- name: http-trtis-serving

port: 8000
targetPort: 8000

- name: prometheus-metrics

port: 8002
targetPort: 8002
selector:
app: triton-lgpu
type: LoadBalancer
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: triton-3gpu
name: triton-3gpu

namespace: triton

37

38

spec:
replicas: 1
selector:
matchLabels:
app: triton-3gpu
template:

version:

metadata:
labels:
app:
version: vl

triton-3gpu

spec:
containers:

vl

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3

command: ["/bin/sh", "-c"]
args:
imagePullPolicy: IfNotPresent
name: triton-3gpu
ports:
- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi

nvidia.com/gpu: 3
requests:
"2"

memory:

cpu:
4G1i
nvidia.com/gpu: 3
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo
gpu-count: “3”
volumes:
- name: triton-model-repo
persistentVolumeClaim:
claimName:
apps/vl

kind: Deployment

triton-pvc---

apiVersion:

metadata:

labels:

app:
name:

triton-lgpu
triton-lgpu
namespace: triton

spec:

["trtserver --model-store=/mnt/model-repo"]

nodeSelector:

replicas: 3
selector:
matchLabels:
app: triton-1lgpu
version: vl
template:
metadata:
labels:
app: triton-lgpu
version: vl
spec:
containers:

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3
command: ["/bin/sh", "-c", “sleep 1000”]

args: ["trtserver --model-store=/mnt/model-repo"]

imagePullPolicy: IfNotPresent
name: triton-lgpu
ports:
- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
requests:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo
gpu-count: “1”
volumes:
- name: triton-model-repo
persistentVolumeClaim:

claimName: triton-pvc

nodeSelector:

Two deployments are created here as an example. The first deployment spins up a pod that uses three
GPUs and has replicas set to 1. The other deployment spins up three pods each using one GPU while the
replica is set to 3. Depending on your requirements, you can change the GPU allocation and replica
counts.

Both of the deployments use the PVC created earlier and this persistent storage is provided to the Triton
inference servers as the model repository.

39

10.

40

For each deployment, a service of type LoadBalancer is created. The Triton Inference Server can be
accessed by using the LoadBalancer IP which is in the application network.

A nodeSelector is used to ensure that both deployments get the required number of GPUs without any
issues.

. Label the K8 worker nodes.

kubectl label nodes hci-ai-k8-worker-01 gpu-count=3
kubectl label nodes hci-ai-k8-worker-02 gpu-count=1

. Create the deployment.

kubectl apply -f triton deployment.yaml

. Make a note of the LoadBalancer service external LPS.

kubectl get services -n triton

The expected sample output is as follows:

TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
riton-1lgpu-v20-07-v1 LoadBalancer 10.233.21.185 172.21.231.133 8001:31238/TCP,8000:30171/TCP, 8002:32348/TCP 10h

arvind@deployment-jump:~/triton-inference-server$ kubectl get services -n triton
riton-3gpu-v20-07-vl LoadBalancer 10.233.13.17 172.21.231.132 8001:31549/TCP,8000:30220/TCP, 8002:31517/TCP 10h

. Connect to any one of the pods that were created from the deployment.

kubectl exec -n triton --stdin --tty triton-lgpu-86c4c8dd64-5451x —--
/bin/bash

. Set up the model repository by using the example model repository.

git clone
cd triton-inference-server
git checkout r20.07

. Fetch any missing model definition files.

cd docs/examples
./fetch models.sh

Copy all the models to the model repository location or just a specific model that you wish to use.

cp -r model repository/resnet50 netdef/ /mnt/model-repo/

In this solution, only the resnet50_netdef model is copied over to the model repository as an example.

11. Check the status of the Triton Inference Server.

curl -v <<LoadBalancer IP recorded earlier>>:8000/api/status

The expected sample output is as follows:

curl -v 172.21.231.132:8000/api/status

*

*

*

Trying 172.21.231.132...
TCP_NODELAY set
Connected to 172.21.231.132 (172.21.231.132) port 8000 (#0)

> GET /api/status HTTP/1.1
> Host: 172.21.231.132:8000
> User-Agent: curl/7.58.0

> Accept: */*

>

< HTTP/1.1 200 OK

< NV-Status: code: SUCCESS server id: "inference:0" request id: 9
< Content-Length: 1124

< Content-Type: text/plain
<

id: "inference:0"

version: "1.15.0"

uptime ns: 377890294368
model status {

key: "resnet50 netdef”
value
config {
name: "resnet50 netdef"
platform: "caffe2 netdef"
version policy {
latest {

num versions: 1

}

max batch size: 128

input {
name: "gpu O/data"
data type: TYPE FP32
format: FORMAT NCHW
dims: 3

41

dims: 224

dims: 224
}
output {
name: "gpu O0/softmax"
data type: TYPE FP32
dims: 1000
label filename: "resnet50 labels.txt"

}

instance group {

name: "resnet50 netdef"
count: 1
gpus: 0
gpus: 1
gpus: 2

kind: KIND GPU
}
default model filename: "model.netdef"
optimization {
input pinned memory {
enable: true
}
output pinned memory {
enable: true

}
version status {
key: 1
value ({
ready state: MODEL READY
ready state reason {

}

}
ready state: SERVER READY
* Connection #0 to host 172.21.231.132 left intact

Next: Deploy the Client for Triton Inference Server (Automated Deployment)

42

Deploy the Client for Triton Inference Server (Automated
Deployment)

To deploy the client for the Triton Inference Server, complete the following steps:

1. Open a VI editor, create a deployment for the Triton client, and call the file triton client.yaml.

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: triton-client
name: triton-client
namespace: triton

spec:
replicas: 1
selector:
matchLabels:

app: triton-client
version: vl
template:
metadata:
labels:
app: triton-client
version: vl
spec:

containers:
- image: nvcr.io/nvidia/tritonserver:20.07- vl- py3-clientsdk

imagePullPolicy: IfNotPresent
name: triton-client
resources:
limits:
Cpu . "2"
memory: 4Gi
requests:
Cpu . "2"
memory: 4Gi

2. Deploy the client.

kubectl apply -f triton client.yaml

Next: Collect Inference Metrics from Triton Inference Server

43

Collect Inference Metrics from Triton Inference Server

The Triton Inference Server provides Prometheus metrics indicating GPU and request
statistics.

By default, these metrics are available at <a href="http://[triton_inference_server_IP]:8002/metrics"
class="bare">http://[triton_inference_server_ IP]:8002/
metrics.

The Triton Inference Server IP is the LoadBalancer IP that was recorded earlier.

The metrics are only available by accessing the endpoint and are not pushed or published to any remote
server.

@ 172.21.231.132:8002/metrics X +

& C ® Notsecure | 172.21.231.132:8002/metrics

HELP nv_inference_request_success Number of successful inference requests, all batch sizes

TYPE nv_inference_request_success counter
nv_inference_request_success{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%aclafc4f" ,model="resnet5@_netdef",version="1"} 6
nv_inference_request_success{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet5e_netdef",version="1"} 4.e0e000
nv_inference_request_success{gpu_uuid="GPU-b882@76d-@b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5e_netdef",version="1"} 5

HELP nv_inference_request_failure Number of failed inference requests, all batch sizes

TYPE nv_inference_request_failure counter

HELP nv_inference_count Number of inferences performed

TYPE nv_inference_count counter

nv_inference_count{gpu_uuid="GPU-28a3fadc-400f-2494-809c-f439aclafc4f” ,model="resnet5@_netdef",version="1"} 260.00e200
nv_inference_count{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet5@_netdef",version="1"} 4.000000
nv_inference_count{gpu_uuid="GPU-b882076d-@b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5@_netdef”,version="1"} 5.000000

HELP nv_inference_exec_count Number of model executions performed

TYPE nv_inference_exec_count counter

nv_inference_exec_count{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%aclafcaf" ,model="resnet58_netdef",version="1"} 6.000000
nv_inference_exec_count{gpu_uuid="GPU-aefB8cff6-9325-8ald-0937-291a4332958" ,model="resnet58_netdef",version="1"} 4.000000
nv_inference_exec_count{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-9762986e8eel" ,model="resnet58_netdef",version="1"} 5.000000

HELP nv_inference_request_duration_us Cummulative inference reguest duration in microseconds

TYPE nv_inference_request_duration_us counter

nv_inference_request_duration_us{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%aclafcaf" ,model="resnet50_netdef",version="1"} 2172236.000000
nv_inference_request_duration_us{gpu_uuid="GPU-aef8cff6-9325-8ald-8937-e291a4332958" ,model="resnet50_netdef”, ,version="1"} 1042062.000000
nv_inference_request_duration_us{gpu_uuid="GPU-b882076d-8b82-1b8b-5b05-9762986e8eel” ,model="resnet50_netdef",version= 1476198. 000000
HELP nv_inference_compute_duration_us Cummulative inference compute duration in microseconds

TYPE nv_inference_compute_duration_us counter

nv_inference_compute_duration_us{gpu_uuid="GPU-28a3fedc-400f-e494-809c-f439aclafcaf" ,model="resnet50_netdef",version="1"} 2159478.000000
nv_inference_compute_duration_us{gpu_uuid="GPU-aef8cff6-9325-8ald-0937-ee91a4332958" ,model="resnet50_netdef”,version="1"} 1041291.000000
nv_inference_compute_duration_us{gpu_uuid="GPU-bB882076d-0b82-1b8b-5b85-9762986e8eel" ,model="resnet50_netdef",version="1"} 1475336.000000
HELP nv_inference_queue_duration_us Cummulative inference queuing duration in microseconds

TYPE nv_inference_queue_duration_us counter
nv_inference_queue_duration_us{gpu_uuid="GPU-28a3f@dc-4@ef-e494-809c-f439aclafcaf”,model="resnet5@_netdef",version="1"} 514.000000
nv_inference_queue_duration_us{gpu_uvuid="GPU-aef8cff6-9325-8ald-0937-2291a4332958" ,model="resnet5@_netdef",version="1"} 378.000220
nv_inference_queue_duration_us{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-976298628eel" ,model="resnet5@_netdef",version="1"} 366.0002202

TYPE nv_inference_load_ratio histogram

nv_inference_load_ratio_count{gpu_uuid="GPU-28a3fodc-408f-2494-809c-f43%aclafc4f" ,model="resnet50_netdef",version="1"} 6
nv_inference_load_ratio_sum{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf"”,model="resnet5@_netdef",version="1"} 6.053677
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f439aclafcaf”,model="resnet56_netdef"”,version="1",le="1.050000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf",model="resnet5@_netdef",version="1",le="1.100000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-40@f-e494-809c-f439aclafcaf"”,model="resnet50_netdef",version="1",le="1.250000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf"” ,model="resnet5@_netdef",version="1",le="1.500000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f43%aclafcaf"”,model="resnet5@_netdef",version="1",le="2.000000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf",model="resnet5@_netdef"”,version="1",le="10.000000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f@dc-40@f-e494-809c-f43%9aclafcaf",model="resnet5@_netdef"”,version="1",le="50.000000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fodc-400f-e494-809¢c-f43%aclafcaf",model="resnet5@_netdef",version="1",le="+Inf"} 6
nv_inference_load_ratio_count{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-229124332958" ,model="resnet50_netdef",version="1"} 4
nv_inference_load_ratio_sum{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet50_netdef",version="1"} 4.032081

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2e91a4332958" ,model="resnet5@_netdef",version="1",le="1.050000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-8a1d-0937-€€91a4332958" ,model="resnet5@_netdef",version="1",le="1.100000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-ee91a4332958" ,model="resnet5@_netdef",version="1",le="1.250000"} 4
nv_inference_load_ratio_bucket{gpu_uvuid="GPU-aef8cff6-9325-8a1d-0937-e€91a4332958" ,model="resnet5@_netdef",version="1",le="1.500000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-2291a4332958" ,model="resnet5@_netdef",version="1",le 4

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le:
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-2£91a4332958" ,model="resnet5@_netdef"”,version="1",le="50.000000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="+Inf"} 4
nv_inference_load_ratio_count{gpu_uuid="GPU-b882076d-@b82-1b8b-5b05-9762986e8eel” ,model="resnet5@_netdef",version="1"} 5
nv_inference_load_ratio_sum{gpu_uuid="GPU-b882@76d-0b82-1b8b-5b05-9762986e8eel" ,model="resnet5@_netdef”,version="1"} 5.033626
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-08b82-1b8b-5b05-9762986e8eel"” ,model="resnet5@_netdef",version="1",le="1.050000"
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-08b82-1b8b-5b@5-9762986e8eel" ,model="resnet5@_netdef",version="1",le:
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel™ ,model="resnet5@_netdef”,version="1",le
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-9762986e8eel" ,model="resnet5@_netdef",version="1",le
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5@_netdef”,version="1",1le
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b85-9762986e8eel" ,model="resnet5@_netdef",version="1",le
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel"” ,model="resnet5@_netdef”,version="1",1le

44

nv_inference_load_ratio_bucket{gpu_uuid="GPU-bB882076d-2b82-1b8b-5b@5-9762986e8eel"” ,model="resnet50_netdef",version="1",le="+Inf"} 5

HELP nv_gpu_utilization GPU utilization rate [©.2 - 1.0)

TYPE nv_gpu_utilization gauge
nv_gpu_utilization{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8ecl"} @.0200200
nv_gpu_utilization{gpu_uuid="GPU-28a3f0dc-400f-e494-889¢c-f43%aclafcaf"} @.e00200
nv_gpu_utilization{gpu_uuid="GPU-aef8cff6-2325-0ald-2937-2e912a4332958"} @.200000

HELP nv_gpu_memory_total bytes GPU total memory, in bytes

TYPE nv_gpu_memory_total bytes gauge
nv_gpu_memory_total_bytes{gpu_uuid="GPU-b882076d-8b82-1b8b-5b05-9762986e8eel"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-28a3fedc-400f-e494-809¢c-f43%aclafc4f"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-aef8cff6-9325-0a1d-08937-2291a4332958"} 15843721216.000000
HELP nv_gpu_memory_used_bytes GPU used memory, in bytes

TYPE nv_gpu_memory_used_bytes gauge
nv_gpu_memory_used_bytes{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8ee1"} 1466236928.200000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-28a3fadc-400f-2494-809c-f43%aclafc4f"} 13004767232.000000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-aef3cff6-9325-0a1d-0937-291a43329558" } 1466236925.000008
HELP nv_gpu_power_usage GPU power usage in watts

TYPE nv_gpu_power_usage gauge
nv_gpu_power_usage{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"} 27.99%000
nv_gpu_power_usage{gpu_uuid="GPU-28a3fadc-400f-e494-809¢c-f439aclafcaf"} 28.428000
nv_gpu_power_usage{gpu_uuid="GPU-aef8cff6-2325-0a1d-0937-229134332958"} 27.6320002

HELP nv_gpu_power_limit GPU power management limit in watts

TYPE nv_gpu_power_limit gauge
nv_gpu_power_limit{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762936e8eel"} 78.000000
nv_gpu_power_limit{gpu_uuid="GPU-28a3fodc-400f-e494-809c-f439aclafcaf"} 70.000000
nv_gpu_power_limit{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-e291a4332958"} 7@.000000

HELP nv_energy_consumption GPU energy consumption in joules since the Triton Server started

TYPE nv_energy_consumption counter
nv_energy_consumption{gpu_uuid="GPU-b882@76d-2b82-1b8b-5b05-9762986e8eel"} 9796.449000
nv_energy_consumption{gpu_uuid="GPU-28a3f0@dc-400f-2494-809c-f43%aclafc4f"} 9997.533000
nv_energy_consumption{gpu_uuid="GPU-aef8cff6-9325-0a1d-2937-e91a4332958"} 9669.536000

Next: Validation Results

45

https://docs.netapp.com/us-en/hci-solutions/hciaiedge_validation_results.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

46

http://www.netapp.com/TM

	Deploying NetApp HCI – AI Inferencing at the Edge : NetApp HCI Solutions
	Table of Contents
	Overview
	Configure Network Switches (Automated Deployment)
	Prepare Required VLAN IDs
	Switch Configuration
	Rollback the Switch Configuration
	IP Address Requirements
	DNS and Timekeeping Requirement

	Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated Deployment)
	NDE Deployment Prerequisites
	NDE Execution

	Configure NetApp H615c (Manual Deployment)
	Install Ubuntu 18.04.4 LTS
	Configure Networking for Data and Management Access

	Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual Deployment)
	Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment
	Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)
	Configure the ONTAP Select Cluster – Manual Deployment

	Deploy NetApp Trident (Automated Deployment)
	Deploy NVIDIA Triton Inference Server (Automated Deployment)
	Deploy the Client for Triton Inference Server (Automated Deployment)
	Collect Inference Metrics from Triton Inference Server

