BlueXP automation catalog

NetApp Automation

NetApp
September 04, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-automation/solutions/bac-
overview.html on September 04, 2025. Always check docs.netapp.com for the latest.

Table of Contents

BlueXP automation catalog
Overview of the BlueXP automation catalog
Amazon FSx for NetApp ONTAP
Amazon FSx for NetApp ONTAP - Burst to cloud
Amazon FSx for NetApp ONTAP - Disaster recovery
Azure NetApp Files
Install Oracle using Azure NetApp Files
Cloud Volumes ONTAP for AWS
Cloud Volumes ONTAP for AWS - Burst to cloud
Cloud Volumes ONTAP for Azure
Cloud Volumes ONTAP for Azure - Burst to cloud
Cloud Volumes ONTAP for Google Cloud
Cloud Volumes ONTAP for Google Cloud - Burst to cloud
ONTAP
Day 0/1

O = A A

10
10
17
17
23
23
31
31
37
37

BlueXP automation catalog

Overview of the BlueXP automation catalog

The BlueXP automation catalog is a collection of automation solutions available to
NetApp customers, partners, and employees. The catalog has several features and
benefits.

Single location for your automation needs

You can access the BlueXP automation catalog through the BlueXP web user interface. This provides a
single location for the scripts, playbooks, and modules needed to enhance the automation and operation of
your NetApp products and services.

Solutions are created and tested by NetApp

All the automation solutions and scripts have been created and tested by NetApp. Each solution targets a
specific customer use case or request. Most focus on integration with the NetApp file and data services.

Documentation

Each of the automation solutions includes associated documentation to help you get started. While the
solutions are accessed through the BlueXP web interface, all the documentation is available at this site. The
documentation is organized based on the NetApp products and cloud services.

Solid foundation for the future

NetApp is committed to helping our customers improve and streamline the automation of their data centers
and cloud environments. We expect to continue enhancing the BlueXP automation catalog to address
customer requirements, technology changes, and continued product integration.

We want to hear from you

The NetApp Customer Experience Office (CXO) automation team would like to hear from you. If you have
any feedback, issues, or feature requests, please send an email to CXO automation team.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP - Burst to cloud

You can use this automation solution to provision Amazon FSx for NetApp ONTAP with
volumes and an associated FlexCache.

@ Amazon FSx for NetApp ONTAP is also referred to as FSx for ONTAP.

About this solution
At a high level, the automation code provided with this solution performs the following actions:

* Provision a destination FSx for ONTAP file system
* Provision Storage Virtual Machines (SVMs) for the file system
* Create a cluster peering relationship between the source and destination systems

» Create an SVM peering relationship between the source system and destination system for FlexCache

https://console.bluexp.netapp.com/automationCatalog
mailto:ng-cxo-automation-admins@netapp.com

* Optionally create FlexVol volumes using FSx for ONTAP
» Create a FlexCache volume in FSx for ONTAP with the source pointing to on-prem storage

The automation is based on Docker and Docker Compose which must be installed on the Linux virtual machine
as described below.

Before you begin
You must have the following to complete the provisioning and configuration:

* You need to download the Amazon FSx for NetApp ONTAP - Burst to cloud automation solution through
the BlueXP web Ul. The solution is packaged as file AWS_FSxN BTC. zip.
» Network connectivity between the source and destination systems.
* A Linux VM with the following characteristics:
> Debian-based Linux distribution
> Deployed on the same VPC subset used for FSx for ONTAP provisioning
* AWS account.

Step 1: Install and configure Docker

Install and configure Docker in a Debian-based Linux virtual machine.

Steps
1. Prepare the environment.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-
agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable"
sudo apt-get update

2. Install Docker and verify the installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Add the required Linux group with an associated user.

First check if the group docker exists in your Linux system. If it doesn’t, create the group and add the user.
By default, the current shell user is added to the group.

https://console.bluexp.netapp.com/automationCatalog

sudo groupadd docker
sudo usermod -aG docker $ (whoami)

4. Activate the new group and user definitions
If you created a new group with a user, you need to activate the definitions. To do this, you can logout of

Linux and then back in. Or you can run the following command.

newgrp docker

Step 2: Install Docker Compose

Install Docker Compose in a Debian-based Linux virtual machine.

Steps
1. Install Docker Compose.

sudo curl -L
"https://github.com/docker/compose/releases/latest/download/docker-
compose-9$ (uname -s)-$ (uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker—-compose

2. Verify the installation was successful.

docker-compose --version

Step 3: Prepare the Docker image
You need to extract and load the Docker image provided with the automation solution.

Steps
1. Copy the solution file AWS FSxN BTC. zip to the virtual machine where the automation code will run.

scp -1 ~/<private-key.pem> -r AWS FSxN BTC.zip user@<IP ADDRESS OF VM>
The input parameter private-key.pem is your private key file used for AWS virtual machine
authentication (EC2 instance).

2. Navigate to the correct folder with the solution file and unzip the file.

unzip AWS FSxN BTC.zip

3. Navigate to the new folder AWS_FSxN_BTC created with the unzip operation and list the files. You should
see file aws fsxn flexcache image latest.tar.gz.

1ls -1la

4. Load the Docker image file. The load operation should normally complete in a few seconds.

docker load -i aws fsxn flexcache image latest.tar.gz

5. Confirm the Docker image is loaded.

docker images

You should see the Docker image aws_fsxn flexcache image with the tag latest.

REPOSITORY TAG IMAGE ID CREATED SIZE
aws fsxn flexcahce image latest ay98y7853769 2 weeks ago 1.19GB

Step 4: Create environment file for AWS credentials

You must create a local variable file for authentication using the access and secret key. Then add the file to the
.env file.

Steps
1. Create the awsauth.env file in the following location:

path/to/env-file/awsauth.env

2. Add the following content to the file:

access key=<>
secret key=<>
The format must be exactly as shown above without any spaces between key and value.
3. Add the absolute file path to the . env file using the Aws CREDS variable. For example:

AWS CREDS=path/to/env-file/awsauth.env

Step 5: Create an external volume

You need an external volume to make sure the Terraform state files and other important files are persistent.
These files must be available for Terraform to run the workflow and deployments.

Steps
1. Create an external volume outside of Docker Compose.

Make sure to update the volume name (last parameter) to the appropriate value before running the
command.

docker volume create aws fsxn volume

2. Add the path to the external volume to the . env environment file using the command:

PERSISTENT VOL=path/to/external/volume:/volume name

Remember to keep the existing file contents and colon formatting. For example:

PERSISTENT VOL=aws fsxn volume:/aws fsxn flexcache

You can instead add an NFS share as the external volume using a command such as:
PERSISTENT VOL=nfs/mnt/document:/aws fsx flexcache

3. Update the Terraform variables.
a. Navigate to the folder aws fsxn variables.
b. Confirm the following two files exist: terraform.tfvars and variables.tf.

C. Update the values in terraform. tfvars as required for your environment.

See Terraform resource: aws_fsx_ontap_file_system for more information.

Step 6: Provision Amazon FSx for NetApp ONTAP and FlexCache

You can provision Amazon FSx for NetApp ONTAP and FlexCache.

Steps
1. Navigate to the folder root (AWS_FSXN_BTC) and issue the provisioning command.

docker-compose —-f docker-compose-provision.yml up
This command creates two containers. The first container deploys FSx for ONTAP and the second
container creates the cluster peering, SVM peering, destination volume, and FlexCache.
2. Monitor the provisioning process.

docker-compose -f docker-compose-provision.yml logs -f

This command gives you the output in real time, but has been configured to capture the logs through the
file deployment.log. You can change the name of these log files by editing the . env file and updating

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

the variables DEPLOYMENT LOGS.

Step 7: Destroy Amazon FSx for NetApp ONTAP and FlexCache

You can optionally delete and remove Amazon FSx for NetApp ONTAP and FlexCache.

1. Set the variable flexcache operationinthe terraform.tfvars file to "destroy".

2. Navigate to the folder root (AWS_FSXN_BTC) and issue the following command.
docker-compose -f docker-compose-destroy.yml up

This command creates two containers. The first container delete FlexCache and the second container
deletes FSx for ONTAP.

3. Monitor the provisioning process.

docker-compose -f docker-compose-destroy.yml logs -f

Amazon FSx for NetApp ONTAP - Disaster recovery

You can use this automation solution to take a disaster recovery backup of a source
system using Amazon FSx for NetApp ONTAP.

@ Amazon FSx for NetApp ONTAP is also referred to as FSx for ONTAP.

About this solution
At a high level, the automation code provided with this solution performs the following actions:

* Provision a destination FSx for ONTAP file system

* Provision Storage Virtual Machines (SVMs) for the file system

» Create a cluster peering relationship between the source and destination systems

» Create an SVM peering relationship between the source system and destination system for SnapMirror
 Create destination volumes

» Create a SnapMirror relationship between the source and destination volumes

* Initiate the SnapMirror transfer between the source and destination volumes

The automation is based on Docker and Docker Compose which must be installed on the Linux virtual machine
as described below.

Before you begin
You must have the following to complete the provisioning and configuration:

* You need to download the Amazon FSx for NetApp ONTAP - Disaster recovery automation solution
through the BlueXP web Ul. The solution is packaged as FSxN_DR. zip. This zip contains the
AWS_FSxN Bck_Prov.zip file that you will use to deploy the solution described in this document.

https://console.bluexp.netapp.com/automationCatalog

* Network connectivity between the source and destination systems.
A Linux VM with the following characteristics:

o Debian-based Linux distribution

o Deployed on the same VPC subset used for FSx for ONTAP provisioning
* An AWS account.

Step 1: Install and configure Docker

Install and configure Docker in a Debian-based Linux virtual machine.

Steps
1. Prepare the environment.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-
agent softwareproperties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable"
sudo apt-get update

2. Install Docker and verify the installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Add the required Linux group with an associated user.
First check if the group docker exists in your Linux system. If it doesn’t exist, create the group and add the

user. By default, the current shell user is added to the group.

sudo groupadd docker
sudo usermod -aG docker $ (whoami)

4. Activate the new group and user definitions
If you created a new group with a user, you need to activate the definitions. To do this, you can logout of

Linux and then back in. Or you can run the following command.

newgrp docker

Step 2: Install Docker Compose
Install Docker Compose in a Debian-based Linux virtual machine.

Steps
1. Install Docker Compose.

sudo curl -L
"https://github.com/docker/compose/releases/latest/download/docker-
compose-$ (uname -s)-$ (uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker—-compose

2. Verify the installation was successful.

docker-compose --version

Step 3: Prepare the Docker image
You need to extract and load the Docker image provided with the automation solution.

Steps

1. Copy the solution file AWS FSxN Bck Prov.zip to the virtual machine where the automation code will
run.

scp -1 ~/<private-key.pem> -r AWS FSxN Bck Prov.zip
user@<IP_ADDRESS OF VM>

The input parameter private-key.pem is your private key file used for AWS virtual machine
authentication (EC2 instance).

2. Navigate to the correct folder with the solution file and unzip the file.

unzip AWS FSxN Bck Prov.zip

3. Navigate to the new folder AWS FSxN Bck Prov created with the unzip operation and list the files. You
should see file aws fsxn bck image latest.tar.gz.

1ls -1la

4. Load the Docker image file. The load operation should normally complete in a few seconds.

docker load -i aws_ fsxn bck image latest.tar.gz

5. Confirm the Docker image is loaded.

docker images

You should see the Docker image aws_fsxn bck image with the tag latest.

REPOSITORY TAG IMAGE ID CREATED SIZE
aws fsxn bck image latest da87d4974306 2 weeks ago 1.19GB

Step 4: Create environment file for AWS credentials

You must create a local variable file for authentication using the access and secret key. Then add the file to the
.env file.

Steps
1. Create the awsauth.env file in the following location:

path/to/env-file/awsauth.env
2. Add the following content to the file:
access key=<>
secret key=<>
The format must be exactly as shown above without any spaces between key and value.
3. Add the absolute file path to the . env file using the Aws CREDS variable. For example:

AWS CREDS=path/to/env-file/awsauth.env

Step 5: Create an external volume

You need an external volume to make sure the Terraform state files and other important files are persistent.
These files must be available for Terraform to run the workflow and deployments.

Steps
1. Create an external volume outside of Docker Compose.

Make sure to update the volume name (last parameter) to the appropriate value before running the
command.

docker volume create aws fsxn volume

2. Add the path to the external volume to the . env environment file using the command:

PERSISTENT VOL=path/to/external/volume:/volume name

Remember to keep the existing file contents and colon formatting. For example:

PERSISTENT VOL=aws fsxn volume:/aws fsxn bck

You can instead add an NFS share as the external volume using a command such as:
PERSISTENT VOL=nfs/mnt/document:/aws fsx bck

3. Update the Terraform variables.
a. Navigate to the folder aws fsxn variables.
b. Confirm the following two files exist: terraform.tfvars and variables.tf.

C. Update the values in terraform. tfvars as required for your environment.

See Terraform resource: aws_fsx_ontap_file_system for more information.

Step 6: Deploy the backup solution
You can deploy and provision the disaster recovery backup solution.

Steps
1. Navigate to the folder root (AWS_FSxN_Bck_Prov) and issue the provisioning command.

docker-compose up -d

This command creates three containers. The first container deploys FSx for ONTAP. The second container
creates the cluster peering, SVM peering, and destination volume. The third container creates the
SnapMirror relationship and initiates the SnapMirror transfer.

2. Monitor the provisioning process.

docker-compose logs -f

This command gives you the output in real time, but has been configured to capture the logs through the
file deployment. log. You can change the name of these log files by editing the . env file and updating
the variables DEPLOYMENT LOGS.

Azure NetApp Files

Install Oracle using Azure NetApp Files

You can use this automation solution to provision Azure NetApp Files volumes and install
Oracle on an available virtual machine. Oracle then uses the volumes for data storage.

10

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

About this solution
At a high level, the automation code provided with this solution performs the following actions:

» Set up a NetApp account on Azure

» Set up a storage capacity pool on Azure

* Provision the Azure NetApp Files volumes based on the definition
 Create the mount points

* Mount the Azure NetApp Files volumes to the mount points

* Install Oracle on the Linux server

 Create the listeners and database

* Create the Pluggable Databases (PDBs)

« Start the listener and Oracle instance

* Install and configure the azacsnap utility to take a snapshot

Before you begin
You must have the following to complete the installation:

* You need to download the Oracle using Azure NetApp Files automation solution through the BlueXP web
Ul. The solution is packaged as file na_oraclel9c deploy-master.zip.

* A Linux VM with the following characteristics:
o RHEL 8 (Standard_D8s_v3-RHEL-8)
> Deployed on the same Azure Virtual Network used for the Azure NetApp Files provisioning

¢ An Azure account

The automation solution is provided as an image and run using Docker and Docker Compose. You need to
install both of these on the Linux virtual machine as described below.

You should also register the VM with RedHat using the command sudo subscription-manager
register. The command will prompt you for your account credentials. If needed, you can create an account
at https://developers.redhat.com/.

Step 1: Install and configure Docker
Install and configure Docker in a RHEL 8 Linux virtual machine.

Steps
1. Install the Docker software using the following commands.

dnf config-manager --add
-repo=https://download.docker.com/linux/centos/docker-ce.repo
dnf install docker-ce --nobest -y

2. Start Docker and display the version to confirm the installation was successful.

11

https://console.bluexp.netapp.com/automationCatalog

systemctl start docker
systemctl enable docker
docker --version

3. Add the required Linux group with an associated user.
First check if the group docker exists in your Linux system. If it doesn’t, create the group and add the user.

By default, the current shell user is added to the group.

sudo groupadd docker
sudo usermod -aG docker SUSER

4. Activate the new group and user definitions
If you created a new group with a user, you need to activate the definitions. To do this, you can logout of

Linux and then back in. Or you can run the following command.

newgrp docker

Step 2: Install Docker Compose and the NFS utilities
Install and configure Docker Compose along with the NFS utilities package.

Steps
1. Install Docker Compose and display the version to confirm the installation was successful.

dnf install curl -y

curl -L
"https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$ (uname -s)-$ (uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker—-compose

docker-compose --version

2. Install the NFS utilities package.

sudo yum install nfs-utils

Step 3: Download the Oracle installation files
Download the required Oracle installation and patch files as well as the azacsnap utility.

Steps

12

1. Sign in to your Oracle account as needed.

2. Download the following files.

File Description
LINUX.X64_193000_db_home.zip 19.3 base installer
p31281355_190000_Linux-x86-64.zip 19.8 RU patch
p6880880 190000 _Linux-x86-64.zip opatch version 12.2.0.1.23
azacsnap_installer_v5.0.run azacsnap installer

3. Place all the installation files in the folder /tmp/archive.

4. Make sure all users on the database server have full access (read, write, execute) to the folder
/tmp/archive.

Step 4: Prepare the Docker image

You need to extract and load the Docker image provided with the automation solution.

Steps

1. Copy the solution file na_oraclel9c deploy-master.zip to the virtual machine where the automation
code will run.

scp -1 ~/<private-key.pem> -r na oraclel9c deploy-master.zip
user@<IP ADDRESS OF VM>

The input parameter private-key.pem is your private key file used for Azure virtual machine
authentication.

2. Navigate to the correct folder with the solution file and unzip the file.

unzip na oraclel9c deploy-master.zip

3. Navigate to the new folder na_oraclel9c deploy-master created with the unzip operation and list the
files. You should see file ora_anf bck image.tar.

1s -1t

4. Load the Docker image file. The load operation should normally complete in a few seconds.

docker load -i ora anf bck image.tar

5. Confirm the Docker image is loaded.

13

docker images

You should see the Docker image ora anf bck image with the tag latest.

REPOSITORY TAG IMAGE ID CREATED SIZE
ora anf bck image latest ay98y7853769 1 week ago 2.58GB

Step 5: Create an external volume

You need an external volume to make sure the Terraform state files and other important files are persistent.
These files must be available for Terraform to run the workflow and deployments.

Steps
1. Create an external volume outside of Docker Compose.

Make sure to update the volume name before running the command.

docker volume create <VOLUME NAME>

2. Add the path to the external volume to the . env environment file using the command:
PERSISTENT VOL=path/to/external/volume:/ora anf prowv.

Remember to keep the existing file contents and colon formatting. For example:

PERSISTENT VOL= ora anf volume:/ora anf prov

3. Update the Terraform variables.
a. Navigate to the folder ora_anf variables.
b. Confirm the following two files exist: terraform.tfvars and variables.tf.

C. Update the values in terraform. tfvars as required for your environment.

Step 6: Install Oracle

You can now provision and install Oracle.

Steps
1. Install Oracle using the following sequence of commands.

14

docker-compose up terraform ora anf
bash /ora anf variables/setup.sh
docker-compose up linux config

bash /ora anf variables/permissions.sh
docker-compose up oracle install

2. Reload your Bash variables and confirm by displaying the value for ORACLE HOME.
a. cd /home/oracle
b. source .bash profile
C. echo SORACLE HOME

3. You should be able to login to Oracle.

sudo su oracle

Step 7: Validate the Oracle installation

You should confirm the Oracle installation was successful.

Steps
1. Log in to the Linux Oracle server and display a list of the Oracle processes. This confirms the installation
completed as expected and the Oracle database is running.

ps —-ef | grep ora

2. Log in to the database to examine the database configuration and to confirm the PDBs were created
properly.

sglplus / as sysdba
You should see output similar to the following:

SQL*Plus: Release 19.0.0.0.0 - Production on Thu May 6 12:52:51 2021
Version 19.8.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.
Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.8.0.0.0

15

3. Execute a few simple SQL commands to confirm the database is available.

select name, log mode from vSdatabase;
show pdbs.

Step 8: Install the azacsnap utility and perform a snapshot backup
You need to install and run the azacsnap utility to perform a snapshot backup.

Steps
1. Install the container.

docker-compose up azacsnap install

2. Switch to the snapshot user account.

Su - azacsnap
execute /tmp/archive/ora wallet.sh

3. Configure a storage backup detail file. This will create the azacsnap . json configuration file.

cd /home/azacsnap/bin/

azacsnap -c configure —--configuration new

4. Perform a snapshot backup.

azacsnap —-¢ backup —--other data --prefix ora test --retention=l

Step 9: Optionally migrate an on-premise PDB to the cloud
You can optionally migrate the on-premise PDB to the cloud.

Steps
1. Set the variables in the t fvars files as needed for your environment.

2. Migrate the PDB.

docker-compose -f docker-compose-relocate.yml up

16

Cloud Volumes ONTAP for AWS

Cloud Volumes ONTAP for AWS - Burst to cloud

This article supports the NetApp Cloud Volumes ONTAP for AWS Automation Solution,
which is available to NetApp customers from the BlueXP Automation Catalog.

The Cloud Volumes ONTAP for AWS Automation Solution automates the containerized deployment of Cloud
Volumes ONTAP for AWS using Terraform, enabling you to deploy Cloud Volumes ONTAP for AWS rapidly,
without any manual intervention.

Before you begin
* You must download the Cloud Volumes ONTAP AWS - Burst to cloud automation solution through the
BlueXP web Ul. The solution is packaged as cvo aws flexcache.zip.
* You must install a Linux VM on the same network as Cloud Volumes ONTAP.

 After you install the Linux VM, you must follow the steps in this solution to install the required
dependencies.

Step 1: Install Docker and Docker Compose

Install Docker

The following steps use Ubuntu 20.04 Debian Linux distribution software as an example. The commands you
run depend on the Linux distribution software that you are using. Refer to the specific Linux distribution
software documentation for your configuration.

Steps
1. Install Docker by running the following sudo commands:

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent
software-properties-common curl -fsSL
https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Verify the installation:
docker -version

3. Verify that a group named "docker" has been created on your Linux system. If necessary, create the group:

17

https://console.bluexp.netapp.com/automationCatalog

sudo groupadd docker

4. Add the user that needs to access Docker to the group:

sudo usermod -aG docker $ (whoami)

5. Your changes are applied after you log out and log back in to the terminal. Alternatively, you can apply the
changes immediately:

newgrp docker

Install Docker Compose

Steps
1. Install Docker Compose by running the following sudo commands:

sudo curl -L
"https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$ (uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Verify the installation:

docker-compose -version

Step 2: Prepare the Docker image

Steps

1. Copy the cvo_aws flexcache.zip folder to the Linux VM that you want to use to deploy Cloud
Volumes ONTAP:

scp -1 ~/<private-key>.pem -r cvo aws flexcache.zip
<awsuser>@<IP_ ADDRESS OF VM>:<LOCATION TO BE COPIED>

° private-key.pem is your private key file for login without a password.
° awsuser is the VM username.
° IP_ADDRESS OF VMisthe VM IP address.

° LOCATION TO BE COPIED is the location where the folder will be copied.

18

2. Extract the cvo_aws_flexcache. zip folder. You can extract the folder in the current directory or in a
custom location.
To extract the folder in the current directory, run:
unzip cvo aws flexcache.zip

To extract the folder in a custom location, run:

unzip cvo aws flexcache.zip -d ~/<your folder name>

3. After you extract the content, navigate to the CvO Aws Deployment folder and run the following
command to view the files:

ls -1la

You should see a list of files, similar to the following example:

total 32

drwxr-xr-x 8 userl staff 256 Mar 23 12:26

Arwxr—-xr-x 6 userl staff 192 Mar 22 08:04

== E—=E— 1 userl staff 324 Apr 12 21:37 .env

—rw-r—--r—- 1 userl staff 1449 Mar 23 13:19 Dockerfile

drwxr-xr-x 15 userl staff 480 Mar 23 13:19 cvo Aws source code

drwxr-xr-x 4 userl staff 128 Apr 27 13:43 cvo Aws variables

—TW—Y--r-—-— 1 userl staff 996 Mar 24 04:06 docker-compose-
deploy.yml

—rw-r--r-—- 1 userl staff 1041 Mar 24 04:06 docker-compose-

destroy.yml

4. Locate the cvo_aws_flexcache ubuntu image.tar file. This contains the Docker image required to
deploy Cloud Volumes ONTAP for AWS.

5. Untar the file:

docker load -i cvo aws flexcache ubuntu image.tar

6. Wait a few minutes for the Docker image to load, and then validate that the Docker image loaded
successfully:

docker images

19

You should see a Docker image named cvo aws flexcache ubuntu image with the latest tag, as
shown in the following example:

REPOSITORY TAG IMAGE ID CREATED
SIZE

cvo_aws_ flexcache ubuntu image latest 18dbl5a4d59c 2 weeks ago
1.14GB

You can change the Docker image name if required. If you change the Docker image name,
make sure to update the Docker image name in the docker-compose-deploy and
docker-compose-destroy files.

Step 3: Create environment variable files

At this stage, you must create two environment variable files. One file is for authentication of AWS Resource
Manager APIs using the AWS access and secret keys. The second file is for setting environment variables to
enable BlueXP Terraform modules to locate and authenticate AWS APlIs.

Steps

1. Create the awsauth.env file in the following location:
path/to/env-file/awsauth.env
i. Add the following content to the awsauth.env file:

access_key=<>
secret_key=<>

The format must be exactly as shown above.

2. Add the absolute file path to the . env file.

Enter the absolute path for the awsauth.env environment file that corresponds to the AWS_CREDS
environment variable.

AWS CREDS=path/to/env-file/awsauth.env
3. Navigate to the cvo _aws_ variable folder and update the access and secret key in the credentials file.
Add the following content to the file:

aws_access_key id=<>
aws_secret_access_key=<>

The format must be exactly as shown above.
Step 4: Add Cloud Volumes ONTAP licenses to BlueXP or subscribe to BlueXP

You can add Cloud Volumes ONTAP licenses to BlueXP or subscribe to NetApp BlueXP in the AWS
Marketplace.

20

Steps
1. From the AWS portal, navigate to SaaS and select Subscribe to NetApp BlueXP.

You can either use the same resource group as Cloud Volumes ONTAP or a different resource group.
2. Configure the BlueXP portal to import the SaaS subscription to BlueXP.

You can configure this directly from the AWS portal.

You are redirected to the BlueXP portal to confirm the configuration.

3. Confirm the configuration in the BlueXP portal by selecting Save.

Step 5: Create an external volume

You should create an external volume to keep the Terraform state files, and other important files persistent. You
must make sure that the files are available for Terraform to run the workflow and deployments.

Steps
1. Create an external volume outside of Docker Compose:

docker volume create <volume name>

Example:

docker volume create cvo aws volume dst

2. Use one of the following options:

a. Add an external volume path to the . env environment file.
You must follow the exact format shown below.
Format:

PERSISTENT VOL=path/to/external/volume:/cvo_ aws

Example:
PERSISTENT_VOL:cvo_aws_volume_dst:/Cvo_aws

b. Add NFS shares as an external volume.

Make sure that the Docker container can communicate with the NFS shares and that the correct
permissions, such as read/write, are configured.

i. Add the NFS shares path as the path to the external volume in the Docker Compose file, as shown
below:
Format:

PERSISTENT VOL=path/to/nfs/volume:/cvo aws

21

3.

Example:
PERSISTENT VOL=nfs/mnt/document:/cvo_aws

Navigate to the cvo_aws variables folder.
You should see the following variable file in the folder:

° terraform.tfvars

° variables.tf

. Change the values inside the terraform. tfvars file according to your requirements.

You must read the specific supporting documentation when modifying any of the variable values in the
terraform.tfvars file. The values can vary depending on region, availability zones, and other factors
supported by Cloud Volumes ONTAP for AWS. This includes licenses, disk size, and VM size for single
nodes and high availability (HA) pairs.

All supporting variables for the Connector and Cloud Volumes ONTAP Terraform modules are already
defined in the variables. tf file. You must refer to the variable names in the variables. tf file before
adding to the terraform.tfvars file.

. Depending on your requirements, you can enable or disable FlexCache and FlexClone by setting the

following options to true or false.
The following examples enable FlexCache and FlexClone:

°is flexcache required = true

°is flexclone required = true

Step 6: Deploy Cloud Volumes ONTAP for AWS

Use the following steps to deploy Cloud Volumes ONTAP for AWS.

Steps

1.

22

From the root folder, run the following command to trigger deployment:

docker-compose -f docker-compose-deploy.yml up -d
Two containers are triggered, the first container deploys Cloud Volumes ONTAP and the second container
sends telemetry data to AutoSupport.

The second container waits until the first container completes all of the steps successfully.

Monitor progress of the deployment process using the log files:

docker-compose -f docker-compose-deploy.yml logs -f

This command provides output in real time and captures the data in the following log files:
deployment.log

telemetry asup.log

You can change the name of these log files by editing the . env file using the following environment
variables:

DEPLOYMENT LOGS

TELEMETRY ASUP LOGS

The following examples show how to change the log file names:
DEPLOYMENT LOGS=<your deployment log filename>.log

TELEMETRY ASUP LOGS=<your telemetry asup log filename>.log

After you finish

You can use the following steps to remove the temporary environment and clean up items that were created
during the deployment process.

Steps

1. If you deployed FlexCache, set the following option in the terraform. tfvars variable file, this cleans up
FlexCache volumes and removes the temporary environment that was created earlier.

flexcache operation = "destroy"
@ The possible options are deploy and destroy.

2. If you deployed FlexClone, set the following option in the terraform. tfvars variable file, this cleans up
FlexClone volumes and removes the temporary environment that was created earlier.

flexclone operation = "destroy"

@ The possible options are deploy and destroy.

Cloud Volumes ONTAP for Azure

Cloud Volumes ONTAP for Azure - Burst to cloud

This article supports the NetApp Cloud Volumes ONTAP for Azure Automation Solution,
which is available to NetApp customers from the BlueXP Automation Catalog.

The Cloud Volumes ONTAP for Azure Automation Solution automates the containerized deployment of Cloud
Volumes ONTAP for Azure using Terraform, enabling you to deploy Cloud Volumes ONTAP for Azure rapidly,
without any manual intervention.

Before you begin

* You must download the Cloud Volumes ONTAP Azure - Burst to cloud automation solution through the
BlueXP web Ul. The solution is packaged as CVO-Azure-Burst-To-Cloud. zip.

* You must install a Linux VM on the same network as Cloud Volumes ONTAP.

23

https://console.bluexp.netapp.com/automationCatalog

 After you install the Linux VM, you must follow the steps in this solution to install the required
dependencies.

Step 1: Install Docker and Docker Compose

Install Docker

The following steps use Ubuntu 20.04 Debian Linux distribution software as an example. The commands you
run depend on the Linux distribution software that you are using. Refer to the specific Linux distribution
software documentation for your configuration.

Steps
1. Install Docker by running the following sudo commands:

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent
software-properties-common curl -fsSL
https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Verify the installation:

docker -version

3. Verify that a group named "docker" has been created on your Linux system. If necessary, create the group:

sudo groupadd docker

4. Add the user that needs to access Docker to the group:

sudo usermod -aG docker $ (whoami)

5. Your changes are applied after you log out and log back in to the terminal. Alternatively, you can apply the
changes immediately:

newgrp docker

24

Install Docker Compose

Steps
1. Install Docker Compose by running the following sudo commands:

sudo curl -L
“https://github.com/docker/compose/releases/download/1.29.2/dockercompos
e— (LOJOOC =)= (uname -m)” -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Verify the installation:

docker-compose -version

Step 2: Prepare the Docker image

Steps

1. Copy the CVO-Azure-Burst-To-Cloud. zip folder to the Linux VM that you want to use to deploy
Cloud Volumes ONTAP:

scp -1 ~/<private-key>.pem -r CVO-Azure-Burst-To-Cloud.zip
<azureuser>Q@<IP ADDRESS OF VM>:<LOCATION TO BE COPIED>

° private-key.pem is your private key file for login without a password.

° azureuser is the VM username.

° IP_ADDRESS OF VMisthe VM IP address.

° LOCATION TO BE_COPIED is the location where the folder will be copied.

2. Extract the CVO-Azure-Burst-To-Cloud. zip folder. You can extract the folder in the current directory
or in a custom location.

To extract the folder in the current directory, run:
unzip CVO-Azure-Burst-To-Cloud.zip
To extract the folder in a custom location, run:

unzip CVO-Azure-Burst-To-Cloud.zip -d ~/<your folder name>

3. After you extract the content, navigate to the CVO_Azure Deployment folder and run the following
command to view the files:

25

1ls -1la

You should see a list of files, similar to the following example:

drwxr-xr-x@
drwxr-xr-x@
-rw-r--r--@
-rw-r--r--@
-rw-r--r--Q

-rw-r--r--@

-rw-r—-r-- 1

11 userl staff 352 May 5 13:56

5

1
1
1
1

userl staff
userl staff
userl staff
userl staff
userl staff
userl staff

160 May 5 14:24
324 May 5 13:18
1449 May 5 13:18 Dockerfile
35149 May 5 13:18 LICENSE
13356 May 5 14:26 README.md
354318151 May 5 13:51

.env

cvo_azure flexcache ubuntu image latest

drwxr-xr-x(@
-rw-r--r--@
-rw-r--r--Q

~rw-r--r--@

4

= e

userl staff
userl staff
userl staff
userl staff

128 May 5 13:18 cvo_azure variables

996 May 5 13:18 docker-compose-deploy.yml
1041 May 5 13:18 docker-compose-destroy.yml
4771 May 5 13:18 sp role.json

4. Locate the cvo _azure flexcache ubuntu image latest.tar.gz file. This contains the Docker
image required to deploy Cloud Volumes ONTAP for Azure.

5. Untar the file:

docker load -i cvo azure flexcache ubuntu image latest.tar.gz

6. Wait a few minutes for the Docker image to load, and then validate that the Docker image loaded
successfully:

docker images

You should see a Docker image named cvo_azure flexcache ubuntu_ image latest with the
latest tag, as shown in the following example:

REPOSITORY TAG IMAGE ID CREATED SIZE
cvo_azure flexcache ubuntu image latest 18dbl5a4d59c 2 weeks ago 1.14GB

Step 3: Create environment variable files

At this stage, you must create two environment variable files. One file is for authentication of Azure Resource

Manager APIs using service principal credentials. The second file is for setting environment variables to enable

BlueXP Terraform modules to locate and authenticate Azure APIs.

Steps

1. Create a service principal.

26

Before you can create the environment variable files, you must create a service principal by following the
steps in Create an Azure Active Directory application and service principal that can access resources.

2. Assign the Contributor role to the newly created service principal.

3. Create a custom role.
a. Locate the sp_role.json file and check for the required permissions under the actions listed.
b. Insert these permissions and attach the custom role to the newly created service principal.

4. Navigate to Certificates & secrets and select New client secret to create the client secret.

When you create the client secret, you must record the details from the Value column because you will not

be able to see this value again. You must also record the following information:

o Client ID
o Subscription 1D
o Tenant ID

You will need this information to create the environment variables. You can find client ID and tenant ID

information in the Overview section of the Service Principal Ul.

5. Create the environment files.

a. Create the azureauth.env file in the following location:
path/to/env-file/azureauth.env
i. Add the following content to the file:
clientld=<> clientSecret=<> subscriptionld=<> tenantld=<>
The format must be exactly as shown above without any spaces between the key and value.
b. Create the credentials.env file in the following location:
path/to/env-file/credentials.env
i. Add the following content to the file:

AZURE_TENANT [D=<>AZURE_CLIENT SECRET=<>
AZURE_CLIENT_ID=<> AZURE_SUBSCRIPTION_ID=<>

The format must be exactly as shown above without any spaces between the key and value.
6. Add the absolute file paths to the . env file.

Enter the absolute path for the azureauth.env environment file in the . env file that corresponds to the
AZURE_RM CREDS environment variable.

AZURE_RM CREDS=path/to/env-file/azureauth.env

Enter the absolute path for the credentials.env environment file in the . env file that corresponds to
the BLUEXP TF AZURE_CREDS environment variable.

27

https://learn.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

BLUEXP TF AZURE CREDS=path/to/env-file/credentials.env

Step 4: Add Cloud Volumes ONTAP licenses to BlueXP or subscribe to BlueXP

You can add Cloud Volumes ONTAP licenses to BlueXP or subscribe to NetApp BlueXP in the Azure
Marketplace.

Steps
1. From the Azure portal, navigate to SaaS and select Subscribe to NetApp BlueXP.
2. Select the Cloud Manager (by Cap PYGO by Hour, WORM and data services) plan.

You can either use the same resource group as Cloud Volumes ONTAP or a different resource group.
3. Configure the BlueXP portal to import the SaaS subscription to BlueXP.

You can configure this directly from the Azure portal by navigating to Product and plan details and
selecting the Configure account now option.

You will then be redirected to the BlueXP portal to confirm the configuration.
4. Confirm the configuration in the BlueXP portal by selecting Save.

Step 5: Create an external volume

You should create an external volume to keep the Terraform state files, and other important files persistent. You
must make sure that the files are available for Terraform to run the workflow and deployments.

Steps
1. Create an external volume outside of Docker Compose:

docker volume create « volume name »

Example:

docker volume create cvo azure volume dst

2. Use one of the following options:

a. Add an external volume path to the . env environment file.
You must follow the exact format shown below.

Format:
PERSISTENT VOL=path/to/external/volume:/cvo_azure

Example:
PERSISTENT VOL=cvo_ azure volume dst:/cvo azure

b. Add NFS shares as an external volume.

28

Make sure that the Docker container can communicate with the NFS shares and that the correct
permissions, such as read/write, are configured.

i. Add the NFS shares path as the path to the external volume in the Docker Compose file, as shown
below:
Format:

PERSISTENT VOL=path/to/nfs/volume:/cvo_azure

Example:
PERSISTENT VOL=nfs/mnt/document:/cvo_azure

3. Navigate to the cvo _azure variables folder.
You should see the following variable files in the folder:
terraform.tfvars
variables.tf

4. Change the values inside the terraform. t fvars file according to your requirements.
You must read the specific supporting documentation when modifying any of the variable values in the
terraform. tfvars file. The values can vary depending on region, availability zones and other factors
supported by Cloud Volumes ONTAP for Azure. This includes licenses, disk size, and VM size for single

nodes and high availability (HA) pairs.

All supporting variables for the Connector and Cloud Volumes ONTAP Terraform modules are already
defined in the variables. tf file. You must refer to the variable names in the variables. tf file before
adding to the terraform. tfvars file.

5. Depending on your requirements, you can enable or disable FlexCache and FlexClone by setting the
following options to true or false.

The following examples enable FlexCache and FlexClone:

°is flexcache required true

°is flexclone required true

6. If necessary, you can retrieve the value for the Terraform az_ service principal object id variable
from the Azure Active Directory Service:

a. Navigate to Enterprise Applications —> All Applications and select the name of the Service Principal
you created earlier.

b. Copy the object ID and insert the value for the Terraform variable:

az_service principal object id

Step 6: Deploy Cloud Volumes ONTAP for Azure

Use the following steps to deploy Cloud Volumes ONTAP for Azure.

Steps

29

1.

From the root folder, run the following command to trigger deployment:

docker-compose up -d

Two containers are triggered, the first container deploys Cloud Volumes ONTAP and the second container

sends telemetry data to AutoSupport.

The second container waits until the first container completes all of the steps successfully.

. Monitor progress of the deployment process using the log files:

docker-compose logs -—-f

This command provides output in real time and captures the data in the following log files:
deployment.log
telemetry asup.log

You can change the name of these log files by editing the . env file using the following environment
variables:

DEPLOYMENT LOGS

TELEMETRY ASUP_LOGS

The following examples show how to change the log file names:
DEPLOYMENT LOGS=<your deployment log filename>.log

TELEMETRY ASUP LOGS=<your telemetry asup log filename>.log

After you finish

You can use the following steps to remove the temporary environment and clean up items that were created

during the deployment process.

Steps

1.

2.

30

If you deployed FlexCache, set the following option in the terraform. tfvars file, this cleans up
FlexCache volumes and removes the temporary environment that was created earlier.

flexcache operation = "destroy"
@ The possible options are deploy and destroy.

If you deployed FlexClone, set the following option in the terraform. tfvars file, this cleans up
FlexClone volumes and removes the temporary environment that was created earlier.

flexclone operation = "destroy"

(D The possible options are deploy and destroy.

Cloud Volumes ONTAP for Google Cloud

Cloud Volumes ONTAP for Google Cloud - Burst to cloud

This article supports the NetApp Cloud Volumes ONTAP for Google Cloud Automation
Solution, which is available to NetApp customers from the BlueXP Automation Catalog.

The Cloud Volumes ONTAP for Google Cloud Automation Solution automates the containerized deployment of
Cloud Volumes ONTAP for Google Cloud, enabling you to deploy Cloud Volumes ONTAP for Google Cloud
rapidly, without any manual intervention.

Before you begin
* You must download the Cloud Volumes ONTAP for Google Cloud - Burst to cloud automation solution
through the BlueXP web Ul. The solution is packaged as cvo gcp flexcache.zip.
* You must install a Linux VM on the same network as Cloud Volumes ONTAP.

* After you install the Linux VM, you must follow the steps in this solution to install the required
dependencies.

Step 1: Install Docker and Docker Compose

Install Docker

The following steps use Ubuntu 20.04 Debian Linux distribution software as an example. The commands you
run depend on the Linux distribution software that you are using. Refer to the specific Linux distribution
software documentation for your configuration.

Steps
1. Install Docker by running the following commands:

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-
agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb release -cs) stable"
sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

2. Verify the installation:

docker -version

31

https://console.bluexp.netapp.com/automationCatalog

3. Verify that a group named "docker" has been created on your Linux system. If necessary, create the group:

sudo groupadd docker

4. Add the user that needs to access Docker to the group:

sudo usermod -aG docker $ (whoami)

5. Your changes are applied after you log out and log back in to the terminal. Alternatively, you can apply the
changes immediately:

newgrp docker

Install Docker Compose

Steps

1. Install Docker Compose by running the following sudo commands:

sudo curl -L
"https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$ (uname -s)-$ (uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker—-compose

2. Verify the installation:

docker-compose -version

Step 2: Prepare the Docker image

Steps

1. Copy the cvo_gcp flexcache.zip folder to the Linux VM that you want to use to deploy Cloud
Volumes ONTAP:

scp -1 ~/private-key.pem -r cvo gcp flexcache.zip
gcpuser@IP ADDRESS OF VM:LOCATION TO BE COPIED

° private-key.pem is your private key file for login without a password.
° gcpuser is the VM username.

° IP_ADDRESS OF VMisthe VM IP address.

32

° LOCATION TO BE COPIED is the location where the folder will be copied.

2. Extract the cvo_gcp_flexcache. zip folder. You can extract the folder in the current directory or in a

custom location.

To extract the folder in the current directory, run:

unzip cvo gcp flexcache.zip

To extract the folder in a custom location, run:

unzip cvo gcp flexcache.zip -d ~/<your folder name>

3. After you extract the content, run the following command to view the files:

ls -1la

You should see a list of files, similar to the following example:

total 32

drwxr—-xr-x
drwxr—-xr-x
—-Yw—r——-r-—-—
—-Yw-r——-r—-—
drwxr—-xr-x

drwxr-xr-x

-rwW-r—-r-—-
deploy.yml
—rw-r—-r-—-—

destroy.yml

1

= s 0P P o ©

user
user
user
user
user
user

user

user

staff
staff
staff
staff
staff
staff
staff

staff

256
192
324
1449
480
128
996

1041

Mar
Mar
Apr
Mar
Mar
Apr
Mar

Mar

23
22
12
23
23
27
24

24

12

04:

:26
08:
21:
13:
13:
13:
04:

04
37
19
19
43
06

06

.env
Dockerfile

CVOo_gcp_ source code
cvo_gcp variables
docker-compose-

docker-compose-

4. Locate the cvo _gcp_flexcache ubuntu image.tar file. This contains the Docker image required to
deploy Cloud Volumes ONTAP for Google Cloud.

5. Untar the file:

docker load -i cvo _gcp flexcache ubuntu image.tar

6. Wait a few minutes for the Docker image to load, and then validate that the Docker image loaded

successfully:

docker images

33

You should see a Docker image named cvo gcp flexcache ubuntu image with the latest tag, as
shown in the following example:

REPOSITORY TAG IMAGE ID CREATED
SIZE

cvo _gcp_ flexcache ubuntu image latest 18dbl5a4d59c 2 weeks
ago 1.14GB

You can change the Docker image name if required. If you change the Docker image name,
make sure to update the Docker image name in the docker-compose-deploy and
docker-compose-destroy files.

Step 3: Update the JSON file

At this stage, you must update the cxo-automation-gcp. json file with a service account key to
authenticate the Google Cloud provider.

1. Create a service account with permissions to deploy Cloud Volumes ONTAP and the BlueXP Connector.
Learn more about creating service accounts.

2. Download the key file for the account and update the cxo-automation-gcp.json file with the key file
information. The cxo-automation-gcp.json file is located in the cvo gcp variables folder.

Example

"type": "service account",

"project id": "",

"private key id": "",

"private key": "",

"client email": "",

"client id": "",

"auth uri": "https://accounts.google.com/o/oauth2/auth",

"token uri": "https://oauth2.googleapis.com/token",

"auth provider x509 cert url":
"https://www.googleapis.com/ocauth2/v1/certs",

"client x509 cert url": "",

"universe domain": "googleapis.com"

The file format must be exactly as shown above.

Step 4: Subscribe to BlueXP
You can subscribe to NetApp BlueXP in the Google Cloud Marketplace.

Steps

34

https://cloud.google.com/iam/docs/service-accounts-create

1. Navigate to the Google Cloud console and select Subscribe to NetApp BlueXP.
2. Configure the BlueXP portal to import the SaaS subscription to BlueXP.

You can configure this directly from the Google Cloud Platform. You will be redirected to the BlueXP portal
to confirm the configuration.

3. Confirm the configuration in the BlueXP portal by selecting Save.

For more information, see Manage Google Cloud credentials and subscriptions for BlueXP.

Step 5: Enable required Google Cloud APls

You must enable the following Google Cloud APls in your project to deploy Cloud Volumes ONTAP and the
Connector.

* Cloud Deployment Manager V2 API

* Cloud Logging API

» Cloud Resource Manager API

» Compute Engine API

* Identity and Access Management (IAM) API

Learn more about enabling APIs

Step 6: Create an external volume

You should create an external volume to keep the Terraform state files and other important files persistent. Yo
must make sure that the files are available for Terraform to run the workflow and deployments.

Steps

1. Create an external volume outside of Docker Compose:

docker volume create <volume name>

Example:

docker volume create cvo gcp volume dst

2. Use one of the following options:

a. Add an external volume path to the . env environment file.
You must follow the exact format shown below.
Format:

PERSISTENT VOL=path/to/external/volume:/cvo gcp

Example:
PERSISTENT VOL=cvo gcp volume dst:/cvo gcp

u

35

https://console.cloud.google.com/marketplace/product/netapp-cloudmanager/cloud-manager
https://docs.netapp.com/us-en/bluexp-setup-admin/task-adding-gcp-accounts.html#associate-a-marketplace-subscription-with-google-cloud-credentials
https://cloud.google.com/apis/docs/getting-started#enabling_apis

b. Add NFS shares as an external volume.

Make sure that the Docker container can communicate with the NFS shares and that the correct
permissions, such as read/write, are configured.

i. Add the NFS shares path as the path to the external volume in the Docker Compose file, as shown
below:
Format:

PERSISTENT VOL=path/to/nfs/volume:/cvo gcp

Example:
PERSISTENT VOL=nfs/mnt/document:/cvo gcp

3. Navigate to the cvo _gcp variables folder.
You should see the following files in the folder:

° terraform.tfvars
° variables.tf

4. Change the values inside the terraform. tfvars file according to your requirements.

You must read the specific supporting documentation when modifying any of the variable values in the
terraform. tfvars file. The values can vary depending on region, availability zones, and other factors
supported by Cloud Volumes ONTAP for Google Cloud. This includes licenses, disk size, and VM size for
single nodes and high availability (HA) pairs.

All supporting variables for the Connector and Cloud Volumes ONTAP Terraform modules are already
defined in the variables. tf file. You must refer to the variable names in the variables. tf file before
adding to the terraform.tfvars file.

5. Depending on your requirements, you can enable or disable FlexCache and FlexClone by setting the
following options to true or false.

The following examples enable FlexCache and FlexClone:

°is flexcache required true

°is flexclone required true

Step 7: Deploy Cloud Volumes ONTAP for Google Cloud
Use the following steps to deploy Cloud Volumes ONTAP for Google Cloud.

Steps
1. From the root folder, run the following command to trigger deployment:

docker-compose -f docker-compose-deploy.yml up -d

Two containers are triggered, the first container deploys Cloud Volumes ONTAP and the second container
sends telemetry data to AutoSupport.

36

The second container waits until the first container completes all of the steps successfully.

2. Monitor progress of the deployment process using the log files:

docker-compose -f docker-compose-deploy.yml logs -f
This command provides output in real time and captures the data in the following log files:
deployment.log
telemetry asup.log

You can change the name of these log files by editing the . env file using the following environment
variables:

DEPLOYMENT LOGS

TELEMETRY ASUP_LOGS

The following examples show how to change the log file names:
DEPLOYMENT LOGS=<your deployment log filename>.log

TELEMETRY ASUP LOGS=<your telemetry asup log filename>.log

After you finish

You can use the following steps to remove the temporary environment and clean up items that were created
during the deployment process.

Steps

1. If you deployed FlexCache, set the following option in the terraform. tfvars file, this cleans up
FlexCache volumes and removes the temporary environment that was created earlier.

flexcache operation = "destroy"
(D The possible options are deploy and destroy.

2. If you deployed FlexClone, set the following option in the terraform. tfvars file, this cleans up
FlexClone volumes and removes the temporary environment that was created earlier.

flexclone operation = "destroy"

(D The possible options are deploy and destroy.

ONTAP

Day 0/1

Overview of the ONTAP day 0/1 solution

You can use the ONTAP day 0/1 automation solution to deploy and configure an ONTAP
cluster using Ansible. The solution is available from the BlueXP automation catalog.

Flexible ONTAP deployment options

Depending on your requirements, you can use on-premises hardware or Simulate ONTAP to deploy and
configure an ONTAP cluster using Ansible.

On-premises hardware

You can deploy this solution using on-premises hardware running ONTAP, such as a FAS or an AFF system.
You must use a Linux VM to deploy and configure the ONTAP cluster using Ansible.

Simulate ONTAP

To deploy this solution using an ONTAP simulator, you must download the latest version of Simulate ONTAP
from the NetApp support site. Simulate ONTAP is a virtual simulator for ONTAP software. Simulate ONTAP
runs in a VMware hypervisor on a Windows, Linux, or Mac system. For Windows and Linux hosts, you must
use the VMware Workstation hypervisor to run this solution. If you have a Mac OS, use the VMware Fusion
hypervisor.

Layered design

The Ansible framework simplifies the development and reuse of automation execution and logic tasks. The
framework makes a distinction between decision-making tasks (logic layer), and the execution steps (execution
layer) in automation. Understanding how these layers work enables you to customize the configuration.

An Ansible "playbook" executes a series of tasks from start to finish. The site.yml playbook contains the
logic.yml playbook and the execution.yml playbook.

When a request is run, the site. yml playbook makes a call to the 1ogic.yml playbook first, and then calls
the execution.yml playbook to execute the service request.

You are not required to use the logic layer of the framework. The logic layer provides options to expand the
capability of the framework beyond the hard-coded values for execution. This enables you to customize the
framework capabilities if required.

Logic layer

The logic layer consists of the following:

* The logic.yml playbook
* Logic task files within the 1ogic-tasks directory
The logic layer provides the capability for complex decision making without the need for significant custom

integration (for example, connecting to ServiceNOW). The logic layer is configurable and provides the input to
microservices.

The ability to bypass the logic layer is also provided. If you want to bypass the logic layer, do not define the
logic_operation variable. Direct invocation of the logic. yml playbook provides the ability to do some
level of debugging without execution. You can use a "debug" statement to verify that the value of the

raw_service request is correct.

Important considerations:

38

https://console.bluexp.netapp.com/automationCatalog

* The logic.yml playbook searches for the 1ogic operation variable. If the variable is defined in the
request, it loads a task file from the 1ogic-tasks directory. The task file must be a .yml file. If there is no
matching task file and the Logic operation variable is defined, the logic layer fails.

* The default value of the logic operation variable is no-op. If the variable is not explicitly defined, it
defaults to no-op, which does not run any operations.

* Ifthe raw_service request variable is already defined, then execution proceeds to the execution layer.
If the variable is not defined, the logic layer fails.

Execution layer
The execution layer consists of the following:

* The execution.yml playbook

The execution layer makes the API calls to configure an ONTAP cluster. The execution.yml playbook
requires that the raw service request variable is defined when executed.

Support for customization

You can customize this solution in various ways depending on your requirements.
Customization options include:

* Modifying Ansible playbooks
« Adding roles

Customize Ansible files
The following table describes the customizable Ansible files contained in this solution.

Location Description

playbooks/inventory Contains a single file with a list of hosts and groups.
/hosts

playbooks/group var Ansible provides a convenient way to apply variables to multiple hosts at once.

s/all/* You can modify any or all files in this this folder including cfg. ym1,
clusters.yml, defaults.yml, services.yml, standards.yml, and
vault.yml.

playbooks/logic- Supports decision-making tasks within Ansible and maintains the separation of

tasks logic and execution. You can add files to this folder that correspond to the relevant
service.

playbooks/vars/* Dynamic values used within Ansible playbooks and roles to enable customization,

flexibility, and reusability of configurations. If necessary, you can modify any or all
files in this folder.

Customize roles

You can also customize the solution by adding or changing Ansible roles, also called microservices. For more
details, see Customize.

39

Prepare to use the ONTAP day 0/1 solution

Before you deploy the automation solution, you must prepare the ONTAP environment
and install and configure Ansible.

Initial planning considerations

You should review the following requirements and considerations before using this solution to deploy an
ONTARP cluster.

Basic requirements
You must meet the following basic requirements to use this solution:

* You must have access to ONTAP software, either on-premises or through an ONTAP simulator.
* You must know how to use ONTAP software.

* You must know how to use Ansible automation software tools.

Planning considerations
Before deploying this automation solution, you must decide:

* The location where you are going to run the Ansible control node.
* The ONTAP system, either on-premises hardware or an ONTAP simulator.

* Whether or not you will require customization.

Prepare the ONTAP system

Whether you are using an on-premises ONTAP system or Simulate ONTAP, you must prepare the environment

before you can deploy the automation solution.

Optionally, install and configure Simulate ONTAP
If you want to deploy this solution through an ONTAP simulator, you must download and run Simulate ONTAP.

Before you begin
* You must download and install the VMware hypervisor that you are going to use to run Simulate ONTAP.

o If you have a Windows or Linux OS, use VMware Workstation.

o If you have a Mac OS, use VMware Fusion.

@ If you are using a Mac OS, you must have an Intel processor.

Steps
Use the following procedure to install two ONTAP simulators in your local environment:

1. Download Simulate ONTAP from the NetApp support site.

@ Although you install two ONTAP simulators, you only need to download one copy of the
software.

2. If it is not already running, start your VMware application.

40

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

3. Locate the simulator file that was downloaded and right click to open it with the VMware application.
4. Set the name of the first ONTAP instance.

5. Wait for the simulator boot up and follow the directions to create a single node cluster.
Repeat the steps for the second ONTAP instance.
6. Optionally, add a full disk complement.

From each cluster, run the following commands:

security unlock -username <user 01>
security login password -username <user 01>
set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

State of the ONTAP system

You must verify the initial state of the ONTAP system, whether it is on-premises or running through an ONTAP
simulator.

Verify that the following ONTAP system requirements are met:

* ONTAP is installed and running with no cluster defined yet.

* ONTAP is booted and displaying the IP address to access the cluster.
* The network is reachable.

* You have admin credentials.

* The Message of the Day (MOTD) banner is displayed with the management address.

Install the required automation software

This section provides information on how to install Ansible and prepare the automation solution for deployment.

Install Ansible

Ansible can be installed on Linux or Windows systems.
The default communication method that Ansible uses to communicate with an ONTAP cluster is SSH.

Refer to Getting Started with NetApp and Ansible: Install Ansible to install Ansible.

@ Ansible must be installed on the control node of the system.

Download and prepare the automation solution

You can use the following steps to download and prepare the automation solution for deployment.

1. Download the ONTAP - Day 0/1 & Health Checks automation solution through the BlueXP web UI. The
solution is packaged as ONTAP DAYO DAY1.zip.

41

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://console.bluexp.netapp.com/automationCatalog

2. Extract the zip folder and copy the files to the desired location on the control node within your Ansible
environment.

Initial Ansible framework configuration

Perform the initial configuration of the Ansible framework:

1. Navigate to playbooks/inventory/group vars/all

2. Decrypt the vault.yml file:
ansible-vault decrypt playbooks/inventory/group vars/all/vault.yml
When prompted for the vault password, enter the following temporary password:

NetAppl23!

"NetApp123!" is a temporary password to decrypt the vault.yml file and the
corresponding vault password. After first use, you must encrypt the file using your own
password.

3. Modify the following Ansible files:

° clusters.yml - Modify the values in this file to suit your environment.

° vault.yml - After decrypting the file, modify the ONTAP cluster, username and password values to
suit your environment.

° cfg.yml - Set the file path for Log2file and set show request under cfg to True to display the
raw_service request.

The raw_service request variable is displayed in the log files and during execution.

(D Each file listed contains comments with instructions on how to modify it according to
your requirements.

4. Re-encrypt the vault.yml file:
ansible-vault encrypt playbooks/inventory/group vars/all/vault.yml
@ You are prompted to choose a new password for the vault upon encryption.

5. Navigate to playbooks/inventory/hosts and set a valid Python interpreter.
6. Deploy the framework test service:
The following command runs the na _ontap info module with a gather subset value of

cluster identity info. This validates that the basic configuration is correct and verifies that you can
communicate with the cluster.

42

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<CLUSTER NAME>
-e logic operation=framework-test

Run the command for each cluster.

If successful, you should see output similar to the following example:

PLAY RECAP

R IR I e S b IR I b b b b Ib b db b Sb b SR S b 2 b b dh b db b i db b R S b b b b 2R b db b b b 2 db b b Sb b b I db b i db b e db b b I b db S 4

Xk kkkkk kK

localhost : 0k=12 changed=1 unreachable=0 failed=0 skipped=6
The key is ‘rescued=0’ and ‘failed=0'..

Deploy the ONTAP cluster using the solution

After completing the preparation and planning, you are ready to use the ONTAP day 0/1
solution to quickly configure an ONTAP cluster using Ansible.

At any time during the steps in this section, you can choose to test a request instead of actually executing it. To
test a request, change the site.yml playbook on the command line to logic.yml.

The docs/tutorial-requests. txt location contains the final version of all service requests
used throughout this procedure. If you have difficulty running a service request, you can copy

@ the relevant request from the tutorial-requests. txt file to the
playbooks/inventory/group vars/all/tutorial-requests.yml location and modify
the hard-coded values as required (IP address, aggregate names and so on). You should then
be able to successfully run the request.

Before you begin

* You must have Ansible installed.

* You must have downloaded the ONTAP day 0/1 solution and extracted the folder to the desired location on
the Ansible control node.

» The ONTAP system state must meet the requirements and you must have the necessary credentials.

* You must have completed all required tasks outlined in the Prepare section.

(D The examples throughout this solution use "Cluster_01" and "Cluster_02" as the names for the
two clusters. You must replace these values with the names of the clusters in your environment.

Step 1: Initial cluster configuration

At this stage, you must perform some initial cluster configuration steps.

Steps

1. Navigate to the playbooks/inventory/group vars/all/tutorial-requests.yml location and

43

review the cluster initial requestin the file. Make any necessary changes for your environment.

2. Create a file in the 1ogic-tasks folder for the service request. For example, create a file called
cluster initial.yml.

Copy the following lines to the new file:

- name: Validate required inputs
ansible.builtin.assert:
that:

- service 1s defined

- name: Include data files
ansible.builtin.include vars:
file: "{{ data file name }}.yml"
loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver-common-stds
loop control:
loop var: data file name

- name: Initial cluster configuration
set fact:
raw_service request:

3. Define the raw_service request variable.

You can use one of the following options to define the raw _service request variable in the
cluster initial.yml file you created in the 1ogic-tasks folder:

° Option 1: Manually define the raw_service request variable.
Open the tutorial-requests.yml file using an editor and copy the content from line 11 to line 165.

Paste the content under the raw service request variable in the new cluster initial.yml
file, as shown in the following examples:

44

45

Show example

Example cluster initial.yml file:

- name: Validate required inputs
ansible.builtin.assert:
that:
- service is defined

- name: Include data files
ansible.builtin.include vars:
file: "{{ data file name }}.yml"
loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver-common-stds
loop control:
loop var: data file name

- name: Initial cluster configuration
set fact:

raw _service request:

service: cluster initial
operation: create
std name: none

req details:

ontap aggr:

- hostname: "{{ cluster name }}"
disk count: 24
name: n0l aggrl
nodes: "{{ cluster name }}-01"
raid type: raid4

- hostname: "{{ peer cluster name }}"
disk count: 24
name: n0l aggrl
nodes: "{{ peer cluster name }}-01"
raid type: raid4

ontap license:

- hostname: "{{ cluster name }}"
license codes:
= XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA

hostname:

XX XX XXX XXX XXXXAAAAAAAAAAAAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
AXXXXXXXXXXXXXAAAAAAAAAAAAAA
XAXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA

license codes:

AXXXXXXXXXXXXXAAAAAAAAAAAAAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA

"{{ peer cluster name }}"

47

— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXKXXXXXXXXXXAAAAAAAAAAAAAA

ontap motd:

- hostname: "{{ cluster name }}"
vserver: "{{ cluster name }}"
message: "New MOTD"

- hostname: "{{ peer cluster name }}"
vserver: "{{ peer cluster name }}"
message: "New MOTD"

ontap interface:

- hostname: "{{ cluster name }}"
vserver: "{{ cluster name }}"
interface name: ic01
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

- hostname: "{{ cluster name }}"
vserver: "{{ cluster name }}"
interface name: ic02
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ cluster name }}-01"

home port: elc

ipspace: Default

use rest: never

- hostname: "{{ peer cluster name }}"
vserver: "{{ peer cluster name }}"
interface name: ic01
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

- hostname: "{{ peer cluster name }}"
vserver: "{{ peer cluster name }}"
interface name: ic02
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

ontap cluster peer:

- hostname: "{{ cluster name }}"
dest cluster name: "{{ peer cluster name }}"
dest intercluster lifs: "{{ peer lifs }}"
source cluster name: "{{ cluster name }}"
source intercluster lifs: "{{ cluster 1lifs }}"

peer options:
hostname: "{{ peer cluster name }}"

o Option 2: Use a Jinja template to define the request:
You can also use the following Jinja template format to get the raw _service request value.
raw _service request: "{{ cluster initial }}"

4. Perform the initial cluster configuration for the first cluster:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01>

Verify that there are no errors before proceeding.

5. Repeat the command for the second cluster:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 02>

Verify that there are no errors for the second cluster.

When you scroll up towards the beginning of the Ansible output you should see the request that was sent
to the framework, as shown in the following example:

50

Show example

TASK [Show the raw service request]
B b 4

KAk AR A AR A AN A A I AR I AN A AN A AN A AKX A KA I A AKX A Xk kK

ok: [localhost] => {
"raw_service request": {
"operation": "create",
"reg details": {
"ontap aggr": |
{
"disk count": 24,
"hostname": "Cluster 01",
"name": "nOl aggrl",
"nodes": "Cluster 01-01",
"raid type": "raid4"

1,
"ontap license": |
{

"hostname": "Cluster 01",

"license codes": |
"XXXXXXKXXXXXXXXXAAAAAAAAAAAA",
TXXXKXXXKXXKXKXXXXXAAAAAAAAAAAAA",
TXXXXKXXXKXKXXKXKXXXAAAAAAAAAAAAA"T,
XXX XXX XXXXXXXXAAAAAAAAAAAAA",
XX XKXXXKXKXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXKXXKXKXXKXXXXAAAAAAAAAAAAAL"T,
XXX XXX XXXXXXXXAAAAAAAAAAAAA",
TXXXKXXXXXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXKXXKXKXXKXXXXAAAAAAAAAAAAA"T,
TXXXXXXXXXXXXXXAAAAAAAAAAAAA",
TXXXKXXKXXKXKXKXXXXXAAAAAAAAAAAAA",
TXXXXKXKXXKXKXXKXKXXXAAAAAAAAAAAAA"T,
XXX XX XKXXXXXXXXAAAAAAAAAAAAA",
TXXXKXXKXKXKXKXKXKXKXXXAAAAAAAAAAAAA",
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
TXXXKXXXXXKXKXXXXXAAAAAAAAAAAAA"T,
TXXXKXXKXKXKXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
XX XXX KXXXKXKXXXXXAAAAAAAAAAAAA",
TXXXKXXKXKXKXXKXKXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
XX XXX XXXKXKXXXXXAAAAAAAAAAAAA"T,
XX XXX KXKXKXKXKXKXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,

51

TXXXXXXXXXXXXXXAAAAAAAAAARAAAT,
XX XXX XXXXKXXXXXAAAAAAAAAAAAAT,
"TXXXKXXXXXXXXXXXAAAAAAAAAAAAA"T,
TXXXXXXXXXXXXXXAAAAAAAAAAAAAT,
TXXXXXXXXXKXXXXXAAAAAAAAAAAAAT,
"TXXXXXXXXXKXXXXXAAAAAAAAAAAAA",
TXXXXXXXXXXXXXXAAAAAAAAAAAAAT,
XX XXX XXXXXXXXXAAAAAAAAAAAAAT,
"TXXXXXXXXXXXXXXAAAAAAAAAAAAA",
TXXXXX XX XXX XXX XAAAAAAAAAAAAAT

1,

"ontap motd": |

{

"hostname": "Cluster 01",
"message": "New MOTD",
"vserver": "Cluster OL"
}
]

by

"service": "cluster initial",

"std name": "none"

6. Log in to each ONTAP instance and verify that the request was successful.

Step 2: Configure the intercluster LIFs

You can now configure the intercluster LIFs by adding the LIF definitions to the cluster initial request
and defining the ontap interface microservice.

The service definition and the request work together to determine the action:

« If you provide a service request for a microservice that is not in the service definitions, the request is not
executed.

« If you provide a service request with one or more microservices defined in the service definitions, but
omitted from the request, the request is not executed.

The execution. yml playbook evaluates the service definition by scanning the list of microservices in the
order listed:

* If there is an entry in the request with a dictionary key matching the args entry contained in the
microservice definitions, the request is executed.

« If there is no matching entry in the service request, the request is skipped without error.

Steps

52

1. Navigate to the cluster initial.yml file that you created previously and modify the request by adding
the following lines to the request definitions:

53

54

ontap interface:
- hostname:

vServer:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:

use rest:

"{{ cluster name }}"
"{{ cluster name }}"
ic01

intercluster

<ip address>

<netmask address>

"{{ cluster name }}-01"
elc

Default

never

"{{ cluster name }}"
"{{ cluster name }}"
ic02

intercluster

<ip address>

<netmask address>

"{{ cluster name }}-01"
elc

Default

never

"{{ peer cluster name }}"
"{{ peer cluster name }}"
ic01

intercluster

<ip address>

<netmask address>

"{{ peer cluster name }}-01"
elc

Default

never

"{{ peer cluster name }}"
"{{ peer cluster name }}"
ic02

intercluster

<ip address>

<netmask address>

"{{ peer cluster name }}-01"
elc

Default

never

2. Run the command:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01> -e peer cluster name=<Cluster 02>

3. Log in to each instance to check if the LIFs have been added to the cluster:

Show example

Cluster 01::> net int show
(network interface show)

Logical Status Network Current
Current Is
Vserver Interface Admin/Oper Address/Mask Node
Port Home

Cluster 01

Cluster 01-01 mgmt up/up 10.0.0.101/24 Cluster 01-01
elc true

Cluster 01-01 mgmt auto up/up 10.101.101.101/24
Cluster 01-01 eOc true

cluster mgmt up/up 10.0.0.110/24 Cluster 01-01
elc true

5 entries were displayed.

The output shows that the LIFs were not added. This is because the ontap interface microservice still
needs to be defined in the services. yml file.

4. Verify that the LIFs were added to the raw_service request variable.

55

Show example

The following example shows that the LIFs have been added to the request:

"ontap interface": |

{

"address": "10.0.0.101",
"home node": "Cluster 01-01",
"home port": "eOc",
"hostname": "Cluster 01",
"interface name": "icO1l",
"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 01"

by

{
"address": "10.0.0.101",
"home node": "Cluster 01-01",
"home port": "eOc",
"hostname": "Cluster 01",
"interface name": "ic02",
"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 01"

by

{
"address": "10.0.0.101",
"home node": "Cluster 02-01",
"home port": "eOc",
"hostname": "Cluster 02",
"interface name": "icO1l",
"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 02"

b

{
"address": "10.0.0.126",
"home node": "Cluster 02-01",
"home port": "eOc",

"hostname": "Cluster 02",

"interface name": "ic02",

"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 02"

9. Define the ontap interface microservice under cluster initial inthe services.ynl file.

Copy the following lines to the file to define the microservice:

- name: ontap interface
args: ontap interface
role: na/ontap interface

6. Now that the ontap interface microservice has been defined in the request and the services.yml
file, run the request again:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01> -e peer cluster name=<Cluster 02>

7. Log in to each ONTAP instance and verify that the LIFs have been added.

Step 3: Optionally, configure multiple clusters

If required, you can configure multiple clusters in the same request. You must provide variable names for each
cluster when you define the request.

Steps

1. Add an entry for the second cluster in the cluster initial.yml file to configure both clusters in the
same request.

The following example displays the ontap aggr field after the second entry is added.

57

ontap aggr:

- hostname:
disk count:
name:
nodes:
raid type:

- hostname:
disk count:
name:
nodes:
raid type:

"{{ cluster name }}"

24

n0l aggrl

"{{ cluster name }}-01"

raid4

"{{ peer cluster name }}"

24

n0l aggrl

"{{ peer cluster name }}-01"
raid4

2. Apply the changes for all other items under cluster initial.

3. Add cluster peering to the request by copying the following lines to the file:

ontap cluster peer:
- hostname:
dest cluster name:
dest intercluster lifs:

source cluster name:

source intercluster lifs:

peer options:
hostname:

4. Run the Ansible request:

"{{ cluster name }}"
"{{ cluster peer }}"
"{{ peer lifs }}"

"{{ cluster name }}"
"{{ cluster 1lifs }}"

"{{ cluster peer }}"

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01>

site.yml -e peer cluster name=<Cluster 02> -e
cluster lifs=<cluster 1if 1 IP address,cluster 1if 2 IP address>

-e peer lifs=<peer 1if 1 IP address,peer 1if 2 IP address>

Step 4: Initial SVM configuration

At this stage in the procedure, you configure the SVMs in the cluster.

Steps

1. Update the svm_initial requestin the tutorial-requests.yml file to configure an SVM and SVM

peer relationship.
You must configure the following:

> The SVM

58

o The SVM peer relationship
o The SVM interface for each SVM

2. Update the variable definitions in the svm_initial request definitions. You must modify the following

variable definitions:
° cluster name
° vserver name
° peer cluster name

° peer vserver

To update the definitions, remove the ‘{}’ after req details forthe svm initial definition and add

the correct definition.

3. Create a file in the 1ogic-tasks folder for the service request. For example, create a file called

svm_initial.yml.

Copy the following lines to the file:

- name: Validate required inputs
ansible.builtin.assert:
that:

- service 1is defined

- name: Include data files

ansible.builtin.include vars:

file: "{{ data file name }}.yml"

loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver-common-stds
loop control:
loop var: data file name

- name: Initial SVM configuration

set fact:

raw service request:

4. Define the raw_service request variable.

You can use one of the following options to define the raw service request variable for

svm_initial inthe logic-tasks folder:

° Option 1: Manually define the raw service request variable.

Open the tutorial-requests.yml file using an editor and copy the content from line 179 to line

59

60

222. Paste the content under the raw service request variable in the new svm initial
file, as shown in the following examples:

.yml

Show example

Example svm_initial.yml file:

- name: Validate required inputs

ansible.builtin.assert:
that:

- S

— name:

ansible.builtin.include vars:

fil
loop:

ervice is defined

Include data files

e: "{{ data file name }}.yml"

- common-site-stds

— use

r-inputs

- cluster-platform-stds

- vse

loop
loop var:

— name:

rver—-common-stds

control:

Initial SVM configuration

set fact:

raw _service request:

se

operation:

st

re

O

O

O

rvice:
create
d name: none

g details:

ntap vserver:
hostname:

name:

root volume aggregate:

hostname:
name:

root volume aggregate:

ntap vserver peer:

hostname:

vserver:

peer vserver:

applications:

peer options:
hostname:

ntap interface:

data file name

svm initial

"{{ cluster name }}"
"{{ vserver name }}"

n0l aggrl

"{{ peer cluster name
"{{ peer vserver }}"

n0l aggrl

"{{ cluster name }}"
"{{ vserver name }}"
"{{ peer vserver }}"

snapmirror

"{{ peer cluster name

}}"

}}"

61

62

- hostname: "{{ cluster name }}"

vserver: "{{ vserver name }}"
interface name: dataO1l
role: data
address: 10.0.0.200
netmask: 255.255.255.0
home node: "{{ cluster name }}-01"
home port: elc
ipspace: Default
use rest: never
- hostname: "{{ peer cluster name }}"
vserver: "{{ peer vserver }}"
interface name: data0O1l
role: data
address: 10.0.0.201
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

o Option 2: Use a Jinja template to define the request:

You can also use the following Jinja template format to get the raw_service request value.

raw service request: "{{ svm initial }}"

. Run the request:

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01> -e
peer cluster name=<Cluster 02> -e peer vserver=<SVM 02> -e
vserver name=<SVM 01> site.yml

. Log in to each ONTAP instance and validate the configuration.

. Add the SVM interfaces.

Define the ontap interface service under svm_initial inthe services.yml file and run the
request again:

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01> -e
peer cluster name=<Cluster 02> -e peer vserver=<svM 02> -e
vserver name=<SVM 01> site.yml

8. Log in to each ONTAP instance and verify that the SVM interfaces have been configured.

Step 5: Optionally, define a service request dynamically

In the previous steps, the raw service request variable is hard-coded. This is useful for learning,
development, and testing. You can also dynamically generate a service request.

The following section provides an option to dynamically produce the required raw_service request if you
do not want to integrate it with higher level systems.

* Ifthe logic operation variable is not defined in the command, the 1ogic. yml file does
not import any file from the 1ogic-tasks folder. This means the raw service request
must be defined outside of Ansible and provided to the framework on execution.

@ * Atask file name in the 1ogic-tasks folder must match the value of the
logic operation variable without the .yml extension.

* The task files in the logic-tasks folder dynamically define a raw service request.
The only requirement is that a valid raw_service request be defined as the last task in
the relevant file.

How to dynamically define a service request

There are multiple ways to apply a logic task to dynamically define a service request. Some of these options
are listed below:

* Using a Ansible task file from the 1ogic-tasks folder
* Invoking a custom role that returns data suitable for converting to a raw_service request varaible.

* Invoking another tool outside of the Ansible environment to provide the required data. For example, a
REST API call to Active 1Q Unified Manager.

The following example commands dynamically define a service request for each cluster using the tutorial-
requests.yml file:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster 01

-e logic operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster 02
-e logic operation=tutorial-requests site.yml

Step 6: Deploy the ONTAP day 0/1 solution

At this stage you should have already completed the following:

63

* Reviewed and modified all files in playbooks/inventory/group vars/all according to your
requirements. There are detailed comments in each file to help you make the changes.

* Added any required task files to the the 1ogic-tasks directory.

* Added any required data files to the playbook/vars directory.

Use the following commands to deploy the ONTAP day 0/1 solution and verify the health of your deployment:

@ At this stage, you should have already decrypted and modified the vault.yml file and it must
be encrypted with your new password.

Run the ONTAP day 0 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster day 0 -e service=cluster day 0 -vvvv --ask-vault
-pass <your vault password>

Run the ONTAP day 1 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster day 1 -e service=cluster day 0 -vvvv --ask-vault
-pass <your vault password>

Apply cluster wide settings:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster wide settings -e service=cluster wide settings
-vvvv --ask-vault-pass <your vault password>

Run health checks:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=health checks -e service=health checks -e
enable health reports=true -vvvv --ask-vault-pass <your vault password>

Customize the ONTAP day 0/1 solution

To customize the ONTAP day 0/1 solution for your requirements, you can add or change
Ansible roles.

Roles represent the microservices within the Ansible framework. Each microservice performs one operation.
For example, ONTAP day 0 is a service that contains multiple microservices.

64

Add Ansible roles

You can add Ansible roles to customize the solution for your environment. Required roles are defined by
service definitions within the Ansible framework.

A role must meet the following requirements to be used as a microservice:

Accept a list of arguments in the args variable.
Use the Ansible "block, rescue, always" structure with certain requirements for each block.
Use a single Ansible module and define a single task within the block.

Implement every available module parameter according to the requirements detailed in this section.

Required microservice structure

Each role must support the following variables:

mode: If mode is set to test the role attempts to import the test . yml which shows what the role does
without actually executing it.

@ It is not always possible to implement this because of certain interdependencies.
status: The overall status of playbook execution. If the value is not set to success the role is not
executed.

args : Alist of role specific dictionaries with keys that match the role parameter names.

global log messages: Gathers log messages during playbook execution. There is one entry generated
each time the role is executed.

log name: The name used to refer to the role within the global log messages entries.
task descr: A brief description of what the role does.

service start time: The timestamp used to track the time each role is executed.
playbook status: The status of the Ansible playbook.

role result: The variable that contains role output and is included in each message within the
global log messages entries.

Example role structure

The following example provides the basic structure of a role that implements a microservice. You must change
the variables in this example for your configuration.

65

Show example

Basic role structure:

- name: Set some role attributes
set fact:
log name: "<LOG_NAME>"
task descr: "<TASK DESCRIPTION>"

- name: "{{ log name }}"
block:
- set fact:
service start time: "{{ lookup('pipe',6 'date
+3YSmSdSHSMSS ') 1"

- name: "Provision the new user"
<MODULE_NAME>:

COMMON ATTRIBUTES

hostname: "{{
clusters[loop arg['hostname']]['mgmt ip'] }}"
username: "
clusters[loop arg['hostname']]['username'] }}"
password: "{{
clusters[loop arg['hostname']]['password'] }}"
cert filepath: "{{ loop arg['cert filepath']
| default (omit) }}"
feature flags: "{{ loop arg['feature flags']
| default (omit) }}"
http port: "{{ loop arg['http port']
| default (omit) }}"
https: "{{ loop arg['https']
| default('true') }}"
ontapi: "{{ loop arg['ontapi']
| default (omit) }}"
key filepath: "{{ loop arg['key filepath']
| default (omit) }}"
use rest: "{{ loop arg['use rest']
| default (omit) }}"
validate certs: "{{ loop arg['validate certs']

| default('false') }}"

66

<MODULE SPECIFIC PARAMETERS>

defaulted parameter: "{{ loop arg['defaulted parameter']

default ('default value') }}"

optional parameter:
default (omit) }}"
loop: "{{ args }}"
loop control:

"{{ loop arg['optional parameter']

loop var: loop arg

register: role result

rescue:
- name: Set role status to FAIL
set fact:
playbook status: "failed"
always:
- name: add log msg
vars:
role log:
role: "{{ log name }}"
timestamp:
start time: "{{service start time}}"
end time: "{{ lookup('pipe', 'date +%Y-%m-

d@%H:%M:%S") }}"

service status:

"{{ playbook status }}"

result: "{{role result}}"

set fact:
global log msgs:

"{{ global log msgs + [role log] }}"

67

Variables used in the example role:

* <NAME>: A replaceable value that must be provided for each microservice.
* <LOG_NAME>: The short form name of the role used for logging purposes. For example, ONTAP VOLUME.
* <TASK_DESCRIPTION>: A brief description of the what the microservice does.

* <MODULE NAME>: The Ansible module name for the task.

The top level execute. yml playbook specifies the netapp.ontap collection. If the
@ module is part of the netapp.ontap collection, there is no need to fully specify the module
name.

* <MODULE_ SPECIFIC_ PARAMETERS>: Ansible module parameters that are specific to the module used to
implement the microservice. The following list describes types of parameters and how they should be
grouped.

o Required parameters: All required parameters are specified with no default value.

o Parameters that have a default value specific to the microservice (not the same as a default value
specified by the module documentation).

° All remaining parameters use default (omit) as the default value.

Using multi-level dictionaries as module parameters

Some NetApp provided Ansible modules use multi-level dictionaries for module parameters (for example, fixed
and adaptive QoS policy groups).

Using default (omit) alone does not work when these dictionaries are used, especially when there is more
than one and they are mutually exclusive.

If you need to use multi-level dictionaries as module parameters, you should split the functionality into multiple
microservices (roles) so that each one is guaranteed to supply at least one second-level dictionary value for
the relevant dictionary.

The following examples show fixed and adaptive QoS policy groups split across two microservices.

The first microservice contains fixed QoS policy group values:

68

fixed gos options:

capacity shared: "
loop arg['fixed gos options']['capacity shared']
P

max throughput iops: "{{

loop arg['fixed gos options']['max throughput iops']

}}"

min throughput iops: "{{
loop arg['fixed gos options']['min throughput iops']
PE

max throughput mbps: "{{
loop arg['fixed gos options']['max throughput mbps']
P

min throughput mbps: "{{
loop arg['fixed gos options']['min throughput mbps']

}}"

The second microservice contains the adaptive QoS policy group values:

adaptive gos options:

absolute min iops: "

loop arg['adaptive gos options']['absolute min iops']
expected iops: "

loop arg['adaptive gos options']['expected iops']
peak iops: "

loop arg['adaptive gos options']['peak iops']

| default (omit)

| default (omit)

| default (omit)

| default (omit)

| default (omit)

default (omit) }}"

default (omit) }}"

default (omit) }}"

69

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

70

http://www.netapp.com/TM

	BlueXP automation catalog : NetApp Automation
	Table of Contents
	BlueXP automation catalog
	Overview of the BlueXP automation catalog
	Amazon FSx for NetApp ONTAP
	Amazon FSx for NetApp ONTAP - Burst to cloud
	Amazon FSx for NetApp ONTAP - Disaster recovery

	Azure NetApp Files
	Install Oracle using Azure NetApp Files

	Cloud Volumes ONTAP for AWS
	Cloud Volumes ONTAP for AWS - Burst to cloud

	Cloud Volumes ONTAP for Azure
	Cloud Volumes ONTAP for Azure - Burst to cloud

	Cloud Volumes ONTAP for Google Cloud
	Cloud Volumes ONTAP for Google Cloud - Burst to cloud

	ONTAP
	Day 0/1

