
Day 0/1
NetApp Automation
NetApp
February 11, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-automation/solutions/ontap-day01-
overview.html on February 11, 2024. Always check docs.netapp.com for the latest.



Table of Contents

Day 0/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Overview of the ONTAP day 0/1 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Prepare to use the ONTAP day 0/1 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Deploy the ONTAP cluster using the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Customize the ONTAP day 0/1 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27



Day 0/1

Overview of the ONTAP day 0/1 solution

You can use the ONTAP day 0/1 automation solution to deploy and configure an ONTAP

cluster using Ansible. The solution is available from the BlueXP automation catalog.

Flexible ONTAP deployment options

Depending on your requirements, you can use on-premises hardware or Simulate ONTAP to deploy and

configure an ONTAP cluster using Ansible.

On-premises hardware

You can deploy this solution using on-premises hardware running ONTAP, such as a FAS or an AFF system.

You must use a Linux VM to deploy and configure the ONTAP cluster using Ansible.

Simulate ONTAP

To deploy this solution using an ONTAP simulator, you must download the latest version of Simulate ONTAP

from the NetApp support site. Simulate ONTAP is a virtual simulator for ONTAP software. Simulate ONTAP

runs in a VMware hypervisor on a Windows, Linux, or Mac system. For Windows and Linux hosts, you must

use the VMware Workstation hypervisor to run this solution. If you have a Mac OS, use the VMware Fusion

hypervisor.

Layered design

The Ansible framework simplifies the development and reuse of automation execution and logic tasks. The

framework makes a distinction between decision-making tasks (logic layer), and the execution steps (execution

layer) in automation. Understanding how these layers work enables you to customize the configuration.

An Ansible "playbook" executes a series of tasks from start to finish. The site.yml playbook contains the

logic.yml playbook and the execution.yml playbook.

When a request is run, the site.yml playbook makes a call to the logic.yml playbook first, and then calls

the execution.yml playbook to execute the service request.

You are not required to use the logic layer of the framework. The logic layer provides options to expand the

capability of the framework beyond the hard-coded values for execution. This enables you to customize the

framework capabilities if required.

Logic layer

The logic layer consists of the following:

• The logic.yml playbook

• Logic task files within the logic-tasks directory

The logic layer provides the capability for complex decision making without the need for significant custom

integration (for example, connecting to ServiceNOW). The logic layer is configurable and provides the input to

microservices.

The ability to bypass the logic layer is also provided. If you want to bypass the logic layer, do not define the

logic_operation variable. Direct invocation of the logic.yml playbook provides the ability to do some

1

https://console.bluexp.netapp.com/automationCatalog


level of debugging without execution. You can use a "debug" statement to verify that the value of the

raw_service_request is correct.

Important considerations:

• The logic.yml playbook searches for the logic_operation variable. If the variable is defined in the

request, it loads a task file from the logic-tasks directory. The task file must be a .yml file. If there is no

matching task file and the logic_operation variable is defined, the logic layer fails.

• The default value of the logic_operation variable is no-op. If the variable is not explicitly defined, it

defaults to no-op, which does not run any operations.

• If the raw_service_request variable is already defined, then execution proceeds to the execution layer.

If the variable is not defined, the logic layer fails.

Execution layer

The execution layer consists of the following:

• The execution.yml playbook

The execution layer makes the API calls to configure an ONTAP cluster. The execution.yml playbook

requires that the raw_service_request variable is defined when executed.

Support for customization

You can customize this solution in various ways depending on your requirements.

Customization options include:

• Modifying Ansible playbooks

• Adding roles

Customize Ansible files

The following table describes the customizable Ansible files contained in this solution.

Location Description

playbooks/inventory

/hosts

Contains a single file with a list of hosts and groups.

playbooks/group_var

s/all/*

Ansible provides a convenient way to apply variables to multiple hosts at once.

You can modify any or all files in this this folder including cfg.yml,

clusters.yml, defaults.yml, services.yml, standards.yml, and

vault.yml.

playbooks/logic-

tasks

Supports decision-making tasks within Ansible and maintains the separation of

logic and execution. You can add files to this folder that correspond to the relevant

service.

playbooks/vars/* Dynamic values used within Ansible playbooks and roles to enable customization,

flexibility, and reusability of configurations. If necessary, you can modify any or all

files in this folder.

Customize roles

2



You can also customize the solution by adding or changing Ansible roles, also called microservices. For more

details, see Customize.

Prepare to use the ONTAP day 0/1 solution

Before you deploy the automation solution, you must prepare the ONTAP environment

and install and configure Ansible.

Initial planning considerations

You should review the following requirements and considerations before using this solution to deploy an

ONTAP cluster.

Basic requirements

You must meet the following basic requirements to use this solution:

• You must have access to ONTAP software, either on-premises or through an ONTAP simulator.

• You must know how to use ONTAP software.

• You must know how to use Ansible automation software tools.

Planning considerations

Before deploying this automation solution, you must decide:

• The location where you are going to run the Ansible control node.

• The ONTAP system, either on-premises hardware or an ONTAP simulator.

• Whether or not you will require customization.

Prepare the ONTAP system

Whether you are using an on-premises ONTAP system or Simulate ONTAP, you must prepare the environment

before you can deploy the automation solution.

Optionally, install and configure Simulate ONTAP

If you want to deploy this solution through an ONTAP simulator, you must download and run Simulate ONTAP.

Before you begin

• You must download and install the VMware hypervisor that you are going to use to run Simulate ONTAP.

◦ If you have a Windows or Linux OS, use VMware Workstation.

◦ If you have a Mac OS, use VMware Fusion.

If you are using a Mac OS, you must have an Intel processor.

Steps

Use the following procedure to install two ONTAP simulators in your local environment:

1. Download Simulate ONTAP from the NetApp support site.

3

https://mysupport.netapp.com/site/tools/tool-eula/simulate-ontap


Although you install two ONTAP simulators, you only need to download one copy of the

software.

2. If it is not already running, start your VMware application.

3. Locate the simulator file that was downloaded and right click to open it with the VMware application.

4. Set the name of the first ONTAP instance.

5. Wait for the simulator boot up and follow the directions to create a single node cluster.

Repeat the steps for the second ONTAP instance.

6. Optionally, add a full disk complement.

From each cluster, run the following commands:

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

State of the ONTAP system

You must verify the initial state of the ONTAP system, whether it is on-premises or running through an ONTAP

simulator.

Verify that the following ONTAP system requirements are met:

• ONTAP is installed and running with no cluster defined yet.

• ONTAP is booted and displaying the IP address to access the cluster.

• The network is reachable.

• You have admin credentials.

• The Message of the Day (MOTD) banner is displayed with the management address.

Install the required automation software

This section provides information on how to install Ansible and prepare the automation solution for deployment.

Install Ansible

Ansible can be installed on Linux or Windows systems.

The default communication method that Ansible uses to communicate with an ONTAP cluster is SSH.

Refer to Getting Started with NetApp and Ansible: Install Ansible to install Ansible.

Ansible must be installed on the control node of the system.

4

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/


Download and prepare the automation solution

You can use the following steps to download and prepare the automation solution for deployment.

1. Download the ONTAP - Day 0/1 & Health Checks automation solution through the BlueXP web UI. The

solution is packaged as ONTAP_DAY0_DAY1.zip.

2. Extract the zip folder and copy the files to the desired location on the control node within your Ansible

environment.

Initial Ansible framework configuration

Perform the initial configuration of the Ansible framework:

1. Navigate to playbooks/inventory/group_vars/all.

2. Decrypt the vault.yml file:

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

When prompted for the vault password, enter the following temporary password:

NetApp123!

"NetApp123!" is a temporary password to decrypt the vault.yml file and the

corresponding vault password. After first use, you must encrypt the file using your own

password.

3. Modify the following Ansible files:

◦ clusters.yml - Modify the values in this file to suit your environment.

◦ vault.yml - After decrypting the file, modify the ONTAP cluster, username and password values to

suit your environment.

◦ cfg.yml - Set the file path for log2file and set show_request under cfg to True to display the

raw_service_request.

The raw_service_request variable is displayed in the log files and during execution.

Each file listed contains comments with instructions on how to modify it according to

your requirements.

4. Re-encrypt the vault.yml file:

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

You are prompted to choose a new password for the vault upon encryption.

5. Navigate to playbooks/inventory/hosts and set a valid Python interpreter.

6. Deploy the framework_test service:

The following command runs the na_ontap_info module with a gather_subset value of

cluster_identity_info. This validates that the basic configuration is correct and verifies that you can

5

https://console.bluexp.netapp.com/automationCatalog


communicate with the cluster.

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

Run the command for each cluster.

If successful, you should see output similar to the following example:

PLAY RECAP

************************************************************************

*********

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

Deploy the ONTAP cluster using the solution

After completing the preparation and planning, you are ready to use the ONTAP day 0/1

solution to quickly configure an ONTAP cluster using Ansible.

At any time during the steps in this section, you can choose to test a request instead of actually executing it. To

test a request, change the site.yml playbook on the command line to logic.yml.

The docs/tutorial-requests.txt location contains the final version of all service requests

used throughout this procedure. If you have difficulty running a service request, you can copy

the relevant request from the tutorial-requests.txt file to the

playbooks/inventory/group_vars/all/tutorial-requests.yml location and modify

the hard-coded values as required (IP address, aggregate names and so on). You should then

be able to successfully run the request.

Before you begin

• You must have Ansible installed.

• You must have downloaded the ONTAP day 0/1 solution and extracted the folder to the desired location on

the Ansible control node.

• The ONTAP system state must meet the requirements and you must have the necessary credentials.

• You must have completed all required tasks outlined in the Prepare section.

The examples throughout this solution use "Cluster_01" and "Cluster_02" as the names for the

two clusters. You must replace these values with the names of the clusters in your environment.

Step 1: Initial cluster configuration

At this stage, you must perform some initial cluster configuration steps.

6



Steps

1. Navigate to the playbooks/inventory/group_vars/all/tutorial-requests.yml location and

review the cluster_initial request in the file. Make any necessary changes for your environment.

2. Create a file in the logic-tasks folder for the service request. For example, create a file called

cluster_initial.yml.

Copy the following lines to the new file:

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial cluster configuration

  set_fact:

    raw_service_request:

3. Define the raw_service_request variable.

You can use one of the following options to define the raw_service_request variable in the

cluster_initial.yml file you created in the logic-tasks folder:

◦ Option 1: Manually define the raw_service_request variable.

Open the tutorial-requests.yml file using an editor and copy the content from line 11 to line 165.

Paste the content under the raw service request variable in the new cluster_initial.yml

file, as shown in the following examples:

7



8



Show example

Example cluster_initial.yml file:

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial cluster configuration

  set_fact:

    raw_service_request:

     service:          cluster_initial

     operation:         create

     std_name:           none

     req_details:

      ontap_aggr:

      - hostname:                   "{{ cluster_name }}"

        disk_count:                 24

        name:                       n01_aggr1

        nodes:                      "{{ cluster_name }}-01"

        raid_type:                  raid4

      - hostname:                   "{{ peer_cluster_name }}"

        disk_count:                 24

        name:                       n01_aggr1

        nodes:                      "{{ peer_cluster_name }}-01"

        raid_type:                  raid4

      ontap_license:

      - hostname:                   "{{ cluster_name }}"

        license_codes:

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

9



        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

    - hostname:                   "{{ peer_cluster_name }}"

      license_codes:

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

10



        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

    ontap_motd:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      message:                    "New MOTD"

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      message:                    "New MOTD"

    ontap_interface:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

11



      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    ontap_cluster_peer:

    - hostname:                   "{{ cluster_name }}"

      dest_cluster_name:          "{{ peer_cluster_name }}"

      dest_intercluster_lifs:     "{{ peer_lifs }}"

      source_cluster_name:        "{{ cluster_name }}"

      source_intercluster_lifs:   "{{ cluster_lifs }}"

      peer_options:

        hostname:                 "{{ peer_cluster_name }}"

◦ Option 2: Use a Jinja template to define the request:

You can also use the following Jinja template format to get the raw_service_request value.

raw_service_request: "{{ cluster_initial }}"

4. Perform the initial cluster configuration for the first cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

12



Verify that there are no errors before proceeding.

5. Repeat the command for the second cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

Verify that there are no errors for the second cluster.

When you scroll up towards the beginning of the Ansible output you should see the request that was sent

to the framework, as shown in the following example:

13



Show example

TASK [Show the raw_service_request]

********************************************************************

****************************************

ok: [localhost] => {

    "raw_service_request": {

        "operation": "create",

        "req_details": {

            "ontap_aggr": [

                {

                    "disk_count": 24,

                    "hostname": "Cluster_01",

                    "name": "n01_aggr1",

                    "nodes": "Cluster_01-01",

                    "raid_type": "raid4"

                }

            ],

            "ontap_license": [

                {

                    "hostname": "Cluster_01",

                    "license_codes": [

                        "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

14



                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

                    ]

                }

            ],

            "ontap_motd": [

                {

                    "hostname": "Cluster_01",

                    "message": "New MOTD",

                    "vserver": "Cluster_01"

                }

            ]

        },

        "service": "cluster_initial",

        "std_name": "none"

    }

}

6. Log in to each ONTAP instance and verify that the request was successful.

Step 2: Configure the intercluster LIFs

You can now configure the intercluster LIFs by adding the LIF definitions to the cluster_initial request

and defining the ontap_interface microservice.

The service definition and the request work together to determine the action:

• If you provide a service request for a microservice that is not in the service definitions, the request is not

executed.

• If you provide a service request with one or more microservices defined in the service definitions, but

omitted from the request, the request is not executed.

The execution.yml playbook evaluates the service definition by scanning the list of microservices in the

order listed:

• If there is an entry in the request with a dictionary key matching the args entry contained in the

microservice definitions, the request is executed.

• If there is no matching entry in the service request, the request is skipped without error.

15



Steps

1. Navigate to the cluster_initial.yml file that you created previously and modify the request by adding

the following lines to the request definitions:

16



    ontap_interface:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

17



2. Run the command:

ansible-playbook -i inventory/hosts  site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. Log in to each instance to check if the LIFs have been added to the cluster:

Show example

Cluster_01::> net int show

  (network interface show)

            Logical    Status     Network            Current

Current Is

Vserver     Interface  Admin/Oper Address/Mask       Node

Port    Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

            Cluster_01-01_mgmt up/up 10.0.0.101/24   Cluster_01-01

e0c     true

            Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

            cluster_mgmt up/up    10.0.0.110/24      Cluster_01-01

e0c     true

5 entries were displayed.

The output shows that the LIFs were not added. This is because the ontap_interface microservice still

needs to be defined in the services.yml file.

4. Verify that the LIFs were added to the raw_service_request variable.

18



Show example

The following example shows that the LIFs have been added to the request:

           "ontap_interface": [

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_01-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_01",

                    "interface_name": "ic01",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_01"

                },

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_01-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_01",

                    "interface_name": "ic02",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_01"

                },

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_02-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_02",

                    "interface_name": "ic01",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_02"

                },

                {

                    "address": "10.0.0.126",

                    "home_node": "Cluster_02-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_02",

19



                    "interface_name": "ic02",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_02"

                }

            ],

5. Define the ontap_interface microservice under cluster_initial in the services.yml file.

Copy the following lines to the file to define the microservice:

        - name: ontap_interface

          args: ontap_interface

          role: na/ontap_interface

6. Now that the ontap_interface microservice has been defined in the request and the services.yml

file, run the request again:

ansible-playbook -i inventory/hosts  site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. Log in to each ONTAP instance and verify that the LIFs have been added.

Step 3: Optionally, configure multiple clusters

If required, you can configure multiple clusters in the same request. You must provide variable names for each

cluster when you define the request.

Steps

1. Add an entry for the second cluster in the cluster_initial.yml file to configure both clusters in the

same request.

The following example displays the ontap_aggr field after the second entry is added.

20



   ontap_aggr:

    - hostname:                   "{{ cluster_name }}"

      disk_count:                 24

      name:                       n01_aggr1

      nodes:                      "{{ cluster_name }}-01"

      raid_type:                  raid4

    - hostname:                   "{{ peer_cluster_name }}"

      disk_count:                 24

      name:                       n01_aggr1

      nodes:                      "{{ peer_cluster_name }}-01"

      raid_type:                  raid4

2. Apply the changes for all other items under cluster_initial.

3. Add cluster peering to the request by copying the following lines to the file:

    ontap_cluster_peer:

    - hostname:                   "{{ cluster_name }}"

      dest_cluster_name:          "{{ cluster_peer }}"

      dest_intercluster_lifs:     "{{ peer_lifs }}"

      source_cluster_name:        "{{ cluster_name }}"

      source_intercluster_lifs:   "{{ cluster_lifs }}"

      peer_options:

        hostname:                 "{{ cluster_peer }}"

4. Run the Ansible request:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

Step 4: Initial SVM configuration

At this stage in the procedure, you configure the SVMs in the cluster.

Steps

1. Update the svm_initial request in the tutorial-requests.yml file to configure an SVM and SVM

peer relationship.

You must configure the following:

◦ The SVM

21



◦ The SVM peer relationship

◦ The SVM interface for each SVM

2. Update the variable definitions in the svm_initial request definitions. You must modify the following

variable definitions:

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

To update the definitions, remove the ‘{}’ after req_details for the svm_initial definition and add

the correct definition.

3. Create a file in the logic-tasks folder for the service request. For example, create a file called

svm_initial.yml.

Copy the following lines to the file:

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial SVM configuration

  set_fact:

    raw_service_request:

4. Define the raw_service_request variable.

You can use one of the following options to define the raw_service_request variable for

svm_initial in the logic-tasks folder:

◦ Option 1: Manually define the raw_service_request variable.

Open the tutorial-requests.yml file using an editor and copy the content from line 179 to line

22



222. Paste the content under the raw service request variable in the new svm_initial.yml

file, as shown in the following examples:

23



Show example

Example svm_initial.yml file:

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial SVM configuration

  set_fact:

    raw_service_request:

     service:          svm_initial

     operation:        create

     std_name:         none

     req_details:

      ontap_vserver:

      - hostname:                   "{{ cluster_name }}"

        name:                       "{{ vserver_name }}"

        root_volume_aggregate:      n01_aggr1

      - hostname:                   "{{ peer_cluster_name }}"

       name:                       "{{ peer_vserver }}"

       root_volume_aggregate:      n01_aggr1

      ontap_vserver_peer:

      - hostname:                   "{{ cluster_name }}"

        vserver:                    "{{ vserver_name }}"

        peer_vserver:               "{{ peer_vserver }}"

        applications:               snapmirror

        peer_options:

          hostname:                 "{{ peer_cluster_name }}"

      ontap_interface:

24



      - hostname:                   "{{ cluster_name }}"

        vserver:                    "{{ vserver_name }}"

        interface_name:             data01

        role:                       data

        address:                    10.0.0.200

        netmask:                    255.255.255.0

        home_node:                  "{{ cluster_name }}-01"

        home_port:                  e0c

        ipspace:                    Default

        use_rest:                   never

      - hostname:                   "{{ peer_cluster_name }}"

        vserver:                    "{{ peer_vserver }}"

        interface_name:             data01

        role:                       data

        address:                    10.0.0.201

        netmask:                    255.255.255.0

        home_node:                  "{{ peer_cluster_name }}-01"

        home_port:                  e0c

        ipspace:                    Default

        use_rest:                   never

◦ Option 2: Use a Jinja template to define the request:

You can also use the following Jinja template format to get the raw_service_request value.

raw_service_request: "{{ svm_initial }}"

5. Run the request:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02>  -e

vserver_name=<SVM_01> site.yml

6. Log in to each ONTAP instance and validate the configuration.

7. Add the SVM interfaces.

Define the ontap_interface service under svm_initial in the services.yml file and run the

request again:

25



ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02>  -e

vserver_name=<SVM_01> site.yml

8. Log in to each ONTAP instance and verify that the SVM interfaces have been configured.

Step 5: Optionally, define a service request dynamically

In the previous steps, the raw_service_request variable is hard-coded. This is useful for learning,

development, and testing. You can also dynamically generate a service request.

The following section provides an option to dynamically produce the required raw_service_request if you

do not want to integrate it with higher level systems.

• If the logic_operation variable is not defined in the command, the logic.yml file does

not import any file from the logic-tasks folder. This means the raw_service_request

must be defined outside of Ansible and provided to the framework on execution.

• A task file name in the logic-tasks folder must match the value of the

logic_operation variable without the .yml extension.

• The task files in the logic-tasks folder dynamically define a raw_service_request.

The only requirement is that a valid raw_service_request be defined as the last task in

the relevant file.

How to dynamically define a service request

There are multiple ways to apply a logic task to dynamically define a service request. Some of these options

are listed below:

• Using a Ansible task file from the logic-tasks folder

• Invoking a custom role that returns data suitable for converting to a raw_service_request varaible.

• Invoking another tool outside of the Ansible environment to provide the required data. For example, a

REST API call to Active IQ Unified Manager.

The following example commands dynamically define a service request for each cluster using the tutorial-

requests.yml file:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

Step 6: Deploy the ONTAP day 0/1 solution

At this stage you should have already completed the following:

26



• Reviewed and modified all files in playbooks/inventory/group_vars/all according to your

requirements. There are detailed comments in each file to help you make the changes.

• Added any required task files to the the logic-tasks directory.

• Added any required data files to the playbook/vars directory.

Use the following commands to deploy the ONTAP day 0/1 solution and verify the health of your deployment:

At this stage, you should have already decrypted and modified the vault.yml file and it must

be encrypted with your new password.

• Run the ONTAP day 0 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Run the ONTAP day 1 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Apply cluster wide settings:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• Run health checks:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

Customize the ONTAP day 0/1 solution

To customize the ONTAP day 0/1 solution for your requirements, you can add or change

Ansible roles.

Roles represent the microservices within the Ansible framework. Each microservice performs one operation.

For example, ONTAP day 0 is a service that contains multiple microservices.

27



Add Ansible roles

You can add Ansible roles to customize the solution for your environment. Required roles are defined by

service definitions within the Ansible framework.

A role must meet the following requirements to be used as a microservice:

• Accept a list of arguments in the args variable.

• Use the Ansible "block, rescue, always" structure with certain requirements for each block.

• Use a single Ansible module and define a single task within the block.

• Implement every available module parameter according to the requirements detailed in this section.

Required microservice structure

Each role must support the following variables:

• mode: If mode is set to test the role attempts to import the test.yml which shows what the role does

without actually executing it.

It is not always possible to implement this because of certain interdependencies.

• status: The overall status of playbook execution. If the value is not set to success the role is not

executed.

• args : A list of role specific dictionaries with keys that match the role parameter names.

• global_log_messages: Gathers log messages during playbook execution. There is one entry generated

each time the role is executed.

• log_name: The name used to refer to the role within the global_log_messages entries.

• task_descr: A brief description of what the role does.

• service_start_time: The timestamp used to track the time each role is executed.

• playbook_status: The status of the Ansible playbook.

• role_result: The variable that contains role output and is included in each message within the

global_log_messages entries.

Example role structure

The following example provides the basic structure of a role that implements a microservice. You must change

the variables in this example for your configuration.

28



Show example

Basic role structure:

- name:  Set some role attributes

  set_fact:

    log_name:     "<LOG_NAME>"

    task_descr:   "<TASK_DESCRIPTION>"

-  name: "{{ log_name }}"

   block:

      -  set_fact:

            service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

      -  name: "Provision the new user"

         <MODULE_NAME>:

 

#-------------------------------------------------------------

            # COMMON ATTRIBUTES

 

#-------------------------------------------------------------

            hostname:            "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

            username:            "{{

clusters[loop_arg['hostname']]['username'] }}"

            password:            "{{

clusters[loop_arg['hostname']]['password'] }}"

            cert_filepath:       "{{ loop_arg['cert_filepath']

| default(omit) }}"

            feature_flags:       "{{ loop_arg['feature_flags']

| default(omit) }}"

            http_port:           "{{ loop_arg['http_port']

| default(omit) }}"

            https:               "{{ loop_arg['https']

| default('true') }}"

            ontapi:              "{{ loop_arg['ontapi']

| default(omit) }}"

            key_filepath:        "{{ loop_arg['key_filepath']

| default(omit) }}"

            use_rest:            "{{ loop_arg['use_rest']

| default(omit) }}"

            validate_certs:      "{{ loop_arg['validate_certs']

| default('false') }}"

29



            <MODULE_SPECIFIC_PARAMETERS>

 

#-------------------------------------------------------------

            # REQUIRED ATTRIBUTES

 

#-------------------------------------------------------------

            required_parameter:     "{{ loop_arg['required_parameter']

}}"

 

#-------------------------------------------------------------

            # ATTRIBUTES w/ DEFAULTS

 

#-------------------------------------------------------------

            defaulted_parameter:    "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

 

#-------------------------------------------------------------

            # OPTIONAL ATTRIBUTES

 

#-------------------------------------------------------------

            optional_parameter:     "{{ loop_arg['optional_parameter']

| default(omit) }}"

         loop:    "{{ args }}"

         loop_control:

            loop_var:   loop_arg

         register:   role_result

   rescue:

      -  name: Set role status to FAIL

         set_fact:

            playbook_status:   "failed"

   always:

      -  name: add log msg

         vars:

            role_log:

               role: "{{ log_name }}"

               timestamp:

                  start_time: "{{service_start_time}}"

                  end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

               service_status: "{{ playbook_status }}"

               result: "{{role_result}}"

         set_fact:

            global_log_msgs:   "{{ global_log_msgs + [ role_log ] }}"

30



Variables used in the example role:

• <NAME>: A replaceable value that must be provided for each microservice.

• <LOG_NAME>: The short form name of the role used for logging purposes. For example, ONTAP_VOLUME.

• <TASK_DESCRIPTION>: A brief description of the what the microservice does.

• <MODULE_NAME>: The Ansible module name for the task.

The top level execute.yml playbook specifies the netapp.ontap collection. If the

module is part of the netapp.ontap collection, there is no need to fully specify the module

name.

• <MODULE_SPECIFIC_PARAMETERS>: Ansible module parameters that are specific to the module used to

implement the microservice. The following list describes types of parameters and how they should be

grouped.

◦ Required parameters: All required parameters are specified with no default value.

◦ Parameters that have a default value specific to the microservice (not the same as a default value

specified by the module documentation).

◦ All remaining parameters use default(omit) as the default value.

Using multi-level dictionaries as module parameters

Some NetApp provided Ansible modules use multi-level dictionaries for module parameters (for example, fixed

and adaptive QoS policy groups).

Using default(omit) alone does not work when these dictionaries are used, especially when there is more

than one and they are mutually exclusive.

If you need to use multi-level dictionaries as module parameters, you should split the functionality into multiple

microservices (roles) so that each one is guaranteed to supply at least one second-level dictionary value for

the relevant dictionary.

The following examples show fixed and adaptive QoS policy groups split across two microservices.

The first microservice contains fixed QoS policy group values:

31



fixed_qos_options:

  capacity_shared:           "{{

loop_arg['fixed_qos_options']['capacity_shared']         | default(omit)

}}"

  max_throughput_iops:       "{{

loop_arg['fixed_qos_options']['max_throughput_iops']     | default(omit)

}}"

  min_throughput_iops:       "{{

loop_arg['fixed_qos_options']['min_throughput_iops']     | default(omit)

}}"

  max_throughput_mbps:       "{{

loop_arg['fixed_qos_options']['max_throughput_mbps']     | default(omit)

}}"

  min_throughput_mbps:       "{{

loop_arg['fixed_qos_options']['min_throughput_mbps']     | default(omit)

}}"

The second microservice contains the adaptive QoS policy group values:

adaptive_qos_options:

  absolute_min_iops:         "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

  expected_iops:             "{{

loop_arg['adaptive_qos_options']['expected_iops']     | default(omit) }}"

  peak_iops:                 "{{

loop_arg['adaptive_qos_options']['peak_iops']         | default(omit) }}"

32



Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

33

http://www.netapp.com/TM

	Day 0/1 : NetApp Automation
	Table of Contents
	Day 0/1
	Overview of the ONTAP day 0/1 solution
	Prepare to use the ONTAP day 0/1 solution
	Deploy the ONTAP cluster using the solution
	Customize the ONTAP day 0/1 solution


