ONTAP

NetApp Automation

NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-automation/solutions/ontap-day01-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

Table of Contents

ONTAP
Day 0/1
Overview of the ONTAP day 0/1 solution
Prepare to use the ONTAP day 0/1 solution
Deploy the ONTAP cluster using the solution
Customize the ONTAP day 0/1 solution

O W = —a A

27

ONTAP
Day 0/1

Overview of the ONTAP day 0/1 solution

You can use the ONTAP day 0/1 automation solution to deploy and configure an ONTAP
cluster using Ansible. The solution is available from the NetApp Console automation hub.

Flexible ONTAP deployment options

Depending on your requirements, you can use on-premises hardware or Simulate ONTAP to deploy and
configure an ONTAP cluster using Ansible.

On-premises hardware

You can deploy this solution using on-premises hardware running ONTAP, such as a FAS or an AFF system.
You must use a Linux VM to deploy and configure the ONTAP cluster using Ansible.

Simulate ONTAP

To deploy this solution using an ONTAP simulator, you must download the latest version of Simulate ONTAP
from the NetApp support site. Simulate ONTAP is a virtual simulator for ONTAP software. Simulate ONTAP
runs in a VMware hypervisor on a Windows, Linux, or Mac system. For Windows and Linux hosts, you must
use the VMware Workstation hypervisor to run this solution. If you have a Mac OS, use the VMware Fusion
hypervisor.

Layered design

The Ansible framework simplifies the development and reuse of automation execution and logic tasks. The
framework makes a distinction between decision-making tasks (logic layer), and the execution steps (execution
layer) in automation. Understanding how these layers work enables you to customize the configuration.

An Ansible "playbook" executes a series of tasks from start to finish. The site.yml playbook contains the
logic.yml playbook and the execution.yml playbook.

When a request is run, the site.yml playbook makes a call to the 1ogic.yml playbook first, and then calls
the execution.yml playbook to execute the service request.

You are not required to use the logic layer of the framework. The logic layer provides options to expand the
capability of the framework beyond the hard-coded values for execution. This enables you to customize the
framework capabilities if required.

Logic layer

The logic layer consists of the following:

* The logic.yml playbook
* Logic task files within the 1ogic-tasks directory
The logic layer provides the capability for complex decision making without the need for significant custom

integration (for example, connecting to ServiceNOW). The logic layer is configurable and provides the input to
microservices.

https://console.netapp.com/automationHub

The ability to bypass the logic layer is also provided. If you want to bypass the logic layer, do not define the
logic_operation variable. Direct invocation of the logic. yml playbook provides the ability to do some
level of debugging without execution. You can use a "debug" statement to verify that the value of the
raw_service request is correct.

Important considerations:

* The logic.yml playbook searches for the 1ogic operation variable. If the variable is defined in the
request, it loads a task file from the 1ogic-tasks directory. The task file must be a .yml file. If there is no
matching task file and the Logic operation variable is defined, the logic layer fails.

* The default value of the logic operation variable is no-op. If the variable is not explicitly defined, it
defaults to no-op, which does not run any operations.

* Ifthe raw_service request variable is already defined, then execution proceeds to the execution layer.
If the variable is not defined, the logic layer fails.

Execution layer
The execution layer consists of the following:

* The execution.yml playbook

The execution layer makes the API calls to configure an ONTAP cluster. The execution.yml playbook
requires that the raw_service request variable is defined when executed.

Support for customization

You can customize this solution in various ways depending on your requirements.
Customization options include:

» Modifying Ansible playbooks
» Adding roles

Customize Ansible files
The following table describes the customizable Ansible files contained in this solution.

Location Description

playbooks/inventory Contains a single file with a list of hosts and groups.
/hosts

playbooks/group var Ansible provides a convenient way to apply variables to multiple hosts at once.
s/all/>* You can modify any or all files in this this folder including cfg. ym1,
clusters.yml, defaults.yml, services.yml, standards.yml, and

vault.yml.
playbooks/logic- Supports decision-making tasks within Ansible and maintains the separation of
tasks logic and execution. You can add files to this folder that correspond to the relevant
service.
playbooks/vars/* Dynamic values used within Ansible playbooks and roles to enable customization,

flexibility, and reusability of configurations. If necessary, you can modify any or all
files in this folder.

Customize roles

You can also customize the solution by adding or changing Ansible roles, also called microservices. For more
details, see Customize.

Prepare to use the ONTAP day 0/1 solution

Before you deploy the automation solution, you must prepare the ONTAP environment
and install and configure Ansible.
Initial planning considerations

You should review the following requirements and considerations before using this solution to deploy an
ONTAP cluster.

Basic requirements

You must meet the following basic requirements to use this solution:

* You must have access to ONTAP software, either on-premises or through an ONTAP simulator.
* You must know how to use ONTAP software.

* You must know how to use Ansible automation software tools.

Planning considerations

Before deploying this automation solution, you must decide:

» The location where you are going to run the Ansible control node.
* The ONTAP system, either on-premises hardware or an ONTAP simulator.

» Whether or not you will require customization.

Prepare the ONTAP system

Whether you are using an on-premises ONTAP system or Simulate ONTAP, you must prepare the environment
before you can deploy the automation solution.

Optionally, install and configure Simulate ONTAP

If you want to deploy this solution through an ONTAP simulator, you must download and run Simulate ONTAP.

Before you begin

* You must download and install the VMware hypervisor that you are going to use to run Simulate ONTAP.
o If you have a Windows or Linux OS, use VMware Workstation.

o If you have a Mac OS, use VMware Fusion.

@ If you are using a Mac OS, you must have an Intel processor.

Steps
Use the following procedure to install two ONTAP simulators in your local environment:

1. Download Simulate ONTAP from the NetApp support site.

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

@ Although you install two ONTAP simulators, you only need to download one copy of the
software.

If it is not already running, start your VMware application.
Locate the simulator file that was downloaded and right click to open it with the VMware application.
Set the name of the first ONTAP instance.

o A © N

Wait for the simulator boot up and follow the directions to create a single node cluster.
Repeat the steps for the second ONTAP instance.
6. Optionally, add a full disk complement.

From each cluster, run the following commands:

security unlock -username <user 01>
security login password -username <user 01>
set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

State of the ONTAP system

You must verify the initial state of the ONTAP system, whether it is on-premises or running through an ONTAP
simulator.

Verify that the following ONTAP system requirements are met:

* ONTAP is installed and running with no cluster defined yet.

* ONTAP is booted and displaying the IP address to access the cluster.

* The network is reachable.

* You have admin credentials.

* The Message of the Day (MOTD) banner is displayed with the management address.

Install the required automation software

This section provides information on how to install Ansible and prepare the automation solution for deployment.

Install Ansible
Ansible can be installed on Linux or Windows systems.
The default communication method that Ansible uses to communicate with an ONTAP cluster is SSH.

Refer to Getting Started with NetApp and Ansible: Install Ansible to install Ansible.

@ Ansible must be installed on the control node of the system.

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/

Download and prepare the automation solution

You can use the following steps to download and prepare the automation solution for deployment.

1. Download the ONTAP - Day 0/1 & Health Checks automation solution through the Console web Ul. The
solution is packaged as ONTAP_DAYO DAY1.zip.

2. Extract the zip folder and copy the files to the desired location on the control node within your Ansible
environment.

Initial Ansible framework configuration
Perform the initial configuration of the Ansible framework:

1. Navigate to playbooks/inventory/group vars/all

2. Decrypt the vault.yml file:
ansible-vault decrypt playbooks/inventory/group vars/all/vault.yml
When prompted for the vault password, enter the following temporary password:

NetAppl23!

"NetApp123!" is a temporary password to decrypt the vault.yml file and the
@ corresponding vault password. After first use, you must encrypt the file using your own
password.

3. Modify the following Ansible files:
° clusters.yml - Modify the values in this file to suit your environment.

° vault.yml - After decrypting the file, modify the ONTAP cluster, username and password values to
suit your environment.

° cfg.yml - Set the file path for Log2file and set show request under cfg to True to display the
raw_service request

The raw_service request variable is displayed in the log files and during execution.

@ Each file listed contains comments with instructions on how to modify it according to
your requirements.

4. Re-encrypt the vault.yml file:
ansible-vault encrypt playbooks/inventory/group vars/all/vault.yml
@ You are prompted to choose a new password for the vault upon encryption.

5. Navigate to playbooks/inventory/hosts and set a valid Python interpreter.

6. Deploy the framework test service:

The following command runs the na_ontap info module with a gather subset value of
cluster identity info. This validates that the basic configuration is correct and verifies that you can

https://console.netapp.com/automationHub

communicate with the cluster.

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<CLUSTER NAME>
-e logic operation=framework-test

Run the command for each cluster.

If successful, you should see output similar to the following example:

PLAY RECAP

LR R i e A i 2R S b b b b 2h b db b b Sb I S b b 2 b b b b b b db b 2 dh b b b b 2h b db b db b 2 db b b Sb b Ih b db b db b 2 db b S dh b db S 4

Xk kkkkk kK

localhost : o0k=12 changed=1 unreachable=0 failed=0 skipped=6
The key is ‘rescued=0’ and ‘failed=0'..

Deploy the ONTAP cluster using the solution

After completing the preparation and planning, you are ready to use the ONTAP day 0/1
solution to quickly configure an ONTAP cluster using Ansible.

At any time during the steps in this section, you can choose to test a request instead of actually executing it. To
test a request, change the site.yml playbook on the command line to logic.yml.

The docs/tutorial-requests. txt location contains the final version of all service requests
used throughout this procedure. If you have difficulty running a service request, you can copy

(D the relevant request from the tutorial-requests. txt file to the
playbooks/inventory/group vars/all/tutorial-requests.yml location and modify
the hard-coded values as required (IP address, aggregate names and so on). You should then
be able to successfully run the request.

Before you begin

* You must have Ansible installed.

* You must have downloaded the ONTAP day 0/1 solution and extracted the folder to the desired location on
the Ansible control node.

* The ONTAP system state must meet the requirements and you must have the necessary credentials.

* You must have completed all required tasks outlined in the Prepare section.

@ The examples throughout this solution use "Cluster_01" and "Cluster_02" as the names for the
two clusters. You must replace these values with the names of the clusters in your environment.

Step 1: Initial cluster configuration

At this stage, you must perform some initial cluster configuration steps.

Steps

1. Navigate to the playbooks/inventory/group vars/all/tutorial-requests.yml location and
review the cluster initial requestin the file. Make any necessary changes for your environment.

2. Create a file in the 1ogic-tasks folder for the service request. For example, create a file called
cluster initial.yml.

Copy the following lines to the new file:

- name: Validate required inputs
ansible.builtin.assert:
that:
- service is defined

- name: Include data files
ansible.builtin.include vars:
file: "{{ data file name }}.yml"
loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver-common-stds
loop control:
loop var: data file name

- name: Initial cluster configuration
set fact:

raw_service request:

3. Define the raw_service request variable.

You can use one of the following options to define the raw _service request variable in the
cluster initial.yml file you created in the logic-tasks folder:

° Option 1: Manually define the raw_service request variable.
Open the tutorial-requests.yml file using an editor and copy the content from line 11 to line 165.

Paste the content under the raw service request variable in the new cluster initial.yml
file, as shown in the following examples:

Show example

Example cluster initial.yml file:

- name: Validate required inputs
ansible.builtin.assert:
that:
- service is defined

- name: Include data files
ansible.builtin.include vars:
file: "{{ data file name }}.yml"
loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver-common-stds
loop control:
loop var: data file name

- name: Initial cluster configuration
set fact:

raw _service request:

service: cluster initial
operation: create
std name: none

req details:

ontap aggr:

- hostname: "{{ cluster name }}"
disk count: 24
name: n0l aggrl
nodes: "{{ cluster name }}-01"
raid type: raid4

- hostname: "{{ peer cluster name }}"
disk count: 24
name: n0l aggrl
nodes: "{{ peer cluster name }}-01"
raid type: raid4

ontap license:

- hostname: "{{ cluster name }}"
license codes:
= XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA

10

hostname:

XX XX XXX XXX XXXXAAAAAAAAAAAAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
AXXXXXXXXXXXXXAAAAAAAAAAAAAA
XAXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA

license codes:

AXXXXXXXXXXXXXAAAAAAAAAAAAAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXX XXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA
XXXXXXXXXXXXXXAAAAAAAAAAARAAA
XAXXXXXXXXXXXXXAAAAAAAAAAAARAA
XXX XXX XXXXXXXXAAAAAAAAAAARAAA

"{{ peer cluster name }}"

— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXXXXXXXXXXXAAAAAAAAAAAAAA
— XXXXKXXXXXXXXXXAAAAAAAAAAAAAA

ontap motd:
- hostname:
vserver:

message:

- hostname:
vserver:

message:

ontap interface:
- hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:

use rest:

- hostname:

vsServer:

interface name:

role:
address:
netmask:
home node:
home port:

"{{ cluster name }}"
"{{ cluster name }}"
"New MOTD"

"{{ peer cluster name }}"
"{{ peer cluster name }}"
"New MOTD"

"{{ cluster name }}"
"{{ cluster name }}"
ic01

intercluster

10.0.0.101
255.255.255.0

"{{ cluster name }}-01"
elc

Default

never

"{{ cluster name }}"
"{{ cluster name }}"
ic02

intercluster

10.0.0.101
255.255.255.0

"{{ cluster name }}-01"
elc

11

ipspace: Default

use rest: never

- hostname: "{{ peer cluster name }}"
vserver: "{{ peer cluster name }}"
interface name: ic01
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

- hostname: "{{ peer cluster name }}"
vserver: "{{ peer cluster name }}"
interface name: ic02
role: intercluster
address: 10.0.0.101
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

ontap cluster peer:

- hostname: "{{ cluster name }}"
dest cluster name: "{{ peer cluster name }}"
dest intercluster lifs: "{{ peer lifs }}"
source cluster name: "{{ cluster name }}"
source intercluster lifs: "{{ cluster 1lifs }}"

peer options:
hostname: "{{ peer cluster name }}"

o Option 2: Use a Jinja template to define the request:
You can also use the following Jinja template format to get the raw _service request value.
raw _service request: "{{ cluster initial }}"

4. Perform the initial cluster configuration for the first cluster:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01>

12

Verify that there are no errors before proceeding.

5. Repeat the command for the second cluster:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 02>

Verify that there are no errors for the second cluster.

When you scroll up towards the beginning of the Ansible output you should see the request that was sent
to the framework, as shown in the following example:

13

14

Show example

TASK [Show the raw service request]
B b 4

KAk AR A AR A AN A A I AR I AN A AN A AN A AKX A KA I A AKX A Xk kK

ok: [localhost] => {
"raw_service request": {
"operation": "create",
"reg details": {
"ontap aggr": |
{
"disk count": 24,
"hostname": "Cluster 01",
"name": "nOl aggrl",
"nodes": "Cluster 01-01",
"raid type": "raid4"

1,
"ontap license": |
{

"hostname": "Cluster 01",

"license codes": |
"XXXXXXKXXXXXXXXXAAAAAAAAAAAA",
TXXXKXXXKXXKXKXXXXXAAAAAAAAAAAAA",
TXXXXKXXXKXKXXKXKXXXAAAAAAAAAAAAA"T,
XXX XXX XXXXXXXXAAAAAAAAAAAAA",
XX XKXXXKXKXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXKXXKXKXXKXXXXAAAAAAAAAAAAAL"T,
XXX XXX XXXXXXXXAAAAAAAAAAAAA",
TXXXKXXXXXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXKXXKXKXXKXXXXAAAAAAAAAAAAA"T,
TXXXXXXXXXXXXXXAAAAAAAAAAAAA",
TXXXKXXKXXKXKXKXXXXXAAAAAAAAAAAAA",
TXXXXKXKXXKXKXXKXKXXXAAAAAAAAAAAAA"T,
XXX XX XKXXXXXXXXAAAAAAAAAAAAA",
TXXXKXXKXKXKXKXKXKXKXXXAAAAAAAAAAAAA",
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
TXXXKXXXXXKXKXXXXXAAAAAAAAAAAAA"T,
TXXXKXXKXKXKXKXKXXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
XX XXX KXXXKXKXXXXXAAAAAAAAAAAAA",
TXXXKXXKXKXKXXKXKXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,
XX XXX XXXKXKXXXXXAAAAAAAAAAAAA"T,
XX XXX KXKXKXKXKXKXKXXXAAAAAAAAAAAAA"T,
TXXXXKXXXKXKXXKXXXXAAAAAAAAAAAAA"T,

TXXXXXXXXXXXXXXAAAAAAAAAARAAAT,
XX XXX XXXXKXXXXXAAAAAAAAAAAAAT,
"TXXXKXXXXXXXXXXXAAAAAAAAAAAAA"T,
TXXXXXXXXXXXXXXAAAAAAAAAAAAAT,
TXXXXXXXXXKXXXXXAAAAAAAAAAAAAT,
"TXXXXXXXXXKXXXXXAAAAAAAAAAAAA",
TXXXXXXXXXXXXXXAAAAAAAAAAAAAT,
XX XXX XXXXXXXXXAAAAAAAAAAAAAT,
"TXXXXXXXXXXXXXXAAAAAAAAAAAAA",
TXXXXX XX XXX XXX XAAAAAAAAAAAAAT

1,

"ontap motd": |

{

"hostname": "Cluster 01",
"message": "New MOTD",
"vserver": "Cluster OL"
}
]

by

"service": "cluster initial",

"std name": "none"

6. Log in to each ONTAP instance and verify that the request was successful.

Step 2: Configure the intercluster LIFs

You can now configure the intercluster LIFs by adding the LIF definitions to the cluster initial request
and defining the ontap interface microservice.

The service definition and the request work together to determine the action:

« If you provide a service request for a microservice that is not in the service definitions, the request is not
executed.

« If you provide a service request with one or more microservices defined in the service definitions, but
omitted from the request, the request is not executed.

The execution. yml playbook evaluates the service definition by scanning the list of microservices in the
order listed:

* If there is an entry in the request with a dictionary key matching the args entry contained in the
microservice definitions, the request is executed.

« If there is no matching entry in the service request, the request is skipped without error.

15

Steps

1. Navigate to the cluster initial.yml file that you created previously and modify the request by adding
the following lines to the request definitions:

16

ontap interface:
- hostname:

vServer:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:
use rest:

hostname:

vserver:

interface name:

role:
address:
netmask:
home node:
home port:
ipspace:

use rest:

"{{ cluster name }}"
"{{ cluster name }}"
ic01

intercluster

<ip address>

<netmask address>

"{{ cluster name }}-01"
elc

Default

never

"{{ cluster name }}"
"{{ cluster name }}"
ic02

intercluster

<ip address>

<netmask address>

"{{ cluster name }}-01"
elc

Default

never

"{{ peer cluster name }}"
"{{ peer cluster name }}"
ic01

intercluster

<ip address>

<netmask address>

"{{ peer cluster name }}-01"
elc

Default

never

"{{ peer cluster name }}"
"{{ peer cluster name }}"
ic02

intercluster

<ip address>

<netmask address>

"{{ peer cluster name }}-01"
elc

Default

never

17

2. Run the command:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01> -e peer cluster name=<Cluster 02>

3. Log in to each instance to check if the LIFs have been added to the cluster:

Show example

Cluster 01::> net int show
(network interface show)

Logical Status Network Current
Current Is
Vserver Interface Admin/Oper Address/Mask Node
Port Home

Cluster 01

Cluster 01-01 mgmt up/up 10.0.0.101/24 Cluster 01-01
elc true

Cluster 01-01 mgmt auto up/up 10.101.101.101/24
Cluster 01-01 eOc true

cluster mgmt up/up 10.0.0.110/24 Cluster 01-01
elc true

5 entries were displayed.

The output shows that the LIFs were not added. This is because the ontap interface microservice still
needs to be defined in the services. yml file.

4. Verify that the LIFs were added to the raw_service request variable.

18

Show example

The following example shows that the LIFs have been added to the request:

"ontap interface": |

{

"10.0.0.101",
"Cluster 01-01",

"address":
"home node":

"home port": "eOc",
"hostname": "Cluster 01",
"interface name": "icO1l",
"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 01"
"address": "10.0.0.101",

"home node": "Cluster 01-01",
"eOC",
"Cluster O1",

"iCOZ",

"home port":
"hostname":

"interface name":

"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 01"
"address": "10.0.0.101",

"home node": "Cluster 02-01",
"eoc"’
"Cluster 02",

"iCOl",

"home port":
"hostname" :

"interface name":

"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 02"
"address": "10.0.0.1206",

"home node": "Cluster 02-01",
"eoc"'

"Cluster 02",

"home port":
"hostname":

19

"interface name": "ic02",

"ipspace": "Default",
"netmask": "255.255.255.0",
"role": "intercluster",
"use rest": "never",
"vserver": "Cluster 02"

9. Define the ontap interface microservice under cluster initial inthe services.ynl file.

Copy the following lines to the file to define the microservice:

- name: ontap interface
args: ontap interface
role: na/ontap interface

6. Now that the ontap interface microservice has been defined in the request and the services.yml
file, run the request again:

ansible-playbook -i inventory/hosts site.yml -e
cluster name=<Cluster 01> -e peer cluster name=<Cluster 02>

7. Log in to each ONTAP instance and verify that the LIFs have been added.

Step 3: Optionally, configure multiple clusters

If required, you can configure multiple clusters in the same request. You must provide variable names for each
cluster when you define the request.

Steps

1. Add an entry for the second cluster in the cluster initial.yml file to configure both clusters in the
same request.

The following example displays the ontap_aggr field after the second entry is added.

20

ontap aggr:

- hostname:
disk count:
name:
nodes:
raid type:

- hostname:
disk count:
name:
nodes:
raid type:

"{{ cluster name }}"

24

n0l aggrl

"{{ cluster name }}-01"

raid4

"{{ peer cluster name }}"

24

n0l aggrl

"{{ peer cluster name }}-01"
raid4

2. Apply the changes for all other items under cluster initial.

3. Add cluster peering to the request by copying the following lines to the file:

ontap cluster peer:

- hostname:
dest cluster name:
dest intercluster lifs:
source cluster name:
source intercluster lifs:
peer options:

hostname:

4. Run the Ansible request:

"{{ cluster name }}"
"{{ cluster peer }}"
"{{ peer lifs }}"

"{{ cluster name }}"
"{{ cluster 1lifs }}"

"{{ cluster peer }}"

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01>

site.yml -e peer cluster name=<Cluster 02> -e
cluster lifs=<cluster 1if 1 IP address,cluster 1if 2 IP address>

-e peer lifs=<peer 1if 1 IP address,peer 1if 2 IP address>

Step 4: Initial SVM configuration

At this stage in the procedure, you configure the SVMs in the cluster.

Steps

1. Update the svm_initial requestin the tutorial-requests.yml file to configure an SVM and SVM

peer relationship.
You must configure the following:

> The SVM

21

o The SVM peer relationship
o The SVM interface for each SVM

2. Update the variable definitions in the svm_initial request definitions. You must modify the following
variable definitions:

° cluster name
° vserver name
° peer cluster name

° peer vserver

To update the definitions, remove the ‘{}’ after req details forthe svm initial definition and add
the correct definition.

3. Create a file in the 1ogic-tasks folder for the service request. For example, create a file called
svm_initial.yml.

Copy the following lines to the file:

- name: Validate required inputs
ansible.builtin.assert:
that:

- service 1is defined

- name: Include data files
ansible.builtin.include vars:
file: "{{ data file name }}.yml"
loop:
- common-site-stds
- user-inputs
- cluster-platform-stds
- vserver—-common-stds
loop control:
loop var: data file name

- name: Initial SVM configuration
set fact:
raw service request:

4. Define the raw_service request variable.

You can use one of the following options to define the raw service request variable for
svm_initial inthe logic-tasks folder:

° Option 1: Manually define the raw service request variable.

Open the tutorial-requests.yml file using an editor and copy the content from line 179 to line

22

222. Paste the content under the raw service request variable in the new svm initial.yml
file, as shown in the following examples:

23

24

Show example

Example svm_initial.yml file:

- name: Validate required inputs

ansible.builtin.assert:
that:

- S

— name:

ansible.builtin.include vars:

fil
loop:

ervice is defined

Include data files

e: "{{ data file name }}.yml"

- common-site-stds

— use

r-inputs

- cluster-platform-stds

- vse

loop
loop var:

— name:

rver—-common-stds

control:

Initial SVM configuration

set fact:

raw _service request:

se

operation:

st

re

O

O

O

rvice:
create
d name: none

g details:

ntap vserver:
hostname:

name:

root volume aggregate:

hostname:
name:

root volume aggregate:

ntap vserver peer:

hostname:

vserver:

peer vserver:

applications:

peer options:
hostname:

ntap interface:

data file name

svm initial

"{{ cluster name }}"
"{{ vserver name }}"

n0l aggrl

"{{ peer cluster name
"{{ peer vserver }}"

n0l aggrl

"{{ cluster name }}"
"{{ vserver name }}"
"{{ peer vserver }}"

snapmirror

"{{ peer cluster name

}}"

}}"

- hostname: "{{ cluster name }}"

vserver: "{{ vserver name }}"
interface name: dataO1l
role: data
address: 10.0.0.200
netmask: 255.255.255.0
home node: "{{ cluster name }}-01"
home port: elc
ipspace: Default
use rest: never
- hostname: "{{ peer cluster name }}"
vserver: "{{ peer vserver }}"
interface name: data0O1l
role: data
address: 10.0.0.201
netmask: 255.255.255.0
home node: "{{ peer cluster name }}-01"
home port: elc
ipspace: Default
use rest: never

o Option 2: Use a Jinja template to define the request:

You can also use the following Jinja template format to get the raw_service request value.

raw service request: "{{ svm initial }}"

. Run the request:

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01> -e
peer cluster name=<Cluster 02> -e peer vserver=<SVM 02> -e
vserver name=<SVM 01> site.yml

. Log in to each ONTAP instance and validate the configuration.

. Add the SVM interfaces.

Define the ontap interface service under svm_initial inthe services.yml file and run the
request again:

25

ansible-playbook -i inventory/hosts -e cluster name=<Cluster 01> -e
peer cluster name=<Cluster 02> -e peer vserver=<svM 02> -e
vserver name=<SVM 01> site.yml

8. Log in to each ONTAP instance and verify that the SVM interfaces have been configured.

Step 5: Optionally, define a service request dynamically

In the previous steps, the raw _service request variable is hard-coded. This is useful for learning,
development, and testing. You can also dynamically generate a service request.

The following section provides an option to dynamically produce the required raw _service request if you
do not want to integrate it with higher level systems.

* Ifthe logic operation variable is not defined in the command, the 1ogic. yml file does
not import any file from the 1ogic-tasks folder. This means the raw service request
must be defined outside of Ansible and provided to the framework on execution.

@ * Atask file name in the 1ogic-tasks folder must match the value of the
logic_operation variable without the .yml extension.

* The task files in the logic-tasks folder dynamically define a raw_service request.
The only requirement is that a valid raw_service request be defined as the last task in
the relevant file.

How to dynamically define a service request

There are multiple ways to apply a logic task to dynamically define a service request. Some of these options
are listed below:

* Using a Ansible task file from the 1ogic-tasks folder
* Invoking a custom role that returns data suitable for converting to a raw service request varaible.

* Invoking another tool outside of the Ansible environment to provide the required data. For example, a
REST API call to Active 1Q Unified Manager.

The following example commands dynamically define a service request for each cluster using the tutorial-
requests.yml file:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster 01
-e logic operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster 02
-e logic operation=tutorial-requests site.yml

Step 6: Deploy the ONTAP day 0/1 solution

At this stage you should have already completed the following:

26

* Reviewed and modified all files in playbooks/inventory/group vars/all according to your
requirements. There are detailed comments in each file to help you make the changes.

* Added any required task files to the the 1ogic-tasks directory.

* Added any required data files to the playbook/vars directory.

Use the following commands to deploy the ONTAP day 0/1 solution and verify the health of your deployment:

@ At this stage, you should have already decrypted and modified the vault.yml file and it must
be encrypted with your new password.

* Run the ONTAP day 0 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster day 0 -e service=cluster day 0 -vvvv --ask-vault
-pass <your vault password>

* Run the ONTAP day 1 service:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster day 1 -e service=cluster day 0 -vvvv --ask-vault
-pass <your vault password>

* Apply cluster wide settings:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=cluster wide settings -e service=cluster wide settings
-vvvv --ask-vault-pass <your vault password>

¢ Run health checks:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e
logic operation=health checks -e service=health checks -e
enable health reports=true -vvvv --ask-vault-pass <your vault password>

Customize the ONTAP day 0/1 solution

To customize the ONTAP day 0/1 solution for your requirements, you can add or change
Ansible roles.

Roles represent the microservices within the Ansible framework. Each microservice performs one operation.
For example, ONTAP day 0 is a service that contains multiple microservices.

27

Add Ansible roles

You can add Ansible roles to customize the solution for your environment. Required roles are defined by
service definitions within the Ansible framework.

A role must meet the following requirements to be used as a microservice:

* Accept a list of arguments in the args variable.
* Use the Ansible "block, rescue, always" structure with certain requirements for each block.
« Use a single Ansible module and define a single task within the block.

* Implement every available module parameter according to the requirements detailed in this section.

Required microservice structure

Each role must support the following variables:

* mode: If mode is set to test the role attempts to import the test . yml which shows what the role does
without actually executing it.

@ It is not always possible to implement this because of certain interdependencies.
* status: The overall status of playbook execution. If the value is not set to success the role is not
executed.

* args : Alist of role specific dictionaries with keys that match the role parameter names.

* global log messages: Gathers log messages during playbook execution. There is one entry generated
each time the role is executed.

* log name: The name used to refer to the role within the global log messages entries.

* task_descr: A brief description of what the role does.

* service start time: The timestamp used to track the time each role is executed.

* playbook_status: The status of the Ansible playbook.

* role result: The variable that contains role output and is included in each message within the

global log messages entries.

Example role structure

The following example provides the basic structure of a role that implements a microservice. You must change
the variables in this example for your configuration.

28

Show example

Basic role structure:

- name: Set some role attributes
set fact:
log name: "<LOG_NAME>"
task descr: "<TASK DESCRIPTION>"

- name: "{{ log name }}"
block:
- set fact:
service start time: "{{ lookup('pipe',6 'date
+3YSmSdSHSMSS ') 1"

- name: "Provision the new user"
<MODULE_NAME>:

COMMON ATTRIBUTES

hostname: "{{
clusters[loop arg['hostname']]['mgmt ip'] }}"
username: "
clusters[loop arg['hostname']]['username'] }}"
password: "{{
clusters[loop arg['hostname']]['password'] }}"
cert filepath: "{{ loop arg['cert filepath']
| default (omit) }}"
feature flags: "{{ loop arg['feature flags']
| default (omit) }}"
http port: "{{ loop arg['http port']
| default (omit) }}"
https: "{{ loop arg['https']
| default('true') }}"
ontapi: "{{ loop arg['ontapi']
| default (omit) }}"
key filepath: "{{ loop arg['key filepath']
| default (omit) }}"
use rest: "{{ loop arg['use rest']
| default (omit) }}"
validate certs: "{{ loop arg['validate certs']

| default('false') }}"

30

<MODULE SPECIFIC PARAMETERS>

defaulted parameter: "{{ loop arg['defaulted parameter']

default ('default value') }}"

optional parameter:
default (omit) }}"
loop: "{{ args }}"
loop control:

"{{ loop arg['optional parameter']

loop var: loop arg

register: role result

rescue:
- name: Set role status to FAIL
set fact:
playbook status: "failed"
always:
- name: add log msg
vars:
role log:
role: "{{ log name }}"
timestamp:
start time: "{{service start time}}"
end time: "{{ lookup('pipe', 'date +%Y-%m-

d@%H:%M:%S") }}"

service status:

"{{ playbook status }}"

result: "{{role result}}"

set fact:
global log msgs:

"{{ global log msgs + [role log] }}"

Variables used in the example role:

* <NAME>: A replaceable value that must be provided for each microservice.
* <LOG_NAME>: The short form name of the role used for logging purposes. For example, ONTAP VOLUME.
* <TASK_DESCRIPTION>: A brief description of the what the microservice does.

* <MODULE NAME>: The Ansible module name for the task.

The top level execute. yml playbook specifies the netapp.ontap collection. If the
@ module is part of the netapp.ontap collection, there is no need to fully specify the module
name.

* <MODULE_ SPECIFIC_ PARAMETERS>: Ansible module parameters that are specific to the module used to
implement the microservice. The following list describes types of parameters and how they should be
grouped.

o Required parameters: All required parameters are specified with no default value.

o Parameters that have a default value specific to the microservice (not the same as a default value
specified by the module documentation).

° All remaining parameters use default (omit) as the default value.

Using multi-level dictionaries as module parameters

Some NetApp provided Ansible modules use multi-level dictionaries for module parameters (for example, fixed
and adaptive QoS policy groups).

Using default (omit) alone does not work when these dictionaries are used, especially when there is more
than one and they are mutually exclusive.

If you need to use multi-level dictionaries as module parameters, you should split the functionality into multiple
microservices (roles) so that each one is guaranteed to supply at least one second-level dictionary value for
the relevant dictionary.

The following examples show fixed and adaptive QoS policy groups split across two microservices.

The first microservice contains fixed QoS policy group values:

31

fixed gos options:

capacity shared: "
loop arg['fixed gos options']['capacity shared'] | default (omit)
PE

max throughput iops: "{{
loop arg['fixed gos options']['max throughput iops'] | default (omit)
P

min throughput iops: "{{
loop arg['fixed gos options']['min throughput iops'] | default (omit)
PE

max throughput mbps: "{{
loop arg['fixed gos options']['max throughput mbps'] | default (omit)
P

min throughput mbps: "{{
loop arg['fixed gos options']['min throughput mbps'] | default (omit)

}}"

The second microservice contains the adaptive QoS policy group values:

adaptive gos options:

absolute min iops: "

loop arg['adaptive gos options']['absolute min iops'] | default (omit) }}"
expected iops: "

loop arg['adaptive gos options']['expected iops'] | default (omit) }}"
peak iops: "

loop arg['adaptive gos options']['peak iops'] | default (omit) }}"

32

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

33

http://www.netapp.com/TM

	ONTAP : NetApp Automation
	Table of Contents
	ONTAP
	Day 0/1
	Overview of the ONTAP day 0/1 solution
	Prepare to use the ONTAP day 0/1 solution
	Deploy the ONTAP cluster using the solution
	Customize the ONTAP day 0/1 solution

