Apache Kafka workloads with NetApp NFS
storage

NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-ai/data-analytics/kafka-
nfs-introduction.html on February 12, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Apache Kafka workloads with NetApp NFS storage
TR-4947: Apache Kafka workload with NetApp NFS storage - Functional validation and performance
Why use NFS storage for Kafka workloads?
Why NetApp for Kafka workloads?
NetApp solution for silly rename issue for NFS to Kafka workloads
Functional validation - Silly rename fix
Validation setup
Architectural flow
Methodology of testing
Why NetApp NFS for Kafka workloads?
Reduced CPU utilization on Kafka broker
Faster broker recovery
Storage efficiency
Performance overview and validation in AWS
Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and single node)
Methodology of testing
Observation
Performance overview and validation in AWS FSx ONTAP
Apache Kafka in AWS FSx ONTAP
Performance overview and validation with AFF A900 on-premises
Storage configuration
Client tuning
Kafka broker tuning
Workload generator testing methodology
Extreme performance and exploring storage limits
Sizing guidance
Conclusion
Where to find additional information

N DD WWOWNN- o

Apache Kafka workloads with NetApp NFS
storage

TR-4947: Apache Kafka workload with NetApp NFS storage
- Functional validation and performance

Shantanu Chakole, Karthikeyan Nagalingam, and Joe Scott, NetApp

Kafka is a distributed publish-subscribe messaging system with a robust queue that can
accept large amounts of message data. With Kafka, applications can write and read data
to topics in a very fast manner. Because of its fault tolerance and scalability, Kafka is
often used in the big data space as a reliable way to ingest and move many data streams
very quickly. Use cases include stream processing, website-activity tracking, metrics
collection and monitoring, log aggregation, real time analytics, and so on.

Although normal Kafka operations on NFS work well, the silly rename issue crashes the application during the
resizing or repartitioning of a Kafka cluster running on NFS. This is a significant issue because a Kafka cluster
must be resized or repartitioned for load-balancing or maintenance purposes. You can find additional details
here.

This document describes the following subjects:

 The silly-rename problem and solution validation
* Reducing CPU utilization to reduce the I/O wait time
» Faster Kafka broker recovery time

» Performance in the cloud and on-premises

Why use NFS storage for Kafka workloads?

Kafka workloads in production applications can stream huge amounts of data between applications. This data
is held and stored in the Kafka broker nodes in the Kafka cluster. Kafka is also known for availability and
parallelism, which it achieves by breaking topics into partitions and then replicating those partitions throughout
the cluster. This eventually means that the huge amount of data that flows through a Kafka cluster is generally
multiplied in size. NFS makes rebalancing data as the number of brokers changes very quick and easy. For
large environments, rebalancing data across DAS when the number of brokers changes is very time
consuming, and, in most Kafka environments, the number of brokers changes frequently.

Other benefits include the following:
» Maturity. NFS is a mature protocol, which means most aspects of implementing, securing, and using it are

well understood.

* Open. NFS is an open protocol, and its continued development is documented in internet specifications as
a free and open network protocol.

» Cost-effective. NFS is a low-cost solution for network file sharing that is easy to set up because it uses the
existing network infrastructure.

» Centrally managed. Centralized management of NFS decreases the need for added software and disk
space on individual user systems.

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

* Distributed. NFS can be used as a distributed file system, reducing the need for removable media storage
devices.

Why NetApp for Kafka workloads?

The NetApp NFS implementation is considered a gold standard for the protocol and is used in countless
enterprise NAS environments. In addition to the credibility of NetApp, it also offers the following benefits:

 Reliability and efficiency

+ Scalability and performance

 High availability (HA partner in a NetApp ONTAP cluster)
» Data protection

> Disaster recovery (NetApp SnapMirror). Your site goes down or you want to jump start at a different
site and continue from where you left off.

o Manageability of your storage system (administration and management using NetApp OnCommand).

> Load balancing. The cluster allows you to access different volumes from data LIFs hosted on different
nodes.

> Nondisruptive operations. LIFs or volume moves are transparent to the NFS clients.

NetApp solution for silly rename issue for NFS to Kafka
workloads

Kafka is built with the assumption that the underlying filesystem is POSIX compliant: for
example, XFS or Ext4. Kafka resource rebalancing removes files while the application is
still using them. A POSIX-compliant file system allows unlink to proceed. However, it only
removes the file after all references to the file are gone. If the underlying filesystem is
network attached, then the NFS client intercepts the unlink calls and manages the
workflow. Because there are pending opens on the file being unlinked, the NFS client
sends a rename request to the NFS server and, on the last close of the unlinked file,
issues a remove operation on the renamed file. This behavior is commonly referred to as
NFS silly rename, and it is orchestrated by the NFS client.

Any Kafka broker using storage from an NFSv3 server runs into issues because of this behavior. However, the
NFSv4.x protocol has features to address this issue by allowing the server to take responsibility for the
opened, unlinked files. NFS servers supporting this optional feature communicate the ownership capability to
the NFS client at the time of file opening. The NFS client then ceases the unlink management when there are
opens pending and allows the server to manage the flow. Although the NFSv4 specification provides guidelines
for implementation, until now, there were not any known NFS server implementations that supported this
optional feature.

The following changes are required for the NFS server and the NFS client to address the silly rename issue:

« Changes to NFS client (Linux). At the time of file opening, the NFS server responds with a flag, indicating
the capability to handle the unlinking of opened files. NFS client-side changes allow the NFS server to
handle the unlinking in the presence of the flag. NetApp has updated the open-source Linux NFS client
with these changes. The updated NFS client is now generally available in RHEL8.7 and RHEL9.1.

» Changes to NFS server. The NFS server keeps track of opens. Unlinking on an existing open file is now

managed by the server to match POSIX semantics. When the last open is closed, The NFS server then
initiates the actual removal of the file and thus avoids the silly rename process. The ONTAP NFS server
has implemented this capability in its latest release, ONTAP 9.12.1.

With the above changes to the NFS client and server, Kafka can safely reap all the benefits of network-
attached NFS storage.

Functional validation - Silly rename fix

For the functional validation, we showed that a Kafka cluster with an NFSv3 mount for
storage fails to perform Kafka operations like partition redistribution, whereas another
cluster mounted on NFSv4 with the fix can perform the same operations without any
disruptions.

Validation setup

The setup is run on AWS. The following table shows the different platform components and environmental
configuration used for the validation.
Platform component Environment configuration

Confluent Platform version 7.2.1 » 3 x zookeepers — t3.xlarge
* 4 x broker servers — r3.xlarge
* 1 x Grafana — t3.xlarge
* 1 x control center — t3.xlarge

* 3 x Producer/consumer

Operating system on all nodes RHELS.7or later

NetApp Cloud Volumes ONTAP instance Single-node instance — M5.2xLarge

The following figure show the architectural configuration for this solution.

Text

[Private subnat

: =)
el Privale subnet Private subneat

e { | ks

le
J

ningly mourt point

—E—\hmksrl

0 iy
. .’__:ﬁ“-—dxu’wl LLLLL
PSS N = ::1:3::
L a
E@ _{[:]:E - 900GE valumsa
| S a —ﬂ_‘. y

5 |

Kafka cluster 500GB
ProducarContimar swanm i xlarge = C&lﬁ\?ﬂﬂﬁ
3, adarge
- NetApp
manitaring ‘ | Badage

Architectural flow
» Compute. We used a four-node Kafka cluster with a three-node zookeeper ensemble running on
dedicated servers.
* Monitoring. We used two nodes for a Prometheus-Grafana combination.

* Workload. For generating workloads, we used a separate three-node cluster that can produce to and
consume from this Kafka cluster.

» Storage. We used a single-node NetApp Cloud volumes ONTAP instance with two 500GB GP2 AWS-EBS
volumes attached to the instance. These volumes were then exposed to the Kafka cluster as single
NFSv4.1 volume through a LIF.

The default properties of Kafka were chosen for all servers. The same was done for the zookeeper swarm.

Methodology of testing

1. Update -is-preserve-unlink-enabled true to the kafka volume, as follows:

aws—-shantanclastrecall-aws::*> volume create -vserver kafka svm -volume
kafka fg vol0l -aggregate kafka aggr -size 3500GB -state online -policy
kafka policy -security-style unix -unix-permissions 0777 -junction-path
/kafka fg vol0l -type RW -is-preserve-unlink-enabled true

[Job 32] Job succeeded: Successful

2. Two similar Kafka clusters were created with the following difference:

o Cluster 1. The backend NFS v4.1 server running production-ready ONTAP version 9.12.1 was hosted
by a NetApp CVO instance. RHEL 8.7/RHEL 9.1 were installed on the brokers.

o Cluster 2. The backend NFS server was a manually created generic Linux NFSv3 server.

3. A demo topic was created on both the Kafka clusters.

Cluster 1:

.188:90

Leader:
Leader: 2
pic 0 g Leader: 3
Topic: a_demo_topic Parti) Leader: 1

topics bootstrap-server=1 30.90.198
C op1C
Topicld: A eMI) PartitionCount: 4

--describe --

c: topic art : @ Leader: 2 Replicas:
Topic: __a_demo_topic Rep
Topic: _a_d topic Parti 2 Leader: 1 Repl
Topic: topic Parti 3 Leader: 4

4. Data was loaded into these newly created topics for both clusters. This was done using the producer-perf-
test toolkit that comes in the default Kafka package:

./kafka-producer-perf-test.sh --topic a demo topic --throughput -1
—-—-num-records 3000000 --record-size 1024 --producer-props acks=all
bootstrap.servers=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,

172.30.0.123:9092

5. A health check was performed for broker-1 for each of the clusters using telnet:
°telnet 172.30.0.160 9092

° telnet 172.30.0.198 9092

A successful health check for brokers on both clusters is shown in the next screenshot:

shantanu®shanta ac-8 ~ % telnet 172.30.0.160 9092
Trying 172.30.0 .

Connected to 172.30.0.168.

Escape character 15 "A]°

Al

Connection closed by foreign host
shantanuBshantanc-mac-@ -~ % telnet 172.39.0.198 9092
Trying 172 .8 B...

Connected to

Escape character is "A]’

6. To trigger the failure condition that causes Kafka clusters using NFSv3 storage volumes to crash, we
initiated the partition reassignment process on both clusters. Partition reassignment was performed using
kafka-reassign-partitions.sh. The detailed process is as follows:

a. To reassign the partitions for a topic in a Kafka cluster, we generated the proposed reassignment config
JSON (this was performed for both the clusters).

kafka-reassign-partitions —--bootstrap
-server=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,172.30.
0.123:9092 --broker-list "1,2,3,4" --topics-to-move-json-file
/tmp/topics.json —--generate

b. The generated reassignment JSON was then saved in /tmp/reassignment- file.json.

c. The actual partition reassignment process was triggered by the following command:

kafka-reassign-partitions --bootstrap
-server=172.30.0.198:9092,172.30.0.163:9092,172.30.0.221:9092,172.30.

0.204:9092 --reassignment-json-file /tmp/reassignment-file.json
—execute

7. After a few minutes when the reassignment was completed, another health check on the brokers showed
that cluster using NFSv3 storage volumes had run into a silly rename issue and had crashed, whereas
Cluster 1 using NetApp ONTAP NFSv4.1 storage volumes with the fix continued operations without any
disruptions.

shantanu@shantanc-mac-8@ ~ % telnet 172.30.0.160 9097
Trying 172.30.0.160...

Connected to 172.30.90.160.

Escape character is "A]°

A [

Connection closed by foreign host.

shantanu@shantanc-mac-@ ~ % telnet 17 9.9.158 9@92

Trying 172.30.0.198...

telnet: connect to address 172.30.9.198: Connection refused
telnet: Unable to connect to remote host

o Cluster1-Broker-1 is alive.
o Cluster2-broker-1 is dead.

8. Upon checking the Kafka log directories, it was clear that Cluster 1 using NetApp ONTAP NFSv4.1 storage
volumes with the fix had clean partition assignment, while Cluster 2 using generic NFSv3 storage did not
due to silly rename issues, which led to the crash. The following picture shows partition rebalancing of
Cluster 2, which resulted in a silly rename issue on NFSv3 storage.

) 10:22 .nfsO000000025F91d5500000046
10:25 .nfmzsfm:m?

Why NetApp NFS for Kafka workloads?

Now that there is a solution for the silly rename issue in NFS storage with Kafka, you can
create robust deployments that leverage NetApp ONTAP storage for your Kafka
workload. Not only does this significantly reduce operational overhead, it also brings the
following benefits to your Kafka clusters:

* Reduced CPU utilization on Kafka brokers. Using disaggregated NetApp ONTAP storage separates disk

I/0O operations from the broker and thus reduces its CPU footprint.

* Faster broker recovery-time. Since disaggregated NetApp ONTAP storage is shared across Kafka broker
nodes, a new compute instance can replace a bad broker at any point in a fraction of the time compared to
conventional Kafka deployments without rebuilding the data.

» Storage efficiency. As the storage layer of the application is now provisioned through NetApp ONTAP,
customers can avail all the benefits of storage efficiency that comes with ONTAP, such as in-line data
compression, deduplication, and compaction.

These benefits were tested and validated in test cases that we discuss in detail in this section.

Reduced CPU utilization on Kafka broker

We discovered that overall CPU utilization is lower than its DAS counterpart when we ran similar workloads on
two sperate Kafka clusters that were identical in their technical specifications but differed in their storage
technologies. Not only is the overall CPU utilization lower when Kafka cluster is using ONTAP storage, but the
increase in the CPU utilization demonstrated a gentler gradient than in a DAS-based Kafka cluster.

Architectural setup

The following table shows the environmental configuration used to demonstrate reduced CPU utilization.

Platform component Environment configuration
Kafka 3.2.3 * 3 x zookeepers — t2.small
Benchmarking tool: OpenMessaging « 3 x broker servers — i3en.2xlarge

* 1 x Grafana — c5n.2xlarge

* 4 x Producer/Consumer — c5n.2xlarge

Operating system on all nodes RHEL 8.7 or later
NetApp Cloud Volumes ONTAP instance Single Node Instance — M5.2xLarge

Benchmarking tool

The benchmarking tool used in this test case is the OpenMessaging framework. OpenMessaging is vendor-
neutral and language-independent; it provides industry guidelines for finance, e-commerce, 10T, and big-data;
and it helps develop messaging and streaming applications across heterogeneous systems and platforms. The
following figure depicts the interaction of OpenMessaging clients with a Kafka cluster.

https://openmessaging.cloud/

! AWS Cloud

E Private subnat

Zookeepar [

] 2amai

|

oy
two mounts for each broker o g_pE‘
~ = 0 B
EEE F;él | S U ms.2xlarge _!
e sy = n —I
F““m@ E@i} ; o L oo
— | L all -
- mﬂu&i_mduslar E@} Tﬁ‘j“ » D
Producar/Constimer swanm — == _.,,'__ﬁ'-\ D _.
obn.2xarge ! PR
OPENMESSAGING CLIENTS J 5 2darg0

momiofing

« Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on
dedicated servers. Each broker had two NFSv4.1 mount points to a single volume on the NetApp CVO

instance through a dedicated LIF.

* Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we
have a separate three-node cluster that can produce to and consume from this Kafka cluster.

« Storage. We used a single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS
volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFSv4.1
volumes through dedicated LIFs.

» Configuration. The two configurable elements in this test case were Kafka brokers and OpenMessaging
workloads.

> Broker config. The following specifications were selected for the Kafka brokers. We used replication
factor of 3 for all measurements, as is highlighted below.

broker.id=1

advertised. listeners=PLAINTEXT://172.30.0.185:9092
log.dirs=/mnt/data-1
zookeeper.connect=172.30.0.13:2181,172.30.0.108:2181,172.30.0.253:2181
num.replica. fetchers=8

message.max.bytes=10485760
replica.fetch.max.bytes=10485760
num.network.threads=8
default.replication.factor=3|

replica. lag.time.max.ms=100000000

replica. fetch.max.bytes=1048576

replica. fetch.wait.max.ms=500

num.replica. fetchers=1
replica.high.watermark.checkpoint.interval.ms=5000
fetch.purgatory.purge.interval.requests=1000
producer.purgatory.purge.interval.requests=1000
replica.socket.timeout.ms=30000
replica.socket.receive.buffer.bytes=65536

* OpenMessaging benchmark (OMB) workload config. The following specifications were provided. We
specified a target producer rate, highlighted below.

name: 4 producer / 4 consumers on 1 topic
topics: 1

partitionsPerTopic: 100

messageSize: 1024

payloadFile: "payload/payload-1Kb.data"
subscriptionsPerTopic: 1
consumerPerSubscription: 4
producersPerTopic: 4

producerRate: 40000
consumerBacklogSizeGB: @
testDurationMinutes: 5

Methodology of testing

1. Two similar clusters were created, each having its own set of benchmarking cluster swarms.
o Cluster 1. NFS-based Kafka cluster.
o Cluster 2. DAS-based Kafka cluster.

2. Using an OpenMessaging command, similar workloads were triggered on each cluster.

sudo bin/benchmark --drivers driver-kafka/kafka-group-all.yaml
workloads/1l-topic-100-partitions-1kb.yaml

10

3. The produce rate configuration was increased in four iterations, and CPU utilization was recorded with
Grafana. The produce rate was set to the following levels:

> 10,000
> 40,000
> 80,000
> 100,000

Observation

There are two primary benefits of using NetApp NFS storage with Kafka:

* You can reduce CPU usage by almost one-third. The overall CPU usage under similar workloads was
lower for NFS compared to DAS SSDs; savings range from 5% for lower produce rates to 32% for higher
produce rates.

» A three-fold reduction in CPU utilization drift at higher produce rates. As expected, there was an
upward drift for the increase in CPU utilization as the produce rates were increased. However, CPU
utilization on Kafka brokers using DAS went up from 31% for the lower produce rate to 70% for the higher
produce rate, a 39% increase. However, with an NFS storage backend, the CPU utilization went up from
26% to 38%, a 12% increase.

11

Also, at 100,000 messages, DAS shows more CPU utilization than an NFS cluster.

Faster broker recovery

We discovered that Kafka brokers recover faster when they are using shared NetApp NFS storage. When a
broker crashes in a Kafka cluster, this broker can be replaced by a healthy broker with a same broker ID. Upon
performing this test case, we found that, in the case of a DAS-based Kafka cluster, the cluster rebuilds the data
on a newly added healthy broker, which is time consuming. In the case of a NetApp NFS-based Kafka cluster,
the replacing broker continues to read data from the previous log directory and recovers much faster.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 * 3 x zookeepers — t2.small
» 3 x broker servers — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge
* 4 x producer/consumer — c5n.2xlarge

» 1 x backup Kafka node — i3en.2xlarge

Operating system on all nodes RHELS8.7 or later

NetApp Cloud Volumes ONTAP instance Single-node instance — M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.

! AWS Cloud

el Private subnet

Zookeopar [] 12.8mail

—_— [} gp2

wo mounis for each broker " a—

[l -

a E@} =0 R D ms.2xlarge =

h‘_\—'—pﬂﬂrmnoﬂ testing = .
k“‘*-—mﬂﬂaw_m E[;j} e D # _i 25008 each

| L f_ﬁ“\ » D
oﬂﬂﬂugﬁ.mdusler E@:} T{g\ N D _i
ProducanConmimar swanm eyt L5 ;& D _.
obn 2elarga + hmal .
COPENMESSAGING CLIENTS] 5 2dge

moniforing

13

« Compute. A three-node Kafka cluster with a three-node zookeeper ensemble running on dedicated
servers. Each broker has two NFS mount points to a single volume on the NetApp CVO instance via a
dedicated LIF.

* Monitoring. Two nodes for a Prometheus-Grafana combination. For generating workloads, we use a
separate three-node cluster that can produce and consume to this Kafka cluster.

« Storage. A single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS volumes
mounted on the instance. These volumes are then exposed to the Kafka cluster as six NFS volume through
dedicated LIFs.

» Broker configuration. The one configurable element in this test case are Kafka brokers. The following
specifications were selected for the Kafka brokers. The replica.lag.time.mx.ms is set to a high value
because this determines how fast a particular node is taken out of the ISR list. When you switch between
bad and healthy nodes, you don’t want that broker ID to be excluded from the ISR list.

broker.id=1

advertised. listeners=PLAINTEXT://172.30.0.185:9892
log.dirs=s/mnt/data-1
zookeeper.connect=172.30.0.13:2161,172.30.6.108: 2181 ,172.320.6.253: 2181
num. replica. fetchers=8

message.max. bytes=10485768

replica, fetch.max.bytes=18485760

num.network. threads=8

default. replication. factor=3

replica, lag. time.max.ms=100022200

replica, fetch.max.bytes=1848576

replica, fetch.wait.max.ms=508

num, replica, fetchers=1
replica.high.watermark.checkpoint. interval.ms=588@
fetch.purgatory.purge.interval. requests=108@
producer.purgatory.purge.interval, requests=1008
replica. socket. timeout.ms=30088

replica.socket. receive.buffer.bytes=65536

Methodology of testing

1. Two similar clusters were created:
o An EC2-based confluent cluster.
> A NetApp NFS-based confluent cluster.

2. One standby Kafka node was created with a configuration identical to the nodes from the original Kafka
cluster.

3. On each of the clusters, a sample topic was created, and approximately 110GB of data was populated on
each of the brokers.

° EC2-based cluster. A Kafka broker data directory is mapped on /mnt/data-2 (In the following figure,
Broker-1 of cluster1 [left terminal]).

° NetApp NFS-based cluster. A Kafka broker data directory is mounted on NFS point /mnt/data (In
the following figure, Broker-1 of cluster2 [right terminal]).

14

[root®ip-172-30-0-185 /1% df -nT [root#ip-172-38-8-139 /18 df -hT

Filesystem Type Size Used Avoll UseX Mounted on Filesystem Type Size Used Avoll UseX Mounted on
devtmpfs devimpfs 316 @ 316 @ fdev devimpfs devimpfs 316 ® 316 % Sdev

tmpfs tmpfs 316 0 316 8% fdev/shm tmpfs 6 0 36 0% /dev/shm
tmpfs trpfs 316 65 316 1K Jrun tmpfs 36 2 36 1K Srun

trofs trpfs 36 @ 3G % Jsys/Fslegrow tmpfs 36 @ 3G @ Ssys/fs/cgrovp
Jdew/mmednlp? xfs 106 3,16 7.8 31X / 106 3,16 7.66 3%/

fiea/nvme2nl xfs 2:3TLIG AT SN Mmntsdats 237 176 2.3T 1% /mnt/data-1
2.37 176G 23T X fent/dato-2
B.26 @ .26 9% /runfuser/1000
35T 86 34T 4N MHMI

pfs tmpfs 2 ; "
[root#ip-172-30-9-185 /1# topfs

29332444

[root#ip-172-30-0-138 /18

4. In each of the clusters, Broker-1 was terminated to trigger a failed broker recovery process.

5. After the broker was terminated, the broker IP address was assigned as a secondary IP to the standby
broker. This was necessary because a broker in a Kafka cluster is identified by the following:

o I[P address. Assigned by reassigning the failed broker IP to the standby broker.
° Broker ID. This was configured in the standby broker server.properties.
6. Upon IP assignment, the Kafka service was started on the standby broker.

7. After a while, the server logs were pulled to check the time taken to build data on the replacement node in
the cluster.

Observation

Kafka broker recovery was almost nine times faster. The time it took to recover a failed broker node was found
to be significantly faster when using NetApp NFS shared storage compared to using DAS SSDs in a Kafka
cluster. For 1TB of topic data, the recovery time for a DAS-based cluster was 48 minutes, compared to less
than 5 minutes for a NetApp-NFS based Kafka cluster.

We observed that the EC2-based cluster took 10 minutes to rebuild the 110GB of data on the new broker node,
whereas the NFS- based cluster completed the recovery in 3 minutes. We also observed in the in logs that
consumer offsets for the partitions for EC2 were 0, while, on the NFS cluster, consumer offsets were picked up
from the previous broker.

[2022-10-31 09:39:17,747] INFO [LogLoader partition=test-topic-51R3EWs-
0000-55, dir=/mnt/kafka-data/broker2] Reloading from producer snapshot and
rebuilding producer state from offset 583999 (kafka.log.UnifiedLog$)
[2022-10-31 08:55:55,170] INFO [LogLoader partition=test-topic-gbVsEZg-
0000-8, dir=/mnt/data-1] Loading producer state till offset 0 with message
format version 2 (kafka.log.UnifiedLog$)

DAS-based cluster

1. The backup node started at 08:55:53,730.

[2022-10-31 @8:55:53,661] INFO Setting -D jdk.tls.rejectClientInitiatedRenegotia-
[2022-10-31 ©8:55:53,727] INFO Registered signal handlers for TERM, INT, HUP (or
[2022-10-31 ©8:55:53,730] INFO starting (kafka.server.KafkaServer)
[2022-10-31 ©8:55:53,73@] INFO Connecting to zookeeper on 172.30.0.17:2181,172.3I

DU b WM

2. The data rebuilding process ended at 09:05:24,860. Processing 110GB of data required approximately 10
minutes.

15

[?2027-10-21 AR:KR:KY 7881 TNFN [7ZannKeenerllient Kafka cearuverl Tnitializinn a new

[2022-19-31 @9:05:24,860] INFO [ReplicaFetcherManager on broker 1] Removed fetcher for

partitions HashSet(test-topic-qbVsEZg-808808-95, test-topic-gqbVsEZg-0000-5,

test-topic-qbVsEZg-8080-41,
test-topic-qbVsEZg-B000-47,
test-topic-qbVsEZg-0000-89,
test-topic-qbVsEZg-@8@08-29,
test-topic-qbVsEZg-0000-65,

test-topic-qbVsEZg-0080-23, test-topic-qbVsEZg-@eee-11,
test-topic-qbVsEZg-00080-83, test-topic-qbVsEZg-00880-35,
test-topic-qbVsEZg-0@00-71, test-topic-gbVsEZg-00880-53,
test-topic-qbVsEZg-80080-59, test-topic-gbVsEZg-0@8e-77,
test-topic-qbVsEZg-0008-17)

{kafka.server.ReplicaFetcherManager)

NFS-based cluster

1. The backup node was started at 09:39:17,213. The starting log entry is highlighted below.

i ieie S afd Wl B et ¥ R P W REEF W Ml WS kel INRE R VAR R F e PREA S AVA R Ry M WM W W kel £

[2022-10-31
[2022-18-31
[2022-10-31
[2022-10-31
[2022-18-31
[2022-10-31

[2022-10-31
[7822-1a-21

co~NoyWU BN

99:39:17,142]
©9:39:17,211]
©99:39:17,213]
09:39:17,214]
99:39:17,238]
©9:39:17,244]

©9:39:17,244]
na:20:17 2441

INFO
INFO
INFO
INFO
INFO
INFO

INFO
TNFN

Setting -D jdk.tls.rejectClientInitiatedRenegotiati
Registered signal handlers for TERM, INT, HUP (org.
starting (kafka.server.KafkaServer)

Connecting to zookeeper on 172.30.6.22:2181,172.30.
[ZooKeeperClient Kafka server] Initializing a new s
Client environment:zookeeper.version=3.6.3-—6401eda

Client environment:host.name=ip-172-30-0-110.ec2.in
flient envirnnment:iava_vercinn=11_08.17 (arn_anarhe

2. The data rebuild process ended at 09:42:29,115. Processing 110GB of data required approximately 3

16

minutes.

[2622-10-31 09:42:29,115] INFO [GroupMetadataManager brokerId=1] Finished loading offsets
and group metadata from __consumer_offsets-20 in 28478 milliseconds for epoch 3, of which
28478 milliseconds was spent in the scheduler.
(kafka.coordinator.group.GroupMetadataManager)

The test was repeated for brokers containing around 1TB data, which took approximately 48 minutes for
the DAS and 3 min for NFS. The results are depicted in the following graph.

Time Taken for broker Recovery

50 minutes
40 minutes
30 minules DAS Based Cluster
20 minutes
10 minutes
MNFS Based Cluster
0 minutes
110GB 1100GB

Data loaded on the broker

Storage efficiency

Because the storage layer of the Kafka cluster was provisioned through NetApp ONTAP, we got all the storage
efficiency capabilities of ONTAP. This was tested by generating a significant amount of data on a Kafka cluster
with NFS storage provisioned on Cloud Volumes ONTAP. We could see that there was a significant space
reduction due to ONTAP capabilities.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 » 3 x zookeepers — t2.small
» 3 x broker servers — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge

* 4 x producer/consumer — c5n.2xlarge
*

Operating system on all nodes RHELS8.7 or later

NetApp Cloud Volumes ONTAP instance Single node instance — M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.

! AWS Cloud

F‘ Private subnet

Zookeopar [] 12.5mail
—_— [} gp2
wo mounis for each broker " a—
Al o [
a E@} =0 R D ms.2xlarge =
;T—Hﬁ*—ﬂ E@; =4 I D # = 250GB each
- _‘_"__‘_'_"‘_‘—'—-—. I _. :
= | L, A D
mﬂﬂqanimdusler = T{g\ » D _i
ProducanConmimar swanm eyt _"f__ﬂ\\ D _-
obn 2elarga + hmal .
CPENMESSAGING CLIENTS] e52dmge

moniforing

+ Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on
dedicated servers. Each broker had two NFS mount points to a single volume on the NetApp CVO instance

17

via a dedicated LIF.

* Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we
used a separate three-node cluster that could produce and consume to this Kafka cluster.

» Storage. We used a single-node NetApp Cloud Volumes ONTAP instance with six 250GB GP2 AWS-EBS
volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFS
volumes through dedicated LIFs.

» Configuration. The configurable elements in this test case were the Kafka brokers.

Compression was switched off on the producer’s end, thus enabling producers to generate high throughput.
Storage efficiency was instead handled by the compute layer.

Methodology of testing

1. A Kafka cluster was provisioned with the specifications mentioned above.
2. On the cluster, about 350GB data was produced using the OpenMessaging Benchmarking tool.

3. After the workload was completed, the storage efficiency statistics were collected using ONTAP System
Manager and the CLI.

Observation

For data that was generated using the OMB tool, we saw space savings of ~33% with a storage efficiency ratio
of 1.70:1. As seen in the following figures, the logical space used by the data produced was 420.3GB and the
physical space used to hold the data was 281.7GB.

18

VMDISK Set Media Cost
263 GiB 644 GiB

USED AND RESERVED AVAILABLE

1.7 to 1 Data Reduction
420 GiB logical used

aggrl
263 GiB 644 GiB
USED AMD RESERVED AVAILABLE

L7 S50 = 1 | LUl
1.7 to 1 Data Reduction
420 GiB logical used

I0PS: 3 | Latency: 1.00 ms

Throughput: 0.22 MB/s

0 Bytes

53Bucket

shantanuCV0instancenew: :> df -h -S

Warning: The "-S" parameter is deprecated and may be removed in a future release. To show the efficiency ratio use "aggr show-efficiency"”
command.

Filesystem used total-saved %total-saved deduplicated %deduplicated compressed ¥compressed Vserver
/vol/vole/ 7319MB % @% shantanuCVOinstancenew-@1
/vol/kafka_vol/ 281GB 33% @% svm_shantanuCvOinstancenew
/vol/svm_shantanuCV0instancenew_root/

660KB % 0% svm_shantanuCVOinstancenew
3 entries were displayed.

Name of the Aggregate:
Node where Aggregate Resides: shantanuCVOinstancenew-@1
Total Storage Efficiency Ratio: 1.70:1
Total Data Reduction Efficiency Ratio Without Snapshots: 1.70:1
Total Data Reduction Efficiency Ratio without snapshots and flexclones: 1.70:1
Logical Space Used for ALl Volumes: 420.3GB
Physical Space Used for ALl Volumes: 281.7GB

19

Performance overview and validation in AWS

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for
performance in the AWS cloud. The benchmarking examples are described in the
following sections.

Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and
single node)

A Kafka cluster with NetApp Cloud Volumes ONTAP (HA pair) was benchmarked for performance in the AWS
cloud. This benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 » 3 x zookeepers — t2.small
» 3 x broker servers — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge

* 4 x producer/consumer — c5n.2xlarge
*

Operating system on all nodes RHELS8.6

NetApp Cloud Volumes ONTAP instance HA pair instance — m5dn.12xLarge x 2node
Single Node Instance - m5dn.12xLarge x 1 node

NetApp cluster volume ONTAP setup

1. For the Cloud Volumes ONTAP HA pair, we created two aggregates with three volumes on each aggregate
on each storage controller. For the single Cloud Volumes ONTAP node, we create six volumes in an
aggregate.

aggr3

£8S Allocated Capacity: 5.05T8 AWS Disk Size: 278
aggr22

EBS Used Capacity: 298.21 GB Underlying AWS Capacity: 1278
€8S Allocated Capacity: 6.73T8 AWS Disk Size: 218

Volumes: 3 ~ Encryption Type:
EBS Used Capacity: 280.95GB Underlying AWS Capacity: 16TB
Kafka_aggr3_voll (1T8)

Home Node: Kafka_nfs_cvo_hal-01
Volumes: 3 ~ Encryption Type:
kafka_aggr3_vol2 (1 TB)

Provisioned |OPS: 80000 kafka_aggr22 wol1 (1 78)
kafka_aggr3_vol3 (1 T8) Home Node: kafka_nfs_cvo_ha1-02
kafka_aggr22_vol2 (1 T8)

Provisioned 10PS: 20000

AWS Disks: 8 v kafka_aggr22 vol3 (1 78)
State
AWS Disks 8 v
Underlying AWS Tier: Provisiones d |OPS SSD (i01)
State: online

Underlying AWS Tier: Provisioned IOPS SSD (ie1)

Close

20

aggr2

EBS Allocated Capacity: 5327B AWS Disk Size: 278
EBS Used Capacity: 209.90 GB Underlying AWS Capacity: 6TB
Volumes: [-~ Encryption Type:

kafka_aggr2 vol2 (1TB)

Home Node: kafka_nfs_cvo_sn-01
kafka_aggr2 vol3 (1 TB)

Provisioned |OPS: 80000
kafka_aggr2_vol4 (1 TB)

AWS Disks: 4 N
State: online
Underlying AWS Tier: Provisioned IOPS SSD (io1)

Close

2. To achieve better network performance, we enabled high speed networking for both the HA pair and the
single node.

Wg?ﬂ—fﬂﬂwmﬂ_

O ¢ © 4 =
i Information

. Support registration

& 3 @ 8 cloumERIQEr TP COMICVT- B EDUFT B

* Bockmaris) orace £ hooy computer. £33 stock B ped B3 tody buliiing 100318002 BN hemantha BN paescral ED
il 53 Storage Classes : a oo

M NetApp BlueXP
B License

- @j kafka_nfs_cvo_ha? sige avatasiiey zone

Change instance -
Volumes HA Status Cost Replications

v

@ Delete *D Write Speed

- Norrmal

¥

¥ Advanced Daita s wrritten directly to disk, reducing the likelhood of data fass in the event of an unplanned system outage
«il

. H]s"t
% Tags] Dt is bulfersd in memory before it i written to ciak, which provides faster wiite performance. Due to this caching.
there is the petential for data loss in the event of an unplanned system outage.

“ Cancel

< CIFS setup HE s seped
©@ Configuration backups
* Setpassword

£ Advanced allocation

3. We noticed that the ONTAP NVRAM had more IOPS so we changed the IOPS to 2350 for the Cloud
Volumes ONTAP root volume. The root volume disk in Cloud Volumes ONTAP was 47GB in size. The
following ONTAP command is for the HA pair, and the same step is applicable for the single node.

22

statistics start -object vnvram -instance vnvram
backing store iops -sample-id sample 555
kafka nfs cvo hal::*> statistics show -sample-id
Object: vnvram
Instance: vnvram
Start-time: 1/18/2023 18:03:11
End-time: 1/18/2023 18:03:13
Elapsed-time: 2s
Scope: kafka nfs cvo hal-01
Counter

backing store iops
Object: vnvram
Instance: vnvram
Start-time: 1/18/2023 18:03:11
End-time: 1/18/2023 18:03:13
Elapsed-time: 2s
Scope: kafka nfs cvo hal-02
Counter

backing store iops
2 entries were displayed.
kafka nfs cvo hal::*>

—counter

sample 555

23

Volumes (1/1)

-_'_D. Search |

| Volume ID = vol-023c38a39e599a184 | X | | Clear filters |

Name % | Volume ID v | Type ¥ Size v | 10PS ¥ | Throughput ¥
l boot:kafka_nfs_cvo_hal vol-023c9B8a39e599a184 iel 47 GiB Create volume

| Modify volume

Create snapshot

Create snapshot lifecycle policy

EC2 » Volumes » wvol-D23c98235e595a184 3 Modify volume

Modify volume .

Modify thie type. size, and performance of an EBS volume. Detach volume

Force detach volume
Volume details Manage auto-enabled 1/O

Manage ta
Volume 1D anage tags

3 wol-023c9823%059% 184 (boot:kafka_nis_cvo_hal)

Volume type Iafa
Pravisioned (0P S50 (ie1) ¥

Size (GiB) tnfo

47

Min: 4 Gill, Max 16354 GilL The value munt Be an integes
10P5 info

2350

Hin: 100 IOPS, Mas: 2550 1095 fup to 50 KPS per Gl

The following figure depicts the architecture of an NAS-based Kafka cluster.

« Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on
dedicated servers. Each broker had two NFS mount points to a single volume on the Cloud Volumes
ONTARP instance through a dedicated LIF.

* Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we
used a separate three-node cluster that could produce and consume to this Kafka cluster.

« Storage. We used an HA-pair Cloud volumes ONTAP instance with one 6TB GP3 AWS-EBS volume
mounted on the instance. The volume was then exported to the Kafka broker with an NFS mount.

24

OpenMessage Benchmarking configurations

1. For better NFS performance, we need more network connections between the NFS server and the NFS
client, which can be created using nconnect. Mount the NFS volumes on the broker nodes with the
nconnect option by running the following command:

25

[root@ip-172-30-0-121 ~]# cat /etc/fstab
UUID=eaalf38e-de0f-4ed5-a5b5-2fa9db43bb38/xfsdefaults00
/dev/nvmelnl /mnt/data-1 xfs defaults,noatime,nodiscard 0 0
/dev/nvme2nl /mnt/data-2 xfs defaults,noatime,nodiscard 0 0
172.30.0.233:/kafka aggr3 voll /kafka aggr3 voll nfs
defaults, nconnect=16 0 O

172.30.0.233:/kafka aggr3 vol2 /kafka aggr3 vol2 nfs
defaults, nconnect=16 0 O

172.30.0.233:/kafka aggr3 vol3 /kafka aggr3 vol3 nfs
defaults,nconnect=16 0 O

172.30.0.242:/kafka aggr22 voll /kafka aggr22 voll nfs
defaults, nconnect=16 0 O

172.30.0.242:/kafka aggr22 vol2 /kafka aggr22 vol2 nfs
defaults, nconnect=16 0 0

172.30.0.242:/kafka aggr22 vol3 /kafka aggr22 vol3 nfs
defaults,nconnect=16 0 O

[root@Rip-172-30-0-121 ~]# mount -a

[root@ip-172-30-0-121 ~]# df -h

Filesystem Size Used Avail Use% Mounted on
devtmpfs 31G 0 31G 0% /dev

tmpfs 31G 249M 31G 1% /run

tmpfs 31G 0 31G 0% /sys/fs/cgroup
/dev/nvmeOnlp2 106G 2.8G 7.2G 28% /

/dev/nvmelnl 2.3T 248G 2.1T 11% /mnt/data-1
/dev/nvme2nl 2.3T 245G 2.1T 11% /mnt/data-2
172.30.0.233:/kafka _aggr3 voll 1.0T 12G 1013G 2% /kafka aggr3 voll
172.30.0.233:/kafka aggr3 vol2 1.0T 5.5G 1019G % /kafka aggr3 vol2
172.30.0.233:/kafka aggr3 vol3 1.0T 8.9G 1016G % /kafka aggr3 vol3
172.30.0.242:/kafka aggr22 voll 1.0T 7.3G 1017G %

/kafka aggr22 voll

172.30.0.242:/kafka aggr22 vol2 1.0T 6.9G 1018G 1%

/kafka aggr22 vol2

172.30.0.242:/kafka _aggr22 vol3 1.0T 5.9G 1019G 1%

/kafka aggr22 vol3

tmpfs 6.2G 0 6.2G 0% /run/user/1000

[root@ip-172-30-0-121 ~1#

2. Check the network connections in Cloud Volumes ONTAP. The following ONTAP command is used from

26

the single Cloud Volumes ONTAP node. The same step is applicable to the Cloud Volumes ONTAP HA
pair.

Last login time: 1/20/2023 00:16:29
kafka nfs cvo sn::> network connections active show -service nfs*
-fields remote-host

node cid vserver remote-host

kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01

2315762628
2315762629
2315762630
2315762631
2315762632
2315762633
2315762634
2315762635
2315762636
2315762637
2315762639
2315762640
2315762641
2315762642
2315762643
2315762644
2315762645
2315762646
2315762647
2315762648
2315762649
2315762650
2315762651
2315762652
2315762653
2315762656
2315762657
2315762658
2315762659
2315762660
2315762661
2315762662
2315762663
2315762664
2315762665
2315762666
2315762667
2315762668
2315762669
2315762670
2315762671
2315762672
2315762673
2315762674
2315762676

svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm _kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm _kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm _kafka nfs cvo sn
svm _kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svmm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svim _kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_ kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn

svm_kafka nfs cvo sn

O o o o o o o o o o o

.223
.223
.121

27

kafka nfs cvo sn-01 2315762677 svm kafka nfs cvo sn 172.30.0.223
kafka nfs cvo sn-01 2315762678 svm kafka nfs cvo sn 172.30.0.223
kafka nfs cvo sn-01 2315762679 svm kafka nfs cvo sn 172.30.0.223
48 entries were displayed.

kafka nfs cvo sn::>

3. We use the following Kafka server.properties in all Kafka brokers for the Cloud Volumes ONTAP HA

28

pair. The 1log.dirs property is different for each broker, and the remaining properties are common for
brokers. For broker1, the 1og.dirs value is as follows:

[root@ip-172-30-0-121 ~]1# cat /opt/kafka/config/server.properties
broker.id=0

advertised.listeners=PLAINTEXT://172.30.0.121:9092
#log.dirs=/mnt/data-1/d1l, /mnt/data-1/d2, /mnt/data-1/d3, /mnt/data-
2/dl, /mnt/data-2/d2, /mnt/data-2/d3

log.dirs=/kafka aggr3 voll/brokerl,/kafka aggr3 vol2/brokerl, /kafka aggr
3 vol3/brokerl, /kafka aggr22 voll/brokerl, /kafka aggr22 vol2/brokerl, /ka
fka aggr22 vol3/brokerl
zookeeper.connect=172.30.0.12:2181,172.30.0.30:2181,172.30.0.178:2181
num.network.threads=64

num.io.threads=64

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

num.partitions=1

num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

replica.fetch.max.bytes=524288000

background. threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

[root@ip-172-30-0-121 ~1#

° For broker2, the 1og.dirs property value is as follows:

log.dirs=/kafka aggr3 voll/broker2,/kafka aggr3 vol2/broker2,/kafka a
ggr3 vol3/broker2, /kafka aggr22 voll/broker2,/kafka aggr22 vol2/broke
r2,/kafka _aggr22 vol3/broker?2

° For broker3, the 1og.dirs property value is as follows:

log.dirs=/kafka aggr3 voll/broker3, /kafka aggr3 vol2/broker3, /kafka a
ggr3 vol3/broker3, /kafka aggr22 voll/broker3, /kafka aggr22 vol2/broke
r3,/kafka aggr22 vol3/broker3

4. For the single Cloud Volumes ONTAP node, The Kafka servers.properties is the same as for the
Cloud Volumes ONTAP HA pair except for the 1og.dirs property.

° For broker1, the 1og.dirs value is as follows:

log.dirs=/kafka aggr2 voll/brokerl,/kafka aggr2 vol2/brokerl,/kafka a
ggr2 vol3/brokerl, /kafka aggr2 vold/brokerl, /kafka aggr2 vol5/brokerl

,/kafka aggr2 volé/brokerl

° For broker2, the 1og.dirs value is as follows:

log.dirs=/kafka aggr2 voll/broker2,/kafka aggr2 vol2/broker2,/kafka a
ggr2 vol3/broker2, /kafka aggr2 vold/broker2, /kafka aggr2 vol5/broker?2

,/kafka aggr2 volé6/broker2

° For broker3, the 1og.dirs property value is as follows:

log.dirs=/kafka aggr2 voll/broker3,/kafka aggr2 vol2/broker3,/kafka a
ggr2 vol3/broker3, /kafka aggr2 vold4/broker3, /kafka aggr2 vol5/broker3

,/kafka aggr2 volé/broker3

topics: 4
partitionsPerTopic: 100
messageSize: 32768
useRandomizedPayloads: true
randomBytesRatio: 0.5
randomizedPayloadPoolSize: 100
subscriptionsPerTopic: 1
consumerPerSubscription: 80
producersPerTopic: 40
producerRate: 1000000
consumerBacklogSizeGB: 0
testDurationMinutes: 5

The messageSize can vary for each use case. In our performance test, we used 3K.

5. The workload in the OMB is configured with the following properties: (/opt/benchmark/workloads/1-
topic-100-partitions-1lkb.yaml).

29

30

We used two different drivers, Sync or Throughput, from OMB to generate the workload on the Kafka
cluster.

° The yaml file used for Sync driver properties is as follows (/opt/benchmark/driver-
kafka/kafka-sync.yaml):

name: Kafka
driverClass:
io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver
Kafka client-specific configuration
replicationFactor: 3
topicConfig: |

min.insync.replicas=2

flush.messages=1

flush.ms=0

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909
2
producerConfig: |
acks=all
linger.ms=1
batch.size=1048576
consumerConfig: |
auto.offset.reset=earliest
enable.auto.commit=false
max.partition.fetch.bytes=10485760

° The yaml file used for the Throughput driver properties is as follows (/opt/benchmark/driver-
kafka/kafka-throughput.yaml):

name: Kafka
driverClass:
io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver
Kafka client-specific configuration
replicationFactor: 3
topicConfig: |

min.insync.replicas=2

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909
2
default.api.timeout.ms=1200000
request.timeout.ms=1200000
producerConfig: |
acks=all
linger.ms=1
batch.size=1048576
consumerConfig: |
auto.offset.reset=earliest
enable.auto.commit=false
max.partition.fetch.bytes=10485760

Methodology of testing
1. A Kafka cluster was provisioned as per the specification described above using Terraform and Ansible.

Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and Ansible builds
the Kafka cluster on them.

2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

Sudo bin/benchmark —-drivers driver-kafka/kafka- sync.yaml workloads/1l-
topic-100-partitions-1kb.yaml

3. Another workload was triggered with the Throughput driver with same workload configuration.

sudo bin/benchmark -drivers driver-kafka/kafka-throughput.yaml
workloads/1l-topic-100-partitions-1kb.yaml

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka
instance running on NFS. The difference between the drivers is the log flush property.

For a Cloud Volumes ONTAP HA pair:

31

« Total throughput generated consistently by the Sync driver: ~1236 MBps.

* Total throughput generated for the Throughput driver: peak ~1412 MBps.

For a single Cloud Volumes ONTAP node:

« Total throughput generated consistently by the Sync driver: ~ 1962MBps.

« Total throughput generated by the Throughput driver: peak ~1660MBps

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the
Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance
requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total
throughput or total rate is the combination of both producer and consumer rate.

CVO — HA Pair : Throughput driver
(Higher is better)

CVO — HA Pair : Sync driver
(Higher is better)

Producer Rate Consumer rate Total rate

WEC2-Throughput @ CVO - SN - Throughput

2

1600 1412 Al 1283 1235
1400 1340 1200
3 :x E,: 1000
& & 800
= a0 670 706 §70 706 = 652 644 612 592
& o 3 600
£ 400 £ 400
200 200
0 o
Producer Rate Congumer rate Total rate Producer Rate Consumer rabe Total rate
WEC2 - Throughput = CVO - HA - Throughtput WEC2- sync driver 8 CVID - HA - Sync
CVO = Single Node : Throughput driver CVO - Single Node : Sync driver
(Higher is better) (Higher is better)
1800 1660 2500
1600
1962
1400 1340 , Ao
2 1200 @
*5'- £ 1500
g 1w 830 830 g 1263
T 800 670 670 . 981 981
o o 1000 ;
5 S0 B 652 612
400 500
200

Producer Rate Consumer rate Tatal rate

Be sure to check the storage throughput when performing throughput or sync driver benchmarking.

32

e

Performance
Haur Day Week Month Year
Latency 2.99 ms
4
2
4] L A
19:00 19:15 19:30 19:45
IOPS 32.16k
75k
50k
25k
i
19:00 19:15 19:30 19:45
Throughput 1,906.55 MB/s
Ak
2k
li]
19:15 19:30 19:45

19:00

Performance overview and validation in AWS FSx ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for
performance in the AWS FSx ONTAP. The benchmarking examples are described in the

following sections.

Apache Kafka in AWS FSx ONTAP

Network File System (NFS) is a widely used network filesystem for storing large amounts of data. In most
organizations data is increasingly being generated by streaming applications like Apache Kafka. These
workloads require scalability, low latency, and a robust data ingestion architecture with modern storage
capabilities. To enable real-time analytics and to provide actionable insights, a well designed and highly
performant infrastructure is required.

Kafka by design works with POSIX compliant file system and relies on the file system to handle file operations,
but when storing data on an NFSv3 file system, the Kafka broker NFS client can interpret file operations
differently from a local file system like XFS or Ext4. A common example is the NFS Silly rename which caused
Kafka brokers to fail when expanding clusters and re-allocating partitions. To deal with this challenge NetApp
has updated the open-source Linux NFS client with changes now generally available in RHEL8.7, RHEL9.1,
and supported from the current FSx ONTAP release, ONTAP 9.12.1.

Amazon FSx ONTAP provides a fully managed, scalable, and highly performance NFS file system in the cloud.
Kafka data on FSx ONTAP can scale to handle large amounts of data and ensure fault tolerance. NFS
provides centralized storage management and data protection for critical and sensitive datasets.

These enhancements make it possible for AWS customer to take advantage of FSx ONTAP when running
Kafka workloads on AWS compute services. These benefits are:

* Reducing CPU utilization to reduce the I/0O wait time

* Faster Kafka broker recovery time.

* Reliability and efficiency.

* Scalability and performance.

* Multi-Availability Zone availability.

* Data protection.

Performance overview and validation in AWS FSx ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for performance in the AWS
cloud. The benchmarking examples are described in the following sections.

Kafka in AWS FSx ONTAP

A Kafka cluster with AWS FSx ONTAP was benchmarked for performance in the AWS cloud. This
benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using AWS FSx ONTAP.

Platform component Environment configuration

Kafka 3.2.3 * 3 x zookeepers — t2.small
» 3 x broker servers — i3en.2xlarge

* 1 x Grafana — ¢5n.2xlarge

* 4 x producer/consumer — c5n.2xlarge
*

Operating system on all nodes RHELS8.6
AWS FSx ONTAP Multi-AZ with 4GB/Sec throughput and 160000 IOPS

34

NetApp FSx ONTAP setup

1. For our initial testing, we have created a FSx ONTAP filesystem with 2TB of capacity and 40000 IOPs for
2GB/Sec throughput.

[root@ip-172-31-33-69 ~]# aws fsx create-file-system --region us-east-2
--storage-capacity 2048 --subnet-ids <desired subnet 1> subnet-<desired
subnet 2> --file-system-type ONTAP --ontap-configuration
DeploymentType=MULTI AZ HA 1, ThroughputCapacity=2048, PreferredSubnetId=<
desired primary subnet>, FsxAdminPassword=<new

password>, DiskIopsConfiguration="{Mode=USER PROVISIONED, Iops=40000"}

In our example, we are deploying FSx ONTAP through the AWS CLI. You will need to customize the
command further in your environment as needed. FSx ONTAP can additionally be deployed and managed
through the AWS Console for an easier and more streamlined deployment experience with less command
line input.

Documentation In FSx ONTAP, the max IOPS achievable for a 2GB/Sec throughput filesystem in our test
region (US-East-1) is 80,000 iops. The total max iops for a FSx ONTAP filesystem is 160,000 iops which
requires a 4GB/Sec throughput deployment to achieve which we will demonstrate later in this document.

For more information on FSx ONTAP performance specifications, please feel free to visit the AWS FSx
ONTAP documentation here: https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html .

Detailed command line syntax for FSx "create-file-system" can be found here:
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

For instance, you can specify a specific KMS key as opposed to the default AWS FSx master key that is
used when no KMS key is specified.

2. While creating the FSx ONTAP filesystem, Wait till the "LifeCycle" status changes to "AVAILABLE" in your
JSON return after describing your filesystem as follows:

[root@ip-172-31-33-69 ~]# aws fsx describe-file-systems --region us-
east-1 —--file-system-ids fs-02ff04bab5cellcic

3. Validate the credentials by login into FSx ONTAP SSH with the fsxadmin user:
Fsxadmin is the default admin account for FSx ONTAP filesystems at creation. The password for fsxadmin
is the password that was configured when first creating the filesystem either in the AWS Console or with
the AWS CLI as we completed in Step 1.

35

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

[root@ip-172-31-33-69 ~]# ssh fsxadmin@198.19.250.244

The authenticity of host '198.19.250.244 (198.19.250.244)"' can't be
established.

ED25519 key fingerprint is

SHA256 :mgCyRXJfWRc2d/j0jFbMBsUcYOWjxoIky0ltHvVDL/Y.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '198.19.250.244' (ED25519) to the list of
known hosts.
(fsxadmin@198.19.250.244) Password:

This is your first recorded login.

4. Once your credentials have been validated, Create the storage Virtual Machine on the FSx ONTAP
filesystem

[root@ip-172-31-33-69 ~]# aws fsx --region us-east-1 create-storage-
virtual-machine --name svmkafkatest --file-system-id fs-
02ff04babbcellc7c

A Storage Virtual Machine (SVM) is an isolated file server with its own administrative credentials and

endpoints for administering and accessing data in FSx ONTAP volumes and provides FSx ONTAP multi-

tenancy.

5. Once you have configured your primary Storage Virtual Machine, SSH into the newly created FSx ONTAP
filesystem and create volumes in storage virtual machine using below sample command and similarly we

create 6 volumes for this validation. Based on our validation, keep the default constituent (8) or less
constituents which will provides better performance to kafka.

FsxId02ff04bab5cellc7c: :*> volume create -volume kafkafsxNl -state

online -policy default -unix-permissions ---rwxr-xr-x -junction-active
true -type RW -snapshot-policy none -junction-path /kafkafsxNl -aggr
-list aggrl

6. We will need additional capacity in our volumes for our testing. Extend the size of the volume to 2TB and

36

mount on the junction path.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxNl -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxN1" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN2 -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxN2" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN3 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN3" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN4 -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxN4" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN5 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN5" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN6 -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxNoe" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume show -vserver svmkafkatest -volume *
Vserver Volume Aggregate State Type Size
Available Used%

svmkafkatest

kafkafsxN1 = online RW 2.10TB
1.99TB 0%
svmkafkatest

kafkafsxN2 = online RW 2.10TB
1.99TB 0%
svmkafkatest

kafkafsxN3 = online RW 2.10TB
1.99TB 0%
svmkafkatest

kafkafsxN4 = online RW 2.10TB
1.99TB 0%
svmkafkatest

kafkafsxN5 = online RW 2.10TB
1.99TB 0%
svmkafkatest

kafkafsxN6 = online RW 2.10TB
1.99TB 0%
svmkafkatest

svmkafkatest root
aggrl online RW 1GB
968.1MB 0%

7 entries were displayed.

FsxId02ff04bab5cellc7/c::*> volume mount -volume kafkafsxNl -junction
-path /kafkafsxN1

FsxId02ff04bab5cellc7/c::*> volume mount -volume kafkafsxN2 -junction
-path /kafkafsxN2

37

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN3 -junction
-path /kafkafsxN3

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN4 -junction
-path /kafkafsxN4

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN5 -junction
-path /kafkafsxN5

FsxId02ff04bab5cellc7/c::*> volume mount -volume kafkafsxN6 —-junction
-path /kafkafsxNo6

In FSx ONTAP, volumes can be thin provisioned. In our example, the total extended volume capacity
exceeds total filesystem capacity so we will need to extend the total filesystem capacity in order to unlock
additional provisioned volume capacity which we will demonstrate in our next step.

. Next, for additional performance and capacity,We extend the FSx ONTAP throughput capacity from
2GB/Sec to 4GB/Sec and IOPS to 160000, and capacity to 5 TB

[root@ip-172-31-33-69 ~]# aws fsx update-file-system --region us-east-1
--storage-capacity 5120 --ontap-configuration
'ThroughputCapacity=4096,DiskIopsConfiguration={Mode=USER PROVISIONED, Io
ps=160000}"' --file-system-id fs-02ff04bab5cellcic

Detailed command line syntax for FSx "update-file-system" can be found here:
https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html
. The FSx ONTAP volumes are mounted with nconnect and default opions in Kafka brokers

The following picture shows our final architecture of a our FSx ONTAP based Kafka cluster:

https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html

Zookesper __ } v

: mounts far aach broker
." [=)
i) |_ -
| 1 3 © Araann Pix far Nethop DNTAR
Ly 2
3 00|
= ——— N | FS%
. —! bl 1 Amazon FSx
| | 1 | ﬂn for NetApp ONTAP
3 il By
e & —S——— 8 oumes J
- 4 g

COPENMESSAGING CLIENTS l

— monfbonng

o Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on
dedicated servers. Each broker had six NFS mount points to a six volumes on the FSx ONTAP

instance.
> Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we
used a separate three-node cluster that could produce and consume to this Kafka cluster.

o Storage. We used an FSx ONTAP with six 2TB volumes mounted. The volume was then exported to

the Kafka broker with an NFS mount.The FSx ONTAP volumes are mounted with 16 nconnect sessions

and default options in Kafka brokers.

OpenMessage Benchmarking configurations.

We used the same configuration used for the NetApp Cloud volumes ONTAP and their details are here -
xref:./data-analytics/kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-setup

Methodology of testing

1. A Kafka cluster was provisioned as per the specification described above using terraform and ansible.
Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and ansible builds

the Kafka cluster on them.
2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

sudo bin/benchmark -drivers driver-kafka/kafka-sync.yaml workloads/1l-

topic-100-partitions-1kb.yaml
3. Another workload was triggered with the Throughput driver with same workload configuration.

sudo bin/benchmark —-drivers driver-kafka/kafka-throughput.yaml
workloads/1l-topic-100-partitions-1kb.yaml

39

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka
instance running on NFS. The difference between the drivers is the log flush property.

For a Kafka Replication factor 1 and the FSx ONTAP:

« Total throughput generated consistently by the Sync driver: ~ 3218 MBps and peak performance in ~ 3652
MBps.

» Total throughput generated consistently by the Throughput driver: ~ 3679 MBps and peak performance in ~
3908 MBps.

For Kafka with replication factor 3 and the FSx ONTAP :

« Total throughput generated consistently by the Sync driver: ~ 1252 MBps and peak performance in ~ 1382
MBps.

» Total throughput generated consistently by the Throughput driver: ~ 1218 MBps and peak performance in ~
1328 MBps.

In Kafka replication factor 3, the read and write operation happened three times on the FSx ONTAP, In Kafka
replication factor 1, the read and write operation is one time on the FSx ONTAP, so in both validation, we able
to reach the maximum throughput of 4GB/Sec.

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the
Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance
requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total
throughput or total rate is the combination of both producer and consumer rate.

Performance : Kafka RF : 1 Performance : Kafka RF : 3
4500 1800
3508
4000 3652 1400 130n 1382
3500 1300
w i
& & 1000
o 2500 =
= e 1997 1 ase 1911 1828 = 800 €65 692 ge3 B39
z o
3 1500 b
1000 4w
S00 200
o 1]
Producer Rate Consumer rate Total rate Producer Rate Consumer rate Tots rate
B F5y for NetApp ONTAP - Throug htput B Fix for Nethdpp ONTAP - Sync driver W FSx for NetApp ONTAP - Throwghtput 8 FSx for Netdpp ONTAP - Sync driver

The below chart shows the 2GB/Sec FSx ONTAP and 4GB/Sec performance for Kafka replication factor 3. The
replication factor 3 does the read and write operation three times on the FSx ONTAP storage. The total rate for
throughput driver is 881 MB/Sec, which does read and write Kafka operation approximately 2.64 GB/Sec on
the 2GB/Sec FSx ONTAP filesystem and total rate for throughput driver is 1328 MB/Sec that does read and
write kafka operation approximately 3.98 GB/Sec. Ther Kafka performance is linear and scalable based on the
FSx ONTAP throughput.

40

Kafka Performance : Throughput driver Kafka Performance : Sync driver

2000 2500

=

1500 1328 .-

1382 .

721 e

2 GRfsec 4 GB/Sec 2 GB/Sec 4 GB/Sec
F5x for NetApp ONTAP Filesystem Thoughput

1500

Total Rate - MB/Sec
w Ll
- 8 B
-]
-.'E
Total Rate - MB/Sec
=
un
- 8 B

F5x for NetApp ONTAP Filesystemn Thoughput

The below chart shows the performance between EC2 instance vs FSx ONTAP (Kafka Replication Factor : 3)

Throughput Driver - MB/Sec Sync Driver - MB/Sec
1600 1600
1395
1340
1400 1771 1400 1263
1200 1200
g g
& 1000 @ 1000
o m
= 670 673 0 = 8o psz &7 gz oo
a o 1]
= G0 5 60
o o
400 a0
200 200
0 o 8
Producer Rate Consumer rate Total rate 1 2 3
M EC2 - Throug hput m F5x for NetApp ONTAP - Throughtput W ECZ- sync driver B F5x for NetApp ONTAP - Sync driver

Performance overview and validation with AFF A900 on-
premises
On-premises, we used the NetApp AFF A900 storage controller with ONTAP 9.12.1RC1

to validate the performance and scaling of a Kafka cluster. We used the same testbed as
in our previous tiered storage best practices with ONTAP and AFF.

We used Confluent Kafka 6.2.0 to evaluate the AFF A900. The cluster features eight broker nodes and three
zookeeper nodes. For performance testing, we used five OMB worker nodes.

41

AS00 with 24 x 1.75 TB
58Ds

100GbhE

...

Tools Senners

-
| -
/-
/-
-
-
\
N
-
i
I
E
.

ﬂ

2

:

g

B

M T T S T e, e e A e e e e e e e e e e T e e T e e T

10GbE
Network

Confluent Nodes = Confluent brokers

Grafana I IGDnﬂuantmnlmlsentgf

We used NetApp FlexGroups instances to provide a single namespace for log directories, simplifying recovery
and configuration. We used NFSv4.1 and pNFS to provide direct path access to log segment data.

Storage configuration

Client tuning

Each client mounted the FlexGroup instance with the following command.

mount -t nfs -o vers=4.1,nconnect=16 172.30.0.121:/kafka volO1l
/data/kafka volOl

In addition, we increased the max _session_slots" from the default 64 to 180. This matches the default
session slot limit in ONTAP.

Kafka broker tuning

To maximize throughput in the system under test, we significantly increased the default parameters for certain
key thread pools. We recommend following Confluent Kafka best practices for most configurations. This tuning
was used to maximize the concurrency of outstanding I/O to storage. These parameters can be adjusted to
match your broker’s compute resources and storage attributes.

num.io.threads=96
num.network.threads=96

background. threads=20
num.replica.alter.log.dirs.threads=40
num.replica.fetchers=20
queued.max.requests=2000

42

Workload generator testing methodology
We used the same OMB configurations as for cloud testing for the Throughput driver and topic configuration.

1. A FlexGroup instance was provisioned using Ansible on an AFF cluster.

- name: Set up kafka broker processes
hosts: localhost
vars:
ntap hostname: 'hostname'
ntap username: 'user'
ntap password: 'password'
size: 10
size unit: tb
vserver: vsl
state: present
https: true
export policy: default
volumes:
- name: kafka fg vol0l
aggr: ["aggrl a", "aggr2 a", "aggrl b", "aggr2 b"]
path: /kafka fg volOl
tasks:
- name: Edit volumes
netapp.ontap.na ontap volume:
state: "{{ state }}"
name: "{{ item.name }}"
aggr list: "{{ item.aggr }}"
aggr list multiplier: 8

size: "{{ size }}I"
size unit: "{{ size unit }}"
vserver: "{{ vserver }}"

snapshot policy: none

export policy: default

junction path: "{{ item.path }}"
gos policy group: none

wait for completion: True

hostname: "{{ ntap hostname }}"
username: "{{ ntap username }}"
password: "{{ ntap password }}"

https: "{{ https }}"
validate certs: false
connection: local

with items: "{{ volumes }}"

2. pNFS was enabled on the ONTAP SVM.

vserver modify -vserver vsl -v4.l-pnfs enabled -tcp-max-xfer-size 262144

3. The workload was triggered with the Throughput driver using with same workload configuration as for
Cloud Volumes ONTAP. See the section "Steady state performance" below. The workload used a
replication factor of 3, meaning three copies of log segments were maintained in NFS.

sudo bin/benchmark --drivers driver-kafka/kafka-throughput.yaml
workloads/1l-topic-100-partitions-1kb.yaml

4. Finally, we completed measurements using a backlog to measure the ability of consumers to catch up to
the latest messages. OMB constructs a backlog by pausing consumers during the beginning of a
measurement. This produces three distinct phases: backlog creation (producer-only traffic), backlog
draining (a consumer-heavy phase in which consumers catch up on missed events in a topic), and the
steady state. See the section "Extreme performance and exploring storage limits" for more information.

Steady state performance

We evaluated the AFF A900 using the OpenMessaging Benchmark to provide a similar comparison as for
Cloud Volumes ONTAP in AWS and DAS in AWS. All performance values represent Kafka-cluster throughput
at the producer and consumer level.

Steady state performance with Confluent Kafka and the AFF A900 achieved over 3.4GBps average throughput
for both producer and consumers. This is over 3.4 million messages across the Kafka cluster. By visualizing
the sustained throughput in bytes per second for BrokerTopicMetrics, we see the excellent steady state
performance and traffic supported by the AFF A900.

Broker network throughput

This aligns well with the view of messages delivered per topic. The following graph provides a per-topic
breakdown. In the configuration tested we saw nearly 900k messages per topic across four topics.

44

Messages In Per Topic

BOOK ks

500K hofs

Messages/s

200K hofs

Wiofs
16:43 1644 1645 16:46 16247 16:48 1649 16:50 16:51 16:52 16:53 16:54 15:55

= _consumer.offsels == _confluent-license == _confluenttalemetry-metrics == est-lopic-0000000-otyOqqe best-topic-00000071-5QIwNiU test-1opic-0000002-7mBtiGg
test-1oplc-0000003-uZ3XBl

Extreme performance and exploring storage limits

For AFF, we also tested with OMB using the backlog feature. The backlog feature pauses consumer
subscriptions while a backlog of events is built up in the Kafka cluster. During this phase, only producer traffic
occurs, which generates events that are committed to logs. This most closely emulates batch processing or
offline analytics workflows; in these workflows, consumer subscriptions are started and must read historical
data that has already been evicted from the broker cache.

To understand the storage limitations on consumer throughput in this configuration, we measured the
producer-only phase to understand how much write traffic the A900 could absorb. See the next section "Sizing
guidance" to understand how to leverage this data.

During the producer-only part of this measurement, we saw high peak throughput that pushed the limits of
A900 performance (when other broker resources were not saturated serving producer and consumer traffic).

Broker network throughput -

25GB/s

20 GB/s

15 GB/s

10 GB/s

0B/s

21:58

== Bytesin == Bytes out

@ We increased the message size to 16k for this measurement to limit per-message overheads
and maximize storage throughput to NFS mount points.

messageSize: 16384
consumerBacklogSizeGB: 4096

The Confluent Kafka cluster achieved a peak producer throughput of 4.03GBps.

18:12:23.833 [main] INFO WorkloadGenerator - Pub rate 257759.2 msg/s /
4027.5 MB/s | Pub err 0.0 err/s ..

After OMB completed populating the eventbacklog, consumer traffic was restarted. During measurements with
backlog draining, we observed peak consumer throughput of over 20GBps across all topics. The combined
throughput to the NFS volume storing the OMB log data approached ~30GBps.

Sizing guidance

Amazon Web Services offers a sizing guide for Kafka cluster sizing and scaling.

This sizing provides a useful formula for determining storage throughput requirements for your Kafka cluster:
For an aggregated throughput produced into the cluster of tcluster with a replication factor of r, the throughput

received by the broker storage is as follows:

t[storage] = t[cluster]/#brokers + t[cluster]/#brokers * (r-1)
= t[cluster]/#brokers * r

This can be simplified even further:
max (t[cluster]) <= max(t[storage]) * #brokers/r

Using this formula allows you to select the appropriate ONTAP platform for your Kafka hot tier needs.

The following table explains the anticipated producer throughput for the A900 with different replication factors:

Replication factor Producer throughput (GPps)
3 (measured) 3.4

2 5.1

1 10.2

Conclusion

The NetApp solution for the silly rename problem provides a simple, inexpensive, and

46

https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/

centrally managed form of storage for workloads that were previously incompatible with
NFS.

This new paradigm enables customers to create more manageable Kafka clusters that are easier to migrate
and mirror for the purpose of disaster recovery and data protection.

We have also seen that NFS provides additional benefits such as reduced CPU utilization and a faster
recovery time, dramatically improved storage efficiency, and better performance through NetApp ONTAP.

Where to find additional information

To learn more about the information that is described in this document, review the
following documents and/or websites:

* What is Apache Kafka?
https://www.confluent.io/what-is-apache-kafka/
* What is silly rename?
https://linux-nfs.org/wiki/index.php/Server-side_silly rename
* ONATP is read for streaming applications.
https://www.netapp.com/blog/ontap-ready-for-streaming-applications/
* NetApp product documentation
https://www.netapp.com/support-and-training/documentation/
* What is NFS?
https://en.wikipedia.org/wiki/Network_File_System
* What is Kafka partition reassignment?
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.htmi
* What is the OpenMessaging Benchmark?
https://openmessaging.cloud/
* How do you migrate a Kafka broker?
https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058
* How do you monitor Kafka broker with Prometheus?
https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/
» Managed Platform for Apache Kafka
https://www.instaclustr.com/platform/managed-apache-kafka/

» Support for Apache Kafka

47

https://www.confluent.io/what-is-apache-kafka/
https://linux-nfs.org/wiki/index.php/Server-side_silly_rename
https://www.netapp.com/blog/ontap-ready-for-streaming-applications/
https://www.netapp.com/support-and-training/documentation/
https://en.wikipedia.org/wiki/Network_File_System
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://openmessaging.cloud/
https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058
https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/
https://www.instaclustr.com/platform/managed-apache-kafka/

https://www.instaclustr.com/support-solutions/kafka-support/
» Consulting services for Apache Kafka

https://www.instaclustr.com/services/consulting/

48

https://www.instaclustr.com/support-solutions/kafka-support/
https://www.instaclustr.com/services/consulting/

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

49

http://www.netapp.com/TM

	Apache Kafka workloads with NetApp NFS storage : NetApp artificial intelligence solutions
	Table of Contents
	Apache Kafka workloads with NetApp NFS storage
	TR-4947: Apache Kafka workload with NetApp NFS storage - Functional validation and performance
	Why use NFS storage for Kafka workloads?
	Why NetApp for Kafka workloads?

	NetApp solution for silly rename issue for NFS to Kafka workloads
	Functional validation - Silly rename fix
	Validation setup
	Architectural flow
	Methodology of testing

	Why NetApp NFS for Kafka workloads?
	Reduced CPU utilization on Kafka broker
	Faster broker recovery
	Storage efficiency

	Performance overview and validation in AWS
	Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and single node)
	Methodology of testing
	Observation

	Performance overview and validation in AWS FSx ONTAP
	Apache Kafka in AWS FSx ONTAP

	Performance overview and validation with AFF A900 on-premises
	Storage configuration
	Client tuning
	Kafka broker tuning
	Workload generator testing methodology
	Extreme performance and exploring storage limits
	Sizing guidance

	Conclusion
	Where to find additional information

