
Apache Kafka workloads with NetApp NFS
storage
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-ai/data-analytics/kafka-
nfs-introduction.html on February 12, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Apache Kafka workloads with NetApp NFS storage . 1

TR-4947: Apache Kafka workload with NetApp NFS storage - Functional validation and performance 1

Why use NFS storage for Kafka workloads? . 1

Why NetApp for Kafka workloads? . 2

NetApp solution for silly rename issue for NFS to Kafka workloads . 2

Functional validation - Silly rename fix. 3

Validation setup . 3

Architectural flow . 4

Methodology of testing . 4

Why NetApp NFS for Kafka workloads? . 7

Reduced CPU utilization on Kafka broker . 8

Faster broker recovery . 13

Storage efficiency. 17

Performance overview and validation in AWS . 20

Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and single node) 20

Methodology of testing . 31

Observation . 31

Performance overview and validation in AWS FSx ONTAP. 33

Apache Kafka in AWS FSx ONTAP . 34

Performance overview and validation with AFF A900 on-premises . 41

Storage configuration . 42

Client tuning . 42

Kafka broker tuning . 42

Workload generator testing methodology . 43

Extreme performance and exploring storage limits . 45

Sizing guidance . 46

Conclusion . 46

Where to find additional information. 47

Apache Kafka workloads with NetApp NFS
storage

TR-4947: Apache Kafka workload with NetApp NFS storage
- Functional validation and performance

Shantanu Chakole, Karthikeyan Nagalingam, and Joe Scott, NetApp

Kafka is a distributed publish-subscribe messaging system with a robust queue that can

accept large amounts of message data. With Kafka, applications can write and read data

to topics in a very fast manner. Because of its fault tolerance and scalability, Kafka is

often used in the big data space as a reliable way to ingest and move many data streams

very quickly. Use cases include stream processing, website-activity tracking, metrics

collection and monitoring, log aggregation, real time analytics, and so on.

Although normal Kafka operations on NFS work well, the silly rename issue crashes the application during the

resizing or repartitioning of a Kafka cluster running on NFS. This is a significant issue because a Kafka cluster

must be resized or repartitioned for load-balancing or maintenance purposes. You can find additional details

here.

This document describes the following subjects:

• The silly-rename problem and solution validation

• Reducing CPU utilization to reduce the I/O wait time

• Faster Kafka broker recovery time

• Performance in the cloud and on-premises

Why use NFS storage for Kafka workloads?

Kafka workloads in production applications can stream huge amounts of data between applications. This data

is held and stored in the Kafka broker nodes in the Kafka cluster. Kafka is also known for availability and

parallelism, which it achieves by breaking topics into partitions and then replicating those partitions throughout

the cluster. This eventually means that the huge amount of data that flows through a Kafka cluster is generally

multiplied in size. NFS makes rebalancing data as the number of brokers changes very quick and easy. For

large environments, rebalancing data across DAS when the number of brokers changes is very time

consuming, and, in most Kafka environments, the number of brokers changes frequently.

Other benefits include the following:

• Maturity. NFS is a mature protocol, which means most aspects of implementing, securing, and using it are

well understood.

• Open. NFS is an open protocol, and its continued development is documented in internet specifications as

a free and open network protocol.

• Cost-effective. NFS is a low-cost solution for network file sharing that is easy to set up because it uses the

existing network infrastructure.

• Centrally managed. Centralized management of NFS decreases the need for added software and disk

space on individual user systems.

1

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

• Distributed. NFS can be used as a distributed file system, reducing the need for removable media storage

devices.

Why NetApp for Kafka workloads?

The NetApp NFS implementation is considered a gold standard for the protocol and is used in countless

enterprise NAS environments. In addition to the credibility of NetApp, it also offers the following benefits:

• Reliability and efficiency

• Scalability and performance

• High availability (HA partner in a NetApp ONTAP cluster)

• Data protection

◦ Disaster recovery (NetApp SnapMirror). Your site goes down or you want to jump start at a different

site and continue from where you left off.

◦ Manageability of your storage system (administration and management using NetApp OnCommand).

◦ Load balancing. The cluster allows you to access different volumes from data LIFs hosted on different

nodes.

◦ Nondisruptive operations. LIFs or volume moves are transparent to the NFS clients.

NetApp solution for silly rename issue for NFS to Kafka
workloads

Kafka is built with the assumption that the underlying filesystem is POSIX compliant: for

example, XFS or Ext4. Kafka resource rebalancing removes files while the application is

still using them. A POSIX-compliant file system allows unlink to proceed. However, it only

removes the file after all references to the file are gone. If the underlying filesystem is

network attached, then the NFS client intercepts the unlink calls and manages the

workflow. Because there are pending opens on the file being unlinked, the NFS client

sends a rename request to the NFS server and, on the last close of the unlinked file,

issues a remove operation on the renamed file. This behavior is commonly referred to as

NFS silly rename, and it is orchestrated by the NFS client.

Any Kafka broker using storage from an NFSv3 server runs into issues because of this behavior. However, the

NFSv4.x protocol has features to address this issue by allowing the server to take responsibility for the

opened, unlinked files. NFS servers supporting this optional feature communicate the ownership capability to

the NFS client at the time of file opening. The NFS client then ceases the unlink management when there are

opens pending and allows the server to manage the flow. Although the NFSv4 specification provides guidelines

for implementation, until now, there were not any known NFS server implementations that supported this

optional feature.

The following changes are required for the NFS server and the NFS client to address the silly rename issue:

• Changes to NFS client (Linux). At the time of file opening, the NFS server responds with a flag, indicating

the capability to handle the unlinking of opened files. NFS client-side changes allow the NFS server to

handle the unlinking in the presence of the flag. NetApp has updated the open-source Linux NFS client

with these changes. The updated NFS client is now generally available in RHEL8.7 and RHEL9.1.

• Changes to NFS server. The NFS server keeps track of opens. Unlinking on an existing open file is now

2

managed by the server to match POSIX semantics. When the last open is closed, The NFS server then

initiates the actual removal of the file and thus avoids the silly rename process. The ONTAP NFS server

has implemented this capability in its latest release, ONTAP 9.12.1.

With the above changes to the NFS client and server, Kafka can safely reap all the benefits of network-

attached NFS storage.

Functional validation - Silly rename fix

For the functional validation, we showed that a Kafka cluster with an NFSv3 mount for

storage fails to perform Kafka operations like partition redistribution, whereas another

cluster mounted on NFSv4 with the fix can perform the same operations without any

disruptions.

Validation setup

The setup is run on AWS. The following table shows the different platform components and environmental

configuration used for the validation.

Platform component Environment configuration

Confluent Platform version 7.2.1 • 3 x zookeepers – t3.xlarge

• 4 x broker servers – r3.xlarge

• 1 x Grafana – t3.xlarge

• 1 x control center – t3.xlarge

• 3 x Producer/consumer

Operating system on all nodes RHEL8.7or later

NetApp Cloud Volumes ONTAP instance Single-node instance – M5.2xLarge

The following figure show the architectural configuration for this solution.

3

Architectural flow

• Compute. We used a four-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers.

• Monitoring. We used two nodes for a Prometheus-Grafana combination.

• Workload. For generating workloads, we used a separate three-node cluster that can produce to and

consume from this Kafka cluster.

• Storage. We used a single-node NetApp Cloud volumes ONTAP instance with two 500GB GP2 AWS-EBS

volumes attached to the instance. These volumes were then exposed to the Kafka cluster as single

NFSv4.1 volume through a LIF.

The default properties of Kafka were chosen for all servers. The same was done for the zookeeper swarm.

Methodology of testing

1. Update -is-preserve-unlink-enabled true to the kafka volume, as follows:

aws-shantanclastrecall-aws::*> volume create -vserver kafka_svm -volume

kafka_fg_vol01 -aggregate kafka_aggr -size 3500GB -state online -policy

kafka_policy -security-style unix -unix-permissions 0777 -junction-path

/kafka_fg_vol01 -type RW -is-preserve-unlink-enabled true

[Job 32] Job succeeded: Successful

4

2. Two similar Kafka clusters were created with the following difference:

◦ Cluster 1. The backend NFS v4.1 server running production-ready ONTAP version 9.12.1 was hosted

by a NetApp CVO instance. RHEL 8.7/RHEL 9.1 were installed on the brokers.

◦ Cluster 2. The backend NFS server was a manually created generic Linux NFSv3 server.

3. A demo topic was created on both the Kafka clusters.

Cluster 1:

Cluster 2:

4. Data was loaded into these newly created topics for both clusters. This was done using the producer-perf-

test toolkit that comes in the default Kafka package:

./kafka-producer-perf-test.sh --topic __a_demo_topic --throughput -1

--num-records 3000000 --record-size 1024 --producer-props acks=all

bootstrap.servers=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,

172.30.0.123:9092

5. A health check was performed for broker-1 for each of the clusters using telnet:

◦ telnet 172.30.0.160 9092

◦ telnet 172.30.0.198 9092

A successful health check for brokers on both clusters is shown in the next screenshot:

5

6. To trigger the failure condition that causes Kafka clusters using NFSv3 storage volumes to crash, we

initiated the partition reassignment process on both clusters. Partition reassignment was performed using

kafka-reassign-partitions.sh. The detailed process is as follows:

a. To reassign the partitions for a topic in a Kafka cluster, we generated the proposed reassignment config

JSON (this was performed for both the clusters).

kafka-reassign-partitions --bootstrap

-server=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,172.30.

0.123:9092 --broker-list "1,2,3,4" --topics-to-move-json-file

/tmp/topics.json --generate

b. The generated reassignment JSON was then saved in /tmp/reassignment- file.json.

c. The actual partition reassignment process was triggered by the following command:

kafka-reassign-partitions --bootstrap

-server=172.30.0.198:9092,172.30.0.163:9092,172.30.0.221:9092,172.30.

0.204:9092 --reassignment-json-file /tmp/reassignment-file.json

–execute

7. After a few minutes when the reassignment was completed, another health check on the brokers showed

that cluster using NFSv3 storage volumes had run into a silly rename issue and had crashed, whereas

Cluster 1 using NetApp ONTAP NFSv4.1 storage volumes with the fix continued operations without any

disruptions.

6

◦ Cluster1-Broker-1 is alive.

◦ Cluster2-broker-1 is dead.

8. Upon checking the Kafka log directories, it was clear that Cluster 1 using NetApp ONTAP NFSv4.1 storage

volumes with the fix had clean partition assignment, while Cluster 2 using generic NFSv3 storage did not

due to silly rename issues, which led to the crash. The following picture shows partition rebalancing of

Cluster 2, which resulted in a silly rename issue on NFSv3 storage.

The following picture shows a clean partition rebalancing of Cluster 1 using NetApp NFSv4.1 storage.

Why NetApp NFS for Kafka workloads?

Now that there is a solution for the silly rename issue in NFS storage with Kafka, you can

create robust deployments that leverage NetApp ONTAP storage for your Kafka

workload. Not only does this significantly reduce operational overhead, it also brings the

following benefits to your Kafka clusters:

• Reduced CPU utilization on Kafka brokers. Using disaggregated NetApp ONTAP storage separates disk

7

I/O operations from the broker and thus reduces its CPU footprint.

• Faster broker recovery-time. Since disaggregated NetApp ONTAP storage is shared across Kafka broker

nodes, a new compute instance can replace a bad broker at any point in a fraction of the time compared to

conventional Kafka deployments without rebuilding the data.

• Storage efficiency. As the storage layer of the application is now provisioned through NetApp ONTAP,

customers can avail all the benefits of storage efficiency that comes with ONTAP, such as in-line data

compression, deduplication, and compaction.

These benefits were tested and validated in test cases that we discuss in detail in this section.

Reduced CPU utilization on Kafka broker

We discovered that overall CPU utilization is lower than its DAS counterpart when we ran similar workloads on

two sperate Kafka clusters that were identical in their technical specifications but differed in their storage

technologies. Not only is the overall CPU utilization lower when Kafka cluster is using ONTAP storage, but the

increase in the CPU utilization demonstrated a gentler gradient than in a DAS-based Kafka cluster.

Architectural setup

The following table shows the environmental configuration used to demonstrate reduced CPU utilization.

Platform component Environment configuration

Kafka 3.2.3

Benchmarking tool: OpenMessaging

• 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Producer/Consumer — c5n.2xlarge

Operating system on all nodes RHEL 8.7 or later

NetApp Cloud Volumes ONTAP instance Single Node Instance – M5.2xLarge

Benchmarking tool

The benchmarking tool used in this test case is the OpenMessaging framework. OpenMessaging is vendor-

neutral and language-independent; it provides industry guidelines for finance, e-commerce, IoT, and big-data;

and it helps develop messaging and streaming applications across heterogeneous systems and platforms. The

following figure depicts the interaction of OpenMessaging clients with a Kafka cluster.

8

https://openmessaging.cloud/

• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFSv4.1 mount points to a single volume on the NetApp CVO

instance through a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

have a separate three-node cluster that can produce to and consume from this Kafka cluster.

• Storage. We used a single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS

volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFSv4.1

volumes through dedicated LIFs.

• Configuration. The two configurable elements in this test case were Kafka brokers and OpenMessaging

workloads.

◦ Broker config. The following specifications were selected for the Kafka brokers. We used replication

factor of 3 for all measurements, as is highlighted below.

9

• OpenMessaging benchmark (OMB) workload config. The following specifications were provided. We

specified a target producer rate, highlighted below.

Methodology of testing

1. Two similar clusters were created, each having its own set of benchmarking cluster swarms.

◦ Cluster 1. NFS-based Kafka cluster.

◦ Cluster 2. DAS-based Kafka cluster.

2. Using an OpenMessaging command, similar workloads were triggered on each cluster.

sudo bin/benchmark --drivers driver-kafka/kafka-group-all.yaml

workloads/1-topic-100-partitions-1kb.yaml

10

3. The produce rate configuration was increased in four iterations, and CPU utilization was recorded with

Grafana. The produce rate was set to the following levels:

◦ 10,000

◦ 40,000

◦ 80,000

◦ 100,000

Observation

There are two primary benefits of using NetApp NFS storage with Kafka:

• You can reduce CPU usage by almost one-third. The overall CPU usage under similar workloads was

lower for NFS compared to DAS SSDs; savings range from 5% for lower produce rates to 32% for higher

produce rates.

• A three-fold reduction in CPU utilization drift at higher produce rates. As expected, there was an

upward drift for the increase in CPU utilization as the produce rates were increased. However, CPU

utilization on Kafka brokers using DAS went up from 31% for the lower produce rate to 70% for the higher

produce rate, a 39% increase. However, with an NFS storage backend, the CPU utilization went up from

26% to 38%, a 12% increase.

11

Also, at 100,000 messages, DAS shows more CPU utilization than an NFS cluster.

12

Faster broker recovery

We discovered that Kafka brokers recover faster when they are using shared NetApp NFS storage. When a

broker crashes in a Kafka cluster, this broker can be replaced by a healthy broker with a same broker ID. Upon

performing this test case, we found that, in the case of a DAS-based Kafka cluster, the cluster rebuilds the data

on a newly added healthy broker, which is time consuming. In the case of a NetApp NFS-based Kafka cluster,

the replacing broker continues to read data from the previous log directory and recovers much faster.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

• 1 x backup Kafka node – i3en.2xlarge

Operating system on all nodes RHEL8.7 or later

NetApp Cloud Volumes ONTAP instance Single-node instance – M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.

13

• Compute. A three-node Kafka cluster with a three-node zookeeper ensemble running on dedicated

servers. Each broker has two NFS mount points to a single volume on the NetApp CVO instance via a

dedicated LIF.

• Monitoring. Two nodes for a Prometheus-Grafana combination. For generating workloads, we use a

separate three-node cluster that can produce and consume to this Kafka cluster.

• Storage. A single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS volumes

mounted on the instance. These volumes are then exposed to the Kafka cluster as six NFS volume through

dedicated LIFs.

• Broker configuration. The one configurable element in this test case are Kafka brokers. The following

specifications were selected for the Kafka brokers. The replica.lag.time.mx.ms is set to a high value

because this determines how fast a particular node is taken out of the ISR list. When you switch between

bad and healthy nodes, you don’t want that broker ID to be excluded from the ISR list.

Methodology of testing

1. Two similar clusters were created:

◦ An EC2-based confluent cluster.

◦ A NetApp NFS-based confluent cluster.

2. One standby Kafka node was created with a configuration identical to the nodes from the original Kafka

cluster.

3. On each of the clusters, a sample topic was created, and approximately 110GB of data was populated on

each of the brokers.

◦ EC2-based cluster. A Kafka broker data directory is mapped on /mnt/data-2 (In the following figure,

Broker-1 of cluster1 [left terminal]).

◦ NetApp NFS-based cluster. A Kafka broker data directory is mounted on NFS point /mnt/data (In

the following figure, Broker-1 of cluster2 [right terminal]).

14

4. In each of the clusters, Broker-1 was terminated to trigger a failed broker recovery process.

5. After the broker was terminated, the broker IP address was assigned as a secondary IP to the standby

broker. This was necessary because a broker in a Kafka cluster is identified by the following:

◦ IP address. Assigned by reassigning the failed broker IP to the standby broker.

◦ Broker ID. This was configured in the standby broker server.properties.

6. Upon IP assignment, the Kafka service was started on the standby broker.

7. After a while, the server logs were pulled to check the time taken to build data on the replacement node in

the cluster.

Observation

Kafka broker recovery was almost nine times faster. The time it took to recover a failed broker node was found

to be significantly faster when using NetApp NFS shared storage compared to using DAS SSDs in a Kafka

cluster. For 1TB of topic data, the recovery time for a DAS-based cluster was 48 minutes, compared to less

than 5 minutes for a NetApp-NFS based Kafka cluster.

We observed that the EC2-based cluster took 10 minutes to rebuild the 110GB of data on the new broker node,

whereas the NFS- based cluster completed the recovery in 3 minutes. We also observed in the in logs that

consumer offsets for the partitions for EC2 were 0, while, on the NFS cluster, consumer offsets were picked up

from the previous broker.

[2022-10-31 09:39:17,747] INFO [LogLoader partition=test-topic-51R3EWs-

0000-55, dir=/mnt/kafka-data/broker2] Reloading from producer snapshot and

rebuilding producer state from offset 583999 (kafka.log.UnifiedLog$)

[2022-10-31 08:55:55,170] INFO [LogLoader partition=test-topic-qbVsEZg-

0000-8, dir=/mnt/data-1] Loading producer state till offset 0 with message

format version 2 (kafka.log.UnifiedLog$)

DAS-based cluster

1. The backup node started at 08:55:53,730.

2. The data rebuilding process ended at 09:05:24,860. Processing 110GB of data required approximately 10

minutes.

15

NFS-based cluster

1. The backup node was started at 09:39:17,213. The starting log entry is highlighted below.

2. The data rebuild process ended at 09:42:29,115. Processing 110GB of data required approximately 3

minutes.

The test was repeated for brokers containing around 1TB data, which took approximately 48 minutes for

the DAS and 3 min for NFS. The results are depicted in the following graph.

16

Storage efficiency

Because the storage layer of the Kafka cluster was provisioned through NetApp ONTAP, we got all the storage

efficiency capabilities of ONTAP. This was tested by generating a significant amount of data on a Kafka cluster

with NFS storage provisioned on Cloud Volumes ONTAP. We could see that there was a significant space

reduction due to ONTAP capabilities.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.7 or later

NetApp Cloud Volumes ONTAP instance Single node instance – M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.

• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFS mount points to a single volume on the NetApp CVO instance

17

via a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

• Storage. We used a single-node NetApp Cloud Volumes ONTAP instance with six 250GB GP2 AWS-EBS

volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFS

volumes through dedicated LIFs.

• Configuration. The configurable elements in this test case were the Kafka brokers.

Compression was switched off on the producer’s end, thus enabling producers to generate high throughput.

Storage efficiency was instead handled by the compute layer.

Methodology of testing

1. A Kafka cluster was provisioned with the specifications mentioned above.

2. On the cluster, about 350GB data was produced using the OpenMessaging Benchmarking tool.

3. After the workload was completed, the storage efficiency statistics were collected using ONTAP System

Manager and the CLI.

Observation

For data that was generated using the OMB tool, we saw space savings of ~33% with a storage efficiency ratio

of 1.70:1. As seen in the following figures, the logical space used by the data produced was 420.3GB and the

physical space used to hold the data was 281.7GB.

18

19

Performance overview and validation in AWS

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for

performance in the AWS cloud. The benchmarking examples are described in the

following sections.

Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and
single node)

A Kafka cluster with NetApp Cloud Volumes ONTAP (HA pair) was benchmarked for performance in the AWS

cloud. This benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.6

NetApp Cloud Volumes ONTAP instance HA pair instance – m5dn.12xLarge x 2node

Single Node Instance - m5dn.12xLarge x 1 node

NetApp cluster volume ONTAP setup

1. For the Cloud Volumes ONTAP HA pair, we created two aggregates with three volumes on each aggregate

on each storage controller. For the single Cloud Volumes ONTAP node, we create six volumes in an

aggregate.

20

2. To achieve better network performance, we enabled high speed networking for both the HA pair and the

single node.

21

3. We noticed that the ONTAP NVRAM had more IOPS so we changed the IOPS to 2350 for the Cloud

Volumes ONTAP root volume. The root volume disk in Cloud Volumes ONTAP was 47GB in size. The

following ONTAP command is for the HA pair, and the same step is applicable for the single node.

22

statistics start -object vnvram -instance vnvram -counter

backing_store_iops -sample-id sample_555

kafka_nfs_cvo_ha1::*> statistics show -sample-id sample_555

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-01

 Counter Value

 -------------------------------- --------------------------------

 backing_store_iops 1479

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-02

 Counter Value

 -------------------------------- --------------------------------

 backing_store_iops 1210

2 entries were displayed.

kafka_nfs_cvo_ha1::*>

23

The following figure depicts the architecture of an NAS-based Kafka cluster.

• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFS mount points to a single volume on the Cloud Volumes

ONTAP instance through a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

• Storage. We used an HA-pair Cloud volumes ONTAP instance with one 6TB GP3 AWS-EBS volume

mounted on the instance. The volume was then exported to the Kafka broker with an NFS mount.

24

OpenMessage Benchmarking configurations

1. For better NFS performance, we need more network connections between the NFS server and the NFS

client, which can be created using nconnect. Mount the NFS volumes on the broker nodes with the

nconnect option by running the following command:

25

[root@ip-172-30-0-121 ~]# cat /etc/fstab

UUID=eaa1f38e-de0f-4ed5-a5b5-2fa9db43bb38/xfsdefaults00

/dev/nvme1n1 /mnt/data-1 xfs defaults,noatime,nodiscard 0 0

/dev/nvme2n1 /mnt/data-2 xfs defaults,noatime,nodiscard 0 0

172.30.0.233:/kafka_aggr3_vol1 /kafka_aggr3_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol2 /kafka_aggr3_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol3 /kafka_aggr3_vol3 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol1 /kafka_aggr22_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol2 /kafka_aggr22_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol3 /kafka_aggr22_vol3 nfs

defaults,nconnect=16 0 0

[root@ip-172-30-0-121 ~]# mount -a

[root@ip-172-30-0-121 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 31G 0 31G 0% /dev

tmpfs 31G 249M 31G 1% /run

tmpfs 31G 0 31G 0% /sys/fs/cgroup

/dev/nvme0n1p2 10G 2.8G 7.2G 28% /

/dev/nvme1n1 2.3T 248G 2.1T 11% /mnt/data-1

/dev/nvme2n1 2.3T 245G 2.1T 11% /mnt/data-2

172.30.0.233:/kafka_aggr3_vol1 1.0T 12G 1013G 2% /kafka_aggr3_vol1

172.30.0.233:/kafka_aggr3_vol2 1.0T 5.5G 1019G 1% /kafka_aggr3_vol2

172.30.0.233:/kafka_aggr3_vol3 1.0T 8.9G 1016G 1% /kafka_aggr3_vol3

172.30.0.242:/kafka_aggr22_vol1 1.0T 7.3G 1017G 1%

/kafka_aggr22_vol1

172.30.0.242:/kafka_aggr22_vol2 1.0T 6.9G 1018G 1%

/kafka_aggr22_vol2

172.30.0.242:/kafka_aggr22_vol3 1.0T 5.9G 1019G 1%

/kafka_aggr22_vol3

tmpfs 6.2G 0 6.2G 0% /run/user/1000

[root@ip-172-30-0-121 ~]#

2. Check the network connections in Cloud Volumes ONTAP. The following ONTAP command is used from

the single Cloud Volumes ONTAP node. The same step is applicable to the Cloud Volumes ONTAP HA

pair.

Last login time: 1/20/2023 00:16:29

kafka_nfs_cvo_sn::> network connections active show -service nfs*

-fields remote-host

node cid vserver remote-host

26

------------------- ---------- -------------------- ------------

kafka_nfs_cvo_sn-01 2315762628 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762629 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762630 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762631 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762632 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762633 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762634 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762635 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762636 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762637 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762639 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762640 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762641 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762642 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762643 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762644 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762645 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762646 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762647 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762648 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762649 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762650 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762651 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762652 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762653 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762656 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762657 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762658 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762659 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762660 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762661 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762662 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762663 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762664 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762665 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762666 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762667 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762668 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762669 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762670 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762671 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762672 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762673 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762674 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762676 svm_kafka_nfs_cvo_sn 172.30.0.121

27

kafka_nfs_cvo_sn-01 2315762677 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762678 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762679 svm_kafka_nfs_cvo_sn 172.30.0.223

48 entries were displayed.

kafka_nfs_cvo_sn::>

3. We use the following Kafka server.properties in all Kafka brokers for the Cloud Volumes ONTAP HA

pair. The log.dirs property is different for each broker, and the remaining properties are common for

brokers. For broker1, the log.dirs value is as follows:

[root@ip-172-30-0-121 ~]# cat /opt/kafka/config/server.properties

broker.id=0

advertised.listeners=PLAINTEXT://172.30.0.121:9092

#log.dirs=/mnt/data-1/d1,/mnt/data-1/d2,/mnt/data-1/d3,/mnt/data-

2/d1,/mnt/data-2/d2,/mnt/data-2/d3

log.dirs=/kafka_aggr3_vol1/broker1,/kafka_aggr3_vol2/broker1,/kafka_aggr

3_vol3/broker1,/kafka_aggr22_vol1/broker1,/kafka_aggr22_vol2/broker1,/ka

fka_aggr22_vol3/broker1

zookeeper.connect=172.30.0.12:2181,172.30.0.30:2181,172.30.0.178:2181

num.network.threads=64

num.io.threads=64

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

num.partitions=1

num.recovery.threads.per.data.dir=1

offsets.topic.replication.factor=1

transaction.state.log.replication.factor=1

transaction.state.log.min.isr=1

replica.fetch.max.bytes=524288000

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

[root@ip-172-30-0-121 ~]#

◦ For broker2, the log.dirs property value is as follows:

log.dirs=/kafka_aggr3_vol1/broker2,/kafka_aggr3_vol2/broker2,/kafka_a

ggr3_vol3/broker2,/kafka_aggr22_vol1/broker2,/kafka_aggr22_vol2/broke

r2,/kafka_aggr22_vol3/broker2

◦ For broker3, the log.dirs property value is as follows:

28

log.dirs=/kafka_aggr3_vol1/broker3,/kafka_aggr3_vol2/broker3,/kafka_a

ggr3_vol3/broker3,/kafka_aggr22_vol1/broker3,/kafka_aggr22_vol2/broke

r3,/kafka_aggr22_vol3/broker3

4. For the single Cloud Volumes ONTAP node, The Kafka servers.properties is the same as for the

Cloud Volumes ONTAP HA pair except for the log.dirs property.

◦ For broker1, the log.dirs value is as follows:

log.dirs=/kafka_aggr2_vol1/broker1,/kafka_aggr2_vol2/broker1,/kafka_a

ggr2_vol3/broker1,/kafka_aggr2_vol4/broker1,/kafka_aggr2_vol5/broker1

,/kafka_aggr2_vol6/broker1

◦ For broker2, the log.dirs value is as follows:

log.dirs=/kafka_aggr2_vol1/broker2,/kafka_aggr2_vol2/broker2,/kafka_a

ggr2_vol3/broker2,/kafka_aggr2_vol4/broker2,/kafka_aggr2_vol5/broker2

,/kafka_aggr2_vol6/broker2

◦ For broker3, the log.dirs property value is as follows:

log.dirs=/kafka_aggr2_vol1/broker3,/kafka_aggr2_vol2/broker3,/kafka_a

ggr2_vol3/broker3,/kafka_aggr2_vol4/broker3,/kafka_aggr2_vol5/broker3

,/kafka_aggr2_vol6/broker3

5. The workload in the OMB is configured with the following properties: (/opt/benchmark/workloads/1-

topic-100-partitions-1kb.yaml).

topics: 4

partitionsPerTopic: 100

messageSize: 32768

useRandomizedPayloads: true

randomBytesRatio: 0.5

randomizedPayloadPoolSize: 100

subscriptionsPerTopic: 1

consumerPerSubscription: 80

producersPerTopic: 40

producerRate: 1000000

consumerBacklogSizeGB: 0

testDurationMinutes: 5

The messageSize can vary for each use case. In our performance test, we used 3K.

29

We used two different drivers, Sync or Throughput, from OMB to generate the workload on the Kafka

cluster.

◦ The yaml file used for Sync driver properties is as follows (/opt/benchmark/driver-

kafka/kafka-sync.yaml):

name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

 min.insync.replicas=2

 flush.messages=1

 flush.ms=0

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

producerConfig: |

 acks=all

 linger.ms=1

 batch.size=1048576

consumerConfig: |

 auto.offset.reset=earliest

 enable.auto.commit=false

 max.partition.fetch.bytes=10485760

◦ The yaml file used for the Throughput driver properties is as follows (/opt/benchmark/driver-

kafka/kafka-throughput.yaml):

30

name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

 min.insync.replicas=2

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

 default.api.timeout.ms=1200000

 request.timeout.ms=1200000

producerConfig: |

 acks=all

 linger.ms=1

 batch.size=1048576

consumerConfig: |

 auto.offset.reset=earliest

 enable.auto.commit=false

 max.partition.fetch.bytes=10485760

Methodology of testing

1. A Kafka cluster was provisioned as per the specification described above using Terraform and Ansible.

Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and Ansible builds

the Kafka cluster on them.

2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

Sudo bin/benchmark –drivers driver-kafka/kafka- sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Another workload was triggered with the Throughput driver with same workload configuration.

sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka

instance running on NFS. The difference between the drivers is the log flush property.

For a Cloud Volumes ONTAP HA pair:

31

• Total throughput generated consistently by the Sync driver: ~1236 MBps.

• Total throughput generated for the Throughput driver: peak ~1412 MBps.

For a single Cloud Volumes ONTAP node:

• Total throughput generated consistently by the Sync driver: ~ 1962MBps.

• Total throughput generated by the Throughput driver: peak ~1660MBps

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the

Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance

requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total

throughput or total rate is the combination of both producer and consumer rate.

Be sure to check the storage throughput when performing throughput or sync driver benchmarking.

32

Performance overview and validation in AWS FSx ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for

performance in the AWS FSx ONTAP. The benchmarking examples are described in the

following sections.

33

Apache Kafka in AWS FSx ONTAP

Network File System (NFS) is a widely used network filesystem for storing large amounts of data. In most

organizations data is increasingly being generated by streaming applications like Apache Kafka. These

workloads require scalability, low latency, and a robust data ingestion architecture with modern storage

capabilities. To enable real-time analytics and to provide actionable insights, a well designed and highly

performant infrastructure is required.

Kafka by design works with POSIX compliant file system and relies on the file system to handle file operations,

but when storing data on an NFSv3 file system, the Kafka broker NFS client can interpret file operations

differently from a local file system like XFS or Ext4. A common example is the NFS Silly rename which caused

Kafka brokers to fail when expanding clusters and re-allocating partitions. To deal with this challenge NetApp

has updated the open-source Linux NFS client with changes now generally available in RHEL8.7, RHEL9.1,

and supported from the current FSx ONTAP release, ONTAP 9.12.1.

Amazon FSx ONTAP provides a fully managed, scalable, and highly performance NFS file system in the cloud.

Kafka data on FSx ONTAP can scale to handle large amounts of data and ensure fault tolerance. NFS

provides centralized storage management and data protection for critical and sensitive datasets.

These enhancements make it possible for AWS customer to take advantage of FSx ONTAP when running

Kafka workloads on AWS compute services. These benefits are:

* Reducing CPU utilization to reduce the I/O wait time

* Faster Kafka broker recovery time.

* Reliability and efficiency.

* Scalability and performance.

* Multi-Availability Zone availability.

* Data protection.

Performance overview and validation in AWS FSx ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for performance in the AWS

cloud. The benchmarking examples are described in the following sections.

Kafka in AWS FSx ONTAP

A Kafka cluster with AWS FSx ONTAP was benchmarked for performance in the AWS cloud. This

benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using AWS FSx ONTAP.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.6

AWS FSx ONTAP Multi-AZ with 4GB/Sec throughput and 160000 IOPS

34

NetApp FSx ONTAP setup

1. For our initial testing, we have created a FSx ONTAP filesystem with 2TB of capacity and 40000 IOPs for

2GB/Sec throughput.

[root@ip-172-31-33-69 ~]# aws fsx create-file-system --region us-east-2

--storage-capacity 2048 --subnet-ids <desired subnet 1> subnet-<desired

subnet 2> --file-system-type ONTAP --ontap-configuration

DeploymentType=MULTI_AZ_HA_1,ThroughputCapacity=2048,PreferredSubnetId=<

desired primary subnet>,FsxAdminPassword=<new

password>,DiskIopsConfiguration="{Mode=USER_PROVISIONED,Iops=40000"}

In our example, we are deploying FSx ONTAP through the AWS CLI. You will need to customize the

command further in your environment as needed. FSx ONTAP can additionally be deployed and managed

through the AWS Console for an easier and more streamlined deployment experience with less command

line input.

Documentation In FSx ONTAP, the max IOPS achievable for a 2GB/Sec throughput filesystem in our test

region (US-East-1) is 80,000 iops. The total max iops for a FSx ONTAP filesystem is 160,000 iops which

requires a 4GB/Sec throughput deployment to achieve which we will demonstrate later in this document.

For more information on FSx ONTAP performance specifications, please feel free to visit the AWS FSx

ONTAP documentation here: https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html .

Detailed command line syntax for FSx "create-file-system" can be found here:

https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

For instance, you can specify a specific KMS key as opposed to the default AWS FSx master key that is

used when no KMS key is specified.

2. While creating the FSx ONTAP filesystem, Wait till the "LifeCycle" status changes to "AVAILABLE" in your

JSON return after describing your filesystem as follows:

[root@ip-172-31-33-69 ~]# aws fsx describe-file-systems --region us-

east-1 --file-system-ids fs-02ff04bab5ce01c7c

3. Validate the credentials by login into FSx ONTAP SSH with the fsxadmin user:

Fsxadmin is the default admin account for FSx ONTAP filesystems at creation. The password for fsxadmin

is the password that was configured when first creating the filesystem either in the AWS Console or with

the AWS CLI as we completed in Step 1.

35

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

[root@ip-172-31-33-69 ~]# ssh fsxadmin@198.19.250.244

The authenticity of host '198.19.250.244 (198.19.250.244)' can't be

established.

ED25519 key fingerprint is

SHA256:mgCyRXJfWRc2d/jOjFbMBsUcYOWjxoIky0ltHvVDL/Y.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '198.19.250.244' (ED25519) to the list of

known hosts.

(fsxadmin@198.19.250.244) Password:

This is your first recorded login.

4. Once your credentials have been validated, Create the storage Virtual Machine on the FSx ONTAP

filesystem

[root@ip-172-31-33-69 ~]# aws fsx --region us-east-1 create-storage-

virtual-machine --name svmkafkatest --file-system-id fs-

02ff04bab5ce01c7c

A Storage Virtual Machine (SVM) is an isolated file server with its own administrative credentials and

endpoints for administering and accessing data in FSx ONTAP volumes and provides FSx ONTAP multi-

tenancy.

5. Once you have configured your primary Storage Virtual Machine, SSH into the newly created FSx ONTAP

filesystem and create volumes in storage virtual machine using below sample command and similarly we

create 6 volumes for this validation. Based on our validation, keep the default constituent (8) or less

constituents which will provides better performance to kafka.

FsxId02ff04bab5ce01c7c::*> volume create -volume kafkafsxN1 -state

online -policy default -unix-permissions ---rwxr-xr-x -junction-active

true -type RW -snapshot-policy none -junction-path /kafkafsxN1 -aggr

-list aggr1

6. We will need additional capacity in our volumes for our testing. Extend the size of the volume to 2TB and

mount on the junction path.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN1 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN1" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN2 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN2" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN3 -new-size +2TB

36

vol size: Volume "svmkafkatest:kafkafsxN3" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN4 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN4" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN5 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN5" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN6 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN6" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume show -vserver svmkafkatest -volume *

Vserver Volume Aggregate State Type Size

Available Used%

--------- ------------ ------------ ---------- ---- ----------

---------- -----

svmkafkatest

 kafkafsxN1 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN2 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN3 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN4 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN5 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN6 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 svmkafkatest_root

 aggr1 online RW 1GB

968.1MB 0%

7 entries were displayed.

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN1 -junction

-path /kafkafsxN1

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN2 -junction

-path /kafkafsxN2

37

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN3 -junction

-path /kafkafsxN3

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN4 -junction

-path /kafkafsxN4

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN5 -junction

-path /kafkafsxN5

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN6 -junction

-path /kafkafsxN6

In FSx ONTAP, volumes can be thin provisioned. In our example, the total extended volume capacity

exceeds total filesystem capacity so we will need to extend the total filesystem capacity in order to unlock

additional provisioned volume capacity which we will demonstrate in our next step.

7. Next, for additional performance and capacity,We extend the FSx ONTAP throughput capacity from

2GB/Sec to 4GB/Sec and IOPS to 160000, and capacity to 5 TB

[root@ip-172-31-33-69 ~]# aws fsx update-file-system --region us-east-1

--storage-capacity 5120 --ontap-configuration

'ThroughputCapacity=4096,DiskIopsConfiguration={Mode=USER_PROVISIONED,Io

ps=160000}' --file-system-id fs-02ff04bab5ce01c7c

Detailed command line syntax for FSx "update-file-system" can be found here:

https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html

8. The FSx ONTAP volumes are mounted with nconnect and default opions in Kafka brokers

The following picture shows our final architecture of a our FSx ONTAP based Kafka cluster:

38

https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html

◦ Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had six NFS mount points to a six volumes on the FSx ONTAP

instance.

◦ Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

◦ Storage. We used an FSx ONTAP with six 2TB volumes mounted. The volume was then exported to

the Kafka broker with an NFS mount.The FSx ONTAP volumes are mounted with 16 nconnect sessions

and default options in Kafka brokers.

OpenMessage Benchmarking configurations.

We used the same configuration used for the NetApp Cloud volumes ONTAP and their details are here -

xref:./data-analytics/kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-setup

Methodology of testing

1. A Kafka cluster was provisioned as per the specification described above using terraform and ansible.

Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and ansible builds

the Kafka cluster on them.

2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

sudo bin/benchmark –drivers driver-kafka/kafka-sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Another workload was triggered with the Throughput driver with same workload configuration.

sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

39

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka

instance running on NFS. The difference between the drivers is the log flush property.

For a Kafka Replication factor 1 and the FSx ONTAP:

• Total throughput generated consistently by the Sync driver: ~ 3218 MBps and peak performance in ~ 3652

MBps.

• Total throughput generated consistently by the Throughput driver: ~ 3679 MBps and peak performance in ~

3908 MBps.

For Kafka with replication factor 3 and the FSx ONTAP :

• Total throughput generated consistently by the Sync driver: ~ 1252 MBps and peak performance in ~ 1382

MBps.

• Total throughput generated consistently by the Throughput driver: ~ 1218 MBps and peak performance in ~

1328 MBps.

In Kafka replication factor 3, the read and write operation happened three times on the FSx ONTAP, In Kafka

replication factor 1, the read and write operation is one time on the FSx ONTAP, so in both validation, we able

to reach the maximum throughput of 4GB/Sec.

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the

Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance

requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total

throughput or total rate is the combination of both producer and consumer rate.

The below chart shows the 2GB/Sec FSx ONTAP and 4GB/Sec performance for Kafka replication factor 3. The

replication factor 3 does the read and write operation three times on the FSx ONTAP storage. The total rate for

throughput driver is 881 MB/Sec, which does read and write Kafka operation approximately 2.64 GB/Sec on

the 2GB/Sec FSx ONTAP filesystem and total rate for throughput driver is 1328 MB/Sec that does read and

write kafka operation approximately 3.98 GB/Sec. Ther Kafka performance is linear and scalable based on the

FSx ONTAP throughput.

40

The below chart shows the performance between EC2 instance vs FSx ONTAP (Kafka Replication Factor : 3)

Performance overview and validation with AFF A900 on-
premises

On-premises, we used the NetApp AFF A900 storage controller with ONTAP 9.12.1RC1

to validate the performance and scaling of a Kafka cluster. We used the same testbed as

in our previous tiered storage best practices with ONTAP and AFF.

We used Confluent Kafka 6.2.0 to evaluate the AFF A900. The cluster features eight broker nodes and three

zookeeper nodes. For performance testing, we used five OMB worker nodes.

41

Storage configuration

We used NetApp FlexGroups instances to provide a single namespace for log directories, simplifying recovery

and configuration. We used NFSv4.1 and pNFS to provide direct path access to log segment data.

Client tuning

Each client mounted the FlexGroup instance with the following command.

mount -t nfs -o vers=4.1,nconnect=16 172.30.0.121:/kafka_vol01

/data/kafka_vol01

In addition, we increased the max_session_slots` from the default 64 to 180. This matches the default

session slot limit in ONTAP.

Kafka broker tuning

To maximize throughput in the system under test, we significantly increased the default parameters for certain

key thread pools. We recommend following Confluent Kafka best practices for most configurations. This tuning

was used to maximize the concurrency of outstanding I/O to storage. These parameters can be adjusted to

match your broker’s compute resources and storage attributes.

num.io.threads=96

num.network.threads=96

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

queued.max.requests=2000

42

Workload generator testing methodology

We used the same OMB configurations as for cloud testing for the Throughput driver and topic configuration.

1. A FlexGroup instance was provisioned using Ansible on an AFF cluster.

- name: Set up kafka broker processes

 hosts: localhost

 vars:

 ntap_hostname: 'hostname'

 ntap_username: 'user'

 ntap_password: 'password'

 size: 10

 size_unit: tb

 vserver: vs1

 state: present

 https: true

 export_policy: default

 volumes:

 - name: kafka_fg_vol01

 aggr: ["aggr1_a", "aggr2_a", "aggr1_b", "aggr2_b"]

 path: /kafka_fg_vol01

 tasks:

 - name: Edit volumes

 netapp.ontap.na_ontap_volume:

 state: "{{ state }}"

 name: "{{ item.name }}"

 aggr_list: "{{ item.aggr }}"

 aggr_list_multiplier: 8

 size: "{{ size }}"

 size_unit: "{{ size_unit }}"

 vserver: "{{ vserver }}"

 snapshot_policy: none

 export_policy: default

 junction_path: "{{ item.path }}"

 qos_policy_group: none

 wait_for_completion: True

 hostname: "{{ ntap_hostname }}"

 username: "{{ ntap_username }}"

 password: "{{ ntap_password }}"

 https: "{{ https }}"

 validate_certs: false

 connection: local

 with_items: "{{ volumes }}"

43

2. pNFS was enabled on the ONTAP SVM.

vserver modify -vserver vs1 -v4.1-pnfs enabled -tcp-max-xfer-size 262144

3. The workload was triggered with the Throughput driver using with same workload configuration as for

Cloud Volumes ONTAP. See the section "Steady state performance" below. The workload used a

replication factor of 3, meaning three copies of log segments were maintained in NFS.

sudo bin/benchmark --drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

4. Finally, we completed measurements using a backlog to measure the ability of consumers to catch up to

the latest messages. OMB constructs a backlog by pausing consumers during the beginning of a

measurement. This produces three distinct phases: backlog creation (producer-only traffic), backlog

draining (a consumer-heavy phase in which consumers catch up on missed events in a topic), and the

steady state. See the section "Extreme performance and exploring storage limits" for more information.

Steady state performance

We evaluated the AFF A900 using the OpenMessaging Benchmark to provide a similar comparison as for

Cloud Volumes ONTAP in AWS and DAS in AWS. All performance values represent Kafka-cluster throughput

at the producer and consumer level.

Steady state performance with Confluent Kafka and the AFF A900 achieved over 3.4GBps average throughput

for both producer and consumers. This is over 3.4 million messages across the Kafka cluster. By visualizing

the sustained throughput in bytes per second for BrokerTopicMetrics, we see the excellent steady state

performance and traffic supported by the AFF A900.

This aligns well with the view of messages delivered per topic. The following graph provides a per-topic

breakdown. In the configuration tested we saw nearly 900k messages per topic across four topics.

44

Extreme performance and exploring storage limits

For AFF, we also tested with OMB using the backlog feature. The backlog feature pauses consumer

subscriptions while a backlog of events is built up in the Kafka cluster. During this phase, only producer traffic

occurs, which generates events that are committed to logs. This most closely emulates batch processing or

offline analytics workflows; in these workflows, consumer subscriptions are started and must read historical

data that has already been evicted from the broker cache.

To understand the storage limitations on consumer throughput in this configuration, we measured the

producer-only phase to understand how much write traffic the A900 could absorb. See the next section "Sizing

guidance" to understand how to leverage this data.

During the producer-only part of this measurement, we saw high peak throughput that pushed the limits of

A900 performance (when other broker resources were not saturated serving producer and consumer traffic).

45

We increased the message size to 16k for this measurement to limit per-message overheads

and maximize storage throughput to NFS mount points.

messageSize: 16384

consumerBacklogSizeGB: 4096

The Confluent Kafka cluster achieved a peak producer throughput of 4.03GBps.

18:12:23.833 [main] INFO WorkloadGenerator - Pub rate 257759.2 msg/s /

4027.5 MB/s | Pub err 0.0 err/s …

After OMB completed populating the eventbacklog, consumer traffic was restarted. During measurements with

backlog draining, we observed peak consumer throughput of over 20GBps across all topics. The combined

throughput to the NFS volume storing the OMB log data approached ~30GBps.

Sizing guidance

Amazon Web Services offers a sizing guide for Kafka cluster sizing and scaling.

This sizing provides a useful formula for determining storage throughput requirements for your Kafka cluster:

For an aggregated throughput produced into the cluster of tcluster with a replication factor of r, the throughput

received by the broker storage is as follows:

t[storage] = t[cluster]/#brokers + t[cluster]/#brokers * (r-1)

 = t[cluster]/#brokers * r

This can be simplified even further:

max(t[cluster]) <= max(t[storage]) * #brokers/r

Using this formula allows you to select the appropriate ONTAP platform for your Kafka hot tier needs.

The following table explains the anticipated producer throughput for the A900 with different replication factors:

Replication factor Producer throughput (GPps)

3 (measured) 3.4

2 5.1

1 10.2

Conclusion

The NetApp solution for the silly rename problem provides a simple, inexpensive, and

46

https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/

centrally managed form of storage for workloads that were previously incompatible with

NFS.

This new paradigm enables customers to create more manageable Kafka clusters that are easier to migrate

and mirror for the purpose of disaster recovery and data protection.

We have also seen that NFS provides additional benefits such as reduced CPU utilization and a faster

recovery time, dramatically improved storage efficiency, and better performance through NetApp ONTAP.

Where to find additional information

To learn more about the information that is described in this document, review the

following documents and/or websites:

• What is Apache Kafka?

https://www.confluent.io/what-is-apache-kafka/

• What is silly rename?

https://linux-nfs.org/wiki/index.php/Server-side_silly_rename

• ONATP is read for streaming applications.

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

• NetApp product documentation

https://www.netapp.com/support-and-training/documentation/

• What is NFS?

https://en.wikipedia.org/wiki/Network_File_System

• What is Kafka partition reassignment?

https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html

• What is the OpenMessaging Benchmark?

https://openmessaging.cloud/

• How do you migrate a Kafka broker?

https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058

• How do you monitor Kafka broker with Prometheus?

https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

• Managed Platform for Apache Kafka

https://www.instaclustr.com/platform/managed-apache-kafka/

• Support for Apache Kafka

47

https://www.confluent.io/what-is-apache-kafka/
https://linux-nfs.org/wiki/index.php/Server-side_silly_rename
https://www.netapp.com/blog/ontap-ready-for-streaming-applications/
https://www.netapp.com/support-and-training/documentation/
https://en.wikipedia.org/wiki/Network_File_System
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://openmessaging.cloud/
https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058
https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/
https://www.instaclustr.com/platform/managed-apache-kafka/

https://www.instaclustr.com/support-solutions/kafka-support/

• Consulting services for Apache Kafka

https://www.instaclustr.com/services/consulting/

48

https://www.instaclustr.com/support-solutions/kafka-support/
https://www.instaclustr.com/services/consulting/

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

49

http://www.netapp.com/TM

	Apache Kafka workloads with NetApp NFS storage : NetApp artificial intelligence solutions
	Table of Contents
	Apache Kafka workloads with NetApp NFS storage
	TR-4947: Apache Kafka workload with NetApp NFS storage - Functional validation and performance
	Why use NFS storage for Kafka workloads?
	Why NetApp for Kafka workloads?

	NetApp solution for silly rename issue for NFS to Kafka workloads
	Functional validation - Silly rename fix
	Validation setup
	Architectural flow
	Methodology of testing

	Why NetApp NFS for Kafka workloads?
	Reduced CPU utilization on Kafka broker
	Faster broker recovery
	Storage efficiency

	Performance overview and validation in AWS
	Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and single node)
	Methodology of testing
	Observation

	Performance overview and validation in AWS FSx ONTAP
	Apache Kafka in AWS FSx ONTAP

	Performance overview and validation with AFF A900 on-premises
	Storage configuration
	Client tuning
	Kafka broker tuning
	Workload generator testing methodology
	Extreme performance and exploring storage limits
	Sizing guidance

	Conclusion
	Where to find additional information

