
Best practices for Confluent Kafka
NetApp artificial intelligence solutions
NetApp
August 18, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-ai/data-
analytics/confluent-kafka-introduction.html on August 18, 2025. Always check docs.netapp.com for the
latest.

Table of Contents

Best practices for Confluent Kafka . 1

TR-4912: Best practice guidelines for Confluent Kafka tiered storage with NetApp . 1

Why Confluent Tiered Storage?. 1

Why NetApp StorageGRID for tiered storage? . 1

Enabling Confluent Tiered Storage . 2

Solution architecture details . 3

Technology overview . 4

NetApp StorageGRID. 4

Apache Kafka. 6

Confluent . 8

Confluent verification . 10

Confluent Platform setup . 10

Confluent tiered storage configuration . 11

NetApp object storage - StorageGRID. 11

Verification tests . 12

Performance tests with scalability . 13

Confluent s3 connector . 15

Confluent Self-balancing Clusters . 24

Best practice guidelines . 24

Sizing . 25

Simple . 26

Conclusion . 29

Where to find additional information . 29

Best practices for Confluent Kafka

TR-4912: Best practice guidelines for Confluent Kafka tiered
storage with NetApp

Karthikeyan Nagalingam, Joseph Kandatilparambil, NetApp

Rankesh Kumar, Confluent

Apache Kafka is a community-distributed event-streaming platform capable of handling

trillions of events a day. Initially conceived as a messaging queue, Kafka is based on an

abstraction of a distributed commit log. Since it was created and open-sourced by

LinkedIn in 2011, Kafka has evolved from a messages queue to a full-fledged event-

streaming platform. Confluent delivers the distribution of Apache Kafka with the Confluent

Platform. The Confluent Platform supplements Kafka with additional community and

commercial features designed to enhance the streaming experience of both operators

and developers in production at a massive scale.

This document describes the best-practice guidelines for using Confluent Tiered Storage on a NetApp’s Object

storage offering by providing the following content:

• Confluent verification with NetApp Object storage – NetApp StorageGRID

• Tiered storage performance tests

• Best-practice guidelines for Confluent on NetApp storage systems

Why Confluent Tiered Storage?

Confluent has become the default real-time streaming platform for many applications, especially for big data,

analytics, and streaming workloads. Tiered Storage enables users to separate compute from storage in the

Confluent platform. It makes storing data more cost effective, enables you to store virtually infinite amounts of

data and scale workloads up (or down) on-demand, and makes administrative tasks like data and tenant

rebalancing easier. S3 compatible storage systems can take advantage of all these capabilities to democratize

data with all events in one place, eliminating the need for complex data engineering. For more info on why you

should use tiered storage for Kafka, check this article by Confluent.

Why NetApp StorageGRID for tiered storage?

StorageGRID is an industry-leading object storage platform by NetApp. StorageGRID is a software-defined,

object-based storage solution that supports industry-standard object APIs, including the Amazon Simple

Storage Service (S3) API. StorageGRID stores and manages unstructured data at scale to provide secure,

durable object storage. Content is placed in the right location, at the right time, and on the right storage tier,

optimizing workflows and reducing costs for globally distributed rich media.

The greatest differentiator for StorageGRID is its Information Lifecycle Management (ILM) policy engine that

enables policy-driven data lifecycle management. The policy engine can use metadata to manage how data is

stored across its lifetime to initially optimize for performance and automatically optimize for cost and durability

as data ages.

1

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage

Enabling Confluent Tiered Storage

The basic idea of tiered storage is to separate the tasks of data storage from data processing. With this

separation, it becomes much easier for the data storage tier and the data processing tier to scale

independently.

A tiered storage solution for Confluent must contend with two factors. First, it must work around or avoid

common object store consistency and availability properties, such as inconsistencies in LIST operations and

occasional object unavailability. Secondly, it must correctly handle the interaction between tiered storage and

Kafka’s replication and fault tolerance model, including the possibility of zombie leaders continuing to tier offset

ranges. NetApp Object storage provides both the consistent object availability and HA model make the tired

storage available to tier offset ranges. NetApp object storage provides consistent object availability and an HA

model to make the tired storage available to tier offset ranges.

With tiered storage, you can use high-performance platforms for low-latency reads and writes near the tail of

your streaming data, and you can also use cheaper, scalable object stores like NetApp StorageGRID for high-

throughput historical reads. We also have technical solution for Spark with netapp storage controller and

details are here. The following figure shows how Kafka fits into a real-time analytics pipeline.

The following figure depicts how NetApp StorageGRID fits in as Confluent Kafka’s object storage tier.

2

Solution architecture details

This section covers the hardware and software used for Confluent verification. This

information is applicable to Confluent Platform deployment with NetApp storage. The

following table covers the tested solution architecture and base components.

Solution components Details

Confluent Kafka version 6.2 • Three zookeepers

• Five broker servers

• Five tools servers

• One Grafana

• One control center

Linux (ubuntu 18.04) All servers

NetApp StorageGRID for tiered storage • StorageGRID software

• 1 x SG1000 (load balancer)

• 4 x SGF6024

• 4 x 24 x 800 SSDs

• S3 protocol

• 4 x 100GbE (network connectivity between broker

and StorageGRID instances)

3

Solution components Details

15 Fujitsu PRIMERGY RX2540 servers Each equipped with:

* 2 CPUs, 16 physical cores total

* Intel Xeon

* 256GB physical memory

* 100GbE dual port

Technology overview

This section describes the technology used in this solution.

NetApp StorageGRID

NetApp StorageGRID is a high-performance, cost-effective object storage platform. By using tiered storage,

most of the data on Confluent Kafka, which is stored in local storage or the SAN storage of the broker, is

offloaded to the remote object store. This configuration results in significant operational improvements by

reducing the time and cost to rebalance, expand, or shrink clusters or replace a failed broker. Object storage

plays an important role in managing data that resides on the object store tier, which is why picking the right

object storage is important.

StorageGRID offers intelligent, policy-driven global data management using a distributed, node-based grid

architecture. It simplifies the management of petabytes of unstructured data and billions of objects through its

ubiquitous global object namespace combined with sophisticated data management features. Single-call object

access extends across sites and simplifies high availability architectures while ensuring continual object

access, regardless of site or infrastructure outages.

Multitenancy allows multiple unstructured cloud and enterprise data applications to be securely serviced within

the same grid, increasing the ROI and use cases for NetApp StorageGRID. You can create multiple service

levels with metadata-driven object lifecycle policies, optimizing durability, protection, performance, and locality

across multiple geographies. Users can adjust data management policies and monitor and apply traffic limits to

realign with the data landscape nondisruptively as their requirements change in ever-changing IT

environments.

Simple management with Grid Manager

The StorageGRID Grid Manager is a browser-based graphical interface that allows you to configure, manage,

and monitor your StorageGRID system across globally distributed locations in a single pane of glass.

4

You can perform the following tasks with the StorageGRID Grid Manager interface:

• Manage globally distributed, petabyte-scale repositories of objects such as images, video, and records.

• Monitor grid nodes and services to ensure object availability.

• Manage the placement of object data over time using information lifecycle management (ILM) rules. These

rules govern what happens to an object’s data after it is ingested, how it is protected from loss, where

object data is stored, and for how long.

• Monitor transactions, performance, and operations within the system.

Information Lifecycle Management policies

StorageGRID has flexible data management policies that include keeping replica copies of your objects and

using EC (erasure coding) schemes like 2+1 and 4+2 (among others) to store your objects, depending on

specific performance and data protection requirements. As workloads and requirements change over time, it’s

common that ILM policies must change over time as well. Modifying ILM policies is a core feature, allowing

StorageGRID customers to adapt to their ever-changing environment quickly and easily.

Performance

StorageGRID scales performance by adding more storage nodes, which can be VMs, bare metal, or purpose-

built appliances like the SG5712, SG5760, SG6060, or SGF6024. In our tests, we exceeded the Apache Kafka

key performance requirements with a minimum-sized, three-node grid using the SGF6024 appliance. As

customers scale their Kafka cluster with additional brokers, they can add more storage nodes to increase

performance and capacity.

Load balancer and endpoint configuration

Admin nodes in StorageGRID provide the Grid Manager UI (user interface) and REST API endpoint to view,

configure, and manage your StorageGRID system, as well as audit logs to track system activity. To provide a

5

https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf

highly available S3 endpoint for Confluent Kafka tiered storage, we implemented the StorageGRID load

balancer, which runs as a service on admin nodes and gateway nodes. In addition, the load balancer also

manages local traffic and talks to the GSLB (Global Server Load Balancing) to help with disaster recovery.

To further enhance endpoint configuration, StorageGRID provides traffic classification policies built into the

admin node, lets you monitor your workload traffic, and applies various quality-of-service (QoS) limits to your

workloads. Traffic classification policies are applied to endpoints on the StorageGRID Load Balancer service

for gateway nodes and admin nodes. These policies can assist with traffic shaping and monitoring.

Traffic classification in StorageGRID

StorageGRID has built-in QoS functionality. Traffic classification policies can help monitor different types of S3

traffic coming from a client application. You can then create and apply policies to put limits on this traffic based

on in/out bandwidth, the number of read/write concurrent requests, or the read/write request rate.

Apache Kafka

Apache Kafka is a framework implementation of a software bus using stream processing written in Java and

Scala. It’s aimed to provide a unified, high-throughput, low-latency platform for handling real-time data feeds.

Kafka can connect to an external system for data export and import through Kafka Connect and provides Kafka

streams, a Java stream processing library. Kafka uses a binary, TCP-based protocol that is optimized for

efficiency and relies on a "message set" abstraction that naturally groups messages together to reduce the

overhead of the network roundtrip. This enables larger sequential disk operations, larger network packets, and

contiguous memory blocks, thereby enabling Kafka to turn a bursty stream of random message writes into

linear writes. The following figure depicts the basic data flow of Apache Kafka.

Kafka stores key-value messages that come from an arbitrary number of processes called producers. The data

can be partitioned into different partitions within different topics. Within a partition, messages are strictly

ordered by their offsets (the position of a message within a partition) and indexed and stored together with a

timestamp. Other processes called consumers can read messages from partitions. For stream processing,

Kafka offers the Streams API that allows writing Java applications that consume data from Kafka and write

results back to Kafka. Apache Kafka also works with external stream processing systems such as Apache

Apex, Apache Flink, Apache Spark, Apache Storm, and Apache NiFi.

6

Kafka runs on a cluster of one or more servers (called brokers), and the partitions of all topics are distributed

across the cluster nodes. Additionally, partitions are replicated to multiple brokers. This architecture allows

Kafka to deliver massive streams of messages in a fault-tolerant fashion and has allowed it to replace some of

the conventional messaging systems like Java Message Service (JMS), Advanced Message Queuing Protocol

(AMQP), and so on. Since the 0.11.0.0 release, Kafka offers transactional writes, which provide exactly once

stream processing using the Streams API.

Kafka supports two types of topics: regular and compacted. Regular topics can be configured with a retention

time or a space bound. If there are records that are older than the specified retention time or if the space

bound is exceeded for a partition, Kafka is allowed to delete old data to free storage space. By default, topics

are configured with a retention time of 7 days, but it’s also possible to store data indefinitely. For compacted

topics, records don’t expire based on time or space bounds. Instead, Kafka treats later messages as updates

to older message with the same key and guarantees never to delete the latest message per key. Users can

delete messages entirely by writing a so-called tombstone message with the null value for a specific key.

There are five major APIs in Kafka:

• Producer API. Permits an application to publish streams of records.

• Consumer API. Permits an application to subscribe to topics and processes streams of records.

• Connector API. Executes the reusable producer and consumer APIs that can link the topics to the existing

applications.

• Streams API. This API converts the input streams to output and produces the result.

• Admin API. Used to manage Kafka topics, brokers and other Kafka objects.

The consumer and producer APIs build on top of the Kafka messaging protocol and offer a reference

implementation for Kafka consumer and producer clients in Java. The underlying messaging protocol is a

binary protocol that developers can use to write their own consumer or producer clients in any programming

language. This unlocks Kafka from the Java Virtual Machine (JVM) ecosystem. A list of available non-Java

clients is maintained in the Apache Kafka wiki.

Apache Kafka use cases

Apache Kafka is most popular for messaging, website activity tracking, metrics, log aggregation, stream

processing, event sourcing, and commit logging.

• Kafka has improved throughput, built-in partitioning, replication, and fault-tolerance, which makes it a good

solution for large-scale message-processing applications.

• Kafka can rebuild a user’s activities (page views, searches) in a tracking pipeline as a set of real-time

publish-subscribe feeds.

• Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed

applications to produce centralized feeds of operational data.

• Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects

physical log files off of servers and puts them in a central place (for example, a file server or HDFS) for

processing. Kafka abstracts files details and provides a cleaner abstraction of log or event data as a stream

of messages. This allows for lower-latency processing and easier support for multiple data sources and

distributed data consumption.

• Many users of Kafka process data in processing pipelines consisting of multiple stages, in which raw input

data is consumed from Kafka topics and then aggregated, enriched, or otherwise transformed into new

topics for further consumption or follow-up processing. For example, a processing pipeline for

recommending news articles might crawl article content from RSS feeds and publish it to an "articles" topic.

Further processing might normalize or deduplicate this content and publish the cleansed article content to

7

a new topic, and a final processing stage might attempt to recommend this content to users. Such

processing pipelines create graphs of real-time data flows based on the individual topics.

• Event souring is a style of application design for which state changes are logged as a time-ordered

sequence of records. Kafka’s support for very large stored log data makes it an excellent backend for an

application built in this style.

• Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data

between nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log

compaction feature in Kafka helps support this use case.

Confluent

Confluent Platform is an enterprise-ready platform that completes Kafka with advanced capabilities designed to

help accelerate application development and connectivity, enable transformations through stream processing,

simplify enterprise operations at scale, and meet stringent architectural requirements. Built by the original

creators of Apache Kafka, Confluent expands the benefits of Kafka with enterprise-grade features while

removing the burden of Kafka management or monitoring. Today, over 80% of the Fortune 100 are powered by

data streaming technology – and most of those use Confluent.

Why Confluent?

By integrating historical and real-time data into a single, central source of truth, Confluent makes it easy to

build an entirely new category of modern, event-driven applications, gain a universal data pipeline, and unlock

powerful new use cases with full scalability, performance, and reliability.

What is Confluent used for?

Confluent Platform lets you focus on how to derive business value from your data rather than worrying about

the underlying mechanics, such as how data is being transported or integrated between disparate systems.

Specifically, Confluent Platform simplifies connecting data sources to Kafka, building streaming applications, as

well as securing, monitoring, and managing your Kafka infrastructure. Today, Confluent Platform is used for a

wide array of use cases across numerous industries, from financial services, omnichannel retail, and

autonomous cars, to fraud detection, microservices, and IoT.

The following figure shows Confluent Kafka Platform components.

8

Overview of Confluent’s event streaming technology

At the core of Confluent Platform is Apache Kafka, the most popular open-source distributed streaming

platform. The key capabilities of Kafka are as follows:

• Publish and subscribe to streams of records.

• Store streams of records in a fault tolerant way.

• Process streams of records.

Out of the box, Confluent Platform also includes Schema Registry, REST Proxy, a total of 100+ prebuilt Kafka

connectors, and ksqlDB.

Overview of Confluent platform’s enterprise features

• Confluent Control Center. A GUI-based system for managing and monitoring Kafka. It allows you to

easily manage Kafka Connect and to create, edit, and manage connections to other systems.

• Confluent for Kubernetes. Confluent for Kubernetes is a Kubernetes operator. Kubernetes operators

extend the orchestration capabilities of Kubernetes by providing the unique features and requirements for a

specific platform application. For Confluent Platform, this includes greatly simplifying the deployment

process of Kafka on Kubernetes and automating typical infrastructure lifecycle tasks.

• Confluent connectors to Kafka. Connectors use the Kafka Connect API to connect Kafka to other

systems such as databases, key-value stores, search indexes, and file systems. Confluent Hub has

downloadable connectors for the most popular data sources and sinks, including fully tested and supported

versions of these connectors with Confluent Platform. More details can be found here.

• Self- balancing clusters. Provides automated load balancing, failure detection and self-healing. It

provides support for adding or decommissioning brokers as needed, with no manual tuning.

• Confluent cluster linking. Directly connects clusters together and mirrors topics from one cluster to

another over a link bridge. Cluster linking simplifies setup of multi-datacenter, multi-cluster, and hybrid

9

https://kafka.apache.org/
https://docs.confluent.io/home/connect/userguide.html

cloud deployments.

• Confluent auto data balancer. Monitors your cluster for the number of brokers, the size of partitions,

number of partitions, and the number of leaders within the cluster. It allows you to shift data to create an

even workload across your cluster, while throttling rebalance traffic to minimize the effect on production

workloads while rebalancing.

• Confluent replicator. Makes it easier than ever to maintain multiple Kafka clusters in multiple data

centers.

• Tiered storage. Provides options for storing large volumes of Kafka data using your favorite cloud

provider, thereby reducing operational burden and cost. With tiered storage, you can keep data on cost-

effective object storage and scale brokers only when you need more compute resources.

• Confluent JMS client. Confluent Platform includes a JMS-compatible client for Kafka. This Kafka client

implements the JMS 1.1 standard API, using Kafka brokers as the backend. This is useful if you have

legacy applications using JMS and you would like to replace the existing JMS message broker with Kafka.

• Confluent MQTT proxy. Provides a way to publish data directly to Kafka from MQTT devices and

gateways without the need for a MQTT broker in the middle.

• Confluent security plugins. Confluent security plugins are used to add security capabilities to various

Confluent Platform tools and products. Currently, there is a plugin available for the Confluent REST proxy

that helps to authenticate the incoming requests and propagate the authenticated principal to requests to

Kafka. This enables Confluent REST proxy clients to utilize the multitenant security features of the Kafka

broker.

Confluent verification

We performed verification with Confluent Platform 6.2 Tiered Storage in NetApp

StorageGRID. The NetApp and Confluent teams worked on this verification together and

ran the test cases required for verification.

Confluent Platform setup

We used the following setup for verification.

For verification, we used three zookeepers, five brokers, five test-script executing servers, named tools servers

with 256GB RAM, and 16 CPUs. For NetApp storage, we used StorageGRID with an SG1000 load balancer

with four SGF6024s. The storage and brokers were connected via 100GbE connections.

The following figure shows the network topology of configuration used for Confluent verification.

10

The tools servers act as application clients that send requests to Confluent nodes.

Confluent tiered storage configuration

The tiered storage configuration requires the following parameters in Kafka:

Confluent.tier.archiver.num.threads=16

confluent.tier.fetcher.num.threads=32

confluent.tier.enable=true

confluent.tier.feature=true

confluent.tier.backend=S3

confluent.tier.s3.bucket=kafkasgdbucket1-2

confluent.tier.s3.region=us-west-2

confluent.tier.s3.cred.file.path=/data/kafka/.ssh/credentials

confluent.tier.s3.aws.endpoint.override=http://kafkasgd.rtpppe.netapp.com:

10444/

confluent.tier.s3.force.path.style.access=true

For verification, we used StorageGRID with the HTTP protocol, but HTTPS also works. The access key and

secret key are stored in the file name provided in the confluent.tier.s3.cred.file.path parameter.

NetApp object storage - StorageGRID

We configured single-site configuration in StorageGRID for verfication.

11

Verification tests

We completed the following five test cases for the verification. These tests are executed on the Trogdor

framework. The first two were functionality tests and the remaining three were performance tests.

12

Object store correctness test

This test determines whether all basic operations (for example, get/put/delete) on the object store API work

well according to the needs of tiered storage. It is a basic test that every object store service should expect to

pass ahead of the following tests. It is an assertive test that either passes or fails.

Tiering functionality correctness test

This test determines if end-to-end tiered storage functionality works well with an assertive test that either

passes or fails. The test creates a test topic that by default is configured with tiering enabled and highly a

reduced hotset size. It produces an event stream to the newly created test topic, it waits for the brokers to

archive the segments to the object store, and it then consumes the event stream and validates that the

consumed stream matches the produced stream. The number of messages produced to the event stream is

configurable, which lets the user generate a sufficiently large workload according to the needs of testing. The

reduced hotset size ensures that the consumer fetches outside the active segment are served only from the

object store; this helps test the correctness of the object store for reads. We have performed this test with and

without an object-store fault injection. We simulated node failure by stopping the service manager service in

one of the nodes in StorageGRID and validating that the end-to-end functionality works with object storage.

Tier fetch benchmark

This test validated the read performance of the tiered object storage and checked the range fetch read

requests under heavy load from segments generated by the benchmark. In this benchmark, Confluent

developed custom clients to serve the tier fetch requests.

Produce-consume workload benchmark

This test indirectly generated write workload on the object store through the archival of segments. The read

workload (segments read) was generated from object storage when consumer groups fetched the segments.

This workload was generated by the test script. This test checked the performance of read and write on the

object storage in parallel threads. We tested with and without object store fault injection as we did for the tiering

functionality correctness test.

Retention workload benchmark

This test checked the deletion performance of an object store under a heavy topic-retention workload. The

retention workload was generated using a test script that produces many messages in parallel to a test topic.

The test topic was configuring with an aggressive size-based and time-based retention setting that caused the

event stream to be continuously purged from the object store. The segments were then archived. This led to a

large number of deletions in the object storage by the broker and collection of the performance of the object-

store delete operations.

Performance tests with scalability

We performed the tiered storage testing with three to four nodes for producer and

consumer workloads with the NetApp StorageGRID setup. According to our tests, the

time to completion and the performance results were directly proportional to the number

of StorageGRID nodes. The StorageGRID setup required a minimum of three nodes.

• The time to complete the produce and consumer operation decreased linearly when the number of storage

nodes increased.

13

• The performance for the s3 retrieve operation increased linearly based on number of StorageGRID nodes.

StorageGRID supports up to 200 StorgeGRID nodes.

14

Confluent s3 connector

The Amazon S3 Sink connector exports data from Apache Kafka topics to S3 objects in

either the Avro, JSON, or Bytes formats. The Amazon S3 sink connector periodically polls

data from Kafka and in turn uploads it to S3. A partitioner is used to split the data of every

Kafka partition into chunks. Each chunk of data is represented as an S3 object. The key

name encodes the topic, the Kafka partition, and the start offset of this data chunk.

In this setup, we show you how to read and write topics in object storage from Kafka directly using the Kafka s3

sink connector. For this test, we used a stand-alone Confluent cluster, but this setup is applicable to a

distributed cluster.

1. Download Confluent Kafka from the Confluent website.

2. Unpack the package to a folder on your server.

3. Export two variables.

Export CONFLUENT_HOME=/data/confluent/confluent-6.2.0

export PATH=$PATH:/data/confluent/confluent-6.2.0/bin

4. For a stand-alone Confluent Kafka setup, the cluster creates a temporary root folder in /tmp. It also

creates Zookeeper, Kafka, a schema registry, connect, a ksql-server, and control-center folders and copies

their respective configuration files from $CONFLUENT_HOME. See the following example:

root@stlrx2540m1-108:~# ls -ltr /tmp/confluent.406980/

total 28

drwxr-xr-x 4 root root 4096 Oct 29 19:01 zookeeper

drwxr-xr-x 4 root root 4096 Oct 29 19:37 kafka

drwxr-xr-x 4 root root 4096 Oct 29 19:40 schema-registry

drwxr-xr-x 4 root root 4096 Oct 29 19:45 kafka-rest

drwxr-xr-x 4 root root 4096 Oct 29 19:47 connect

drwxr-xr-x 4 root root 4096 Oct 29 19:48 ksql-server

drwxr-xr-x 4 root root 4096 Oct 29 19:53 control-center

root@stlrx2540m1-108:~#

5. Configure Zookeeper. You don’t need to change anything if you use the default parameters.

15

root@stlrx2540m1-108:~# cat

/tmp/confluent.406980/zookeeper/zookeeper.properties | grep -iv ^#

dataDir=/tmp/confluent.406980/zookeeper/data

clientPort=2181

maxClientCnxns=0

admin.enableServer=false

tickTime=2000

initLimit=5

syncLimit=2

server.179=controlcenter:2888:3888

root@stlrx2540m1-108:~#

In the above configuration, we updated the server. xxx property. By default, you need three

Zookeepers for the Kafka leader selection.

6. We created a myid file in /tmp/confluent.406980/zookeeper/data with a unique ID:

root@stlrx2540m1-108:~# cat /tmp/confluent.406980/zookeeper/data/myid

179

root@stlrx2540m1-108:~#

We used the last number of IP addresses for the myid file. We used default values for the Kafka, connect,

control-center, Kafka, Kafka-rest, ksql-server, and schema-registry configurations.

7. Start the Kafka services.

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services start

The local commands are intended for a single-node development

environment only,

NOT for production usage.

Using CONFLUENT_CURRENT: /tmp/confluent.406980

ZooKeeper is [UP]

Kafka is [UP]

Schema Registry is [UP]

Kafka REST is [UP]

Connect is [UP]

ksqlDB Server is [UP]

Control Center is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

There is a log folder for each configuration, which helps troubleshoot issues. In some instances, services

take more time to start. Make sure all services are up and running.

16

8. Install Kafka connect using confluent-hub.

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# ./confluent-

hub install confluentinc/kafka-connect-s3:latest

The component can be installed in any of the following Confluent

Platform installations:

 1. /data/confluent/confluent-6.2.0 (based on $CONFLUENT_HOME)

 2. /data/confluent/confluent-6.2.0 (where this tool is installed)

Choose one of these to continue the installation (1-2): 1

Do you want to install this into /data/confluent/confluent-

6.2.0/share/confluent-hub-components? (yN) y

Component's license:

Confluent Community License

http://www.confluent.io/confluent-community-license

I agree to the software license agreement (yN) y

Downloading component Kafka Connect S3 10.0.3, provided by Confluent,

Inc. from Confluent Hub and installing into /data/confluent/confluent-

6.2.0/share/confluent-hub-components

Do you want to uninstall existing version 10.0.3? (yN) y

Detected Worker's configs:

 1. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

 2. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

 3. Standard: /data/confluent/confluent-6.2.0/etc/schema-

registry/connect-avro-distributed.properties

 4. Standard: /data/confluent/confluent-6.2.0/etc/schema-

registry/connect-avro-standalone.properties

 5. Based on CONFLUENT_CURRENT:

/tmp/confluent.406980/connect/connect.properties

 6. Used by Connect process with PID 15904:

/tmp/confluent.406980/connect/connect.properties

Do you want to update all detected configs? (yN) y

Adding installation directory to plugin path in the following files:

 /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

 /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

 /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

distributed.properties

 /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

standalone.properties

 /tmp/confluent.406980/connect/connect.properties

 /tmp/confluent.406980/connect/connect.properties

17

Completed

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

You can also install a specific version by using confluent-hub install confluentinc/kafka-

connect-s3:10.0.3.

9. By default, confluentinc-kafka-connect-s3 is installed in /data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3.

10. Update the plug-in path with the new confluentinc-kafka-connect-s3.

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/etc/kafka/connect-distributed.properties | grep plugin.path

#

plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/co

nnectors,

plugin.path=/usr/share/java,/data/zookeeper/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3

root@stlrx2540m1-108:~#

11. Stop the Confluent services and restart them.

confluent local services stop

confluent local services start

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services status

The local commands are intended for a single-node development

environment only,

NOT for production usage.

Using CONFLUENT_CURRENT: /tmp/confluent.406980

Connect is [UP]

Control Center is [UP]

Kafka is [UP]

Kafka REST is [UP]

ksqlDB Server is [UP]

Schema Registry is [UP]

ZooKeeper is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

12. Configure the access ID and secret key in the /root/.aws/credentials file.

18

root@stlrx2540m1-108:~# cat /root/.aws/credentials

[default]

aws_access_key_id = xxxxxxxxxxxx

aws_secret_access_key = xxxxxxxxxxxxxxxxxxxxxxxxxx

root@stlrx2540m1-108:~#

13. Verify that the bucket is reachable.

root@stlrx2540m4-01:~# aws s3 –endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls kafkasgdbucket1-2

2021-10-29 21:04:18 1388 1

2021-10-29 21:04:20 1388 2

2021-10-29 21:04:22 1388 3

root@stlrx2540m4-01:~#

14. Configure the s3-sink properties file for s3 and bucket configuration.

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-

s3/etc/quickstart-s3.properties | grep -v ^#

name=s3-sink

connector.class=io.confluent.connect.s3.S3SinkConnector

tasks.max=1

topics=s3_testtopic

s3.region=us-west-2

s3.bucket.name=kafkasgdbucket1-2

store.url=http://kafkasgd.rtpppe.netapp.com:10444/

s3.part.size=5242880

flush.size=3

storage.class=io.confluent.connect.s3.storage.S3Storage

format.class=io.confluent.connect.s3.format.avro.AvroFormat

partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartit

ioner

schema.compatibility=NONE

root@stlrx2540m1-108:~#

15. Import a few records to the s3 bucket.

19

kafka-avro-console-producer --broker-list localhost:9092 --topic

s3_topic \

--property

value.schema='{"type":"record","name":"myrecord","fields":[{"name":"f1",

"type":"string"}]}'

{"f1": "value1"}

{"f1": "value2"}

{"f1": "value3"}

{"f1": "value4"}

{"f1": "value5"}

{"f1": "value6"}

{"f1": "value7"}

{"f1": "value8"}

{"f1": "value9"}

16. Load the s3-sink connector.

20

root@stlrx2540m1-108:~# confluent local services connect connector load

s3-sink --config /data/confluent/confluent-6.2.0/share/confluent-hub-

components/confluentinc-kafka-connect-s3/etc/quickstart-s3.properties

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

 "name": "s3-sink",

 "config": {

 "connector.class": "io.confluent.connect.s3.S3SinkConnector",

 "flush.size": "3",

 "format.class": "io.confluent.connect.s3.format.avro.AvroFormat",

 "partitioner.class":

"io.confluent.connect.storage.partitioner.DefaultPartitioner",

 "s3.bucket.name": "kafkasgdbucket1-2",

 "s3.part.size": "5242880",

 "s3.region": "us-west-2",

 "schema.compatibility": "NONE",

 "storage.class": "io.confluent.connect.s3.storage.S3Storage",

 "store.url": "http://kafkasgd.rtpppe.netapp.com:10444/",

 "tasks.max": "1",

 "topics": "s3_testtopic",

 "name": "s3-sink"

 },

 "tasks": [],

 "type": "sink"

}

root@stlrx2540m1-108:~#

17. Check the s3-sink status.

21

root@stlrx2540m1-108:~# confluent local services connect connector

status s3-sink

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

 "name": "s3-sink",

 "connector": {

 "state": "RUNNING",

 "worker_id": "10.63.150.185:8083"

 },

 "tasks": [

 {

 "id": 0,

 "state": "RUNNING",

 "worker_id": "10.63.150.185:8083"

 }

],

 "type": "sink"

}

root@stlrx2540m1-108:~#

18. Check the log to make sure that s3-sink is ready to accept topics.

root@stlrx2540m1-108:~# confluent local services connect log

19. Check the topics in Kafka.

kafka-topics --list --bootstrap-server localhost:9092

…

connect-configs

connect-offsets

connect-statuses

default_ksql_processing_log

s3_testtopic

s3_topic

s3_topic_new

root@stlrx2540m1-108:~#

20. Check the objects in the s3 bucket.

22

root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls --recursive kafkasgdbucket1-

2/topics/

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000003.avro

2021-10-29 21:24:00 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000006.avro

2021-10-29 21:24:08 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000009.avro

2021-10-29 21:24:08 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000012.avro

2021-10-29 21:24:09 213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000015.avro

root@stlrx2540m1-108:~#

21. To verify the contents, copy each file from S3 to your local filesystem by running the following command:

root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 cp s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

tes.avro

download: s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro to

./tes.avro

root@stlrx2540m1-108:~#

22. To print the records, use avro-tools-1.11.0.1.jar (available in the Apache Archives).

root@stlrx2540m1-108:~# java -jar /usr/src/avro-tools-1.11.0.1.jar

tojson tes.avro

21/10/30 00:20:24 WARN util.NativeCodeLoader: Unable to load native-

hadoop library for your platform... using builtin-java classes where

applicable

{"f1":"value1"}

{"f1":"value2"}

{"f1":"value3"}

root@stlrx2540m1-108:~#

23

http://mirror.metrocast.net/apache/avro/stable/java/

Confluent Self-balancing Clusters

If you have managed a Kafka cluster before, you are likely familiar with the challenges

that come with manually reassigning partitions to different brokers to make sure that the

workload is balanced across the cluster. For organizations with large Kafka deployments,

reshuffling large amounts of data can be daunting, tedious, and risky, especially if

mission-critical applications are built on top of the cluster. However, even for the smallest

Kafka use cases, the process is time consuming and prone to human error.

In our lab, we tested the Confluent self-balancing clusters feature, which automates rebalancing based on

cluster topology changes or uneven load. The Confluent rebalance test helps to measure the time to add a

new broker when node failure or the scaling node requires rebalancing data across brokers. In classic Kafka

configurations, the amount of data to be rebalanced grows as the cluster grows, but, in tiered storage,

rebalancing is restricted to a small amount of data. Based on our validation, rebalancing in tiered storage takes

seconds or minutes in a classic Kafka architecture and grows linearly as the cluster grows.

In self-balancing clusters, partition rebalances are fully automated to optimize Kafka’s throughput, accelerate

broker scaling, and reduce the operational burden of running a large cluster. At steady-state, self-balancing

clusters monitor the skew of data across the brokers and continuously reassigns partitions to optimize cluster

performance. When scaling the platform up or down, self-balancing clusters automatically recognize the

presence of new brokers or the removal of old brokers and trigger a subsequent partition reassignment. This

enables you to easily add and decommission brokers, making your Kafka clusters fundamentally more elastic.

These benefits come without any need for manual intervention, complex math, or the risk of human error that

partition reassignments typically entail. As a result, data rebalances are completed in far less time, and you are

free to focus on higher-value event-streaming projects rather than needing to constantly supervise your

clusters.

Best practice guidelines

This section presents lessons learned from this certification.

• Based on our validation, S3 object storage is best for Confluent to keep data.

• We can use high-throughput SAN (specifically FC) to keep the broker hot data or local disk, because, in the

Confluent tiered storage configuration, the size of the data held in the brokers data directory is based on

the segment size and retention time when the data is moved to object storage.

• Object stores provide better performance when segment.bytes is higher; we tested 512MB.

• In Kafka, the length of the key or value (in bytes) for each record produced to the topic is controlled by the

length.key.value parameter. For StorageGRID, S3 object ingest and retrieve performance increased

to higher values. For example, 512 bytes provided a 5.8GBps retrieve, 1024 bytes provided a 7.5GBps s3

retrieve, and 2048 bytes provided close to 10GBps.

The following figure presents the S3 object ingest and retrieve based on length.key.value.

24

• Kafka tuning. To improve the performance of tiered storage, you can increase TierFetcherNumThreads

and TierArchiverNumThreads. As a general guideline, you want to increase TierFetcherNumThreads to

match the number of physical CPU cores and increase TierArchiverNumThreads to half the number of

CPU cores. For example, in server properties, if you have a machine with eight physical cores, set

confluent.tier.fetcher.num.threads = 8 and confluent.tier.archiver.num.threads = 4.

• Time interval for topic deletes. When a topic is deleted, deletion of the log segment files in object storage

does not immediately begin. Rather, there is a time interval with a default value of 3 hours before deletion

of those files takes place. You can modify the configuration, confluent.tier.topic.delete.check.interval.ms, to

change the value of this interval. If you delete a topic or cluster, you can also manually delete the objects in

the respective bucket.

• ACLs on tiered storage internal topics. A recommended best practice for on-premises deployments is to

enable an ACL authorizer on the internal topics used for tiered storage. Set ACL rules to limit access on

this data to the broker user only. This secures the internal topics and prevents unauthorized access to

tiered storage data and metadata.

kafka-acls --bootstrap-server localhost:9092 --command-config adminclient-

configs.conf \

--add --allow-principal User:<kafka> --operation All --topic "_confluent-

tier-state"

Replace the user <kafka> with the actual broker principal in your deployment.

For example, the command confluent-tier-state sets ACLs on the internal topic for tiered storage.

Currently, there is only a single internal topic related to tiered storage. The example creates an ACL that

provides the principal Kafka permission for all operations on the internal topic.

Sizing

Kafka sizing can be performed with four configuration modes: simple, granular, reverse,

and partitions.

25

Simple

The simple mode is appropriate for the first-time Apache Kafka users or early state use cases. For this mode,

you provide requirements such as throughput MBps, read fanout, retention, and the resource utilization

percentage (60% is default). You also enter the environment, such as on-premises (bare-metal, VMware,

Kubernetes, or OpenStack) or cloud. Based on this information, the sizing of a Kafka cluster provides the

number of servers required for the broker, the zookeeper, Apache Kafka connect workers, the schema registry,

a REST Proxy, ksqlDB, and the Confluent control center.

For tiered storage, consider the granular configuration mode for sizing a Kafka cluster. Granular mode is

appropriate for experienced Apache Kafka users or well-defined use cases. This section describes sizing for

producers, stream processors, and consumers.

Producers

To describe the producers for Apache Kafka (for example a native client, REST proxy, or Kafka connector),

provide the following information:

• Name. Spark.

• Producer type. Application or service, proxy (REST, MQTT, other), and existing database (RDBMS,

NOSQL, other). You can also select "I don’t know."

• Average throughput. In events per second (1,000,000 for example).

• Peak throughput. In events per second (4,000,000 for example).

• Average message size. In bytes, uncompressed (max 1MB; 1000 for example).

• Message format. Options include Avro, JSON, protocol buffers, binary, text, "I don’t know," and other.

• Replication factor. Options are 1, 2, 3 (Confluent recommendation), 4, 5, or 6.

• Retention time. One day (for example). How long do you want your data to be stored in Apache Kafka?

Enter -1 with any unit for an infinite time. The calculator assumes a retention time of 10 years for infinite

retention.

• Select the check box for "Enable Tiered Storage to Decrease Broker Count and Allow for Infinite Storage?"

• When tiered storage is enabled, the retention fields control the hot set of data that is stored locally on the

broker. The archival retention fields control how long data is stored in archival object storage.

• Archival Storage Retention. One year (for example). How long do you want your data to be stored in

archival storage? Enter -1 with any unit for an infinite duration. The calculator assumes a retention of 10

years for infinite retention.

• Growth Multiplier. 1 (for example). If the value of this parameter is based on current throughput, set it to 1.

To size based on additional growth, set this parameter to a growth multiplier.

• Number of producer instances. 10 (for example). How many producer instances will be running? This

input is required to incorporate the CPU load into the sizing calculation. A blank value indicates that CPU

load is not incorporated into the calculation.

Based on this example input, sizing has the following effect on producers:

• Average throughput in uncompressed bytes: 1GBps. Peak throughput in uncompressed bytes: 4GBps.

Average throughput in compressed bytes: 400MBps. Peak throughput in compressed bytes: 1.6GBps. This

is based on a default 60% compression rate (you can change this value).

◦ Total on-broker hotset storage required: 31,104TB, including replication, compressed. Total off-broker

archival storage required: 378,432TB, compressed. Use https://fusion.netapp.com for StorageGRID

sizing.

26

https://fusion.netapp.com

Stream Processors must describe their applications or services that consume data from Apache Kafka and

produce back into Apache Kafka. In most cases these are built in ksqlDB or Kafka Streams.

• Name. Spark streamer.

• Processing time. How long does this processor take to process a single message?

◦ 1 ms (simple, stateless transformation) [example], 10ms (stateful in-memory operation).

◦ 100ms (stateful network or disk operation), 1000ms (3rd party REST call).

◦ I have benchmarked this parameter and know exactly how long it takes.

• Output Retention. 1 day (example). A stream processor produces its output back to Apache Kafka. How

long do you want this output data to be stored in Apache Kafka? Enter -1 with any unit for an infinite

duration.

• Select the check box "Enable Tiered Storage to Decrease Broker Count and Allow for Infinite Storage?"

• Archival Storage Retention. 1 year (for example). How long do you want your data to be stored in

archival storage? Enter -1 with any unit for an infinite duration. The calculator assumes a retention of 10

years for infinite retention.

• Output Passthrough Percentage. 100 (for example). A stream processor produces its output back to

Apache Kafka. What percentage of inbound throughput will be outputted back into Apache Kafka? For

example, if inbound throughput is 20MBps and this value is 10, the output throughput will be 2MBps.

• From which applications does this read from? Select "Spark," the name used in producer type-based

sizing.

Based on the above input, you can expect the following effects of sizing on stream processer instances

and topic partition estimates:

• This stream processor application requires the following number of instances. The incoming topics likely

require this many partitions as well. Contact Confluent to confirm this parameter.

◦ 1,000 for average throughput with no growth multiplier

◦ 4,000 for peak throughput with no growth multiplier

◦ 1,000 for average throughput with a growth multiplier

◦ 4,000 for peak throughput with a growth multiplier

Consumers

Describe your applications or services that consume data from Apache Kafka and do not produce back into

Apache Kafka; for example, a native client or Kafka Connector.

• Name. Spark consumer.

• Processing time. How long does this consumer take to process a single message?

◦ 1ms (for example, a simple and stateless task like logging)

◦ 10ms (fast writes to a datastore)

◦ 100ms (slow writes to a datastore)

◦ 1000ms (third party REST call)

◦ Some other benchmarked process of known duration.

• Consumer type. Application, proxy, or sink to an existing datastore (RDBMS, NoSQL, other).

• From which applications does this read from? Connect this parameter with producer and stream sizing

determined previously.

27

Based on the above input, you must determine the sizing for consumer instances and topic partition estimates.

A consumer application requires the following number of instances.

• 2,000 for average throughput, no growth multiplier

• 8,000 for peak throughput, no growth multiplier

• 2,000 for average throughput, including growth multiplier

• 8,000 for peak throughput, including growth multiplier

The incoming topics likely need this number of partitions as well. Contact Confluent to confirm.

In addition to the requirements for producers, stream processors, and consumers, you must provide the

following additional requirements:

• Rebuild time. For example, 4 hours. If an Apache Kafka broker host fails, its data is lost, and a new host is

provisioned to replace the failed host, how fast must this new host rebuild itself? Leave this parameter

blank if the value is unknown.

• Resource utilization target (percentage). For example, 60. How utilized do you want your hosts to be

during average throughput? Confluent recommends 60% utilization unless you are using Confluent self-

balancing clusters, in which case utilization can be higher.

Describe your environment

• What environment will your cluster be running in? Amazon Web Services, Microsoft Azure, Google

cloud platform, bare-metal on premises, VMware on premises, OpenStack on premises, or Kubernates on

premises?

• Host details. Number of cores: 48 (for example), network card type (10GbE, 40GbE, 16GbE, 1GbE, or

another type).

• Storage volumes. Host: 12 (for example). How many hard drives or SSDs are supported per host?

Confluent recommends 12 hard drives per host.

• Storage capacity/volume (in GB). 1000 (for example). How much storage can a single volume store in

gigabytes? Confluent recommends 1TB disks.

• Storage configuration. How are storage volumes configured? Confluent recommends RAID10 to take

advantage of all Confluent features. JBOD, SAN, RAID 1, RAID 0, RAID 5, and other types are also

supported.

• Single volume throughput (MBps). 125 (for example). How fast can a single storage volume read or

write in megabytes per second? Confluent recommends standard hard drives, which typically have

125MBps throughput.

• Memory capacity (GB). 64 (for example).

After you have determined your environmental variables, select Size my Cluster. Based on the example

parameters indicated above, we determined the following sizing for Confluent Kafka:

• Apache Kafka. Broker count: 22. Your cluster is storage-bound. Consider enabling tiered storage to

decrease your host count and allow for infinite storage.

• Apache ZooKeeper. Count: 5; Apache Kafka Connect Workers: Count: 2; Schema Registry: Count: 2;

REST Proxy: Count: 2; ksqlDB: Count: 2; Confluent Control Center: Count: 1.

Use reverse mode for platform teams without a use case in mind. Use partitions mode to calculate how many

partitions a single topic requires. See https://eventsizer.io for sizing based on the reverse and partitions modes.

28

https://eventsizer.io

Conclusion

This document provides best practice guidelines for using Confluent Tiered Storage with

NetApp storage, including verification tests, tiered storage performance results, tuning,

Confluent S3 connectors, and the self-balancing feature. Considering ILM policies,

Confluent performance with multiple performance tests for verification, and industry-

standard S3 APIs, NetApp StorageGRID object storage is an optimal choice for Confluent

tiered storage.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• What is Apache Kafka

https://www.confluent.io/what-is-apache-kafka/

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

• S3-sink parameter details

https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-options

• Apache Kafka

https://en.wikipedia.org/wiki/Apache_Kafka

• Infinite Storage in Confluent Platform

https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/

• Confluent Tiered Storage - Best practices and sizing

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations

• Amazon S3 sink connector for Confluent Platform

https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html

• Kafka sizing

https://eventsizer.io

• StorageGRID sizing

https://fusion.netapp.com/

• Kafka use cases

https://kafka.apache.org/uses

29

https://www.confluent.io/what-is-apache-kafka/
https://www.netapp.com/support-and-training/documentation/
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://en.wikipedia.org/wiki/Apache_Kafka
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations
https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html
https://eventsizer.io
https://fusion.netapp.com/
https://kafka.apache.org/uses

• Self-balancing Kafka clusters in confluent platform 6.0

https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/

https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-

to-date/

30

https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

31

http://www.netapp.com/TM

	Best practices for Confluent Kafka : NetApp artificial intelligence solutions
	Table of Contents
	Best practices for Confluent Kafka
	TR-4912: Best practice guidelines for Confluent Kafka tiered storage with NetApp
	Why Confluent Tiered Storage?
	Why NetApp StorageGRID for tiered storage?
	Enabling Confluent Tiered Storage

	Solution architecture details
	Technology overview
	NetApp StorageGRID
	Apache Kafka
	Confluent

	Confluent verification
	Confluent Platform setup
	Confluent tiered storage configuration
	NetApp object storage - StorageGRID
	Verification tests

	Performance tests with scalability
	Confluent s3 connector
	Confluent Self-balancing Clusters
	Best practice guidelines
	Sizing
	Simple

	Conclusion
	Where to find additional information

