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NetApp storage solutions for Apache Spark

TR-4570: NetApp Storage Solutions for Apache Spark:
Architecture, Use Cases, and Performance Results

Rick Huang, Karthikeyan Nagalingam, NetApp

This document focuses on the Apache Spark architecture, customer use cases, and the
NetApp storage portfolio related to big data analytics and artificial intelligence (Al). It also
presents various testing results using industry-standard Al, machine learning (ML), and
deep learning (DL) tools against a typical Hadoop system so that you can choose the
appropriate Spark solution. To begin, you need a Spark architecture, appropriate
components, and two deployment modes (cluster and client).

This document also provides customer use cases to address configuration issues, and it discusses an
overview of the NetApp storage portfolio relevant to big data analytics and Al, ML, and DL with Spark. We then
finish with testing results derived from Spark-specific use cases and the NetApp Spark solution portfolio.

Customer challenges

This section focuses on customer challenges with big data analytics and AlI/ML/DL in data growth industries
such as retail, digital marketing, banking, discrete manufacturing, process manufacturing, government, and
professional services.

Unpredictable performance

Traditional Hadoop deployments typically use commodity hardware. To improve performance, you must tune
the network, operating system, Hadoop cluster, ecosystem components such as Spark, and hardware. Even if
you tune each layer, it can be difficult to achieve desired performance levels because Hadoop is running on
commodity hardware that was not designed for high performance in your environment.

Media and node failures

Even under normal conditions, commodity hardware is prone to failure. If one disk on a data node fails, the
Hadoop master by default considers that node to be unhealthy. It then copies specific data from that node over
the network from replicas to a healthy node. This process slows down the network packets for any Hadoop
jobs. The cluster must then copy the data back again and remove the over- replicated data when the unhealthy
node returns to a healthy state.

Hadoop vendor lock-in

Hadoop distributors have their own Hadoop distribution with their own versioning, which locks in the customer
to those distributions. However, many customers require support for in-memory analytics that does not tie the
customer to specific Hadoop distributions. They need the freedom to change distributions and still bring their
analytics with them.

Lack of support for more than one language

Customers often require support for multiple languages in addition to MapReduce Java programs to run their
jobs. Options such as SQL and scripts provide more flexibility for getting answers, more options for organizing
and retrieving data, and faster ways of moving data into an analytics framework.



Difficulty of use

For some time, people have complained that Hadoop is difficult to use. Even though Hadoop has become
simpler and more powerful with each new version, this critique has persisted. Hadoop requires that you
understand Java and MapReduce programming patterns, a challenge for database administrators and people
with traditional scripting skill sets.

Complicated frameworks and tools

Enterprises Al teams face multiple challenges. Even with expert data science knowledge, tools and
frameworks for different deployment ecosystems and applications might not translate simply from one to
another. A data science platform should integrate seamlessly with corresponding big data platforms built on
Spark with ease of data movement, reusable models, code out of the box, and tools that support best practices
for prototyping, validating, versioning, sharing, reusing, and quickly deploying models to production.

Why choose NetApp?
NetApp can improve your Spark experience in the following ways:

* NetApp NFS direct access (shown in the figure below) allows customers to run big-data-analytics jobs on
their existing or new NFSv3 or NFSv4 data without moving or copying the data. It prevents multiple copies
of data and eliminates the need to sync the data with a source.

» More efficient storage and less server replication. For example, the NetApp E-Series Hadoop solution
requires two rather than three replicas of the data, and the FAS Hadoop solution requires a data source but
no replication or copies of data. NetApp storage solutions also produce less server-to-server traffic.

 Better Hadoop job and cluster behavior during drive and node failure.

* Better data-ingest performance.
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For example, in the financial and healthcare sector, the movement of data from one place to another must
meet legal obligations, which is not an easy task. In this scenario, NetApp NFS direct access analyzes the
financial and healthcare data from its original location. Another key benefit is that using NetApp NFS direct



access simplifies protecting Hadoop data by using native Hadoop commands and enabling data protection
workflows with the rich data management portfolio from NetApp.

NetApp NFS direct access provides two kinds of deployment options for Hadoop/Spark clusters:

» By default, Hadoop or Spark clusters use the Hadoop Distributed File System (HDFS) for data storage and
the default file system. NetApp NFS direct access can replace the default HDFS with NFS storage as the
default file system, enabling direct analytics on NFS data.

* In another deployment option, NetApp NFS direct access supports configuring NFS as additional storage
along with HDFS in a single Hadoop or Spark cluster. In this case, the customer can share data through
NFS exports and access it from the same cluster along with HDFS data.

The key benefits of using NetApp NFS direct access include the following:
» Analyzing the data from its current location, which prevents the time- and performance-consuming task of
moving analytics data to a Hadoop infrastructure such as HDFS.
* Reducing the number of replicas from three to one.
* Enabling users to decouple compute and storage to scale them independently.
 Providing enterprise data protection by leveraging the rich data management capabilities of ONTAP.
+ Certification with the Hortonworks data platform.
» Enabling hybrid data analytics deployments.
* Reducing backup time by leveraging dynamic multithread capability.
See TR-4657: NetApp hybrid cloud data solutions - Spark and Hadoop based on customer use cases for

backing up Hadoop data, backup and disaster recovery from the cloud to on-premises, enabling DevTest on
existing Hadoop data, data protection and multicloud connectivity, and accelerating analytics workloads.

The following sections describe storage capabilities that are important for Spark customers.

Storage tiering

With Hadoop storage tiering, you can store files with different storage types in accordance with a storage
policy. Storage types include hot, cold, warm, all ssd, one_ssd, and lazy persist.

We performed validation of Hadoop storage tiering on a NetApp AFF storage controller and an E-Series
storage controller with SSD and SAS drives with different storage policies. The Spark cluster with AFF-A800
has four compute worker nodes, whereas the cluster with E-Series has eight. This is mainly to compare the
performance of solid-state drives (SSDs) versus hard-drive disks (HDDs).

The following figure shows the performance of NetApp solutions for a Hadoop SSD.
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* The baseline NL-SAS configuration used eight compute nodes and 96 NL-SAS drives. This configuration
generated 1TB of data in 4 minutes and 38 seconds. See TR-3969 NetApp E-Series Solution for Hadoop
for details on the cluster and storage configuration.

* Using TeraGen, the SSD configuration generated 1TB of data 15.66x faster than the NL-SAS configuration.
Moreover, the SSD configuration used half the number of compute nodes and half the number of disk
drives (24 SSd drives in total). Based on the job completion time, it was almost twice as fast as the NL-SAS
configuration.

» Using TeraSort, the SSD configuration sorted 1TB of data 1138.36 times more quickly than the NL-SAS
configuration. Moreover, the SSD configuration used half the number of compute nodes and half the
number of disk drives (24 SSd drives in total). Therefore, per drive, it was approximately three times faster
than the NL-SAS configuration.

* The takeaway is transitioning from spinning disks to all-flash improves performance. The number of
compute nodes was not the bottleneck. With NetApp’s all-flash storage, runtime performance scales well.

« With NFS, the data was functionally equivalent to being pooled all together, which can reduce the number
of compute nodes depending on your workload. The Apache Spark cluster users do not have to manually
rebalance data when changing number of compute nodes.

Performance scaling - Scale out

When you need more computation power from a Hadoop cluster in an AFF solution, you can add data nodes
with an appropriate number of storage controllers. NetApp recommends starting with four data nodes per
storage controller array and increasing the number to eight data nodes per storage controller, depending on
workload characteristics.

AFF and FAS are perfect for in-place analytics. Based on computation requirements, you can add node
managers, and non-disruptive operations allow you to add a storage controller on demand without downtime.
We offer rich features with AFF and FAS, such as NVME media support, guaranteed efficiency, data reduction,
QOS, predictive analytics, cloud tiering, replication, cloud deployment, and security. To help customers meet
their requirements, NetApp offers features such as file system analytics, quotas, and on-box load balancing
with no additional license costs. NetApp has better performance in the number of concurrent jobs, lower
latency, simpler operations, and higher gigabytes per second throughput than our competitors. Furthermore,


https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf

NetApp Cloud Volumes ONTAP runs on all three major cloud providers.

Performance scaling - Scale up

Scale-up features allow you to add disk drives to AFF, FAS, and E-Series systems when you need additional
storage capacity. With Cloud Volumes ONTAP, scaling storage to the PB level is a combination of two factors:
tiering infrequently used data to object storage from block storage and stacking Cloud Volumes ONTAP
licenses without additional compute.

Multiple protocols

NetApp systems support most protocols for Hadoop deployments, including SAS, iISCSI, FCP, InfiniBand, and
NFS.

Operational and supported solutions

The Hadoop solutions described in this document are supported by NetApp. These solutions are also certified
with major Hadoop distributors. For information, see the Hortonworks site, and the Cloudera certification and
partner sites.

Target audience
The world of analytics and data science touches multiple disciplines in IT and business:

» The data scientist needs the flexibility to use their tools and libraries of choice.

« The data engineer needs to know how the data flows and where it resides.

» A DevOps engineer needs the tools to integrate new Al and ML applications into their Cl and CD pipelines.
 Cloud administrators and architects must be able to set up and manage hybrid cloud resources.

* Business users want to have access to analytics, Al, ML, and DL applications.

In this technical report, we describe how NetApp AFF, E-Series, StorageGRID, NFS direct access, Apache
Spark, Horovod, and Keras help each of these roles bring value to business.

Solution technology

Apache Spark is a popular programming framework for writing Hadoop applications that
works directly with the Hadoop Distributed File System (HDFS). Spark is production
ready, supports processing of streaming data, and is faster than MapReduce. Spark has
configurable in-memory data caching for efficient iteration, and the Spark shell is
interactive for learning and exploring data. With Spark, you can create applications in
Python, Scala, or Java. Spark applications consist of one or more jobs that have one or
more tasks.

Every Spark application has a Spark driver. In YARN-Client mode, the driver runs on the client locally. In
YARN-Cluster mode, the driver runs in the cluster on the application master. In the cluster mode, the
application continues to run even if the client disconnects.


http://hortonworks.com/partner/netapp/
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http://www.cloudera.com/partners/solutions/netapp.html
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There are three cluster managers:

« Standalone. This manager is a part of Spark, which makes it easy to set up a cluster.
* Apache Mesos. This is a general cluster manager that also runs MapReduce and other applications.

* Hadoop YARN. This is a resource manager in Hadoop 3.

The resilient distributed dataset (RDD) is the primary component of Spark. RDD recreates the lost and missing
data from data stored in memory in the cluster and stores the initial data that comes from a file or is created
programmatically. RDDs are created from files, data in memory, or another RDD. Spark programming performs
two operations: transformation and actions. Transformation creates a new RDD based on an existing one.
Actions return a value from an RDD.

Transformations and actions also apply to Spark Datasets and DataFrames. A dataset is a distributed
collection of data that provides the benefits of RDDs (strong typing, use of lambda functions) with the benefits
of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then
manipulated using functional transformations (map, flatMap, filter, and so on.). A DataFrame is a dataset
organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame
in R/Python. DataFrames can be constructed from a wide array of sources such as structured data files, tables
in Hive/HBase, external databases on-premises or in the cloud, or existing RDDs.

Spark applications include one or more Spark jobs. Jobs run tasks in executors, and executors run in YARN
containers. Each executor runs in a single container, and executors exist throughout the life of an application.



An executor is fixed after the application starts, and YARN does not resize the already allocated container. An
executor can run tasks concurrently on in-memory data.

NetApp Spark solutions overview

NetApp has three storage portfolios: FAS/AFF, E-Series, and Cloud Volumes ONTAP. We
have validated AFF and the E-Series with ONTAP storage system for Hadoop solutions
with Apache Spark.

The data fabric powered by NetApp integrates data management services and applications (building blocks)
for data access, control, protection, and security, as shown in the figure below.
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The building blocks in the figure above include:
* NetApp NFS direct access. Provides the latest Hadoop and Spark clusters with direct access to NetApp
NFS volumes without additional software or driver requirements.

* NetApp Cloud Volumes ONTAP and Google Cloud NetApp Volumes. Software-defined connected
storage based on ONTAP running in Amazon Web Services (AWS) or Azure NetApp Files (ANF) in
Microsoft Azure cloud services.

* NetApp SnapMirror technology. Provides data protection capabilities between on-premises and ONTAP
Cloud or NPS instances.

» Cloud service providers. These providers include AWS, Microsoft Azure, Google Cloud, and IBM Cloud.
» PaaS. Cloud-based analytics services such as Amazon Elastic MapReduce (EMR) and Databricks in AWS
as well as Microsoft Azure HDInsight and Azure Databricks.

The following figure depicts the Spark solution with NetApp storage.



AFF-A800 HA w/48x1.92t NVME Cisco 10GbE switch

I
4 % 10GbE ZEEmEEEmmmmmsmams

1 % 10 GbE per Node;
5 total for NFS direct
access

RHEL — Spark Cluster ~=---=-=-=--------------------

e o A e e i e e o . ——

Worker Nodes

1
I
I
I
]
]
I
I
I

The ONTAP Spark solution uses the NetApp NFS direct access protocol for in-place analytics and Al, ML, and
DL workflows using access to existing production data. Production data available to Hadoop nodes is exported
to perform in-place analytical and Al, ML, and DL jobs. You can access data to process in Hadoop nodes either
with NetApp NFS direct access or without it. In Spark with the standalone or yarn cluster manager, you can
configure an NFS volume by using file://<target volume>. We validated three use cases with different
datasets. The details of these validations are presented in the section "Testing Results." (xref)

The following figure depicts NetApp Apache Spark/Hadoop storage positioning.
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We identified the unique features of the E-Series Spark solution, the AFF/FAS ONTAP Spark solution, and the
StorageGRID Spark solution, and performed detailed validation and testing. Based upon our observations,
NetApp recommends the E-Series solution for greenfield installations and new scalable deployments and the
AFF/FAS solution for in-place analytics, Al, ML, and DL workloads using existing NFS data, and StorageGRID
for Al, ML, and DL and modern data analytics when object storage is required.



User Jobs
Hadoop on NFS AFF/FAS Side by Side With E-Seriesand StorageGRID

L4

MapReduce _ MapReduce :'- 7 apReduce
EE

A jstem stem

em

STORAGEGRED

NetApp E-Series NetApp FAS NetApp E-Series AFF or FAS NetApp
(HDD, SSD) (HDD, S5D) (HDD, SSD} (HDD, 550} StorageGRID

A data lake is a storage repository for large datasets in native form that can be used for analytics, Al, ML, and
DL jobs. We built a data lake repository for the E-Series, AFF/FAS, and StorageGRID SG6060 Spark solutions.
The E-Series system provides HDFS access to the Hadoop Spark cluster, whereas existing production data is
accessed through the NFS direct access protocol to the Hadoop cluster. For datasets that reside in object
storage, NetApp StorageGRID provides S3 and S3a secure access.

Use case summary

This page describes the different areas in which this solution can be used.

Streaming data

Apache Spark can process streaming data, which is used for streaming extract, transform, and load (ETL)
processes; data enrichment; triggering event detection; and complex session analysis:

» Streaming ETL. Data is continually cleaned and aggregated before it is pushed into datastores. Netflix
uses Kafka and Spark streaming to build a real-time online movie recommendation and data monitoring
solution that can process billions of events per day from different data sources. Traditional ETL for batch
processing is treated differently, however. This data is read first, and then it is converted into a database
format before being written to the database.

» Data enrichment. Spark streaming enriches the live data with static data to enable more real-time data
analysis. For example, online advertisers can deliver personalized, targeted ads directed by information
about customer behavior.

» Trigger event detection. Spark streaming allows you to detect and respond quickly to unusual behavior
that could indicate potentially serious problems. For example, financial institutions use triggers to detect
and stop fraud transactions, and hospitals use triggers to detect dangerous health changes detected in a
patient’s vital signs.

+ Complex session analysis. Spark streaming collects events such as user activity after logging in to a
website or application, which are then grouped and analyzed. For example, Netflix uses this functionality to
provide real-time movie recommendations.

For more streaming data configuration, Confluent Kafka verification, and performance tests, see TR-4912: Best
practice guidelines for Confluent Kafka tiered storage with NetApp.
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Machine learning

The Spark integrated framework helps you run repeated queries on datasets using the machine learning library
(MLIib). MLlIib is used in areas such as clustering, classification, and dimensionality reduction for some
common big data functions such as predictive intelligence, customer segmentation for marketing purposes,
and sentiment analysis. MLIib is used in network security to conduct real-time inspections of data packets for
indications of malicious activity. It helps security providers learn about new threats and stay ahead of hackers
while protecting their clients in real time.

Deep learning

TensorFlow is a popular deep learning framework used across the industry. TensorFlow supports the
distributed training on a CPU or GPU cluster. This distributed training allows users to run it on a large amount
of data with lot of deep layers.

Until fair recently, if we wanted to use TensorFlow with Apache Spark, we needed to perform all necessary ETL
for TensorFlow in PySpark and then write data to intermediate storage. That data would then be loaded onto
the TensorFlow cluster for the actual training process. This workflow required the user to maintain two different
clusters, one for ETL and one for distributed training of TensorFlow. Running and maintaining multiple clusters
was typically tedious and time consuming.

DataFrames and RDD in earlier Spark versions were not well-suited for deep learning because random access
was limited. In Spark 3.0 with project hydrogen, native support for the deep learning frameworks is added. This
approach allows non-MapReduce-based scheduling on the Spark cluster.

Interactive analysis

Apache Spark is fast enough to perform exploratory queries without sampling with development languages
other than Spark, including SQL, R, and Python. Spark uses visualization tools to process complex data and
visualize it interactively. Spark with structured streaming performs interactive queries against live data in web
analytics that enable you to run interactive queries against a web visitor’s current session.

Recommender system

Over the years, recommender systems have brought tremendous changes to our lives, as businesses and
consumers have responded to dramatic changes in online shopping, online entertainment, and many other
industries. Indeed, these systems are among the most evident success stories of Al in production. In many
practical use cases, recommender systems are combined with conversational Al or chatbots interfaced with an
NLP backend to obtain relevant information and produce useful inferences.

Today, many retailers are adopting newer business models like buying online and picking up in store, curbside
pickup, self-checkout, scan-and-go, and more. These models have become prominent during the COVID-19
pandemic by making shopping safer and more convenient for consumers. Al is crucial for these growing digital
trends, which are influenced by consumer behavior and vice versa. To meet the growing demands of
consumers, to augment the customer experience, to improve operational efficiency, and to grow revenue,
NetApp helps its enterprise customers and businesses use machine- learning and deep- learning algorithms to
design faster and more accurate recommender systems.

There are several popular techniques used for providing recommendations, including collaborative filtering,
content-based systems, the deep learning recommender model (DLRM), and hybrid techniques. Customers
previously utilized PySpark to implement collaborative filtering for creating recommendation systems. Spark
MLIib implements alternating least squares (ALS) for collaborative filtering, a very popular algorithm among
enterprises before the rise of DLRM.
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Natural language processing

Conversational Al, made possible by natural language processing (NLP), is the branch of Al helping computers
communicate with humans. NLP is prevalent in every industry vertical and many use cases, from smart
assistants and chatbots to Google search and predictive text. According to a Gartner prediction, by 2022, 70%
of people will be interacting with conversational Al platforms on a daily basis. For a high-quality conversation
between a human and a machine, responses must be rapid, intelligent, and natural sounding.

Customers need a large amount of data to process and train their NLP and automatic speech recognition
(ASR) models. They also need to move data across the edge, core, and cloud, and they need the power to
perform inference in milliseconds to establish natural communication with humans. NetApp Al and Apache
Spark is an ideal combination for compute, storage, data processing, model training, fine-tuning, and
deployment.

Sentiment analysis is a field of study within NLP in which positive, negative, or neutral sentiments are extracted
from text. Sentiment analysis has a variety of use cases, from determining support center employee
performance in conversations with callers to providing appropriate automated chatbot responses. It has also
been used to predict a firm’s stock price based on the interactions between firm representatives and the
audience at quarterly earnings calls. Furthermore, sentiment analysis can be used to determine a customer’s
view on the products, services, or support provided by the brand.

We used the Spark NLP library from John Snow Labs to load pretrained pipelines and Bidirectional Encoder
Representations from Transformers (BERT) models including financial news sentiment and FinBERT,
performing tokenization, named entity recognition, model training, fitting and sentiment analysis at scale. Spark
NLP is the only open-source NLP library in production that offers state-of-the-art transformers such as BERT,
ALBERT, ELECTRA, XLNet, DistiBERT, RoBERTa, DeBERTa, XLM- RoBERTa, Longformer, ELMO, Universal
Sentence Encoder, Google T5, MarianMT, and GPT2. The library works not only in Python and R, but also in
the JVM ecosystem (Java, Scala, and Kotlin) at scale by extending Apache Spark natively.

Major Al, ML, and DL use cases and architectures

Major Al, ML, and DL use cases and methodology can be divided into the following
sections:

Spark NLP pipelines and TensorFlow distributed inferencing

The following list contains the most popular open-source NLP libraries that have been adopted by the data
science community under different levels of development:

» Natural Language Toolkit (NLTK). The complete toolkit for all NLP techniques. It has been maintained since
the early 2000s.

» TextBlob. An easy-to-use NLP tools Python API built on top of NLTK and Pattern.

« Stanford Core NLP. NLP services and packages in Java developed by the Stanford NLP Group.

» Gensim. Topic Modelling for Humans started off as a collection of Python scripts for the Czech Digital
Mathematics Library project.

» SpaCy. End-to-end industrial NLP workflows with Python and Cython with GPU acceleration for
transformers.

 Fasttext. A free, lightweight, open-source NLP library for the learning-of-word embeddings and sentence
classification created by Facebook’s Al Research (FAIR) lab.

Spark NLP is a single, unified solution for all NLP tasks and requirements that enables scalable, high-
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performance, and high-accuracy NLP-powered software for real production use cases. It leverages transfer
learning and implements the latest state-of-the-art algorithms and models in research and across industries.
Due to the lack of full support by Spark for the above libraries, Spark NLP was built on top of Spark ML to take
advantage of Spark’s general-purpose in-memory distributed data processing engine as an enterprise-grade
NLP library for mission-critical production workflows. Its annotators utilize rule-based algorithms, machine
learning, and TensorFlow to power deep learning implementations. This covers common NLP tasks including
but not limited to tokenization, lemmatization, stemming, part-of-speech tagging, named-entity recognition,
spell checking, and sentiment analysis.

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based machine learning
technique for NLP. It popularized the concept of pretraining and fine tuning. The transformer architecture in
BERT originated from machine translation, which models long-term dependencies better than Recurrent Neural
Network (RNN)-based language models. It also introduced the Masked Language Modelling (MLM) task,
where a random 15% of all tokens are masked and the model predicts them, enabling true bidirectionality.

Financial sentiment analysis is challenging due to the specialized language and lack of labeled data in that
domain. FInBERT, a language model based on pretrained BERT, was domain adapted on Reuters TRC2, a
financial corpus, and fine-tuned with labeled data ( Financial PhraseBank) for financial sentiment classification.
Researchers extracted 4, 500 sentences from news articles with financial terms. Then 16 experts and masters
students with finance backgrounds labeled the sentences as positive, neutral, and negative. We built an end-
to-end Spark workflow to analyze sentiment for Top-10 NASDAQ company earnings call transcripts from 2016
to 2020 using FinBERT and two other pre-trained pipelines, Explain Document DL) from Spark NLP.

The underlying deep learning engine for Spark NLP is TensorFlow, an end-to-end, open-source platform for
machine learning that enables easy model building, robust ML production anywhere, and powerful
experimentation for research. Therefore, when executing our pipelines in Spark yarn cluster mode, we
were essentially running distributed TensorFlow with data and model parallelization across one master and
multiple worker nodes, as well as network- attached storage mounted on the cluster.

Horovod distributed training

The core Hadoop validation for MapReduce-related performance is performed with TeraGen, TeraSort,
TeraValidate, and DFSIO (read and write). The TeraGen and TeraSort validation results are presented in
NetApp E-Series Solution for Hadoop and in the section "Storage Tiering" for AFF.

Based upon customer requests, we consider distributed training with Spark to be one of the most important of
the various use cases. In this document, we used the Hovorod on Spark to validate Spark performance with
NetApp on-premises, cloud-native, and hybrid cloud solutions using NetApp All Flash FAS (AFF) storage
controllers, Azure NetApp Files, and StorageGRID.

The Horovod on Spark package provides a convenient wrapper around Horovod that makes running
distributed training workloads in Spark clusters simple, enabling a tight model design loop in which data
processing, model training, and model evaluation are all done in Spark where training and inferencing data
resides.

There are two APlIs for running Horovod on Spark: a high-level Estimator APl and a lower-level Run API.
Although both use the same underlying mechanism to launch Horovod on Spark executors, the Estimator API
abstracts the data processing, model training loop, model checkpointing, metrics collection, and distributed
training. We used Horovod Spark Estimators, TensorFlow, and Keras for an end-to-end data preparation and
distributed training workflow based on the Kaggle Rossmann Store Sales competition.

The script keras spark horovod rossmann estimator.py can be found in the section "Python scripts
for each major use case." It contains three parts:
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» The first part performs various data preprocessing steps over an initial set of CSV files provided by Kaggle
and gathered by the community. The input data is separated into a training set with a validation subset,
and a testing dataset.

* The second part defines a Keras Deep Neural Network (DNN) model with logarithmic sigmoid activation
function and an Adam optimizer, and it performs distributed training of the model using Horovod on Spark.

* The third part performs prediction on the testing dataset using the best model that minimizes the validation
set overall mean absolute error. It then creates an output CSV file.

See the section "Machine Learning" for various runtime comparison results.

Multi-worker deep learning using Keras for CTR prediction

With the recent advances in ML platforms and applications, a lot of attention is now on learning at scale. The
click-through rate (CTR) is defined as the average number of click-throughs per hundred online ad impressions
(expressed as a percentage). It is widely adopted as a key metric in various industry verticals and use cases,
including digital marketing, retail, e-commerce, and service providers. For more detail on the applications of
CTR and distributed training performance results, see the Deep learning models for CTR prediction
performance section.

In this technical report we used a variation of the Criteo Terabyte Click Logs dataset (see TR-4904) for multi-
worker distributed deep learning using Keras to build a Spark workflow with Deep and Cross Network (DCN)
models, comparing its performance in terms of log loss error function with a baseline Spark ML Logistic
Regression model. DCN efficiently captures effective feature interactions of bounded degrees, learns highly
nonlinear interactions, requires no manual feature engineering or exhaustive searching, and has low
computational cost.

Data for web-scale recommender systems is mostly discrete and categorical, leading to a large and sparse
feature space that is challenging for feature exploration. This has limited most large-scale systems to linear
models such as logistic regression. However, identifying frequently predictive features and at the same time
exploring unseen or rare cross features is the key to making good predictions. Linear models are simple,
interpretable, and easy to scale, but they are limited in their expressive power.

Cross features, on the other hand, have been shown to be significant in improving the models' expressiveness.
Unfortunately, it often requires manual feature engineering or exhaustive search to identify such features.
Generalizing to unseen feature interactions is often difficult. Using a cross neural network like DCN avoids
task-specific feature engineering by explicitly applying feature crossing in an automatic fashion. The cross
network consists of multiple layers, where the highest degree of interactions is provably determined by layer
depth. Each layer produces higher-order interactions based on existing ones and keeps the interactions from
previous layers.

A deep neural network (DNN) has the promise to capture very complex interactions across features. However,
compared to DCN, it requires nearly an order of magnitude more parameters, is unable to form cross features
explicitly, and may fail to efficiently learn some types of feature interactions. The cross network is memory
efficient and easy to implement. Jointly training the cross and DNN components together efficiently captures
predictive feature interactions and delivers state-of-the-art performance on the Criteo CTR dataset.

A DCN model starts with an embedding and stacking layer, followed by a cross network and a deep network in
parallel. These in turn are followed by a final combination layer which combines the outputs from the two
networks. Your input data can be a vector with sparse and dense features. In Spark, the libraries contain the
type SparseVector. Itis therefore important for users to distinguish between the two and be mindful when
calling their respective functions and methods. In web-scale recommender systems such as CTR prediction,
the inputs are mostly categorical features, for example 'country=usa'. Such features are often encoded as
one-hot vectors, for example, ' [0,1,0, ..]'.One-hot-encoding (OHE) with SparseVector is useful when
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dealing with real-world datasets with ever-changing and growing vocabularies. We modified examples in
DeepCTR to process large vocabularies, creating embedding vectors in the embedding and stacking layer of
our DCN.

The Criteo Display Ads dataset predicts the ads click-through rate. It has 13 integer features and 26
categorical features in which each category has a high cardinality. For this dataset, an improvement of 0.001 in
logloss is practically significant due to the large input size. A small improvement in prediction accuracy for a
large user base can potentially lead to a large increase in a company’s revenue. The dataset contains 11GB of
user logs from a period of 7 days, which equates to around 41 million records. We used Spark
dataFrame.randomSplit () function to randomly split the data for training (80%), cross-validation (10%),
and the remaining 10% for testing.

DCN was implemented on TensorFlow with Keras. There are four main components in implementing the model
training process with DCN:

« Data processing and embedding. Real-valued features are normalized by applying a log transform. For
categorical features, we embed the features in dense vectors of dimension 6x(category cardinality)1/4.
Concatenating all embeddings results in a vector of dimension 1026.

+ Optimization. We applied mini-batch stochastic optimization with the Adam optimizer. The batch size was
set to 512. Batch normalization was applied to the deep network and the gradient clip norm was set at 100.

* Regularization. We used early stopping, as L2 regularization or dropout was not found to be effective.

» Hyperparameters. We report results based on a grid search over the number of hidden layers, the hidden
layer size, the initial learning rate, and the number of cross layers. The number of hidden layers ranged
from 2 to 5, with hidden layer sizes ranging from 32 to 1024. For DCN, the number of cross layers was
from 1 to 6. The initial learning rate was tuned from 0.0001 to 0.001 with increments of 0.0001. All
experiments applied early stopping at training step 150,000, beyond which overfitting started to occur.

In addition to DCN, we also tested other popular deep-learning models for CTR prediction, including DeepF M,
Autolnt, and DCN v2.

Architectures used for validation

For this validation, we used four worker nodes and one master nodes with an AFF-A800 HA pair. All cluster
members were connected through 10GbE network switches.

For this NetApp Spark solution validation, we used three different storage controllers: the E5760, the E5724,
and the AFF-A800. The E-Series storage controllers were connected to five data nodes with 12Gbps SAS
connections. The AFF HA-pair storage controller provides exported NFS volumes through 10GbE connections
to Hadoop worker nodes. The Hadoop cluster members were connected through 10GbE connections in the E-
Series, AFF, and StorageGRID Hadoop solutions.
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Testing results

We used the TeraSort and TeraValidate scripts in the TeraGen benchmarking tool to
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measure the Spark performance validation with E5760, E5724, and AFF-A800
configurations. In addition, three major use cases were tested: Spark NLP pipelines and
TensorFlow distributed training, Horovod distributed training, and multi-worker deep
learning using Keras for CTR Prediction with DeepFM.

For both E-Series and StorageGRID validation, we used Hadoop replication factor 2. For AFF validation, we

only used one source of data.

The following table lists the hardware configuration for the Spark performance validation.

Type Hadoop worker Drive type
nodes

SG6060 4 SAS

E5760 4 SAS

E5724 4 SAS

AFF800 4 SSD

The following table lists software requirements.

Software

RHEL

OpendDK Runtime Environment
OpenJDK 64-Bit Server VM
Git

GCC/G++

Spark

PySpark

SparkNLP

TensorFlow

Keras

Horovod

Financial sentiment analysis

Drives per node

12

60
24
6

Version
7.9
1.8.0
25.302
2.241
11.2.1
3.2.1
3.1.2
3.4.2
29.0
2.9.0
0.24.3

Storage controller

Single high-
availability (HA) pair

Single HA pair
Single HA pair
Single HA pair

We published TR-4910: Sentiment Analysis from Customer Communications with NetApp Al, in which an end-
to-end conversational Al pipeline was built using the NetApp DataOps Toolkit, AFF storage, and NVIDIA DGX
System. The pipeline performs batch audio signal processing, automatic speech recognition (ASR), transfer
learning, and sentiment analysis leveraging the DataOps Toolkit, NVIDIA Riva SDK, and the Tao framework.
Expanding the sentiment analysis use case to the financial services industry, we built a SparkNLP workflow,
loaded three BERT models for various NLP tasks, such as named entity recognition, and obtained sentence-

level sentiment for NASDAQ Top 10 companies' quarterly earnings calls.

The following script sentiment analysis spark. py uses the FInBERT model to process transcripts in
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HDFS and produce positive, neutral, and negative sentiment counts, as shown in the following table:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

-—-master yarn

—-—executor-memory 5g

-—executor-cores 1

-—-num-executors 160

-—-conf spark.driver.extraJdJavaOptions="-Xssl0m -XX:MaxPermSize=1024M"
--conf spark.executor.extradJavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
hdfs:///datal/Transcripts/

> ./sentiment analysis hdfs.log 2>&l

reall3ml4.300s

user557ml1l1.319s

sysd4m47.676s

The following table lists the earnings-call, sentence-level sentiment analysis for NASDAQ Top 10 companies
from 2016 to 2020.

Sentime Al 10 AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA
nt Compani

counts es

and

percenta

ge

Positive 7447 1567 743 290 682 826 824 904 417
counts

Neutral 64067 6856 7596 5086 6650 5914 6099 5715 6189
counts

Negative 1787 253 213 84 189 97 282 202 89
counts

Uncatego 196 0 0 76 0 0 0 1 0
rized
counts

(total 73497 8676 8552 5536 7521 6837 7205 6822 6695
counts)

In terms of percentages, most sentences spoken by the CEOs and CFOs are factual and therefore carry
neutral sentiment. During an earnings call, analysts ask questions which might convey positive or negative
sentiment. It is worth further investigating quantitatively how negative or positive sentiment affect stock prices
on the same or next day of trading.

The following table lists the sentence-level sentiment analysis for NASDAQ Top 10 companies, expressed in
percentage.



Sentime All 10 AAPL AMD AMZN CSCcoO GOOGL INTC MSFT NVDA

nt Compani
percenta es
ge

Positive  10.13% 18.06%  8.69% 5.24% 9.07% 12.08% 11.44% 13.25% 6.23%

Neutral 87.17% 79.02% 88.82% 91.87% 88.42% 86.50% 84.65% 83.77% 92.44%
Negative 2.43% 2.92% 2.49% 1.52% 2.51% 1.42% 3.91% 2.96% 1.33%

Uncatego 0.27% 0% 0% 1.37% 0% 0% 0% 0.01% 0%
rized

In terms of the workflow runtime, we saw a significant 4.78x improvement from 1ocal mode to a distributed
environment in HDFS, and a further 0.14% improvement by leveraging NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

-—-master yarn

-—-executor-memory 5g

--executor-cores 1

-—-num-executors 160

-—-conf spark.driver.extraJdJavaOptions="-Xssl0m -XX:MaxPermSize=1024M"
--conf spark.executor.extradavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment analysis nfs.log 2>&l

reall3ml3.149s

user537m50.148s

sys4m46.173s

As the following figure shows, data and model parallelism improved the data processing and distributed
TensorFlow model inferencing speed. Data location in NFS yielded a slightly better runtime because the
workflow bottleneck is the downloading of pretrained models. If we increase the transcripts dataset size, the
advantage of NFS is more obvious.
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Distributed training with Horovod performance

The following command produced runtime information and a log file in our Spark cluster using a single master
node with 160 executors each with one core. The executor memory was limited to 5GB to avoid out-of-memory
error. See the section "Python scripts for each major use case" for more detail regarding the data processing,
model training, and model accuracy calculation in keras spark horovod rossmann estimator.py

(base) [root@nl38 horovod]# time spark-submit

--master local

-—executor-memory b5g

-—executor-cores 1

-—-num-executors 160
/sparkusecase/horovod/keras_spark horovod rossmann estimator.py
-—epochs 10

-—-data-dir file:///sparkusecase/horovod
--local-submission-csv /tmp/submission 0.csv
—--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator local. log 2>&l

The resulting runtime with ten training epochs was as follows:

reald4d3m34.608s
userl2m22.057s
sys2m30.127s

It took more than 43 minutes to process input data, train a DNN model, calculate accuracy, and produce
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TensorFlow checkpoints and a CSV file for prediction results. We limited the number of training epochs to 10,
which in practice is often set to 100 to ensure satisfactory model accuracy. The training time typically scales
linearly with the number of epochs.

We next used the four worker nodes available in the cluster and executed the same script in yarn mode with
data in HDFS:

(base) [root@nl38 horovod]# time spark-submit

—-—-master yarn

-—-executor-memory 5g

--executor-cores 1 --num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
—-—epochs 10

-—-data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod
--local-submission-csv /tmp/submission 1.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator yarn.log 2>&l1

The resulting runtime was improved as follows:

real8ml3.728s
user/md48.421s
syslm26.063s

With Horovod’s model and data parallelism in Spark, we saw a 5.29x runtime speedup of yarn versus local
mode with ten training epochs. This is shown in the following figure with the legends HDFS and Local. The
underlying TensorFlow DNN model training can be further accelerated with GPUs if available. We plan to
conduct this testing and publish results in a future technical report.

Our next test compared the runtimes with input data residing in NFS versus HDFS. The NFS volume on the
AFF A800 was mounted on /sparkdemo/horovod across the five nodes (one master, four workers) in our
Spark cluster. We ran a similar command as for previous tests, with the --data- dir parameter now pointing
to the NFS mount:

(base) [root@nl38 horovod]# time spark-submit

—--master yarn

-—executor-memory 5g

-—executor-cores 1

-—-num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
-—epochs 10

--data-dir file:///sparkdemo/horovod
--local-submission-csv /tmp/submission 2.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator nfs.log 2>&l
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The resulting runtime with NFS was as follows:

real 5m46.229s
user 5m35.693s
sys 1mb.615s

There was a further 1.43x speedup, as shown in the following figure. Therefore, with a NetApp all-flash storage
connected to their cluster, customers enjoy the benefits of fast data transfer and distribution for Horovod Spark
workflows, achieving 7.55x speedup versus running on a single node.

Horovod Spark Workflow Runtime
(Lower is better)

Seconds
0 500 1000 1500 2000 2500 3000

Input data location

N

Deep learning models for CTR prediction performance

For recommender systems designed to maximize CTR, you must learn sophisticated feature interactions
behind user behaviors that can be mathematically calculated from low order to high order. Both low-order and
high-order feature interactions should be equally important for a good deep learning model without biasing
towards one or the other. Deep Factorization Machine (DeepFM), a factorization machine-based neural
network, combines factorization machines for recommendation and deep learning for feature learning in a new
neural network architecture.

Although conventional factorization machines model pairwise feature interactions as an inner product of latent
vectors between features and can theoretically capture high-order information, in practice, machine learning
practitioners usually only use second- order feature interactions due to the high computation and storage
complexity. Deep neural network variants like Google’s Wide & Deep Models on the other hand learns
sophisticated feature interactions in a hybrid network structure by combining a linear wide model and a deep
model.

There are two inputs to this Wide & Deep Model, one for the underlying wide model and the other for the deep,

the latter part of which still requires expert feature engineering and thus renders the technique less
generalizable to other domains. Unlike the Wide & Deep Model, DeepFM can be efficiently trained with raw
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features without any feature engineering because its wide part and deep part share the same input and the
embedding vector.

We first processed the Criteo train. txt (11GB) file into a CSV file named ctr train.csv stored in an
NFS mount /sparkdemo/tr-4570-data using run_classification criteo spark.py from the
section "Python scripts for each major use case." Within this script, the function process input file
performs several string methods to remove tabs and insert ', ' as the delimiter and '\n"' as newline. Note
that you only need to process the original train. txt once, so that the code block is shown as comments.

For the following testing of different DL models, we used ctr train.csv as the input file. In subsequent
testing runs, the input CSV file was read into a Spark DataFrame with schema containing a field of ' 1abel",
integer dense features ('11', '12', '13', .., 'I13'],and sparse features ['C1', 'Cc2', 'C3',

.., 'C26']. The following spark-submit command takes in an input CSV, trains DeepFM models with 20%
split for cross validation, and picks the best model after ten training epochs to calculate prediction accuracy on
the testing set:

(base) [root@nl38 ~]# time spark-submit --master yarn --executor-memory 5g
--executor-cores 1 —--num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py --data
-dir file:///sparkdemo/tr-4570-data >

/tmp/run classification criteo spark local.log 2>&l

Note that since the data file ctr train.csv is over 11GB, you must set a sufficient
spark.driver.maxResultSize greater than the dataset size to avoid error.

spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500') \
.config('spark.driver.memoryOverhead', '1500') \
.config("spark.sgl.shuffle.partitions", "480") \
.config("spark.sgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

In the above SparkSession.builder configuration we also enabled Apache Arrow, which converts a Spark
DataFrame into a Pandas DataFrame with the df . toPandas () method.
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22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at
/sparkusecase/DeepCTR/examples/run classification criteo spark.py:96, took
627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

After random splitting, there are over 36M rows in the training dataset and 9M samples in the testing set:

Training dataset size = 36672493
Testing dataset size = 9168124

Because this technical report is focused on CPU testing without using any GPUs, it is imperative that you build
TensorFlow with appropriate compiler flags. This step avoids invoking any GPU-accelerated libraries and takes
full advantage of TensorFlow’s Advanced Vector Extensions (AVX) and AVX2 instructions. These features are
designed for linear algebraic computations like vectorized addition, matrix multiplications inside a feed-forward,
or back-propagation DNN training. Fused Multiply Add (FMA) instruction available with AVX2 using 256-bit
floating point (FP) registers is ideal for integer code and data types, resulting in up to a 2x speedup. For FP
code and data types, AVX2 achieves 8% speedup over AVX.

2022-06-18 07:19:20.101478: I
tensorflow/core/platform/cpu feature guard.cc:151] This TensorFlow binary
is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the
following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the
appropriate compiler flags.

To build TensorFlow from source, NetApp recommends using Bazel. For our environment, we executed the
following commands in the shell prompt to install dnf, dnf-plugins, and Bazel.

yum install dnf

dnf install 'dnf-command (copr)'
dnf copr enable vbatts/bazel
dnf install bazelb

You must enable GCC 5 or newer to use C++17 features during the build process, which is provided by RHEL
with Software Collections Library (SCL). The following commands install devtoolset and GCC 11.2.1 on our
RHEL 7.9 cluster:
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subscription-manager repos --enable rhel-server-rhscl-7-rpms
yum install devtoolset-1l-toolchain
yum install devtoolset-1l-gcc-c++
yum update
scl enable devtoolset-11 bash
/opt/rh/devtoolset-11/enable

Note that the last two commands enable devtoolset-11, which uses /opt/rh/devtoolset-
11/root/usr/bin/gcc (GCC 11.2.1). Also, make sure your git version is greater than 1.8.3 (this comes
with RHEL 7.9). Refer to this article for updating git to 2.24.1.

We assume that you have already cloned the latest TensorFlow master repo. Then create a workspace
directory with a WORKSPACE file to build TensorFlow from source with AVX, AVX2, and FMA. Run the
configure file and specify the correct Python binary location. CUDA is disabled for our testing because we
did not use a GPU. A .bazelrc file is generated according to your settings. Further, we edited the file and set
build --define=no hdfs support=false to enable HDFS support. Refer to .bazelrc in the section
"Python scripts for each major use case," for a complete list of settings and flags.

./configure
bazel build -c opt —--copt=-mavx --copt=-mavx2 --copt=-mfma --copt=
-mfpmath=both -k //tensorflow/tools/pip package:build pip package

After you build TensorFlow with the correct flags, run the following script to process the Criteo Display Ads
dataset, train a DeepFM model, and calculate the Area Under the Receiver Operating Characteristic Curve
(ROC AUC) from prediction scores.

(base) [root@nl38 examples]# ~/anaconda3/bin/spark-submit
-—-master yarn

—-—executor-memory 15g

-—executor-cores 1

-—-num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py
--data-dir file:///sparkdemo/tr-4570-data

> . /run classification criteo spark nfs.log 2>&l

After ten training epochs, we obtained the AUC score on the testing dataset:
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Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary crossentropy: 0.4974 - val loss:
0.4629 - val binary crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary crossentropy: 0.3271 - val loss:
0.5146 - val binary crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary crossentropy: 0.1928 - val loss:
0.6166 - val binary crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary crossentropy: 0.1383 - val loss:
0.7261 - val binary crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary crossentropy: 0.1102 - val loss:
0.7961 - val binary crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary crossentropy: 0.0921 - val loss:
0.9502 - val binary crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary crossentropy: 0.0750 - val loss:
1.1329 - val binary crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary crossentropy: 0.0622 - val loss:
1.3794 - val binary crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary crossentropy: 0.0527 - val loss:
1.6115 - val binary crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary crossentropy: 0.0442 - val loss:
1.6768 - val binary crossentropy: 1.6740

test AUC 0.6337

In @ manner similar to previous use cases, we compared the Spark workflow runtime with data residing in
different locations. The following figure shows a comparison of the deep learning CTR prediction for a Spark
workflows runtime.
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Hybrid cloud solution

A modern enterprise data center is a hybrid cloud that connects multiple distributed
infrastructure environments through a continuous data management plane with a
consistent operating model, on premises and/or in multiple public clouds. To get the most
out of a hybrid cloud, you must be able to seamlessly move data between your on-
premises and multi-cloud environments without the need for any data conversions or
application refactoring.

Customers have indicated that they start their hybrid cloud journey either by moving secondary storage to the
cloud for use cases such as data protection or by moving less business-critical workloads such as application
development and DevOps to the cloud. They then move on to more critical workloads. Web and content
hosting, DevOps and application development, databases, analytics, and containerized apps are among the
most popular hybrid-cloud workloads. The complexity, cost, and risks of enterprise Al projects have historically
hindered Al adoption from experimental stage to production.

With a NetApp hybrid-cloud solution, customers benefit from integrated security, data governance, and
compliance tools with a single control panel for data and workflow management across distributed
environments, while optimizing the total cost of ownership based on their consumption. The following figure is
an example solution of a cloud service partner tasked with providing multi-cloud connectivity for customers' big-
data-analytics data.
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In this scenario, loT data received in AWS from different sources is stored in a central location in NetApp
Private Storage (NPS). The NPS storage is connected to Spark or Hadoop clusters located in AWS and Azure
enabling big-data-analytics applications running in multiple clouds accessing the same data. The main
requirements and challenges for this use case include the following:

» Customers want to run analytics jobs on the same data using multiple clouds.

» Data must be received from different sources such as on-premises and cloud environments through
different sensors and hubs.

* The solution must be efficient and cost effective.

« The main challenge is to build a cost-effective and efficient solution that delivers hybrid analytics services
between different on-premises and cloud environments.

Our data protection and multicloud connectivity solution resolves the pain point of having cloud analytics
applications across multiple hyperscalers. As shown in the figure above, data from sensors is streamed and
ingested into the AWS Spark cluster through Kafka. The data is stored in an NFS share residing in NPS, which
is located outside of the cloud provider within an Equinix data center.

Because NetApp NPS is connected to Amazon AWS and Microsoft Azure through Direct Connect and Express
Route connections respectively, customers can leverage the In-Place Analytics Module to access the data from
both Amazon and AWS analytics clusters. Consequently, because both on-premises and NPS storage runs
ONTAP software, SnapMirror can mirror the NPS data into the on-premises cluster, providing hybrid cloud
analytics across on-premises and multiple clouds.

For the best performance, NetApp typically recommends using multiple network interfaces and direct
connection or express routes to access the data from cloud instances. We have other data mover solutions

including XCP and BlueXP Copy and Sync to help customers build application-aware, secure, and cost-
effective hybrid-cloud Spark clusters.

Python scripts for each major use case

The following three Python scripts correspond to the three major use cases tested. First is
sentiment analysis sparknlp.py.

# TR-4570 Refresh NLP testing by Rick Huang
from sys import argv
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import os

import sparknlp

import pyspark.sqgl.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline
from sparknlp import Finisher

# Start Spark Session with Spark NLP

spark = sparknlp.start()

print ("Spark NLP version:")

print (sparknlp.version())

print ("Apache Spark version:")

(
(
(
print (spark.version)

spark = sparknlp.SparkSession.builder \

.master ("yarn") \

.appName ("test hdfs read write") \

.config("spark.executor.cores", "1") \

.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-
nlp 2.12:3.4.3")\

.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1000")\
.config('spark.driver.memoryOverhead', '1000")\

.config("spark.sgl.shuffle.partitions"™, "480")\

.getOrCreate ()
sc = spark.sparkContext
from pyspark.sgl import SQLContext
sgl = SQLContext (sc)
sglContext = SQLContext (sc)

# Download pre-trained pipelines & sequence classifier
explain pipeline model = PretrainedPipeline('explain document dl',
lang='en') .model#pipeline sa =
PretrainedPipeline("classifierdl bertwiki finance sentiment pipeline",
lang="en")
# pipeline finbert =
BertForSequenceClassification.loadSavedModel ('/sparkusecase/bert sequence
classifier finbert en 3', spark)
sequenceClassifier = BertForSequenceClassification \
.pretrained('bert sequence classifier finbert', 'en') \
.setInputCols (['token', 'document']) \
.setOutputCol ('class') \
.setCaseSensitive (True) \
.setMaxSentencelLength (512)
def process sentence df (data):

# Pre-process: begin



print ("1. Begin DataFrame pre-processing...\n")
print (f"\n\t2. Attaching DocumentAssembler Transformer to the
pipeline")
documentAssembler = DocumentAssembler () \
.setInputCol ("text") \
.setOutputCol ("document™) \
.setCleanupMode ("inplace full")
#.setCleanupMode ("shrink", "inplace full")
doc_df = documentAssembler.transform(data)
doc_df.printSchema ()
doc df.show (truncate=50)
# Pre-process: get rid of blank lines

clean df = doc df.withColumn ("tmp", F.explode ("document")) \
.select ("tmp.result") .where ("tmp.end !=
-1") .withColumnRenamed ("result", "text") .dropna ()

print ("[OK!] DataFrame after initial cleanup:\n")
clean df.printSchema ()
clean df.show (truncate=80)
# for FinBERT
tokenizer = Tokenizer () \
.setInputCols (['document']) \
.setOutputCol ('token')
print (£"\n\t3. Attaching Tokenizer Annotator to the pipeline")
pipeline finbert = Pipeline (stages=]|
documentAssembler,
tokenizer,
sequenceClassifier
1)
# Use Finisher () & construct PySpark ML pipeline
finisher = Finisher () .setInputCols(["token", "lemma", "pos",
"entities"])
print (£"\n\t4. Attaching Finisher Transformer to the pipeline")
pipeline ex = Pipeline() \
.setStages ([
explain pipeline model,
finisher
1)
print ("\n\t\t\t ---- Pipeline Built Successfully ----")
# Loading pipelines to annotate
#result ex df = pipeline ex.transform(clean df)
ex model = pipeline ex.fit (clean df)
annotations finished ex df = ex model.transform(clean df)
# result sa df = pipeline sa.transform(clean df)
result finbert df = pipeline finbert.fit (clean df).transform(clean df)
print ("\n\t\t\t —-—-—--Document Explain, Sentiment Analysis & FinBERT
Pipeline Fitted Successfully —----")
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# Check the result entities
print ("[OK!] Simple explain ML pipeline result:\n")
annotations finished ex df.printSchema ()
annotations finished ex df.select ('text',

'finished entities') .show(truncate=False)
# Check the result sentiment from FinBERT
print ("[OK!] Sentiment Analysis FinBERT pipeline result:\n")
result finbert df.printSchema ()
result finbert df.select('text', 'class.result').show(80, False)
sentiment stats(result finbert df)

return
def sentiment stats(finbert df):

result df = finbert df.select('text',6 'class.result')

sa df = result df.select('result')

sa _df.groupBy ('result') .count () .show /()

# total lines = result clean df.count()

# num neutral = result clean df.where(result clean df.result ==
['neutral']) .count ()

# num positive = result clean df.where(result clean df.result ==
['positive']) .count ()

# num negative = result clean df.where(result clean df.result ==
['negative']) .count ()

# print (f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

# print (f"Ratio of positive sentiment = {num positive / total lines}")

# print (f"Ratio of negative sentiment = {num negative /
total lines}\n")

return

def process input file(file name) :
# Turn input file to Spark DataFrame
print ("START processing input file...")
data df = spark.read.text(file name)
data df.show ()
# rename first column 'text' for sparknlp
output df = data df.withColumnRenamed ("value", "text") .dropna ()
output df.printSchema ()
return output dfdef process local dir(directory):
filelist = []
for subdir, dirs, files in os.walk(directory):
for filename in files:
filepath = subdir + os.sep + filename
print ("[OK!] Will process the following files:")
if filepath.endswith(".txt"):
print (filepath)
filelist.append(filepath)
return filelist
def process local dir or file(dir or file):



def

numfiles = 0
if os.path.isfile(dir or file):
input df = process input file(dir or file)
print ("Obtained input df.")
process sentence df (input df)
print ("Processed input df")
numfiles += 1
else:
filelist = process local dir(dir or file)
for file in filelist:
input df = process input file(file)
process sentence df (input df)
numfiles += 1
return numfiles
process hdfs dir(dir name) :
# Turn input files to Spark DataFrame
print ("START processing input HDFS directory...")
data df = spark.read.option("recursiveFileLookup",

"true") .text (dir name)

data df.show ()

print (" [DEBUG] total lines in data df = ", data df.count())

# rename first column 'text' for sparknlp

output df = data df.withColumnRenamed ("value", "text") .dropna/()
print (" [DEBUG] output df looks like: \n")

output df.show (40, False)

print (" [DEBUG] HDFS dir resulting data df schema: \n")

output df.printSchema ()

process sentence df (output df)

print ("Processed HDFS directory: ", dir name)
returnif name == "' main ':
try:
if len(argv) == 2:
print ("Start processing input...\n")
except:

print (" [ERROR] Please enter input text file or path to

process!\n")

exit (1)
# This is for local file, not hdfs:
numfiles = process local dir or file(str(argv[l]))
# For HDFS single file & directory:
input df = process input file(str(argv[1l]))
print ("Obtained input df.")
process sentence df (input df)
print ("Processed input df")
numfiles += 1
# For HDFS directory of subdirectories of files:
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input parse list = str(argv([1l]).split('/")

print (input parse list)

if input parse list[-2:-1] == ['Transcripts']:
print ("Start processing HDFS directory: ", str(argv([1l]))
process hdfs dir(str(argv[l]))

print (£" [OK!] All done. Number of files processed = {numfiles}")

The second scriptis keras _spark horovod rossmann estimator.py.

Copyright 2022 NetApp, Inc.
Authored by Rick Huang

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

H H= H H H= FH H H H H H H H H H

# The below code was modified from: https://www.kaggle.com/c/rossmann-—
store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sqgl.types as T

import pyspark.sqgl.functions as F

from pyspark import SparkConf, Row

from pyspark.sqgl import SparkSession

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,
Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint
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parser = argparse.ArgumentParser (description='Horovod Keras Spark Rossmann
Estimator Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--master',
help='spark cluster to use for training. If set to
None, uses current default cluster. Cluster'
'should be set up to provide a Spark task per
multiple CPU cores, or per GPU, e.g. by’
'supplying "-c <NUM GPUS>" in Spark Standalone
mode ")
parser.add argument ('--num-proc', type=int,
help="number of worker processes for training,
default: “spark.default.parallelism ')
parser.add argument ('--learning rate', type=float, default=0.0001,
help='initial learning rate')
parser.add argument ('--batch-size', type=int, default=100,
help='batch size')
parser.add argument ('--epochs', type=int, default=100,
help="'number of epochs to train')
parser.add argument ('--sample-rate', type=float,
help='desired sampling rate. Useful to set to low
number (e.g. 0.01) to make sure that '
'end-to-end process works')
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed
with file://) or on HDFS')
parser.add argument ('--local-submission-csv', default='submission.csv',
help='output submission predictions CSV')
parser.add argument ('--local-checkpoint-file', default='checkpoint’,
help='model checkpoint')
parser.add argument ('--work-dir', default='/tmp',
help="'temporary working directory to write
intermediate files (prefix with hdfs:// to use HDFS)')

if name == ' main Vg

§ ========—==——===
# DATA PREPARATION #
§ ==========———===
print ('============——==1")

print ('Data preparation')

print ('================")

# Create Spark session for data preparation.

conf = SparkConf () \
.setAppName ('Keras Spark Rossmann Estimator Example') \
.set ('spark.sgl.shuffle.partitions', '480"') \
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.set ("spark.executor.cores", "1") \
.set ('spark.executor.memory', '5gb') \
.set ('spark.executor.memoryOverhead', '1000")\
.set ('spark.driver.memoryOverhead', '1000")
if args.master:
conf.setMaster (args.master)
elif args.num proc:
conf.setMaster ('local[{}]"'.format (args.num proc))
spark = SparkSession.builder.config(conf=conf) .getOrCreate ()
train csv = spark.read.csv('$s/train.csv' % args.data dir,
header=True)
test csv = spark.read.csv('%$s/test.csv' % args.data dir, header=True)
store csv = spark.read.csv('%s/store.csv' % args.data dir,
header=True)
store states csv = spark.read.csv('%s/store states.csv' %
args.data dir, header=True)
state names csv = spark.read.csv('%s/state names.csv' % args.data dir,
header=True)
google trend csv = spark.read.csv('$s/googletrend.csv' %
args.data dir, header=True)
weather csv = spark.read.csv('%s/weather.csv' % args.data dir,
header=True)
def expand date (df):
df = df.withColumn ('Date', df.Date.cast (T.DateType()))
return df \
.withColumn ('Year', F.year (df.Date)) \
.withColumn ('Month', F.month (df.Date)) \
('Week', F.weekofyear (df.Date)) \
.withColumn ('Day', F.dayofmonth (df.Date))

def prepare google trend() :

.withColumn

# Extract week start date and state.
google trend all = google trend csv \
.withColumn ('Date', F.regexp extract (google trend csv.week,
"(.*2) =Y, 1)) N
.withColumn ('State', F.regexp extract(google trend csv.file,
'Rossmann DE (.*)', 1))
# Map state NI -> HB,NI to align with other data sources.
google trend all = google trend all \
.withColumn ('State', F.when(google trend all.State == 'NI',
'"HB,NI') .otherwise (google trend all.State))
# Expand dates.
return expand date (google trend all)
def add elapsed(df, cols):
def add elapsed column(col, asc):
def fn (rows):
last store, last date = None, None



for r in rows:

if last store != r.Store:
last store = r.Store
last date = r.Date
if rlcoll]l:

last date = r.Date
fields = r.asDict () .copy ()
fields[ ('After' if asc else 'Before') + col] = (r.Date
- last _date) .days
yield Row (**fields)
return fn
df = df.repartition(df.Store)
for asc in [False, True]:
sort col = df.Date.asc() if asc else df.Date.desc ()
rdd = df.sortWithinPartitions(df.Store.asc(), sort col).rdd
for col in cols:
rdd = rdd.mapPartitions(add elapsed column(col, asc))
df = rdd.toDF ()
return df
def prepare df (df):
num_rows = df.count ()
# Expand dates.
df = expand date (df)

df = df \
.withColumn ('Open', df.Open != '0"') \
.withColumn ('Promo', df.Promo != '0') \
.withColumn ('StateHoliday', df.StateHoliday != '0') \
.withColumn ('SchoolHoliday', df.SchoolHoliday != '0")

# Merge in store information.

store = store csv.join(store states csv, 'Store')

df = df.join(store, 'Store')

# Merge in Google Trend information.

google trend all = prepare google trend()

df = df.join(google trend all, ['State',K 'Year',
'Week']) .select (df['*'], google trend all.trend)

# Merge in Google Trend for whole Germany.

google trend de = google trend all[google trend all.file ==
'Rossmann DE'].withColumnRenamed ('trend', 'trend de')

df = df.join(google trend de, ['Year',K 'Week']).select(df['*'],
google trend de.trend de)

# Merge in weather.

weather = weather csv.join(state names csv, weather csv.file ==

state names csv.StateName)
df = df.join(weather, ['State', 'Date'])
# Fix null values.
df = df \
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.withColumn ('CompetitionOpenSinceYear',
F.coalesce (df.CompetitionOpenSinceYear, F.1it (1900))) \
.withColumn ('CompetitionOpenSinceMonth',
F.coalesce (df.CompetitionOpenSinceMonth, F.lit(1l))) \
.withColumn ('Promo2SinceYear', F.coalesce (df.Promo2SinceYear,
F.1it (1900))) \
.withColumn ('Promo2SinceWeek', F.coalesce (df.Promo2SinceWeek,
F.lit(1)))
# Days & months competition was open, cap to 2 years.
df = df.withColumn ('CompetitionOpenSince’,
F.to date(F.format string('%s-%s-15'",
df.CompetitionOpenSinceYear,

df.CompetitionOpenSinceMonth)))
df = df.withColumn ('CompetitionDaysOpen',
F.when (df.CompetitionOpenSinceYear > 1900,
F.greatest (F.1it (0), F.least(F.1lit (360 *
2), F.datediff (df.Date, df.CompetitionOpenSince))))
.otherwise (0))
df = df.withColumn ('CompetitionMonthsOpen',
(df .CompetitionDaysOpen / 30) .cast(T.IntegerType()))
# Days & weeks of promotion, cap to 25 weeks.
df = df.withColumn ('Promo2Since’,
F.expr ('date add(format string("%s-01-01",
Promo2SinceYear), (cast (Promo2SinceWeek as int) - 1) * 7)"'))
df = df.withColumn ('Promo2Days’',
F.when (df.Promo2SinceYear > 1900,
F.greatest (F.1it (0), F.least(F.lit (25 *
7), F.datediff (df.Date, df.Promo2Since))))
.otherwise (0))
df = df.withColumn ('Promo2Weeks', (df.Promo2Days /
7) .cast (T.IntegerType ()))
# Check that we did not lose any rows through inner joins.
assert num rows == df.count(), 'lost rows in joins'
return df
def build vocabulary(df, cols):
vocab = {}
for col in cols:
values = [r[0] for r in df.select(col) .distinct () .collect ()]
col type = type([x for x in values if x is not None] [0])
default value = col type()
vocab[col] = sorted(values, key=lambda x: x or default value)
return vocab
def cast columns (df, cols):
for col in cols:
df = df.withColumn (col,



F.coalesce(df[col].cast(T.FloatType()), F.1it(0.0)))
return df
def lookup columns (df, vocab):
def lookup (mapping) :
def fn(v) :
return mapping.index (v)
return F.udf (fn, returnType=T.IntegerType ())
for col, mapping in vocab.items () :
df = df.withColumn (col, lookup (mapping) (df[col]))
return df
if args.sample rate:
train csv = train csv.sample (withReplacement=False,
fraction=args.sample rate)
test csv = test csv.sample (withReplacement=False,
fraction=args.sample rate)
# Prepare data frames from CSV files.
train df = prepare df(train csv) .cache ()
test df = prepare df (test csv) .cache()
# Add elapsed times from holidays & promos, the data spanning training
& test datasets.
elapsed cols = ['Promo', 'StateHoliday', 'SchoolHoliday']
elapsed = add elapsed(train df.select('Date', 'Store', *elapsed cols)
.unionAll (test df.select ('Date', 'Store',
*elapsed cols)),
elapsed cols)
# Join with elapsed times.
train df = train df \
.join(elapsed, ['Date', 'Store']) \
.select (train df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed cols])
test df = test df \
.Join (elapsed, ['Date', 'Store'l) \

.select (test df['*'], *[prefix + col for prefix in ['Before',
'After'] for col in elapsed cols])
# Filter out zero sales.
train df = train df.filter(train df.Sales > 0)

print ('Prepared data frame')
print ('===================")
train df.show ()
categorical cols = [
'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',
'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',
'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',
'"Promo2SinceYear', 'Events', 'Promo',
'StateHoliday', 'SchoolHoliday'
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]
continuous cols = [
'CompetitionDistance', 'Max TemperatureC',6 'Mean TemperatureC',
'Min TemperatureC', 'Max Humidity',
'"Mean Humidity', 'Min Humidity', 'Max Wind SpeedKm h',
'Mean Wind SpeedKm h', 'CloudCover', 'trend', 'trend de',
'BeforePromo', 'AfterPromo', 'AfterStateHoliday',
'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

]

all cols = categorical cols + continuous cols

# Select features.

train df = train df.select(*(all cols + ['Sales', 'Date'])) .cache()
test df = test df.select(*(all cols + ['Id', 'Date'])) .cache()

# Build vocabulary of categorical columns.
vocab = build vocabulary(train df.select (*categorical cols)

.unionAll (test df.select (*categorical cols)) .cache(),
categorical cols)
# Cast continuous columns to float & lookup categorical columns.

train df = cast columns(train df, continuous cols + ['Sales'])
train df = lookup columns (train df, vocab)
test df = cast columns(test df, continuous cols)

test df = lookup columns (test df, vocab)

# Split into training & validation.

# Test set is in 2015, use the same period in 2014 from the training
set as a validation set.

test min date = test df.agg(F.min(test df.Date)) .collect() [0][0]

test max date = test df.agg(F.max(test df.Date)).collect () [0][0]

one year = datetime.timedelta (365)

train df = train df.withColumn('Validation',

(train df.Date > test min date -

one year) & (train df.Date <= test max date - one year))

# Determine max Sales number.

max sales = train df.agg(F.max(train df.Sales)).collect() [0][O0]

# Convert Sales to log domain

train df = train df.withColumn('Sales', F.log(train df.Sales))

print ('Data frame with transformed columns')

print ('===================================")

train df.show ()

print ('==s==============")

print ('Data frame sizes')

print ('=s=s==============")

train rows = train df.filter (~train df.Validation) .count ()
val rows = train df.filter(train df.Validation) .count ()

test rows = test df.count()



print ('Training: %d' % train rows)
print ('Validation: %d' % val rows)
e

print ('Test: %d' % test rows)

§ ============== §
# MODEL TRAINING #
# ============== {
prlnt (' s=—————e—==—eu0)

print ('Model training')
print ('s=============")
def exp rmspe(y true, y pred):
"""Competition evaluation metric, expects logarithic inputs."""
pct = tf.square((tf.exp(y true) - tf.exp(y pred)) /
tf.exp(y true))
# Compute mean excluding stores with zero denominator.
x = tf.reduce sum(tf.where(y true > 0.001, pct,
tf.zeros like(pct)))
y = tf.reduce sum(tf.where(y true > 0.001, tf.ones like(pct),
tf.zeros like (pct)))
return tf.sqgrt(x / vy)
def act sigmoid scaled(x):
"""Sigmoid scaled to logarithm of maximum sales scaled by 20%."""
return tf.nn.sigmoid(x) * tf.math.log(max sales) * 1.2
CUSTOM OBJECTS = {'exp rmspe': exp rmspe,
'act sigmoid scaled': act sigmoid scaled}
# Disable GPUs when building the model to prevent memory leaks
if LooseVersion(tf. version ) >= LooseVersion('2.0.0"):
# See https://github.com/tensorflow/tensorflow/issues/33168
os.environ['CUDA VISIBLE DEVICES'] = '-1'
else:

K.set session(tf.Session(config=tf.ConfigProto(device count={'GPU': 0})))
# Build the model.
inputs = {col: Input (shape=(1,), name=col) for col in all cols}
embeddings = [Embedding(len(vocab[col]), 10, input length=1,
name="'emb ' + col) (inputs[col])
for col in categorical cols]

continuous bn Concatenate () ([Reshape((1, 1), name='reshape ' +
col) (inputs[col])

for col in continuous cols])

continuous bn = BatchNormalization () (continuous bn)
x = Concatenate () (embeddings + [continuous bn])
x = Flatten() (x)

x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
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x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.l12(0.00005)) (x)
x = Dense (500, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dropout (0.5) (x)

output = Dense(l, activation=act sigmoid scaled) (x)

model = tf.keras.Model ([inputs[f] for f in all cols], output)
model . summary ()

opt = tf.keras.optimizers.Adam(lr=args.learning rate, epsilon=le-3)

# Checkpoint callback to specify options for the returned Keras model

ckpt callback = BestModelCheckpoint (monitor='val loss', mode='auto',
save freg='epoch')
# Horovod: run training.
store = Store.create(args.work dir)
backend = SparkBackend (num proc=args.num proc,
stdout=sys.stdout, stderr=sys.stderr,
prefix output with timestamp=True)
keras estimator = hvd.KerasEstimator (backend=backend,
store=store,
model=model,
optimizer=opt,
loss="mae',
metrics=[exp rmspe],
custom objects=CUSTOM OBJECTS,
feature cols=all cols,
label cols=['Sales'],
validation='Validation',
batch size=args.batch size,
epochs=args.epochs,

verbose=2,

checkpoint callback=ckpt callback)
keras model =
keras estimator.fit (train df).setOutputCols(['Sales output'])
history = keras model.getHistory ()
best val rmspe = min(history['val exp rmspe'])
print ('Best RMSPE: %f' % best val rmspe)
# Save the trained model.
keras model.save (args.local checkpoint file)

o)

print ('"Written checkpoint to %s' % args.local checkpoint file)

=== ————————"
# FINAL PREDICTION #
# S e == #
print ( e = —————— "= )



pred df=keras model.transform(test df)

pred df.printSchema ()

pred df.show(5)

# Convert from log domain to real Sales numbers

pred df=pred df.withColumn ('Sales pred', F.exp(pred df.Sales output))

submission df = pred df.select (pred df.Id.cast(T.IntegerType()),
pred df.Sales pred) .toPandas()

submission df.sort values(by=['Id']).to csv(args.local submission csv,
index=False)

print ('Saved predictions to %s' % args.local submission csv)
spark.stop ()

The third scriptis run_classification criteo spark.py

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model selection import train test split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sqgl import SparkSession, SQLContext, Row, DataFrame
from pyspark.mllib import linalg as mllib linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector
from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as
mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark.ml import linalg as ml linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors
from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp # exp(-t) = e*-t

from operator import add

from pyspark.sqgl.functions import udf, split, 1lit

from pyspark.sqgl.functions import size, sum as sglsum

import pyspark.sqgl.functions as F

import pyspark.sgl.types as T

from pyspark.sqgl.types import ArrayType, StructType, StructField,
LongType, StringType, IntegerType, FloatType

from pyspark.sqgl.functions import explode, col, log, when
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from collections import defaultdict
import pandas as pd
import pyspark.pandas as ps
from sklearn.metrics import log loss, roc_auc score
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from deepctr.models import DeepFM
from deepctr.feature column import SparseFeat, DenseFeat,
get feature names
spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config ("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config ("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500") \
.config('spark.driver.memoryOverhead', '1500') \
.config("spark.sgl.shuffle.partitions™, "480") \
.config("spark.sqgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

# spark.conf.set ("spark.sqgl.execution.arrow.enabled", "true") # deprecated

print ("Apache Spark version:")

print (spark.version)

sc = spark.sparkContext

sglContext = SQLContext (sc)

parser = argparse.ArgumentParser (description='Spark DCN CTR Prediction

Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed

with file://) or on HDFS')
def process input file(file name, sparse feat, dense feat):

# Need this preprocessing to turn Criteo raw file into CSV:

print ("START processing input file...")

# only convert the file ONCE

# sample = open(file name)

# sample = '\n'.join([str(x.replace('\n', '').replace('\t', ',')) for
x in sample])

# # Add header in data file and save as CSV

# header = ', '.join(str(x) for x in (['label'] + dense feat +
sparse_ feat))

# with open('/sparkdemo/tr-4570-data/ctr train.csv', mode='w',
encoding="utf-8") as f:
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# f.write (header + '\n' + sample)

# f.close ()
# print ("Raw training file processed and saved as CSV: ", f.name)
raw df = sglContext.read.option("header", True).csv(file name)

raw df.show (5, False)

raw _df.printSchema ()

# convert columns Il to I13 from string to integers

conv_df = raw df.select(col('label').cast ("double"),

*(col (i) .cast ("float") .alias (i) for i in
raw df.columns if i in dense feat),
*(col(c) for ¢ in raw df.columns if c in

sparse feat))

print ("Schema of raw df with integer columns type changed:")

conv_df.printSchema ()

# result pdf = conv _df.select ("*").toPandas ()

tmp df = conv _df.na.fill (0, dense feat)

result df = tmp df.na.fill('-1', sparse feat)

result df.show()

return result df
if name == " main ":

args = parser.parse_args ()

# Pandas read CSV

# data = pd.read csv('%s/criteo sample.txt' % args.data dir)

# print ("Obtained Pandas df.")

dense features = ['I' + str(i) for 1 in range(l, 14)]

sparse features = ['C' + str(i) for i in range(l, 27)]

# Spark read CSV

# process _input file('%s/train.txt' % args.data dir, sparse features,
dense features) # run only ONCE

spark df = process input file('%$s/data.txt' % args.data dir,
sparse features, dense features) # sample data

# spark df = process input file('$s/ctr train.csv' % args.data dir,
sparse features, dense features)

print ("Obtained Spark df and filled in missing features.")

data = spark df

# Pandas
#data[sparse features] = data[sparse features].fillna('-1', )
#data[dense features] = datal[dense features].fillna (0, )

target = ['label']

label npa = data.select ("label") .toPandas () .to numpy ()

print ("label numPy array has length = ", len(label npa)) # 45,840,617
w/ 11GB dataset

label npa.ravel ()

label npa.reshape(len(label npa), )

# 1.Label Encoding for sparse features,and do simple Transformation
for dense features



has

print ("Before LabelEncoder () :")
data.printSchema () # label: float (nullable = true)
for feat in sparse features:
lbe = LabelEncoder ()
tmp pdf = data.select (feat) .toPandas () .to numpy ()
tmp ndarray = lbe.fit transform(tmp pdf)
print ("After LabelEncoder(), tmp ndarray[0] =", tmp ndarrayl[0])
# print ("Data tmp PDF after lbe transformation, the output ndarray
length = ", len(tmp ndarray)) # 45,840,617 for 11GB dataset
tmp ndarray.ravel ()
tmp ndarray.reshape (len(tmp ndarray), )
out ndarray = np.column stack([label npa, tmp ndarray])
pdf = pd.DataFrame (out ndarray, columns=['label',6 feat])
s df = spark.createDataFrame (pdf)
s _df.printSchema () # label: double (nullable = true)
print ("Before joining data df with s df, s df example rows:")
s _df.show(l, False)
data = data.drop(feat).join(s_df, 'label').drop('label')
print ("After LabelEncoder (), data df example rows:")
data.show(l, False)
print ("Finished processing sparse features: ", feat)
print ("Data DF after label encoding: ")
data.show ()
data.printSchema ()

mms = MinMaxScaler (feature range=(0, 1))

# data[dense features] = mms.fit transform(data[dense features]) # for
Pandas df

tmp pdf = data.select (dense features) .toPandas () .to numpy ()

tmp ndarray = mms.fit transform(tmp pdf)

tmp ndarray.ravel ()

tmp ndarray.reshape (len (tmp ndarray), len(tmp ndarray[0]))
out ndarray = np.column stack([label npa, tmp ndarray])

pdf = pd.DataFrame (out ndarray, columns=['label'] + dense features)
s df = spark.createDataFrame (pdf)

s _df.printSchema ()

data.drop (*dense features) .join(s df, 'label').drop('label')
print ("Finished processing dense features: ", dense features)
print ("Data DF after MinMaxScaler: ")

data.show ()

# 2.count #unique features for each sparse field,and record dense

feature field name

fixlen feature columns = [SparseFeat (feat,
vocabulary size=data.select (feat) .distinct().count() + 1, embedding dim=4)
for i, feat in enumerate (sparse features)] +



[DenseFeat (feat, 1, ) for feat in

dense features]

dnn_feature columns = fixlen feature columns

linear feature columns = fixlen feature columns

feature names = get feature names(linear feature columns +
dnn feature columns)

# 3.generate input data for model

# train, test = train test split(data.toPandas(), test size=0.2,
random state=2020) # Pandas; might hang for 11GB data

train, test = data.randomSplit (weights=[0.8, 0.2], seed=200)

print ("Training dataset size = ", train.count())

print ("Testing dataset size = ", test.count())

# Pandas:

# train model input = {name: train[name] for name in feature names}
# test model input = {name: test[name] for name in feature names}

# Spark DF:

train model input = {}

test model input = {}
for name in feature names:

if name.startswith('I'):

tr pdf = train.select (name) .toPandas ()

train model input[name] = pd.to numeric(tr pdf[name])
ts pdf = test.select (name) .toPandas ()

test model input[name] = pd.to numeric (ts pdf[name])

# 4.Define Model, train,predict and evaluate

model = DeepFM(linear feature columns, dnn feature columns,
task="'binary"')

model.compile ("adam", "binary crossentropy",

metrics=["'binary crossentropy'], )

lb pdf = train.select (target) .toPandas ()

history = model.fit (train model input,
pd.to numeric(lb pdf['label']) .values,

batch size=256, epochs=10, verbose=2,

validation split=0.2, )

pred ans = model.predict (test model input, batch size=256)

print ("test LogLoss",
round (log loss(pd.to numeric (test.select (target) .toPandas()) .values,
pred ans), 4))

print ("test AUC",
round (roc_auc score(pd.to numeric(test.select (target) .toPandas()) .values,
pred ans), 4))

Conclusion

In this document, we discuss the Apache Spark architecture, customer use cases, and
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the NetApp storage portfolio as it relates to big data, modern analytics, and Al, ML, and
DL. In our performance validation tests based on industry-standard benchmarking tools
and customer demand, the NetApp Spark solutions demonstrated superior performance
relative to native Hadoop systems. A combination of the customer use cases and
performance results presented in this report can help you to choose an appropriate Spark
solution for your deployment.

Where to find additional information
The following references were used in this TR:
» Apache Spark architecture and components
http://spark.apache.org/docs/latest/cluster-overview.html
» Apache Spark use cases
https://www.qubole.com/blog/big-data/apache-spark-use-cases/
» Spark NLP
https://www.johnsnowlabs.com/spark-nlp/
* BERT
https://arxiv.org/abs/1810.04805
* Deep and Cross Network for Ad Click Predictions
https://arxiv.org/abs/1708.05123
* FlexGroup
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
» Streaming ETL
https://www.infoq.com/articles/apache-spark-streaming
* NetApp E-Series Solutions for Hadoop

https://www.netapp.com/media/16420-tr-3969.pdf

* NetApp Modern Data Analytics Solutions
Data Analytics Solutions

» SnapMirror
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html

« XCP
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https://docs.netapp.com/us-en/netapp-solutions-ai/data-analytics/index.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html

https://mysupport.netapp.com/documentation/docweb/index.html?productiD=63942&language=en-US
* BlueXP Copy and Sync

https://cloud.netapp.com/cloud-sync-service
» DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit
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