
Open Source MLOps with NetApp
NetApp artificial intelligence solutions
NetApp
August 18, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-ai/software/ai-osmlops-
intro.html on August 18, 2025. Always check docs.netapp.com for the latest.



Table of Contents

Open Source MLOps with NetApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Open Source MLOps with NetApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Kubernetes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

NetApp Trident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

NetApp DataOps Toolkit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Apache Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

JupyterHub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

MLflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Kubeflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

NetApp ONTAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

NetApp Snapshot Copies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

NetApp FlexClone Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

NetApp SnapMirror Data Replication Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

NetApp BlueXP Copy and Sync. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

NetApp XCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

NetApp ONTAP FlexGroup Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Apache Airflow Validation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

JupyterHub Validation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

MLflow Validation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Kubeflow Validation Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

NetApp Trident configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Example Trident Backends for NetApp AIPod Deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Example Kubernetes StorageClasses for NetApp AIPod Deployments . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Apache Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Apache Airflow Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Use the NetApp DataOps Toolkit with Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

JupyterHub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

JupyterHub Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Use the NetApp DataOps Toolkit with JupyterHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Ingest Data into JupyterHub with NetApp SnapMirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

MLflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

MLflow Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Dataset-to-model Traceability with NetApp and MLflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Kubeflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Kubeflow Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use . . . . . . . . . . . . . . . . . . . .  30

Use the NetApp DataOps Toolkit with Kubeflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30



Example Workflow - Train an Image Recognition Model Using Kubeflow and the NetApp DataOps

Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Example Trident Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Import an Existing Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Provision a New Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Example high-performance jobs for AIPod deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Execute a Single-Node AI Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Execute a Synchronous Distributed AI Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40



Open Source MLOps with NetApp

Open Source MLOps with NetApp

Mike Oglesby, NetApp

Sufian Ahmad, NetApp

Rick Huang, NetApp

Mohan Acharya, NetApp

Companies and organizations of all sizes and across many industries are turning to

artificial intelligence (AI) to solve real-world problems, deliver innovative products and

services, and to get an edge in an increasingly competitive marketplace. Many

organizations are turning to open-source MLOps tools in order to keep up with the rapid

pace of innovation in the industry. These open-source tools offer advanced capabilities

and cutting-edge features, but often don’t account for data availability and data security.

Unfortunately, this means that highly-skilled data scientists are forced to spend a

significant amount of time waiting to gain access to data or waiting for rudimentary data-

related operations to complete. By pairing popular open-source MLOps tools with an

intelligent data infrastructure from NetApp, organizations can accelerate their data

pipelines, which, in turn, accelerates their AI initiatives. They can unlock value from their

data while ensuring that it remains protected and secure. This solution demonstrates the

pairing of NetApp data management capabilities with several popular open-source tools

and frameworks in order to address these challenges.

The following list highlights some key capabilities that are enabled by this solution:

• Users can rapidly provision new high-capacity data volumes and development workspaces that are backed

by high-performance, scale-out NetApp storage.

• Users can near-instantaneously clone high-capacity data volumes and development workspaces in order

to enable experimentation or rapid iteration.

• Users can near-instantaneously save snapshots of high-capacity data volumes and development

workspaces for backup and/or traceability/baselining.

1



A typical MLOps workflow incorporates development workspaces, usually taking the form of Jupyter

Notebooks; experiment tracking; automated training pipelines; data pipelines; and inference/deployment. This

solution highlights several different tools and frameworks that can be used independently or in conjunction to

address the different aspects of the workflow. We also demonstrate the pairing of NetApp data management

capabilities with each of these tools. This solution is intended to offer building blocks from which an

organization can construct a customized MLOps workflow that is specific to their uses cases and requirements.

The following tools/frameworks are covered in this solution:

• Apache Airflow

• JupyterHub

• Kubeflow

• MLflow

The following list describes common patterns for deploying these tools independently or in conjunction.

• Deploy JupyterHub, MLflow, and Apache Airflow in conjunction - JupyterHub for Jupyter Notebooks,

MLflow for experiment tracking, and Apache Airflow for automated training and data pipelines.

• Deploy Kubeflow and Apache Airflow in conjunction - Kubeflow for Jupyter Notebooks, experiment tracking,

automated training pipelines, and inference; and Apache Airflow for data pipelines.

• Deploy Kubeflow as an all-in-one MLOps platform solution for Jupyter Notebooks, experiment tracking,

automated training and data pipelines, and inference.

Technology Overview

This section focuses on the technology overview for OpenSource MLOps with NetApp.

Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the

human mind. AI developers train computers to learn and to solve problems in a manner that is similar to, or

even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are

2

https://jupyter.org
https://jupyter.org
https://airflow.apache.org
https://jupyter.org/hub
https://www.kubeflow.org
https://www.mlflow.org
https://jupyter.org
https://jupyter.org
https://jupyter.org


increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, GPUs

are increasingly being used to execute AI operations because the parallel processing capabilities of GPUs are

vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The

adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits

that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that

VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a

visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with

an application. The most commonly used container packaging format is the Docker container. An application

that has been containerized in the Docker container format can be executed on any machine that can run

Docker containers. This is true even if the application’s dependencies are not present on the machine because

all dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by

Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the

automation of deployment, management, and scaling functions for containerized applications. In recent years,

Kubernetes has emerged as the dominant container orchestration platform. For more information, visit the

Kubernetes website.

3

https://www.docker.com
https://kubernetes.io


NetApp Trident

Trident enables consumption and management of storage resources across all popular NetApp storage

platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx

ONTAP), Azure NetApp Files service, and Google Cloud NetApp Volumes. Trident is a Container Storage

Interface (CSI) compliant dynamic storage orchestrator that natively integrates with Kubernetes.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training

workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key

capabilities include:

• Rapidly provision new high-capacity workspaces that are backed by high-performance, scale-out NetApp

storage.

• Near-instaneously clone high-capacity workspaces in order to enable experimentation or rapid iteration.

• Near-instaneously save snapshots of high-capacity workspaces for backup and/or traceability/baselining.

• Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,

scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data

pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb

but has since become very popular in the industry and now falls under the auspices of The Apache Software

Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is

designed under the principle of "configuration as code." Many enterprise Airflow users now run Airflow on top

of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed

in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler

executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in

the DAG definition. DAGs are defined and created via Python scripts.

Jupyter Notebook

Jupyter Notebooks are wiki-like documents that contain live code as well as descriptive text. Jupyter

Notebooks are widely used in the AI and ML community as a means of documenting, storing, and sharing AI

and ML projects. For more information on Jupyter Notebooks, visit the Jupyter website.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows users to create Jupyter Notebooks.

JupyterHub

JupyterHub is a multi-user application that enables an individual user to provision and access their own Jupyter

Notebook server. For more information on JupyterHub, visit the JupyterHub website.

4

https://docs.netapp.com/us-en/trident/index.html
https://github.com/NetApp/netapp-dataops-toolkit
http://www.jupyter.org/
https://jupyter.org/hub


MLflow

MLflow is a popular open source AI lifecycle management platform. Key features of MLflow include AI/ML

experiment tracking and an AI/ML model repository. For more information on MLflow, visit the MLflow website.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. The

Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know

best ― data science. See the following figure for a visualization. Kubeflow is a good open-source option for

organizations that prefer an all-in-one MLOps platform. For more information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for

defining and deploying portable and scalable AI and ML workflows. For more information, see the official

Kubeflow documentation.

Kubeflow Notebooks

Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more

information about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

Katib

Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports hyperparameter

tuning, early stopping and neural architecture search (NAS). Katib is the project which is agnostic to machine

learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users'

choice and natively supports many ML frameworks, such as TensorFlow, MXNet, PyTorch, XGBoost, and

others. Katib supports a lot of various AutoML algorithms, such as Bayesian optimization, Tree of Parzen

Estimators, Random Search, Covariance Matrix Adaptation Evolution Strategy, Hyperband, Efficient Neural

Architecture Search, Differentiable Architecture Search and many more. For more information about Jupyter

Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are

used for AI applications and training AI/ML datasets. The following additional information about NetApp

technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and

reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

5

https://www.mlflow.org/
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/notebooks/overview/
https://www.kubeflow.org/docs/components/katib/overview/


storage blocks, and deduplication significantly increases effective capacity. This applies to data stored

locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls

help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,

including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more

information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the

following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all

platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and

External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the

highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to

existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies without

costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for

software-defined storage and cloud-native instances in all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation

platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same

infrastructure that supports existing enterprise apps.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal

storage space and incurs negligible performance overhead because it only records changes to files create

since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere

File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a

database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the

metadata. It’s because ONTAP references metadata when it creates a Snapshot copy, rather than copying

data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur

in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.

ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or

damaged object, without downtime or a significant performance cost.

6

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf


NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a

volume. Copies share data blocks with their parents, consuming no storage except what is required for

metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can

take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost

instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a

development workspace, for example) or temporary copies of a dataset (testing an application against a

production dataset).

7



NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It

replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for

applications of all types, including business critical applications in both virtual and traditional environments.

When you replicate data to one or more NetApp storage systems and continually update the secondary data,

your data is kept current and is available whenever you need it. No external replication servers are required.

See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the

network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce

network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication

data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,

reducing network traffic by up to 50%.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to

transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, Google

Cloud NetApp Volumes, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM

Cloud Object Storage, BlueXP Copy and Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. BlueXP Copy and Sync can

sync data on-demand when an update is triggered or continuously sync data based on a predefined schedule.

Regardless, BlueXP Copy and Sync only moves the deltas, so time and money spent on data replication is

minimized.

BlueXP Copy and Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data

transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. BlueXP Copy and Sync

data brokers can be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

8

https://bluexp.netapp.com/cloud-sync-service


NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system

insights. XCP is designed to scale and achieve maximum performance by utilizing all available system

resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete

visibility into the file system with the option to generate reports.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and

other forms of unstructured data that must be stored and processed to be read in parallel. The storage system

must store large numbers of small files and must read those files in parallel for sequential and random I/O.

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in

the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a

NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not

striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata

workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent

FlexVol volumes.

Architecture

This solution is not dependent on specific hardware. The solution is compatible with any

NetApp physical storage appliance, software-defined instance, or cloud service, that is

supported by NetApp Trident. Examples include a NetApp AFF storage system, Amazon

FSx ONTAP, Azure NetApp Files, Google Cloud NetApp Volumes, or a NetApp Cloud

Volumes ONTAP instance. Additionally, the solution can be implemented on any

Kubernetes cluster as long as the Kubernetes version used is supported by NetApp

9

https://xcp.netapp.com/


Trident and the other solution components that are being implemented. For a list of

Kubernetes versions that are supported by Trident, see the Trident documentation. See

the following tables for details on the environments that were used to validate the various

components of this solution.

Apache Airflow Validation Environment

Software Component Version

Apache Airflow 2.0.1, deployed via Apache Airflow Helm chart 8.0.8

Kubernetes 1.18

NetApp Trident 21.01

JupyterHub Validation Environment

Software Component Version

JupyterHub 4.1.5, deployed via JupyterHub Helm chart 3.3.7

Kubernetes 1.29

NetApp Trident 24.02

MLflow Validation Environment

Software Component Version

MLflow 2.14.1, deployed via MLflow Helm chart 1.4.12

Kubernetes 1.29

NetApp Trident 24.02

Kubeflow Validation Environment

Software Component Version

Kubeflow 1.7, deployed via deployKF 0.1.1

Kubernetes 1.26

NetApp Trident 23.07

Support

NetApp does not offer enterprise support for Apache Airflow, JupyterHub, MLflow, Kubeflow, or Kubernetes. If

you are interested in a fully supported MLOps platform, contact NetApp about fully supported MLOps solutions

that NetApp offers jointly with partners.

NetApp Trident configuration

10

https://docs.netapp.com/us-en/trident/index.html
https://artifacthub.io/packages/helm/airflow-helm/airflow
https://hub.jupyter.org/helm-chart/
https://artifacthub.io/packages/helm/bitnami/mlflow
https://www.deploykf.org
https://www.netapp.com/us/contact-us/index.aspx?for_cr=us


Example Trident Backends for NetApp AIPod Deployments

Before you can use Trident to dynamically provision storage resources within your

Kubernetes cluster, you must create one or more Trident Backends. The examples that

follow represent different types of Backends that you might want to create if you are

deploying components of this solution on a NetApp AIPod. For more information about

Backends, and for example backends for other platforms/environments, see the Trident

documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for your AIPod.

The example commands that follow show the creation of a FlexGroup-enabled Trident Backend for an

AIPod storage virtual machine (SVM). This Backend uses the ontap-nas-flexgroup storage driver.

ONTAP supports two main data volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as

of this writing, the maximum size depends on the specific deployment). FlexGroup volumes, on the other

hand, can scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly

simplifies data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely

on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup

volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-

nas-flexgroup storage driver.

11

https://docs.netapp.com/us-en/netapp-solutions-ai/infra/ai-aipod-nv-intro.html
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html


$ cat << EOF > ./trident-backend-aipod-flexgroups-iface1.json

{

    "version": 1,

    "storageDriverName": "ontap-nas-flexgroup",

    "backendName": "aipod-flexgroups-iface1",

    "managementLIF": "10.61.218.100",

    "dataLIF": "192.168.11.11",

    "svm": "ontapai_nfs",

    "username": "admin",

    "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexgroups-

iface1.json -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

|            NAME         |   STORAGE DRIVER    |                 UUID

| STATE  | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online |       0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

|            NAME         |   STORAGE DRIVER    |                 UUID

| STATE  | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online |       0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

2. NetApp also recommends creating a FlexVol- enabled Trident Backend. You may want to use FlexVol

volumes for hosting persistent applications, storing results, output, debug information, and so on. If you

want to use FlexVol volumes, you must create one or more FlexVol- enabled Trident Backends. The

example commands that follow show the creation of a single FlexVol- enabled Trident Backend.

12



$ cat << EOF > ./trident-backend-aipod-flexvols.json

{

    "version": 1,

    "storageDriverName": "ontap-nas",

    "backendName": "aipod-flexvols",

    "managementLIF": "10.61.218.100",

    "dataLIF": "192.168.11.11",

    "svm": "ontapai_nfs",

    "username": "admin",

    "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexvols.json -n

trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

|            NAME         |   STORAGE DRIVER    |                 UUID

| STATE  | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols          | ontap-nas           | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online |       0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

|            NAME         |   STORAGE DRIVER    |                 UUID

| STATE  | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols          | ontap-nas           | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online |       0 |

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-

b6da6dec0bdd | online |       0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

Example Kubernetes StorageClasses for NetApp AIPod Deployments

Before you can use Trident to dynamically provision storage resources within your

Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The

examples that follow represent different types of StorageClasses that you might want to

create if you are deploying components of this solution on a NetApp AIPod. For more

information about StorageClasses, and for example StorageClasses for other

13

https://docs.netapp.com/us-en/netapp-solutions-ai/infra/ai-aipod-nv-intro.html


platforms/environments, see the Trident documentation.

1. NetApp recommends creating a StorageClass for the FlexGroup-enabled Trident Backend that you created

in the section Example Trident Backends for NetApp AIPod Deployments, step 1. The example commands

that follow show the creation of multiple StorageClasses that correspond to the example Backend that was

created in the section Example Trident Backends for NetApp AIPod Deployments, step 1 - one that utilizes

NFS over RDMA and one that does not.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,

the following example uses a reclaimPolicy value of Retain. For more information about the

reclaimPolicy field, see the official Kubernetes documentation.

Note: The following example StorageClasses use a maximum transfer size of 262144. To use this

maximum transfer size, you must configure the maximum transfer size on your ONTAP system accordingly.

Refer to the ONTAP documentation for details.

Note: To use NFS over RDMA, you must configure NFS over RDMA on your ONTAP system. Refer to the

ONTAP documentation for details.

Note: In the following example, a specific Backend is specified in the storagePool field in StorageClass

definition file.

14

https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/ontap/nfs-rdma/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.netapp.com/us-en/ontap/nfs-admin/nfsv3-nfsv4-performance-tcp-transfer-size-concept.html
https://docs.netapp.com/us-en/ontap/nfs-rdma/


$ cat << EOF > ./storage-class-aipod-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: aipod-flexgroups-retain

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "nconnect=16", "rsize=262144",

"wsize=262144"]

parameters:

  backendType: "ontap-nas-flexgroup"

  storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain created

$ cat << EOF > ./storage-class-aipod-flexgroups-retain-rdma.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: aipod-flexgroups-retain-rdma

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "proto=rdma", "max_connect=16",

"rsize=262144", "wsize=262144"]

parameters:

  backendType: "ontap-nas-flexgroup"

  storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain-rdma.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain-rdma created

$ kubectl get storageclass

NAME                             PROVISIONER             AGE

aipod-flexgroups-retain          csi.trident.netapp.io   0m

aipod-flexgroups-retain-rdma     csi.trident.netapp.io   0m

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident

Backend that you created in the section Example Trident Backends for AIPod Deployments, step 2. The

example commands that follow show the creation of a single StorageClass for FlexVol volumes.

Note: In the following example, a particular Backend is not specified in the storagePool field in

StorageClass definition file. When you use Kubernetes to administer volumes using this StorageClass,

Trident attempts to use any available backend that uses the ontap-nas driver.

15



$ cat << EOF > ./storage-class-aipod-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: aipod-flexvols-retain

provisioner: netapp.io/trident

parameters:

  backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexvols-retain.yaml

storageclass.storage.k8s.io/aipod-flexvols-retain created

$ kubectl get storageclass

NAME                             PROVISIONER             AGE

aipod-flexgroups-retain          csi.trident.netapp.io   0m

aipod-flexgroups-retain-rdma     csi.trident.netapp.io   0m

aipod-flexvols-retain            csi.trident.netapp.io   0m

Apache Airflow

Apache Airflow Deployment

This section describes the tasks that you must complete to deploy Airflow in your

Kubernetes cluster.

It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on

platforms other than Kubernetes is outside of the scope of this solution.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on

Trident, refer to the Trident documentation.

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you

must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the

installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The

Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no

16

https://docs.netapp.com/us-en/trident/index.html
https://helm.sh/docs/intro/install/


StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default

StorageClass within your cluster, follow the instructions outlined in the Kubeflow Deployment section. If you

have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump

host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the

Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,

and/or remove values in the custom- values.yaml file as needed depending on your environment and

desired configuration.

$ cat << EOF > custom-values.yaml

###################################

# Airflow - Common Configs

###################################

airflow:

  ## the airflow executor type to use

  ##

  executor: "CeleryExecutor"

  ## environment variables for the web/scheduler/worker Pods (for

airflow configs)

  ##

  #

###################################

# Airflow - WebUI Configs

###################################

web:

  ## configs for the Service of the web Pods

  ##

  service:

    type: NodePort

###################################

# Airflow - Logs Configs

###################################

logs:

  persistence:

    enabled: true

###################################

# Airflow - DAGs Configs

###################################

dags:

  ## configs for the DAG git repository & sync container

  ##

  gitSync:

    enabled: true

17

https://artifacthub.io/packages/helm/airflow-helm/airflow


    ## url of the git repository

    ##

    repo: "git@github.com:mboglesby/airflow-dev.git"

    ## the branch/tag/sha1 which we clone

    ##

    branch: master

    revision: HEAD

    ## the name of a pre-created secret containing files for ~/.ssh/

    ##

    ## NOTE:

    ## - this is ONLY RELEVANT for SSH git repos

    ## - the secret commonly includes files: id_rsa, id_rsa.pub,

known_hosts

    ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true

    ##

    sshSecret: "airflow-ssh-git-secret"

    ## the name of the private key file in your `git.secret`

    ##

    ## NOTE:

    ## - this is ONLY RELEVANT for PRIVATE SSH git repos

    ##

    sshSecretKey: id_rsa

    ## the git sync interval in seconds

    ##

    syncWait: 60

EOF

$ helm install airflow airflow-stable/airflow -n airflow --version 8.0.8

--values ./custom-values.yaml

...

Congratulations. You have just deployed Apache Airflow!

1. Get the Airflow Service URL by running these commands:

   export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

   export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

   echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.

18



$ kubectl -n airflow get pod

NAME                                READY   STATUS    RESTARTS   AGE

airflow-flower-b5656d44f-h8qjk      1/1     Running   0          2h

airflow-postgresql-0                1/1     Running   0          2h

airflow-redis-master-0              1/1     Running   0          2h

airflow-scheduler-9d95fcdf9-clf4b   2/2     Running   2          2h

airflow-web-59c94db9c5-z7rg4        1/1     Running   0          2h

airflow-worker-0                    2/2     Running   2          2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you

deployed Airflow using Helm in step 1.

$ export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT/

4. Confirm that you can access the Airflow web service.

19



Use the NetApp DataOps Toolkit with Airflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with Airflow.

Using the NetApp DataOps Toolkit with Airflow enables you to incorporate NetApp data

management operations, such as creating snapshots and clones, into automated

workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp DataOps Toolkit GitHub repository for details on using

the toolkit with Airflow.

JupyterHub

JupyterHub Deployment

This section describes the tasks that you must complete to deploy JupyterHub in your

Kubernetes cluster.

It is possible to deploy JupyterHub on platforms other than Kubernetes. Deploying JupyterHub

on platforms other than Kubernetes is outside of the scope of this solution.

20

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Airflow


Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on

Trident, refer to the Trident documentation.

Install Helm

JupyterHub is deployed using Helm, a popular package manager for Kubernetes. Before you deploy

JupyterHub, you must install Helm on your Kubernetes control node. To install Helm, follow the installation

instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy JupyterHub, you must designate a default StorageClass within your Kubernetes cluster. To

designate a default StorageClass within your cluster, follow the instructions outlined in the Kubeflow

Deployment section. If you have already designated a default StorageClass within your cluster, then you can

skip this step.

Deploy JupyterHub

After completing the steps above, you are now ready to deploy JupyterHub. JupyterHub deployment requires

the following steps:

Configure JupyterHub Deployment

Before deployment it is a good practice to optimize the JupyterHub deployment for your respective

environment. You can create a config.yaml file and utilize it during deployment using the Helm chart.

An example config.yaml file can be found at https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/HEAD/

jupyterhub/values.yaml

In this config.yaml file, you can set the (singleuser.storage.dynamic.storageClass) parameter

for the NetApp Trident StorageClass. This is the storage class that will be used to provision the

volumes for individual user workspaces.

Adding Shared Volumes

If you want to use a shared volume for all JupyterHub users you can adjust your config.yaml accordingly. For

example, if you have a shared PersistentVolumeClaim called jupyterhub-shared-volume you could mount it as

/home/shared in all user pods as:

21

https://docs.netapp.com/us-en/trident/index.html
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/HEAD/jupyterhub/values.yaml
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/HEAD/jupyterhub/values.yaml


singleuser:

  storage:

    extraVolumes:

      - name: jupyterhub-shared

        persistentVolumeClaim:

          claimName: jupyterhub-shared-volume

    extraVolumeMounts:

      - name: jupyterhub-shared

        mountPath: /home/shared

This is an optional step, you can adjust these parameters to your needs.

Deploy JupyterHub with Helm Chart

Make Helm aware of the JupyterHub Helm chart repository.

helm repo add jupyterhub https://hub.jupyter.org/helm-chart/

helm repo update

This should show output like:

Hang tight while we grab the latest from your chart repositories...

...Skip local chart repository

...Successfully got an update from the "stable" chart repository

...Successfully got an update from the "jupyterhub" chart repository

Update Complete. ⎈ Happy Helming!⎈

Now install the chart configured by your config.yaml by running this command from the directory that contains

your config.yaml:

helm upgrade --cleanup-on-fail \

  --install my-jupyterhub jupyterhub/jupyterhub \

  --namespace my-namespace \

  --create-namespace \

  --values config.yaml

In this example:

<helm-release-name> is set to my-jupyterhub, which will be the name of your JupyterHub release.

<k8s-namespace> is set to my-namespace, which is the namespace where you want to install JupyterHub.

The --create-namespace flag is used to create the namespace if it does not already exist.

The --values flag specifies the config.yaml file that contains your desired configuration options.

22



Check Deployment

While step 2 is running, you can see the pods being created from the following command:

kubectl get pod --namespace <k8s-namespace>

Wait for the hub and proxy pod to enter the Running state.

NAME                    READY     STATUS    RESTARTS   AGE

hub-5d4ffd57cf-k68z8    1/1       Running   0          37s

proxy-7cb9bc4cc-9bdlp   1/1       Running   0          37s

Access JupyterHub

Find the IP we can use to access the JupyterHub. Run the following command until the EXTERNAL-IP of the

proxy-public service is available like in the example output.

We used NodePort service in our config.yaml file, you can adjust for your environment based on

your setup (e.g LoadBalancer).

kubectl --namespace <k8s-namespace> get service proxy-public

NAME           TYPE           CLUSTER-IP     EXTERNAL-IP     PORT(S)

AGE

proxy-public   NodePort   10.51.248.230   104.196.41.97   80:30000/TCP

1m

To use JupyterHub, enter the external IP for the proxy-public service in to a browser.

Use the NetApp DataOps Toolkit with JupyterHub

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with JupyterHub.

Using the NetApp DataOps Toolkit with JupyterHub enables end users to create volume

snapshots for workspace backup and/or dataset-to-model traceability directly from within

a Jupyter Notebook.

Initial Setup

Before you can use the DataOps Toolkit with JupyterHub, you must grant appropriate permissions to the

Kubernetes service account that JupyterHub assigns to individual user Jupyter Notebook Server pods.

JupyterHub uses the service account that is specified by the singleuser.serviceAccountName variable in

your JupyterHub Helm chart configuration file.

23

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s


Create Cluster Role for DataOps Toolkit

First, create a cluster role named 'netapp-dataops' that has the required Kubernetes API permissions for

creating volume snapshots.

$ vi clusterrole-netapp-dataops-snapshots.yaml

---

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  name: netapp-dataops-snapshots

rules:

- apiGroups: [""]

  resources: ["persistentvolumeclaims", "persistentvolumeclaims/status",

"services"]

  verbs: ["get", "list"]

- apiGroups: ["snapshot.storage.k8s.io"]

  resources: ["volumesnapshots", "volumesnapshots/status",

"volumesnapshotcontents", "volumesnapshotcontents/status"]

  verbs: ["get", "list", "create"]

$ kubectl create -f clusterrole-netapp-dataops-snapshots.yaml

clusterrole.rbac.authorization.k8s.io/netapp-dataops-snapshots created

Assign Cluster Role to Notebook Server Service Account

Create a role binding that assigns the 'netapp-dataops-snapshots' cluster role to the appropriate service

account in the appropriate namespace. For example, if you installed JupyterHub in the 'jupyterhub'

namespace, and you specified the 'default' service account via the singleuser.serviceAccountName

variable, you would assign the the 'netapp-dataops-snapshots' cluster role to the 'default' service account in the

'jupyterhub' namespace as shown in the following example.

24



$ vi rolebinding-jupyterhub-netapp-dataops-snapshots.yaml

---

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  name: jupyterhub-netapp-dataops-snapshots

  namespace: jupyterhub # Replace with you JupyterHub namespace

subjects:

- kind: ServiceAccount

  name: default # Replace with your JupyterHub

singleuser.serviceAccountName

  namespace: jupyterhub # Replace with you JupyterHub namespace

roleRef:

  kind: ClusterRole

  name: netapp-dataops-snapshots

  apiGroup: rbac.authorization.k8s.io

$ kubectl create -f ./rolebinding-jupyterhub-netapp-dataops-snapshots.yaml

rolebinding.rbac.authorization.k8s.io/jupyterhub-netapp-dataops-snapshots

created

Create Volume Snapshots Within Jupyter Notebook

Now, JupyterHub users can use the NetApp DataOps Toolkit to create volume snapshots directly from within a

Jupyter Notebook as shown in the following example.

25



Ingest Data into JupyterHub with NetApp SnapMirror

NetApp SnapMirror is a replication technology that enables you to replicate data between

NetApp storage systems. SnapMirror can be used to ingest data from remote

environments into JupyterHub.

Example Worklfow and Demo

Refer to this Tech ONTAP blog post for a detailed example workflow and demo of using NetApp SnapMirror to

ingest data into JupyterHub.

MLflow

MLflow Deployment

This section describes the tasks that you must complete to deploy MLflow in your

Kubernetes cluster.

It is possible to deploy MLflow on platforms other than Kubernetes. Deploying MLflow on

platforms other than Kubernetes is outside of the scope of this solution.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on

Trident, refer to the Trident documentation.

Install Helm

MLflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy MLflow, you

must install Helm on your Kubernetes control node. To install Helm, follow the installation instructions in the

official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy MLflow, you must designate a default StorageClass within your Kubernetes cluster. To

designate a default StorageClass within your cluster, follow the instructions outlined in the Kubeflow

Deployment section. If you have already designated a default StorageClass within your cluster, then you can

skip this step.

Deploy MLflow

Once the pre-requisites have been met, you can start with MLflow deployment using the helm chart.

Configure MLflow Helm Chart Deployment.

Before we deploy MLflow using the Helm chart, we can configure the deployment to use NetApp Trident

Storage Class and change other parameters to suit our needs using a config.yaml file. An example of

26

https://community.netapp.com/t5/Tech-ONTAP-Blogs/Accelerating-Data-Ingestion-and-AI-ML-Experimentation-with-NetApp-SnapMirror-and/ba-p/457814
https://docs.netapp.com/us-en/trident/index.html
https://helm.sh/docs/intro/install/


config.yaml file can be found at: https://github.com/bitnami/charts/blob/main/bitnami/mlflow/values.yaml

You can set the Trident storageClass under the global.defaultStorageClass parameter in the

config.yaml file (e.g. storageClass: "ontap-flexvol").

Installing the Helm Chart

The Helm chart can be installed with the custom config.yaml file for MLflow using the following command:

helm install oci://registry-1.docker.io/bitnamicharts/mlflow -f

config.yaml --generate-name --namespace jupyterhub

The command deploys MLflow on the Kubernetes cluster in the custom configuration via the

provided config.yaml file. MLflow is deployed in the given namespace and a random release

name is given via kubernetes for the release.

Check Deployment

After the Helm chart is done deploying, you can check if the service is accessible using:

kubectl get service -n jupyterhub

Replace jupyterhub with the namespace you used during deployment.

You should see the following services:

NAME                              TYPE        CLUSTER-IP      EXTERNAL-IP

PORT(S)           AGE

mlflow-1719843029-minio           ClusterIP   10.233.22.4     <none>

80/TCP,9001/TCP   25d

mlflow-1719843029-postgresql      ClusterIP   10.233.5.141    <none>

5432/TCP          25d

mlflow-1719843029-postgresql-hl   ClusterIP   None            <none>

5432/TCP          25d

mlflow-1719843029-tracking        NodePort    10.233.2.158    <none>

30002:30002/TCP   25d

We edited the config.yaml file to use NodePort service to access MLflow on port 30002.

Access MLflow

Once all the services related to MLflow are up and running you can access it using the given NodePort or

LoadBalancer IP address (e.g. http://10.61.181.109:30002)

27

https://github.com/bitnami/charts/blob/main/bitnami/mlflow/values.yaml
http://10.61.181.109:30002


Dataset-to-model Traceability with NetApp and MLflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with MLflow’s

experiment tracking capabilities in order to implement dataset-to-model or workspace-to-

model traceability.

To implement dataset-to-model or workspace-to-model traceability, simply create a snapshot of your dataset or

workspace volume using the DataOps Toolkit as part of your training run, as shown the following example code

snippet. This code will save the data volume name and snapshot name as tags associated with the specific

training run that you are logging to your MLflow experiment tracking server.

...

from netapp_dataops.k8s import create_volume_snapshot

with mlflow.start_run() :

    ...

    namespace = "my_namespace" # Kubernetes namespace in which dataset

volume PVC resides

    dataset_volume_name = "project1" # Name of PVC corresponding to

dataset volume

    snapshot_name = "run1" # Name to assign to your new snapshot

    # Create snapshot

    create_volume_snapshot(

        namespace=namespace,

        pvc_name=dataset_volume_name,

        snapshot_name=snapshot_name,

        printOutput=True

    )

    # Log data volume name and snapshot name as "tags"

    # associated with this training run in mlflow.

    mlflow.set_tag("data_volume_name", dataset_volume_name)

    mlflow.set_tag("snapshot_name", snapshot_name)

    ...

Kubeflow

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your

Kubernetes cluster.

28

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s


Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is

supported by the Kubeflow version that you intend to deploy. For a list of supported Kubernetes versions,

refer to the dependencies for your Kubeflow version in the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on

Trident, refer to the Trident documentation.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, we recommend designating a default StorageClass within your Kubernetes

cluster. The Kubeflow deployment process may attempt to provision new persistent volumes using the default

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment may fail. To

designate a default StorageClass within your cluster, perform the following task from the deployment jump

host. If you have already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that

follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the default

StorageClass.

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly

large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.

Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup

Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME                                PROVISIONER             AGE

ontap-ai-flexgroups-retain          csi.trident.netapp.io   25h

ontap-ai-flexgroups-retain-iface1   csi.trident.netapp.io   25h

ontap-ai-flexgroups-retain-iface2   csi.trident.netapp.io   25h

ontap-ai-flexvols-retain            csi.trident.netapp.io   3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME                                 PROVISIONER             AGE

ontap-ai-flexgroups-retain           csi.trident.netapp.io   25h

ontap-ai-flexgroups-retain-iface1    csi.trident.netapp.io   25h

ontap-ai-flexgroups-retain-iface2    csi.trident.netapp.io   25h

ontap-ai-flexvols-retain (default)   csi.trident.netapp.io   54s

Kubeflow Deployment Options

There are many different options for deploying Kubeflow. Refer to the official Kubeflow documentation for a list

of deployment options, and choose the option that is the best fit for your needs.

29

https://www.kubeflow.org/docs/releases/
https://docs.netapp.com/us-en/trident/index.html
https://www.kubeflow.org/docs/started/installing-kubeflow/


For validation purposes, we deployed Kubeflow 1.7 using deployKF 0.1.1.

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data

scientist workspaces. For more information about Jupyter Notebooks within the Kubeflow

context, see the official Kubeflow documentation.

Use the NetApp DataOps Toolkit with Kubeflow

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with

Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following

benefits:

• Data scientists can perform advanced NetApp data management operations, such as creating snapshots

and clones, directly from within a Jupyter Notebook.

• Advanced NetApp data management operations, such as creating snapshots and clones, can be

incorporated into automated workflows using the Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details

on using the toolkit with Kubeflow.

Example Workflow - Train an Image Recognition Model Using Kubeflow and the
NetApp DataOps Toolkit

This section describes the steps involved in training and deploying a Neural Network for

Image Recognition using Kubeflow and the NetApp DataOps Toolkit. This is intended to

serve as an example to show a training job that incorporates NetApp storage.

30

https://www.deploykf.org
https://www.kubeflow.org/docs/components/notebooks/
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow


Prerequisites

Create a Dockerfile with the required configurations to use for the train and test steps within the Kubeflow

pipeline.

Here is an example of a Dockerfile -

FROM pytorch/pytorch:latest

RUN pip install torchvision numpy scikit-learn matplotlib tensorboard

WORKDIR /app

COPY . /app

COPY train_mnist.py /app/train_mnist.py

CMD ["python", "train_mnist.py"]

Depending on your requirements, install all required libraries and packages needed to run the program. Before

you train the Machine Learning model, it is assumed that you already have a working Kubeflow deployment.

Train a Small NN on MNIST Data Using PyTorch and Kubeflow Pipelines

We use the example of a small Neural Network trained on MNIST data. The MNIST dataset consists of

handwritten images of digits from 0-9. The images are 28x28 pixels in size. The dataset is divided into 60,000

train images and 10,000 validation images. The Neural Network used for this experiment is a 2-layer

feedforward network. Training is executed using Kubeflow Pipelines. Refer to the documentation here for more

information. Our Kubeflow pipeline incorporates the docker image from the Prerequisites section.

Visualize Results Using Tensorboard

Once the model is trained, we can visualize the results using Tensorboard. Tensorboard is available as a

31

https://www.kubeflow.org/docs/components/pipelines/v1/introduction/
https://www.tensorflow.org/tensorboard


feature on the Kubeflow Dashboard. You can create a custom tensorboard for your job. An example below

shows the plot of training accuracy vs. number of epochs and training loss vs. number of epochs.

Experiment with Hyperparameters Using Katib

Katib is a tool within Kubeflow that can be used to experiment with the model hyperparameters. To create an

experiment, define a desired metric/goal first. This is usually the test accuracy. Once the metric is defined,

choose hyperparameters that you would like to play around with (optimizer/learning_rate/number of layers).

Katib does a hyperparameter sweep with the user-defined values to find the best combination of parameters

that satisfy the desired metric. You can define these parameters in each section in the UI. Alternatively, you

could define a YAML file with the necessary specifications. Below is an illustration of a Katib experiment -

32

https://www.kubeflow.org/docs/components/katib/hyperparameter/


Use NetApp Snapshots to Save Data for Traceability

During the model training, we may want to save a snapshot of the training dataset for traceability. To do this,

we can add a snapshot step to the pipeline as shown below. To create the snapshot, we can use the NetApp

DataOps Toolkit for Kubernetes.

Refer to the NetApp DataOps Toolkit example for Kubeflow for more information.

Example Trident Operations

This section includes examples of various operations that you may want to perform with

Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers

within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these

volumes. You can use the Trident volume import functionality to import these volumes.

33

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow


The example commands that follow show the importing of a volume named pb_fg_all. For more information

about PVCs, see the official Kubernetes documentation. For more information about the volume import

functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information

about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pb-fg-all-iface1

  namespace: default

spec:

  accessModes:

    - ReadOnlyMany

  storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-

import-pb_fg_all-iface1.yaml -n trident

+--------------------------------+--------

+-----------------------------------+----------

+--------------------------------------------+--------+---------+

|          NAME                  |  SIZE  |       STORAGE CLASS

| PROTOCOL |             BACKEND UUID                         | STATE  |

MANAGED |

+--------------------------------+--------

+-----------------------------------+----------

+------------------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file     | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

|

+--------------------------------+--------

+-----------------------------------+----------

+--------------------------------------------+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

|               NAME               |  SIZE   |           STORAGE CLASS

| PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1   | 10 TiB  | ontap-ai-flexgroups-retain-

iface1 | file     | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

34

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.netapp.com/us-en/trident/index.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


|

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

$ kubectl get pvc

NAME                 STATUS   VOLUME                             CAPACITY

ACCESS MODES   STORAGECLASS                        AGE

pb-fg-all-iface1     Bound    default-pb-fg-all-iface1-7d9f1

10995116277760   ROX            ontap-ai-flexgroups-retain-iface1   25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform.

Provision a New Volume Using kubectl

The following example commands show the provisioning of a new FlexVol volume using kubectl.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more

information about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: tensorflow-results

spec:

  accessModes:

    - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME                              STATUS    VOLUME

CAPACITY         ACCESS MODES   STORAGECLASS                        AGE

pb-fg-all-iface1                  Bound     default-pb-fg-all-iface1-7d9f1

10995116277760   ROX            ontap-ai-flexgroups-retain-iface1   26h

tensorflow-results                Bound     default-tensorflow-results-

2fd60   1073741824       RWX            ontap-ai-flexvols-retain

25h

35

https://kubernetes.io/docs/concepts/storage/persistent-volumes/


Provision a New Volume Using the NetApp DataOps Toolkit

You can also use the NetApp DataOps Toolkit for Kubernetes to provision a new volume on your NetApp

storage system or platform. The NetApp DataOps Toolkit for Kubernetes utilizes Trident to provision volumes

but simplifies the process for the user. Refer to the documentation for details.

Example high-performance jobs for AIPod deployments

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following

tasks from the deployment jump host. With Trident, you can quickly and easily make a

data volume, potentially containing petabytes of data, accessible to a Kubernetes

workload. To make such a data volume accessible from within a Kubernetes pod, simply

specify a PVC in the pod definition.

This section assumes that you have already containerized (in the Docker container format) the

specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark

workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the

ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features

eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring

eight or more GPUs is not present or is currently occupied with another workload. If so, then the job

remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is

mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second

volume will be used to store results and metrics. These volumes are referenced in the job definition by

using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes

documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by the

Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir

volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more

information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the host.

This annotation is used in this case because the specific workload that is being executed requires root

access. Specifically, a clear cache operation that the workload performs requires root access. Whether or

not this privileged: true annotation is necessary depends on the requirements of the specific

workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

36

https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/volume_management.md
http://www.image-net.org
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/


metadata:

  name: netapp-tensorflow-single-imagenet

spec:

  backoffLimit: 5

  template:

    spec:

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--

num_devices=8"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1

          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

      restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME                                       COMPLETIONS   DURATION   AGE

netapp-tensorflow-single-imagenet          0/1           24s        24s

37



2. Confirm that the job that you created in step 1 is running correctly. The following example command

confirms that a single pod was created for the job, as specified in the job definition, and that this pod is

currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME                                             READY   STATUS

RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92          1/1     Running     0

3m    10.233.68.61    10.61.218.154   <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands

confirm that the job completed successfully.

38



$ kubectl get jobs

NAME                                             COMPLETIONS   DURATION

AGE

netapp-tensorflow-single-imagenet                1/1           5m42s

10m

$ kubectl get pods

NAME                                                   READY   STATUS

RESTARTS   AGE

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed

0          11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

=========================================

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by

slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000

--datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_ima

genet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that

was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.

39



$ kubectl get jobs

NAME                                             COMPLETIONS   DURATION

AGE

netapp-tensorflow-single-imagenet                1/1           5m42s

10m

$ kubectl get pods

NAME                                                   READY   STATUS

RESTARTS   AGE

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed

0          11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform

the following tasks on the deployment jump host. This process enables you to take

advantage of data that is stored on a NetApp volume and to use more GPUs than a

single worker node can provide. See the following figure for a depiction of a synchronous

distributed AI job.

Synchronous distributed jobs can help increase performance and training accuracy compared

with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs

versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous

distributed execution of the same TensorFlow benchmark job that was executed on a single node in the

example in the section Execute a Single-Node AI Workload. In this specific example, only a single worker

is deployed because the job is executed across two worker nodes.

40



This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that

features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize

performance, you might want to increase this number to be equal to the number of GPUs that your worker

nodes feature. For more information about Kubernetes deployments, see the official Kubernetes

documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would

never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job

construct. If your worker is designed or written to complete on its own, then it might make sense to use the

job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.

This value means that the pod uses the host worker node’s networking stack instead of the virtual

networking stack that Kubernetes usually creates for each pod. This annotation is used in this case

because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a

synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion

about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this

hostNetwork: true annotation is necessary depends on the requirements of the specific workload that

you are executing. For more information about the hostNetwork field, see the official Kubernetes

documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: netapp-tensorflow-multi-imagenet-worker

spec:

  replicas: 1

  selector:

    matchLabels:

      app: netapp-tensorflow-multi-imagenet-worker

  template:

    metadata:

      labels:

        app: netapp-tensorflow-multi-imagenet-worker

    spec:

      hostNetwork: true

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

41

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/


          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["bash", "/netapp/scripts/start-slave-multi.sh",

"22122"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1

          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME                                      DESIRED   CURRENT   UP-TO-DATE

AVAILABLE   AGE

netapp-tensorflow-multi-imagenet-worker   1         1         1

1           4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following

example commands confirm that a single worker pod was created for the deployment, as indicated in the

deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME                                                       READY

STATUS    RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running   0          60s   10.61.218.154   10.61.218.154   <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the

synchronous multinode job. The following example commands create one master that kicks off, participates

in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was

executed on a single node in the example in the section Execute a Single-Node AI Workload.

42



This example master job requests eight GPUs and thus can run on a single GPU worker node that features

eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,

you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just

as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why

this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: netapp-tensorflow-multi-imagenet-master

spec:

  backoffLimit: 5

  template:

    spec:

      hostNetwork: true

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--

num_devices=16", "--dgx_version=dgx1", "--

nodes=10.61.218.152,10.61.218.154"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1

43



          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

      restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   0/1           25s        25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command

confirms that a single master pod was created for the job, as indicated in the job definition, and that this

pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you

originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME                                                       READY

STATUS    RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj              1/1

Running   0          45s   10.61.218.152   10.61.218.152   <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running   0          26m   10.61.218.154   10.61.218.154   <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example

commands confirm that the job completed successfully.

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      9m18s

$ kubectl get pods

NAME                                                       READY

STATUS      RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1

Completed   0          9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running     0          35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled

shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

44



line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca

pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

=========================================

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8

-bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -x

NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x

NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094

-x NCCL_IB_CUDA_SUPPORT=1 -mca orte_base_help_aggregate 0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_im

agenet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show the

deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker

pods.

45



$ kubectl get deployments

NAME                                      DESIRED   CURRENT   UP-TO-DATE

AVAILABLE   AGE

netapp-tensorflow-multi-imagenet-worker   1         1         1

1           43m

$ kubectl get pods

NAME                                                       READY

STATUS      RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1

Completed   0          17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running     0          43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME                                            READY   STATUS

RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0

18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the

master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      19m

$ kubectl get pods

NAME                                            READY   STATUS

RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0

19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

46



Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

47

http://www.netapp.com/TM

	Open Source MLOps with NetApp : NetApp artificial intelligence solutions
	Table of Contents
	Open Source MLOps with NetApp
	Open Source MLOps with NetApp
	Technology Overview
	Artificial Intelligence
	Containers
	Kubernetes
	NetApp Trident
	NetApp DataOps Toolkit
	Apache Airflow
	Jupyter Notebook
	JupyterHub
	MLflow
	Kubeflow
	NetApp ONTAP
	NetApp Snapshot Copies
	NetApp FlexClone Technology
	NetApp SnapMirror Data Replication Technology
	NetApp BlueXP Copy and Sync
	NetApp XCP
	NetApp ONTAP FlexGroup Volumes

	Architecture
	Apache Airflow Validation Environment
	JupyterHub Validation Environment
	MLflow Validation Environment
	Kubeflow Validation Environment
	Support

	NetApp Trident configuration
	Example Trident Backends for NetApp AIPod Deployments
	Example Kubernetes StorageClasses for NetApp AIPod Deployments

	Apache Airflow
	Apache Airflow Deployment
	Use the NetApp DataOps Toolkit with Airflow

	JupyterHub
	JupyterHub Deployment
	Use the NetApp DataOps Toolkit with JupyterHub
	Ingest Data into JupyterHub with NetApp SnapMirror

	MLflow
	MLflow Deployment
	Dataset-to-model Traceability with NetApp and MLflow

	Kubeflow
	Kubeflow Deployment
	Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use
	Use the NetApp DataOps Toolkit with Kubeflow
	Example Workflow - Train an Image Recognition Model Using Kubeflow and the NetApp DataOps Toolkit

	Example Trident Operations
	Import an Existing Volume
	Provision a New Volume

	Example high-performance jobs for AIPod deployments
	Execute a Single-Node AI Workload
	Execute a Synchronous Distributed AI Workload



