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Companies and organizations of all sizes and across many industries are turning to
artificial intelligence (Al) to solve real-world problems, deliver innovative products and
services, and to get an edge in an increasingly competitive marketplace. Many
organizations are turning to open-source MLOps tools in order to keep up with the rapid
pace of innovation in the industry. These open-source tools offer advanced capabilities
and cutting-edge features, but often don’t account for data availability and data security.
Unfortunately, this means that highly-skilled data scientists are forced to spend a
significant amount of time waiting to gain access to data or waiting for rudimentary data-
related operations to complete. By pairing popular open-source MLOps tools with an
intelligent data infrastructure from NetApp, organizations can accelerate their data
pipelines, which, in turn, accelerates their Al initiatives. They can unlock value from their
data while ensuring that it remains protected and secure. This solution demonstrates the
pairing of NetApp data management capabilities with several popular open-source tools
and frameworks in order to address these challenges.

The following list highlights some key capabilities that are enabled by this solution:
* Users can rapidly provision new high-capacity data volumes and development workspaces that are backed

by high-performance, scale-out NetApp storage.

» Users can near-instantaneously clone high-capacity data volumes and development workspaces in order
to enable experimentation or rapid iteration.

« Users can near-instantaneously save snapshots of high-capacity data volumes and development
workspaces for backup and/or traceability/baselining.
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A typical MLOps workflow incorporates development workspaces, usually taking the form of Jupyter
Notebooks; experiment tracking; automated training pipelines; data pipelines; and inference/deployment. This
solution highlights several different tools and frameworks that can be used independently or in conjunction to
address the different aspects of the workflow. We also demonstrate the pairing of NetApp data management
capabilities with each of these tools. This solution is intended to offer building blocks from which an
organization can construct a customized MLOps workflow that is specific to their uses cases and requirements.

The following tools/frameworks are covered in this solution:

» Apache Airflow
» JupyterHub

* Kubeflow

* MLflow

The following list describes common patterns for deploying these tools independently or in conjunction.

* Deploy JupyterHub, MLflow, and Apache Airflow in conjunction - JupyterHub for Jupyter Notebooks,
MLflow for experiment tracking, and Apache Airflow for automated training and data pipelines.

* Deploy Kubeflow and Apache Airflow in conjunction - Kubeflow for Jupyter Notebooks, experiment tracking,
automated training pipelines, and inference; and Apache Airflow for data pipelines.

* Deploy Kubeflow as an all-in-one MLOps platform solution for Jupyter Notebooks, experiment tracking,
automated training and data pipelines, and inference.

Technology Overview

This section focuses on the technology overview for OpenSource MLOps with NetApp.

Artificial Intelligence

Al is a computer science discipline in which computers are trained to mimic the cognitive functions of the
human mind. Al developers train computers to learn and to solve problems in a manner that is similar to, or
even superior to, humans. Deep learning and machine learning are subfields of Al. Organizations are
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increasingly adopting Al, ML, and DL to support their critical business needs. Some examples are as follows:

* Analyzing large amounts of data to unearth previously unknown business insights
* Interacting directly with customers by using natural language processing

» Automating various business processes and functions

Modern Al training and inference workloads require massively parallel computing capabilities. Therefore, GPUs
are increasingly being used to execute Al operations because the parallel processing capabilities of GPUs are
vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The
adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits
that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that
VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a
visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with
an application. The most commonly used container packaging format is the Docker container. An application
that has been containerized in the Docker container format can be executed on any machine that can run
Docker containers. This is true even if the application’s dependencies are not present on the machine because
all dependencies are packaged in the container itself. For more information, visit the Docker website.

Application A Application B

Dependencies Dependencies

Application A Application B

Guest Operating System Guest Operating System
Dependencies

Host Operating System Host Operating System

Physical Infrastructure Physical Infrastructure

Vitual Machines (VMs) Containers

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by
Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the
automation of deployment, management, and scaling functions for containerized applications. In recent years,
Kubernetes has emerged as the dominant container orchestration platform. For more information, visit the
Kubernetes website.
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NetApp Trident

Trident enables consumption and management of storage resources across all popular NetApp storage
platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx
ONTAP), Azure NetApp Files service, and Google Cloud NetApp Volumes. Trident is a Container Storage
Interface (CSI) compliant dynamic storage orchestrator that natively integrates with Kubernetes.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training
workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key
capabilities include:

» Rapidly provision new high-capacity workspaces that are backed by high-performance, scale-out NetApp
storage.

* Near-instaneously clone high-capacity workspaces in order to enable experimentation or rapid iteration.

» Near-instaneously save snapshots of high-capacity workspaces for backup and/or traceability/baselining.

» Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,
scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data
pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb
but has since become very popular in the industry and now falls under the auspices of The Apache Software
Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is
designed under the principle of "configuration as code." Many enterprise Airflow users now run Airflow on top
of Kubernetes.

Directed Acyclic Graphs (DAGS)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed
in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler
executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in
the DAG definition. DAGs are defined and created via Python scripts.

Jupyter Notebook

Jupyter Notebooks are wiki-like documents that contain live code as well as descriptive text. Jupyter
Notebooks are widely used in the Al and ML community as a means of documenting, storing, and sharing Al
and ML projects. For more information on Jupyter Notebooks, visit the Jupyter website.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows users to create Jupyter Notebooks.

JupyterHub

JupyterHub is a multi-user application that enables an individual user to provision and access their own Jupyter
Notebook server. For more information on JupyterHub, visit the JupyterHub website.
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MLflow

MLflow is a popular open source Al lifecycle management platform. Key features of MLflow include Al/ML
experiment tracking and an Al/ML model repository. For more information on MLflow, visit the MLflow website.

Kubeflow

Kubeflow is an open source Al and ML toolkit for Kubernetes that was originally developed by Google. The
Kubeflow project makes deployments of Al and ML workflows on Kubernetes simple, portable, and scalable.
Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know
best — data science. See the following figure for a visualization. Kubeflow is a good open-source option for
organizations that prefer an all-in-one MLOps platform. For more information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for
defining and deploying portable and scalable Al and ML workflows. For more information, see the official
Kubeflow documentation.

Kubeflow Notebooks

Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more
information about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

Katib

Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports hyperparameter
tuning, early stopping and neural architecture search (NAS). Katib is the project which is agnostic to machine
learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users'
choice and natively supports many ML frameworks, such as TensorFlow, MXNet, PyTorch, XGBoost, and
others. Katib supports a lot of various AutoML algorithms, such as Bayesian optimization, Tree of Parzen
Estimators, Random Search, Covariance Matrix Adaptation Evolution Strategy, Hyperband, Efficient Neural
Architecture Search, Differentiable Architecture Search and many more. For more information about Jupyter
Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for Al applications and training Al/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

* Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
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storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

* Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

* NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

» Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

» Data protection. ONTAP provides built-in data protection capabilities with common management across all
platforms.

* NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

* Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the
highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

« Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies without
costly data migrations or outages.

* Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage and cloud-native instances in all public clouds.

* Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal
storage space and incurs negligible performance overhead because it only records changes to files create
since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere
File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a
database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the
metadata. It's because ONTAP references metadata when it creates a Snapshot copy, rather than copying
data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur
in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.
ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or
damaged object, without downtime or a significant performance cost.


https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf
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A Snapshot copy records only changes to the active file
system since the last Shapshot copy.

NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a
volume. Copies share data blocks with their parents, consuming no storage except what is required for
metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can
take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost
instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a
development workspace, for example) or temporary copies of a dataset (testing an application against a

production dataset).
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FlexClone copies share data blocks with their parents, consuming no
storage except what is required for metadata.

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It
replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for
applications of all types, including business critical applications in both virtual and traditional environments.
When you replicate data to one or more NetApp storage systems and continually update the secondary data,
your data is kept current and is available whenever you need it. No external replication servers are required.
See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the
network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce
network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication
data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,
reducing network traffic by up to 50%.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to
transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, Google
Cloud NetApp Volumes, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM
Cloud Object Storage, BlueXP Copy and Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. BlueXP Copy and Sync can
sync data on-demand when an update is triggered or continuously sync data based on a predefined schedule.
Regardless, BlueXP Copy and Sync only moves the deltas, so time and money spent on data replication is
minimized.

BlueXP Copy and Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data
transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. BlueXP Copy and Sync
data brokers can be deployed in AWS, Azure, Google Cloud Platform, or on-premises.


https://bluexp.netapp.com/cloud-sync-service

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system
insights. XCP is designed to scale and achieve maximum performance by utilizing all available system
resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete
visibility into the file system with the option to generate reports.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and
other forms of unstructured data that must be stored and processed to be read in parallel. The storage system
must store large numbers of small files and must read those files in parallel for sequential and random 1/O.

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in
the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a
NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not
striped across volumes or nodes. They enable the following capabilities:

» FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata
workloads.
* They support up to 400 billion files in the same namespace.

* They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent
FlexVol volumes.

HA PAIR HA PAIR

L [FlexGroup

Architecture

This solution is not dependent on specific hardware. The solution is compatible with any
NetApp physical storage appliance, software-defined instance, or cloud service, that is
supported by NetApp Trident. Examples include a NetApp AFF storage system, Amazon
FSx ONTAP, Azure NetApp Files, Google Cloud NetApp Volumes, or a NetApp Cloud
Volumes ONTAP instance. Additionally, the solution can be implemented on any
Kubernetes cluster as long as the Kubernetes version used is supported by NetApp


https://xcp.netapp.com/

Trident and the other solution components that are being implemented. For a list of
Kubernetes versions that are supported by Trident, see the Trident documentation. See
the following tables for details on the environments that were used to validate the various

components of this solution.

Apache Airflow Validation Environment

Software Component
Apache Airflow
Kubernetes

NetApp Trident

JupyterHub Validation Environment

Software Component
JupyterHub
Kubernetes

NetApp Trident

MLflow Validation Environment

Software Component
MLflow
Kubernetes

NetApp Trident

Kubeflow Validation Environment

Software Component
Kubeflow
Kubernetes

NetApp Trident

Support

Version

2.0.1, deployed via Apache Airflow Helm chart 8.0.8
1.18

21.01

Version

4.1.5, deployed via JupyterHub Helm chart 3.3.7
1.29

24.02

Version

2.14.1, deployed via MLflow Helm chart 1.4.12
1.29

24.02

Version

1.7, deployed via deployKF 0.1.1
1.26

23.07

NetApp does not offer enterprise support for Apache Airflow, JupyterHub, MLflow, Kubeflow, or Kubernetes. If
you are interested in a fully supported MLOps platform, contact NetApp about fully supported MLOps solutions

that NetApp offers jointly with partners.

NetApp Trident configuration
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Example Trident Backends for NetApp AlPod Deployments

Before you can use Trident to dynamically provision storage resources within your
Kubernetes cluster, you must create one or more Trident Backends. The examples that
follow represent different types of Backends that you might want to create if you are
deploying components of this solution on a NetApp AlPod. For more information about
Backends, and for example backends for other platforms/environments, see the Trident
documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for your AlPod.

The example commands that follow show the creation of a FlexGroup-enabled Trident Backend for an
AlPod storage virtual machine (SVM). This Backend uses the ontap-nas-flexgroup storage driver.

ONTAP supports two main data volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as

of this writing, the maximum size depends on the specific deployment). FlexGroup volumes, on the other
hand, can scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly
simplifies data management. Therefore, FlexGroup volumes are optimal for Al and ML workloads that rely
on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup
volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-
nas-flexgroup storage driver.

11
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$ cat << EOF > ./trident-backend-aipod-flexgroups-ifacel.json
{

"version": 1,

"storageDriverName": "ontap-nas-flexgroup",
"backendName": "aipod-flexgroups-ifacel",
"managementLIF": "10.61.218.100",
"dataLIF": "192.168.11.11",

"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"

}

EQOF

$ tridentctl create backend -f ./trident-backend-aipod-flexgroups-
ifacel.json -n trident

o o
e et e it fom - +

| NAME | STORAGE DRIVER | UUID
| STATE | VOLUMES |

o o
e tom pom - +

| aipod-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6dabdecObdd | online | 0 |

fessmesesmess e e soss=a== fresssssesmess o= ===
fes==s=ssssscscscssossssssssssssss=sa== femem==== foms=m==== ¥

$ tridentctl get backend -n trident

femsmesesess e e soss=a== fresssesmemese o= ===
fesssssssssscsesessosssassssassssasmaaa femmm==== fommsm==a= 4

| NAME | STORAGE DRIVER | UUID
| STATE | VOLUMES |

fesssssssscsssescasossas= femsssssssessssosasaa=

i e S from e T 4

| aipod-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-
b263-b6dabdecObdd | online | 0 |

2. NetApp also recommends creating a FlexVol- enabled Trident Backend. You may want to use FlexVol
volumes for hosting persistent applications, storing results, output, debug information, and so on. If you
want to use FlexVol volumes, you must create one or more FlexVol- enabled Trident Backends. The
example commands that follow show the creation of a single FlexVol- enabled Trident Backend.

12



$ cat << EOF > ./trident-backend-aipod-flexvols.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "aipod-flexvols",
"managementLIF": "10.61.218.100",
"dataLIF": "192.168.11.11",
"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexvols.json -n
trident

Fommmmmmemoososmesonoomoms Fommmmmmemenoneososoos
o - e fomm - +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

fmm fmm
Fommmmmmmmesesessse s s e e o= Pommmmmm== +

| aipod-flexvols | ontap-nas | 52bdb3bl-13a5-4513-a9cl-
52a690657fabe | online | 0 |

Rttt P csseseseme=
Fommmmmmrmessrrrrrrr e reme e e e e o Fommmmom= Fommmmmom= +

$ tridentctl get backend -n trident

Rttt P cemsmesememe=
Fommmmmmrmesrrrrrrrre e meme s e emm o Frommmmom= Fommmmmom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

e e e e
Fommmmcccosssssrsrss e e s T E e e S e e Fommmmmm= Fommmmmmm= +

| aipod-flexvols | ontap-nas | 52bdb3bl-13a5-4513-a9cl-
52a69657fabe | online | 0 |

| aipod-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-
bo6daocdecObdd | online | 0 |

Example Kubernetes StorageClasses for NetApp AlPod Deployments

Before you can use Trident to dynamically provision storage resources within your
Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The
examples that follow represent different types of StorageClasses that you might want to
create if you are deploying components of this solution on a NetApp AlPod. For more
information about StorageClasses, and for example StorageClasses for other


https://docs.netapp.com/us-en/netapp-solutions-ai/infra/ai-aipod-nv-intro.html

platforms/environments, see the Trident documentation.

1.

14

NetApp recommends creating a StorageClass for the FlexGroup-enabled Trident Backend that you created
in the section Example Trident Backends for NetApp AlPod Deployments, step 1. The example commands
that follow show the creation of multiple StorageClasses that correspond to the example Backend that was
created in the section Example Trident Backends for NetApp AlPod Deployments, step 1 - one that utilizes
NFS over RDMA and one that does not.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,
the following example uses a reclaimPolicy value of Retain. For more information about the
reclaimPolicy field, see the official Kubernetes documentation.

Note: The following example StorageClasses use a maximum transfer size of 262144. To use this
maximum transfer size, you must configure the maximum transfer size on your ONTAP system accordingly.
Refer to the ONTAP documentation for details.

Note: To use NFS over RDMA, you must configure NFS over RDMA on your ONTAP system. Refer to the
ONTAP documentation for details.

Note: In the following example, a specific Backend is specified in the storagePool field in StorageClass
definition file.


https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/ontap/nfs-rdma/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.netapp.com/us-en/ontap/nfs-admin/nfsv3-nfsv4-performance-tcp-transfer-size-concept.html
https://docs.netapp.com/us-en/ontap/nfs-rdma/

$ cat << EOF > ./storage-class-aipod-flexgroups-retain.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: aipod-flexgroups-retain
provisioner: csi.trident.netapp.io
mountOptions: ["vers=4.1", "nconnect=16", "rsize=262144",
"wsize=262144"]
parameters:
backendType: "ontap-nas-flexgroup"
storagePools: "aipod-flexgroups-ifacel:.*"
reclaimPolicy: Retain
EQOF
$ kubectl create -f ./storage-class-aipod-flexgroups-retain.yaml
storageclass.storage.k8s.io/aipod-flexgroups-retain created
$ cat << EOF > ./storage-class-aipod-flexgroups-retain-rdma.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: aipod-flexgroups-retain-rdma

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "proto=rdma", "max connect=1l6",
"rsize=262144", "wsize=262144"]
parameters:

backendType: "ontap-nas-flexgroup"
storagePools: "aipod-flexgroups-ifacel:.*"
reclaimPolicy: Retain
EQOF
$ kubectl create -f ./storage-class-aipod-flexgroups-retain-rdma.yaml
storageclass.storage.k8s.io/aipod-flexgroups-retain-rdma created
$ kubectl get storageclass

NAME PROVISIONER AGE
aipod-flexgroups-retain csi.trident.netapp.io Om
aipod-flexgroups-retain-rdma csi.trident.netapp.io Om

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident
Backend that you created in the section Example Trident Backends for AIPod Deployments, step 2. The
example commands that follow show the creation of a single StorageClass for FlexVol volumes.

Note: In the following example, a particular Backend is not specified in the storagePool field in
StorageClass definition file. When you use Kubernetes to administer volumes using this StorageClass,
Trident attempts to use any available backend that uses the ontap-nas driver.

15



$ cat << EOF > ./storage-class-aipod-flexvols-retain.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: aipod-flexvols-retain
provisioner: netapp.io/trident
parameters:
backendType: "ontap-nas"
reclaimPolicy: Retain
EQOF
$ kubectl create -f ./storage-class-aipod-flexvols-retain.yaml
storageclass.storage.k8s.io/aipod-flexvols-retain created
$ kubectl get storageclass

NAME PROVISIONER AGE
aipod-flexgroups-retain csi.trident.netapp.io Om
aipod-flexgroups-retain-rdma csi.trident.netapp.io Om
aipod-flexvols-retain csi.trident.netapp.io Om

Apache Airflow

Apache Airflow Deployment

This section describes the tasks that you must complete to deploy Airflow in your
Kubernetes cluster.

(D It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on
platforms other than Kubernetes is outside of the scope of this solution.
Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on
Trident, refer to the Trident documentation.

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you
must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the
installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The
Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no
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StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default
StorageClass within your cluster, follow the instructions outlined in the Kubeflow Deployment section. If you
have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump
host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the
Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,
and/or remove values in the custom- values.yaml file as needed depending on your environment and
desired configuration.

$ cat << EOF > custom-values.yaml
ifgsstsassdasaEaaa A EEAEEREEEEEEEEE
# Airflow - Common Configs
FHA#HHEHHH A AR A H AR H RS S
airflow:
## the airflow executor type to use
#4
executor: "CeleryExecutor"
## environment variables for the web/scheduler/worker Pods (for
airflow configs)
#4
#
iigdstasstdasataasaaaa A AR LA RAAER
# Airflow - WebUI Configs
FHASH A AR
web:
## configs for the Service of the web Pods
#4
service:
type: NodePort
FHASH A H AR
# Airflow - Logs Configs
FHAHH A H A
logs:
persistence:
enabled: true
FHAHHHEHH A A AR A AR AR S
# Airflow - DAGs Configs
FHAFHH A H AR H AR
dags:
## configs for the DAG git repository & sync container
#4
gitSync:
enabled: true
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## url of the git repository

#4

repo: "git@github.com:mboglesby/airflow-dev.git"

## the branch/tag/shal which we clone

#4

branch: master

revision: HEAD

## the name of a pre-created secret containing files for ~/.ssh/

#4

## NOTE:

## - this is ONLY RELEVANT for SSH git repos

## - the secret commonly includes files: id rsa, id rsa.pub,

known hosts
## - known hosts is NOT NEEDED if “git.sshKeyscan' is true

#4

sshSecret: "airflow-ssh-git-secret"

## the name of the private key file in your ‘git.secret’
##

## NOTE:

## - this is ONLY RELEVANT for PRIVATE SSH git repos

#4

sshSecretKey: 1id rsa
## the git sync interval in seconds
##
syncWait: 60
EQF
S helm install airflow airflow-stable/airflow -n airflow —--version 8.0.8

--values ./custom-values.yaml

Congratulations. You have just deployed Apache Airflow!
1. Get the Airflow Service URL by running these commands:
export NODE PORT=S (kubectl get --namespace airflow -o
jsonpath="{.spec.ports[0] .nodePort}" services airflow-web)
export NODE IP=S (kubectl get nodes —--namespace airflow -o
jsonpath="{.items[0].status.addresses[0] .address}")
echo http://$NODE_IP:$SNODE_PORT/
2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.
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$ kubectl -n airflow get pod

NAME
airflow-flower-b5656d44f-h8gjk
airflow-postgresqgl-0
airflow-redis-master-0
airflow-scheduler-9d95fcdf9-clfdb
airflow-web-59c94db9c5-z7rg4

alirflow-worker-0

READY
1/1
1/1
1/1
2/2
1/1
2/2

STATUS

Running
Running
Running
Running
Running

Running

RESTARTS

N O N O O O

AGE
2h
2h
2h
2h
2h
2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you

deployed Airflow using Helm in step 1.

$ export NODE PORT=S (kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0] .nodePort}" services airflow-web)

$ export NODE IP=$ (kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0] .address}")

$ echo http://$NODE IP:S$NODE PORT/

4. Confirm that you can access the Airflow web service.
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Use the NetApp DataOps Toolkit with Airflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with Airflow.
Using the NetApp DataOps Toolkit with Airflow enables you to incorporate NetApp data
management operations, such as creating snapshots and clones, into automated
workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp DataOps Toolkit GitHub repository for details on using
the toolkit with Airflow.

JupyterHub

JupyterHub Deployment

This section describes the tasks that you must complete to deploy JupyterHub in your
Kubernetes cluster.

@ It is possible to deploy JupyterHub on platforms other than Kubernetes. Deploying JupyterHub
on platforms other than Kubernetes is outside of the scope of this solution.
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Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on
Trident, refer to the Trident documentation.

Install Helm

JupyterHub is deployed using Helm, a popular package manager for Kubernetes. Before you deploy
JupyterHub, you must install Helm on your Kubernetes control node. To install Helm, follow the installation
instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy JupyterHub, you must designate a default StorageClass within your Kubernetes cluster. To
designate a default StorageClass within your cluster, follow the instructions outlined in the Kubeflow
Deployment section. If you have already designated a default StorageClass within your cluster, then you can
skip this step.

Deploy JupyterHub

After completing the steps above, you are now ready to deploy JupyterHub. JupyterHub deployment requires
the following steps:

Configure JupyterHub Deployment

Before deployment it is a good practice to optimize the JupyterHub deployment for your respective
environment. You can create a config.yaml file and utilize it during deployment using the Helm chart.

An example config.yaml file can be found at https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/HEAD/
jupyterhub/values.yaml

In this config.yaml file, you can set the (singleuser.storage.dynamic.storageClass) parameter
for the NetApp Trident StorageClass. This is the storage class that will be used to provision the
volumes for individual user workspaces.

Adding Shared Volumes

If you want to use a shared volume for all JupyterHub users you can adjust your config.yaml accordingly. For
example, if you have a shared PersistentVolumeClaim called jupyterhub-shared-volume you could mount it as
/home/shared in all user pods as:
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singleuser:
storage:
extraVolumes:
- name: jupyterhub-shared
persistentVolumeClaim:
claimName: jupyterhub-shared-volume
extraVolumeMounts:
- name: jupyterhub-shared
mountPath: /home/shared

(D This is an optional step, you can adjust these parameters to your needs.

Deploy JupyterHub with Helm Chart

Make Helm aware of the JupyterHub Helm chart repository.

helm repo add jupyterhub https://hub.jupyter.org/helm-chart/
helm repo update

This should show output like:

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository

...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "jupyterhub" chart repository
Update Complete. [l Happy Helming![]

Now install the chart configured by your config.yaml by running this command from the directory that contains
your config.yaml:

helm upgrade --cleanup-on-fail \
--install my-jupyterhub jupyterhub/jupyterhub \
--namespace my-namespace \
--create-namespace \
--values config.yaml

(D In this example:

<helm-release-name> is set to my-jupyterhub, which will be the name of your JupyterHub release.
<k8s-namespace> is set to my-namespace, which is the namespace where you want to install JupyterHub.
The --create-namespace flag is used to create the namespace if it does not already exist.

The --values flag specifies the config.yaml file that contains your desired configuration options.
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Check Deployment

While step 2 is running, you can see the pods being created from the following command:

kubectl get pod --namespace <k8s-namespace>

Wait for the hub and proxy pod to enter the Running state.

NAME READY STATUS RESTARTS AGE

hub-5d4ffd57cf-k68z8 1/1 Running 0 37s

proxy-7cb9bcdcc-9bdlp 1/1 Running 0 37s
Access JupyterHub

Find the IP we can use to access the JupyterHub. Run the following command until the EXTERNAL-IP of the
proxy-public service is available like in the example output.

@ We used NodePort service in our config.yaml file, you can adjust for your environment based on
your setup (e.g LoadBalancer).

kubectl --namespace <k8s-namespace> get service proxy-public

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE

proxy-public NodePort 10.51.248.230 104.196.41.97 80:30000/TCP
1m

To use JupyterHub, enter the external IP for the proxy-public service in to a browser.

Use the NetApp DataOps Toolkit with JupyterHub

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with JupyterHub.
Using the NetApp DataOps Toolkit with JupyterHub enables end users to create volume
shapshots for workspace backup and/or dataset-to-model traceability directly from within
a Jupyter Notebook.

Initial Setup

Before you can use the DataOps Toolkit with JupyterHub, you must grant appropriate permissions to the
Kubernetes service account that JupyterHub assigns to individual user Jupyter Notebook Server pods.
JupyterHub uses the service account that is specified by the singleuser.serviceAccountName variable in
your JupyterHub Helm chart configuration file.
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Create Cluster Role for DataOps Toolkit

First, create a cluster role named 'netapp-dataops' that has the required Kubernetes API permissions for
creating volume snapshots.

$ vi clusterrole-netapp-dataops-snapshots.yaml
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: netapp-dataops-snapshots
rules:
- apiGroups: [""]
resources: ["persistentvolumeclaims", "persistentvolumeclaims/status",
"services"]
verbs: ["get", "list"]
- apiGroups: ["snapshot.storage.k8s.io"]
resources: ["volumesnapshots"™, "volumesnapshots/status",
"volumesnapshotcontents", "volumesnapshotcontents/status"]
verbs: ["get", "list", "create"]

$ kubectl create -f clusterrole-netapp-dataops-snapshots.yaml
clusterrole.rbac.authorization.k8s.io/netapp-dataops—-snapshots created

Assign Cluster Role to Notebook Server Service Account

Create a role binding that assigns the 'netapp-dataops-snapshots' cluster role to the appropriate service
account in the appropriate namespace. For example, if you installed JupyterHub in the 'jupyterhub’
namespace, and you specified the 'default’ service account via the singleuser.serviceAccountName
variable, you would assign the the 'netapp-dataops-snapshots' cluster role to the 'default’ service account in the
'jupyterhub' namespace as shown in the following example.
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$ vi rolebinding-jupyterhub-netapp-dataops—-snapshots.yaml
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: jupyterhub-netapp-dataops-snapshots

namespace: jupyterhub # Replace with you JupyterHub namespace
subjects:
- kind: ServiceAccount

name: default # Replace with your JupyterHub
singleuser.serviceAccountName

namespace: jupyterhub # Replace with you JupyterHub namespace
roleRef:

kind: ClusterRole

name: netapp-dataops-snapshots

apiGroup: rbac.authorization.k8s.io

$ kubectl create -f ./rolebinding-jupyterhub-netapp-dataops-snapshots.yaml
rolebinding.rbac.authorization.k8s.io/jupyterhub-netapp-dataops-snapshots
created

Create Volume Snapshots Within Jupyter Notebook

Now, JupyterHub users can use the NetApp DataOps Toolkit to create volume snapshots directly from within a
Jupyter Notebook as shown in the following example.

Execute NetApp DataOps Toolkit operations within JupyterHub

This notebook demaonstrates the execution of NetApp DataOps Toolkit operations from within a Jupyter Notebook running on JupyterHub

Install NetApp DataOps Toolkit for Kubernetes (only run once)
Mote: This cell only needs to be run once, This is a cne-time task

%pip install —-user netapp-dataops-k8s

Import NetApp DataOps Toolkit for Kubernetes functions

from netapp_dataops.kBs import List_volumes, list_volume_snapshots, create_volume snapshot

Create Volume Snapshot for User Workspace Volume
The foliowing example shows the execution of a "create volume snapshot” operation for my user workspace valume,

jupyterhub_namespace = “jupyterhub"
my_user_workspace_vol = "claim-mogleshy

create_volume_snapshot{namespace=jupyterhub_namespace, pvc_name=my_user_workspace_vel, print_output=True)

Creating VolumeSnapshot 'ntap-dsutil.282407260082955' for PersistentVelumeClaim (PVC) ‘claim-moglesby' in namespace 'jupy
terhub’ .

VolumeSnapshot “ntap-dsutil.20240726082955° created, Waiting for Trident to create snapshot on backing storage.

Snapshot successfully created.
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Ingest Data into JupyterHub with NetApp SnapMirror

NetApp SnapMirror is a replication technology that enables you to replicate data between
NetApp storage systems. SnapMirror can be used to ingest data from remote
environments into JupyterHub.

Example Worklfow and Demo

Refer to this Tech ONTAP blog post for a detailed example workflow and demo of using NetApp SnapMirror to
ingest data into JupyterHub.

MLflow

MLflow Deployment

This section describes the tasks that you must complete to deploy MLflow in your
Kubernetes cluster.

@ It is possible to deploy MLflow on platforms other than Kubernetes. Deploying MLflow on
platforms other than Kubernetes is outside of the scope of this solution.
Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on
Trident, refer to the Trident documentation.

Install Helm

MLflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy MLflow, you
must install Helm on your Kubernetes control node. To install Helm, follow the installation instructions in the
official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy MLflow, you must designate a default StorageClass within your Kubernetes cluster. To
designate a default StorageClass within your cluster, follow the instructions outlined in the Kubeflow
Deployment section. If you have already designated a default StorageClass within your cluster, then you can
skip this step.

Deploy MLflow

Once the pre-requisites have been met, you can start with MLflow deployment using the helm chart.

Configure MLflow Helm Chart Deployment.

Before we deploy MLflow using the Helm chart, we can configure the deployment to use NetApp Trident
Storage Class and change other parameters to suit our needs using a config.yaml file. An example of
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config.yaml file can be found at: https://github.com/bitnami/charts/blob/main/bitnami/mlflow/values.yaml

(D You can set the Trident storageClass under the global.defaultStorageClass parameter in the
config.yaml file (e.g. storageClass: "ontap-flexvol").

Installing the Helm Chart

The Helm chart can be installed with the custom config.yaml file for MLflow using the following command:

helm install oci://registry-1.docker.io/bitnamicharts/mlflow -£
config.yaml --generate-name --namespace jupyterhub

The command deploys MLflow on the Kubernetes cluster in the custom configuration via the
provided config.yaml file. MLflow is deployed in the given namespace and a random release
name is given via kubernetes for the release.

Check Deployment

After the Helm chart is done deploying, you can check if the service is accessible using:

kubectl get service -n Jjupyterhub

(D Replace jupyterhub with the namespace you used during deployment.

You should see the following services:

NAME TYPE CLUSTER-IP EXTERNAL-TP
PORT (S) AGE

mlflow-1719843029-minio ClusterIP 10.233.22.4 <none>
80/TCP, 9001/TCP 25d

mlflow-1719843029-postgresqgl ClusterIP 10.233.5.141 <none>
5432/TCP 25d

mlflow-1719843029-postgresqgl-hl ClusterIP None <none>
5432/TCP 25d

mlflow-1719843029-tracking NodePort 10.233.2.158 <none>

30002:30002/TCP 25d

(D We edited the config.yaml file to use NodePort service to access MLflow on port 30002.

Access MLflow

Once all the services related to MLflow are up and running you can access it using the given NodePort or
LoadBalancer IP address (e.g. http://10.61.181.109:30002)
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Dataset-to-model Traceability with NetApp and MLflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with MLflow’s
experiment tracking capabilities in order to implement dataset-to-model or workspace-to-
model traceability.

To implement dataset-to-model or workspace-to-model traceability, simply create a snapshot of your dataset or
workspace volume using the DataOps Toolkit as part of your training run, as shown the following example code
snippet. This code will save the data volume name and snapshot name as tags associated with the specific
training run that you are logging to your MLflow experiment tracking server.

from netapp dataops.k8s import create volume snapshot

with mlflow.start run()

namespace = "my namespace" # Kubernetes namespace in which dataset
volume PVC resides
dataset volume name = "projectl" # Name of PVC corresponding to

dataset volume
snapshot name = "runl" # Name to assign to your new snapshot

# Create snapshot

create volume snapshot (
namespace=namespace,
pvc name=dataset volume name,
snapshot name=snapshot name,
printOutput=True

# Log data volume name and snapshot name as "tags"

# associated with this training run in mlflow.
mlflow.set tag("data volume name", dataset volume name)
mlflow.set tag("snapshot name", snapshot name)

Kubeflow

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your
Kubernetes cluster.
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Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by the Kubeflow version that you intend to deploy. For a list of supported Kubernetes versions,
refer to the dependencies for your Kubeflow version in the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster. For more details on
Trident, refer to the Trident documentation.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, we recommend designating a default StorageClass within your Kubernetes
cluster. The Kubeflow deployment process may attempt to provision new persistent volumes using the default
StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment may fail. To
designate a default StorageClass within your cluster, perform the following task from the deployment jump
host. If you have already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that
follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the default
StorageClass.

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly

(D large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.
Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup
Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface? csi.trident.netapp.io 25h
ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-iface?2 csi.trident.netapp.io 25h
ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

Kubeflow Deployment Options

There are many different options for deploying Kubeflow. Refer to the official Kubeflow documentation for a list
of deployment options, and choose the option that is the best fit for your needs.
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(D For validation purposes, we deployed Kubeflow 1.7 using deployKF 0.1.1.

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data
scientist workspaces. For more information about Jupyter Notebooks within the Kubeflow
context, see the official Kubeflow documentation.

P tewm) o = [
MNotebooks
@ mMatebooks
= Filter a
[ ata B i
@ L |
-] 0 L |

Use the NetApp DataOps Toolkit with Kubeflow

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with
Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following
benefits:
» Data scientists can perform advanced NetApp data management operations, such as creating snapshots
and clones, directly from within a Jupyter Notebook.
« Advanced NetApp data management operations, such as creating snapshots and clones, can be

incorporated into automated workflows using the Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details
on using the toolkit with Kubeflow.

Example Workflow - Train an Image Recognition Model Using Kubeflow and the
NetApp DataOps Toolkit

This section describes the steps involved in training and deploying a Neural Network for
Image Recognition using Kubeflow and the NetApp DataOps Toolkit. This is intended to
serve as an example to show a training job that incorporates NetApp storage.
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Prerequisites

Create a Dockerfile with the required configurations to use for the train and test steps within the Kubeflow
pipeline.
Here is an example of a Dockerfile -

FROM pytorch/pytorch:latest

RUN pip install torchvision numpy scikit-learn matplotlib tensorboard
WORKDIR /app

COPY . /app

COPY train mnist.py /app/train mnist.py

CMD ["python", "train mnist.py"]

Depending on your requirements, install all required libraries and packages needed to run the program. Before
you train the Machine Learning model, it is assumed that you already have a working Kubeflow deployment.

Train a Small NN on MNIST Data Using PyTorch and Kubeflow Pipelines

We use the example of a small Neural Network trained on MNIST data. The MNIST dataset consists of
handwritten images of digits from 0-9. The images are 28x28 pixels in size. The dataset is divided into 60,000
train images and 10,000 validation images. The Neural Network used for this experiment is a 2-layer
feedforward network. Training is executed using Kubeflow Pipelines. Refer to the documentation here for more
information. Our Kubeflow pipeline incorporates the docker image from the Prerequisites section.

Experiments * MNIST Train Pipeline

¢ & mnist pipeline 2024-04-03 15-57-35

Graph Run output Config
mnist_train_op @
5
dataset-snapshot & mnist_test ap <@

Visualize Results Using Tensorboard

Once the model is trained, we can visualize the results using Tensorboard. Tensorboard is available as a
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feature on the Kubeflow Dashboard. You can create a custom tensorboard for your job. An example below
shows the plot of training accuracy vs. number of epochs and training loss vs. number of epochs.

Experiment with Hyperparameters Using Katib

Katib is a tool within Kubeflow that can be used to experiment with the model hyperparameters. To create an
experiment, define a desired metric/goal first. This is usually the test accuracy. Once the metric is defined,
choose hyperparameters that you would like to play around with (optimizer/learning_rate/number of layers).
Katib does a hyperparameter sweep with the user-defined values to find the best combination of parameters
that satisfy the desired metric. You can define these parameters in each section in the Ul. Alternatively, you
could define a YAML file with the necessary specifications. Below is an illustration of a Katib experiment -

P tear] i) - o
« Experiment details § oaET

Objective

Hame Wahdahon-accurocy

Type aur

Goal

& Kab Additional metrica Tegin-accumcy

Trials

M falbed trials

Max trinls

Parolie] trials

Parameters

Ir Parameter lype: double hlin- 0,01 Max: 0,03

num-layers Parameter typecint M1 Max: 64
optimizer Parameter type: categotical sgd, adam, fir|
Algorithm

Name

Metrics collector

Collestor iype Fils
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Use NetApp Snapshots to Save Data for Traceability

During the model training, we may want to save a snapshot of the training dataset for traceability. To do this,
we can add a snapshot step to the pipeline as shown below. To create the snapshot, we can use the NetApp
DataOps Toolkit for Kubernetes.

stodatas 4 snapshat-nome=" & atrivoluse snapshol nase) & * - iesespates{ (workl L, nasespace)]*1,

Refer to the NetApp DataOps Toolkit example for Kubeflow for more information.

Example Trident Operations

This section includes examples of various operations that you may want to perform with
Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers
within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these
volumes. You can use the Trident volume import functionality to import these volumes.
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The example commands that follow show the importing of a volume named pb fg all. For more information
about PVCs, see the official Kubernetes documentation. For more information about the volume import
functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information
about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-import-pb fg all-ifacel.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: pb-fg-all-ifacel

namespace: default
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain-ifacel
EQF
$ tridentctl import volume ontap-ai-flexgroups-ifacel pb fg all -f ./pvc-
import-pb fg all-ifacel.yaml -n trident

o tomm
e fomm -
o tomm pom - +

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |
MANAGED |

o tomm
e fom -
it tom pom - +

| default-pb-fg-all-ifacel-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

ifacel | file | b74cbddb-e0b8-40b7-b263-b6dab6decO0bdd | online | true
|

- o

i e
et o t——— +

s e

R fe========c
oo tommm—— - fommm +

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

fmmm e e e me s e ee s s e e fommmema=e
frosssssssmmssmemeso s e s e fressmm=am=s
fess===s=s=sssesessososassssssssssssa=s fem=m==== foms====== ¥

| default-pb-fg-all-ifacel-7d9fl | 10 TiB | ontap-ai-flexgroups-retain-
ifacel | file | b74cbddb-e0b8-40b7-b263-b6dab6decO0bdd | online | true
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$ kubectl get pvc

NAME STATUS
ACCESS MODES STORAGECLASS
pb-fg-all-ifacel Bound

10995116277760 ROX

Provision a New Volume

______ o
————————— f——— 1
VOLUME CAPACITY
AGE
default-pb-fg-all-ifacel-7d9f1l
ontap-ai-flexgroups-retain-ifacel 25h

You can use Trident to provision a new volume on your NetApp storage system or platform.

Provision a New Volume Using kubectl

The following example commands show the provisioning of a new FlexVol volume using kubectl.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more
information about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: tensorflow-results
spec:
accessModes:
- ReadWriteMany
resources:
requests:

storage: 1Gi

storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME

CAPACITY ACCESS MODES
pb-fg-all-ifacel
10995116277760 ROX
tensorflow-results

2£de0 1073741824 RWX
25h

STATUS VOLUME
STORAGECLASS AGE
Bound default-pb-fg-all-ifacel-7d9f1l
ontap-ai-flexgroups-retain-ifacel 26h
Bound default-tensorflow-results-
ontap-ai-flexvols-retain
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Provision a New Volume Using the NetApp DataOps Toolkit

You can also use the NetApp DataOps Toolkit for Kubernetes to provision a new volume on your NetApp
storage system or platform. The NetApp DataOps Toolkit for Kubernetes utilizes Trident to provision volumes
but simplifies the process for the user. Refer to the documentation for details.

Example high-performance jobs for AIPod deployments

Execute a Single-Node Al Workload

To execute a single-node Al and ML job in your Kubernetes cluster, perform the following
tasks from the deployment jump host. With Trident, you can quickly and easily make a
data volume, potentially containing petabytes of data, accessible to a Kubernetes
workload. To make such a data volume accessible from within a Kubernetes pod, simply
specify a PVC in the pod definition.

1.
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@ This section assumes that you have already containerized (in the Docker container format) the

specific Al and ML workload that you are attempting to execute in your Kubernetes cluster.

The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark
workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the
ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features
eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring
eight or more GPUs is not present or is currently occupied with another workload. If so, then the job
remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is
mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second
volume will be used to store results and metrics. These volumes are referenced in the job definition by
using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes
documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this
example job creates. The default size of the /dev/shm virtual volume that is automatically created by the
Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir
volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more
information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >
privileged value of true. This value means that the container effectively has root access on the host.
This annotation is used in this case because the specific workload that is being executed requires root
access. Specifically, a clear cache operation that the workload performs requires root access. Whether or
not this privileged: true annotation is necessary depends on the requirements of the specific
workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml
apiVersion: batch/vl
kind: Job
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metadata:
name: netapp-tensorflow-single-imagenet
spec:
backoffLimit: 5
template:
spec:
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface?2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py?2
image: netapp/tensorflow-py2:19.03.0
command: ["python", "/netapp/scripts/run.py", "--
dataset dir=/mnt/mount 0/dataset/imagenet", "--dgx version=dgxl", "--
num devices=8"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount O
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface?2
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EQOF
$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml
job.batch/netapp-tensorflow-single-imagenet created
$ kubectl get Jjobs
NAME COMPLETIONS DURATION AGE
netapp-tensorflow-single-imagenet 0/1 24s 24s
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2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job definition, and that this pod is
currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0
3m 10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands
confirm that the job completed successfully.
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$ kubectl get jobs

NAME COMPLETIONS DURATION
AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed
0 11lm

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92
[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-
PERMISSIONS in file gds dstore.c at line 702
[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-
PERMISSIONS in file gds dstore.c at line 711

Total images/sec = 6530.59125

================ (Clean Cache !!!| ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >
/proc/sys/vm/drop caches'

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by
slot -x NCCL DEBUG=INFO -x LD LIBRARY PATH -x PATH python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn benchmarks/tf cnn be
nchmarks.py --model=resnet50 --batch size=256 --device=gpu
-—force gpu compatible=True --num intra threads=1 --num inter threads=48
--variable update=horovod --batch group size=20 --num batches=500
-—-nodistortions --num gpus=1 --data format=NCHW --use fplé6=True

-—use tf layers=False --data name=imagenet --use datasets=True
--data_dir=/mnt/mount 0/dataset/imagenet

-—datasets parallel interleave cycle length=10

-—datasets sloppy parallel interleave=False --num mounts=2

--mount prefix=/mnt/mount %$d --datasets prefetch buffer size=2000
-—datasets use prefetch=True --datasets num private threads=4

-—horovod device=gpu >

/tmp/20190814 105450 tensorflow horovod rdma resnet50 gpu 8 256 b500 ima
genet nodistort fpl6 rl1l0 m2 nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that
was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.
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$ kubectl get jobs

NAME COMPLETIONS DURATION
AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed
0 1lm

$ kubectl delete Jjob netapp-tensorflow-single-imagenet
job.batch "netapp-tensorflow-single-imagenet" deleted
$ kubectl get Jjobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed Al Workload

To execute a synchronous multinode Al and ML job in your Kubernetes cluster, perform
the following tasks on the deployment jump host. This process enables you to take
advantage of data that is stored on a NetApp volume and to use more GPUs than a
single worker node can provide. See the following figure for a depiction of a synchronous
distributed Al job.

Synchronous distributed jobs can help increase performance and training accuracy compared
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs
versus asynchronous jobs is outside the scope of this document.

Kubernetes (k8s) CIUSter .o e
Data Data Data Data
| I
Master Node

1. The following example commands show the creation of one worker that participates in the synchronous
distributed execution of the same TensorFlow benchmark job that was executed on a single node in the
example in the section Execute a Single-Node Al Workload. In this specific example, only a single worker
is deployed because the job is executed across two worker nodes.
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This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that
features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize
performance, you might want to increase this number to be equal to the number of GPUs that your worker
nodes feature. For more information about Kubernetes deployments, see the official Kubernetes
documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to use the
job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.
This value means that the pod uses the host worker node’s networking stack instead of the virtual
networking stack that Kubernetes usually creates for each pod. This annotation is used in this case
because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a
synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion
about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this
hostNetwork: true annotation is necessary depends on the requirements of the specific workload that
you are executing. For more information about the hostNetwork field, see the official Kubernetes
documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: netapp-tensorflow-multi-imagenet-worker
spec:
replicas: 1
selector:
matchLabels:
app: netapp-tensorflow-multi-imagenet-worker
template:
metadata:
labels:
app: netapp-tensorflow-multi-imagenet-worker
spec:
hostNetwork: true
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface2
- name: results

persistentVolumeClaim:
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claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py?2
image: netapp/tensorflow-py2:19.03.0

command: ["bash", "/netapp/scripts/start-slave-multi.sh",
"22122"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount 0
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface?
- mountPath: /tmp
name: results
securityContext:
privileged: true
EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml
deployment.apps/netapp-tensorflow-multi-imagenet-worker created
$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE
AVATILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in the
deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 60s 10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725
22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the
synchronous multinode job. The following example commands create one master that kicks off, participates
in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was
executed on a single node in the example in the section Execute a Single-Node Al Workload.
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This example master job requests eight GPUs and thus can run on a single GPU worker node that features
eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,
you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just
as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why
this value is necessary.

S cat << EOF >

apiVersion: batch/vl
kind: Job
metadata:

name:

spec:

netapp-tensorflow-multi-imagenet-master

backoffLimit: 5
template:

spec:

hostNetwork: true

volumes:

name: dshm
emptyDir:
medium: Memory
name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface2
name: results
persistentVolumeClaim:
claimName: tensorflow-results

containers:

command: ["python", "/netapp/scripts/run.py",
dataset dir=/mnt/mount 0/dataset/imagenet", "--port=22122",
num devices=16", "--dgx version=dgxl", "--

name: netapp-tensorflow-py2
image: netapp/tensorflow-py2:19.03.0

nodes=10.61.218.152,10.61.218.154"]

resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount O
name: testdata-ifacel
- mountPath: /mnt/mount 1

./netapp-tensorflow-multi-imagenet-master.yaml
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name: testdata-iface?2
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EOF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml
job.batch/netapp-tensorflow—multi-imagenet-master created
$ kubectl get Jjobs
NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command
confirms that a single master pod was created for the job, as indicated in the job definition, and that this
pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you
originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY
STATUS RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-master-ppww]j 1/1
Running 0 45s 10.61.218.152 10.61.218.152 <none>
netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1
Running 0 26m 10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9ml18s
$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppww]j 0/1

Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppww]j
[10.61.218.152:00008] WARNING: local probe returned unhandled
shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
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line 702
[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at

line 711
[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at
line 702
[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
line 711

Total images/sec = 12881.33875

================ (Clean Cache !!! ====s==s============

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca
pml obl -mca btl "“openib -mca btl tcp if include enpls0f0 -mca

plm rsh agent ssh -mca plm rsh args "-p 22122" bash -c 'sync; echo 1 >
/proc/sys/vm/drop caches'

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8
-bind-to none -map-by slot -x NCCL DEBUG=INFO -x LD LIBRARY PATH -x PATH
-mca pml obl -mca btl "“openib -mca btl tcp if include enplsO0f0 -x
NCCL_IB HCA=mlx5 -x NCCL NET GDR READ=1 -x NCCL_IB SL=3 -x

NCCL IB GID INDEX=3 -x

NCCL_SOCKET IFNAME=enp5s0.3091,enpl2s0.3092,enpl32s0.3093,enpl39s0.3094
-x NCCL IB CUDA SUPPORT=1 -mca orte base help aggregate 0 -mca

plm rsh agent ssh -mca plm rsh args "-p 22122" python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn benchmarks/tf cnn be
nchmarks.py —--model=resnet50 --batch size=256 --device=gpu
-—-force gpu compatible=True --num intra threads=1 --num inter threads=48
--variable update=horovod --batch group size=20 --num batches=500
-—nodistortions —--num gpus=1 --data format=NCHW --use fpl6=True

--use tf layers=False --data name=imagenet --use datasets=True

--data dir=/mnt/mount 0/dataset/imagenet

-—datasets parallel interleave cycle length=10

-—-datasets sloppy parallel interleave=False --num mounts=2

--mount prefix=/mnt/mount %d --datasets prefetch buffer size=2000 --
datasets use prefetch=True --datasets num private threads=4

-—-horovod device=gpu >

/tmp/20190814 161609 tensorflow horovod rdma resnet50 gpu 16 256 b500 im
agenet nodistort fplé rl0 m2 nockpt.txt 2>&l

6. Delete the worker deployment when you no longer need it. The following example commands show the
deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker
pods.
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$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE
AVATLABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 43m

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7£486-v6725 1/1

Running 0 43m

S kubectl delete deployment netapp-tensorflow-multi-imagenet-worker
deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted
$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0
18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the
master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m
$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0
19m

$ kubectl delete Jjob netapp-tensorflow-multi-imagenet-master
job.batch "netapp-tensorflow-multi-imagenet-master" deleted
$ kubectl get jobs
No resources found.
$ kubectl get pods
No resources found.
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