Vector database solution with NetApp

NetApp artificial intelligence solutions

NetApp
December 04, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on December 04, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Vector database solution with NetApp
Vector Database Solution with NetApp
Introduction
Introduction
Solution Overview
Solution overview
Vector Database
Vector Database
Technology Requirement
Technology Requirement
Hardware requirements
Software requirements
Deployment Procedure
Deployment procedure
Solution verification
Solution Overview
Milvus Cluster Setup with Kubernetes in on-premises
Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality
Vector Database Protection using SnapCenter
Disaster Recovery using NetApp SnapMirror
Vector Database Performance Validation
Vector Database with Instaclustr using PostgreSQL.: pgvector
Vector Database with Instaclustr using PostgreSQL.: pgvector
Vector Database Use Cases
Vector Database Use Cases
Conclusion
Conclusion
Appendix A: Values.yaml
Appendix A: Values.yaml
Appendix B: prepare_data_netapp_new.py
Appendix B: prepare_data_netapp_new.py
Appendix C: verify_data_netapp.py
Appendix C: verify_data_netapp.py
Appendix D: docker-compose.yml
Appendix D: docker-compose.yml

© O© N N N O O O W W NDNMNDNDN-A -

NN NNOOOE DDA DDAEDRNDDNOWON -
OO WWO ®owowN~NOEDRN®®DE RO

Vector database solution with NetApp

Vector Database Solution with NetApp

Karthikeyan Nagalingam and Rodrigo Nascimento, NetApp

This document provides a thorough exploration of the deployment and management of
vector databases, such as Milvus, and pgvecto an open-source PostgreSQL extension,
using NetApp’s storage solutions. It details the infrastructure guidelines for using NetApp
ONTAP and StorageGRID object storage and validates the application of Milvus database
in AWS FSx ONTAP. The document elucidates NetApp’s file-object duality and its utility
for vector databases and applications that support vector embeddings. It emphasizes the
capabilities of SnapCenter, NetApp’s enterprise management product, in offering backup
and restore functionalities for vector databases, ensuring data integrity and availability.
The document further delves into NetApp’s hybrid cloud solution, discussing its role in
data replication and protection across on-premises and cloud environments. It includes
insights into the performance validation of vector databases on NetApp ONTAP, and
concludes with two practical use cases on generative Al : RAG with LLM and the
NetApp’s internal ChatAl. This document serves as a comprehensive guide for leveraging
NetApp’s storage solutions for managing vector databases.

The Reference Architecture focus on the following:

1. Introduction

. Solution Overview

. Vector Database

. Technology Requirement

. Deployment Procedure

o o0 B~ WODN

. Solution Verification Overview
o Milvus cluster setup with Kubernetes in on-premises
o Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality
o Vector database protection using NetApp SnapCenter.
o Disaster Recovery using NetApp SnapMirror
o Performance validation
7. Vector Database with Instaclustr using PostgreSQL.: pgvector
8. Vector Database Use Cases
9. Conclusion
10. Appendix A: values.yaml
11. Appendix B: prepare_data_netapp_new.py
12. Appendix C: verify_data_netapp.py
13. Appendix D: docker-compose.ymi

https://docs.netapp.com/us-en/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for-NetApp-ONTAP.html

Introduction

This section provide an introduction to vector database solution for NetApp.

Introduction

Vector databases effectively address the challenges that are designed to handle the complexities of semantic
search in Large Language Models (LLMs) and generative Artificial Intelligence (Al). Unlike traditional data
management systems, vector databases are capable of processing and searching through various types of
data, including images, videos, text, audio, and other forms of unstructured data, by using the content of the
data itself rather than labels or tags.

The limitations of Relational Database Management Systems (RDBMS) are well-documented, particularly their
struggles with high-dimensional data representations and unstructured data common in Al applications.
RDBMS often necessitate a time-consuming and error-prone process of flattening data into more manageable
structures, leading to delays and inefficiencies in searches. Vector databases, however, are designed to
circumvent these issues, offering a more efficient and accurate solution for managing and searching through
complex and high-dimensional data, thus facilitating the advancement of Al applications.

This document serves as a comprehensive guide for customers who are currently using or planning to use
vector databases, detailing the best practices for utilizing vector databases on platforms such as NetApp
ONTAP, NetApp StorageGRID, Amazon FSx ONTAP for NetApp ONTAP, and SnapCenter. The content
provided herein covers a range of topics:

* Infrastructure guidelines for vector databases, like Milvus, provided by NetApp storage through NetApp
ONTAP and StorageGRID object storage.
+ Validation of the Milvus database in AWS FSx ONTAP through file and object store.

 Delves into NetApp’s file-object duality, demonstrating its utility for data in vector databases as well as
other applications.

* How NetApp’s Data Protection Management product, SnapCenter, offers backup and restore functionalities
for vector database data.

* How NetApp’s Hybrid Cloud offers data replication and protection across on-premises and cloud
environments.

* Provides insights into the performance validation of vector databases like Milvus and pgvector on NetApp
ONTAP.

» Two specific use cases: Retrieval Augmented Generation (RAG) with Large Language Models(LLM) and
the NetApp IT team’s ChatAl, thereby offering practical examples of the concepts and practices outlined.

Solution Overview

This section provides an overview for the NetApp vector database solution.

Solution overview

This solution showcases the distinctive benefits and capabilities that NetApp brings to the table to tackle the
challenges faced by vector database customers. By leveraging NetApp ONTAP, StorageGRID, NetApp’s cloud
solutions, and SnapCenter, customers can add significant value to their business operations. These tools not
only address existing issues but also enhance efficiency and productivity, thereby contributing to overall
business growth.

Why NetApp?

* NetApp’s offerings, such as ONTAP and StorageGRID, allow for the separation of storage and compute,
enabling optimal resource utilization based on specific requirements. This flexibility empowers customers to
independently scale their storage using NetApp storage solutions.

* By leveraging NetApp’s storage controllers, customers can efficiently serve data to their vector database
using NFS and S3 protocols. These protocols facilitate customer data storage and manage the vector
database index, eliminating the need for multiple copies of data accessed through file and object methods.

* NetApp ONTAP provides native support for NAS and Object storage across leading cloud service providers
like AWS, Azure, and Google Cloud. This wide compatibility ensures seamless integration, enabling
customer data mobility, global accessibility, disaster recovery, dynamic scalability, and high performance.

« With NetApp’s robust data management capabilities, customers can rest assured knowing that their data is
well-protected against potential risks and threats. NetApp prioritizes data security, offering peace of mind to
customers regarding the safety and integrity of their valuable information.

Vector Database

This section covers the definition and use of a vector database in NetApp Al solutions.

Vector Database

A vector database is a specialized type of database designed to handle, index, and search unstructured data
using embeddings from machine learning models. Instead of organizing data in a traditional tabular format, it
arranges data as high-dimensional vectors, also known as vector embeddings. This unique structure allows the
database to handle complex, multi-dimensional data more efficiently and accurately.

One of the key capabilities of a vector database is its use of generative Al to perform analytics. This includes
similarity searches, where the database identifies data points that are like a given input, and anomaly
detection, where it can spot data points that deviate significantly from the norm.

Furthermore, vector databases are well-suited to handle temporal data, or time-stamped data. This type of
data provides information about 'what' happened and when it happened, in sequence and in relation to all other
events within a given IT system. This ability to handle and analyze temporal data makes vector databases
particularly useful for applications that require an understanding of events over time.

Advantages of vector database for ML and Al:

» High-dimensional Search: Vector databases excel in managing and retrieving high-dimensional data, which
is often generated in Al and ML applications.

« Scalability: They can efficiently scale to handle large volumes of data, supporting the growth and expansion
of Al and ML projects.

* Flexibility: Vector databases offer a high degree of flexibility, allowing for the accommodation of diverse
data types and structures.

» Performance: They provide high-performance data management and retrieval, critical for the speed and
efficiency of Al and ML operations.

« Customizable Indexing: Vector databases offer customizable indexing options, enabling optimized data
organization and retrieval based on specific needs.

Vector databases and use cases.

This section provides varies vector databases and their use case details.

Faiss and ScaNN

They are libraries that serve as crucial tools in the realm of vector search. These libraries provide functionality
that is instrumental in managing and searching through vector data, making them invaluable resources in this
specialized area of data management.

Elasticsearch

It's a widely used search and analytics engine, has recently incorporated vector search capabilities. This new
feature enhances its functionality, enabling it to handle and search through vector data more effectively.

Pinecone

It is a robust vector database with a unique set of features. It supports both dense and sparse vectors in its
indexing functionality, which enhances its flexibility and adaptability. One of its key strengths lies in its ability to
combine traditional search methods with Al-based dense vector search, creating a hybrid search approach that
leverages the best of both worlds.

Primarily cloud-based, Pinecone is designed for machine learning applications and integrates well with a
variety of platforms, including GCP, AWS, Open Al, GPT-3, GPT-3.5, GPT-4, Catgut Plus, Elasticsearch,
Haystack, and more. It's important to note that Pinecone is a closed-source platform and is available as a
Software as a Service (SaaS) offering.

Given its advanced capabilities, Pinecone is particularly well-suited for the cybersecurity industry, where its
high-dimensional search and hybrid search capabilities can be leveraged effectively to detect and respond to
threats.

Chroma

It's a vector database that has a Core-API with four primary functions, one of which includes an in-memory
document-vector store. It also utilizes the Face Transformers library to vectorize documents, enhancing its
functionality and versatility.

Chroma is designed to operate both in the cloud and on-premises, offering flexibility based on user needs.
Particularly, it excels in audio-related applications, making it an excellent choice for audio-based search
engines, music recommendation systems, and other audio-related use cases.

Weaviate

It's a versatile vector database that allows users to vectorize their content using either its built-in modules or
custom modules, providing flexibility based on specific needs. It offers both fully managed and self-hosted
solutions, catering to a variety of deployment preferences.

One of Weaviate’s key features is its ability to store both vectors and objects, enhancing its data handling
capabilities. It is widely used for a range of applications, including semantic search and data classification in
ERP systems. In the e-commerce sector, it powers search and recommendation engines. Weaviate is also
used for image search, anomaly detection, automated data harmonization, and cybersecurity threat analysis,
showcasing its versatility across multiple domains.

Redis

Redis is a high-performing vector database known for its fast in-memory storage, offering low latency for read-

write operations. This makes it an excellent choice for recommendation systems, search engines, and data
analytics applications that require quick data access.

Redis supports various data structures for vectors, including lists, sets, and sorted sets. It also provides vector
operations such as calculating distances between vectors or finding intersections and unions. These features
are particularly useful for similarity search, clustering, and content-based recommendation systems.

In terms of scalability and availability, Redis excels in handling high throughput workloads and offers data
replication. It also integrates well with other data types, including traditional relational databases (RDBMS).
Redis includes a Publish/Subscribe (Pub/Sub) feature for real-time updates, which is beneficial for managing
real-time vectors. Moreover, Redis is lightweight and simple to use, making it a user-friendly solution for
managing vector data.

Milvus

It's a versatile vector database that offers an API like a document store, much like MongoDB. It stands out due
to its support for a wide variety of data types, making it a popular choice in the data science and machine
learning fields.

One of Milvus' unique features is its multi-vectorization capability, which allows users to specify at runtime the
type of vector to use for the search. Furthermore, it utilizes Knowwhere, a library that sits atop other libraries
like Faiss, to manage communication between queries and the vector search algorithms.

Milvus also offers seamless integration with machine learning workflows, thanks to its compatibility with
PyTorch and TensorFlow. This makes it an excellent tool for a range of applications, including e-commerce,
image and video analysis, object recognition, image similarity search, and content-based image retrieval. In the
realm of natural language processing, Milvus is used for document clustering, semantic search, and question-
answering systems.

For this solution, we picked milvus for the solution validation. For performance, we used both milvus and
postgres(pgvecto.rs).

Why we chose milvus for this solution?

* Open-Source: Milvus is an open-source vector database, encouraging community-driven development and
improvements.

« Al Integration: It leverages embedding similarity search and Al applications to enhance vector database
functionality.

« Large Volume Handling: Milvus has the capacity to store, index, and manage over a billion embedding
vectors generated by Deep Neural Networks (DNN) and Machine Learning (ML) models.

» User-Friendly: It is easy to use, with setup taking less than a minute. Milvus also offers SDKs for different
programming languages.

« Speed: It offers blazing fast retrieval speeds, up to 10 times faster than some alternatives.
« Scalability and Availability: Milvus is highly scalable, with options to scale up and out as needed.

» Feature-Rich: It supports different data types, attribute filtering, User-Defined Function (UDF) support,
configurable consistency levels, and travel time, making it a versatile tool for various applications.

Milvus architecture overview

Coardinator Services

LR [] .
SOK | restiul AP : Mrta Store = Rootcoand Datacoord Cprycoord
Access Layer oL foeL
Mussage Storago [WAL
' dion DML | P
WL | Produon
e Halka 7" Pulsar
Land Batanicer §g ""':E Controds
Froxy
Saarch [/ Query 1 CEOnSume
| Worker Nodes .
Ouady Medes Data Modes Indox Naday
Lood Wirito - Wirili
| Object Storage pa -
Data Files | Indfox Filas
Dwitalag Statslog Binlog Index Indiex
¥

MNotApp StorageGRID - Object storage

AllFlash FAS - T T T R

OMNTAP

This section provides higher lever components and services are used in Milvus architecture.

* Access layer — It's composed of a group of stateless proxies and serves as the front layer of the system and
endpoint to users.

* Coordinator service — it assigns the tasks to the worker nodes and act as a system’s brain. It has three
coordinator types: root coord,data coord and query coord.

* Worker nodes : It follows the instruction from coordinator service and execute user triggered DML/DDL
commands.it has three types of worker nodes such as query node, data node and index node.

* Storage: it's responsible for data persistence. It comprises meta storage, log broker, and object storage.
NetApp storage such as ONTAP and StorageGRID provides object storage and File based storage to Milvus
for both customer data and vector database data.

Technology Requirement

This section provides an overview of the requirements for the NetApp vector database
solution.

Technology Requirement

The hardware and software configurations outlined below were utilized for the majority of the validations
performed in this document, with the exception of performance. These configurations serve as a guideline to
help you set up your environment. However, please note that the specific components may vary depending on
individual customer requirements.

Hardware requirements

Hardware

NetApp AFF Storage array HA Pair

6 x FUJITSU PRIMERGY RX2540 M4

Networking

StorageGRID

Software requirements

Software

Milvus cluster

Kubernetes

Python

Deployment Procedure

Details

* A800

* ONTAP 9.14.1

* 48 x 3.49TB SSD-NVM

* Two Flexible group volumes: metadata and data.

* Metadata NFS volume has 12 x Persistent Volumes
with 250GB.

* Data is a ONTAP NAS S3 volume

* 64 CPUs

* Intel® Xeon® Gold 6142 CPU @ 2.60GHz
* 256 GM Physical Memory

* 1 x 100GbE network port

100 GbE

*1 x SG100, 3xSGF6024
*3x24x7.68TB

Details

* CHART - milvus-4.1.11.

* APP Version — 2.3.4

* Dependent bundles such as bookkeeper, zookeeper,
pulsar, etcd, proxy, querynode, worker

* 5 node K8s cluster
* 1 Master node and 4 Worker nodes
*Version —1.7.2

*3.10.12.

This section discusses the deployment procedure for the vector database solution for

NetApp.

Deployment procedure

In this deployment section, we used milvus vector database with Kubernetes for the lab setup as below.

O

3 é © © Mivus Cluster

000

O

P

Q0

Pulsar-
@\ zookeepear

Milvus

Master

Mode

i J 'i' o
Bucka! File StorageGRID | Object storage)

BT o
Storage

R R R R oo

The netapp storage provides the storage for the cluster to keep customers data and milvus cluster data.

NetApp storage setup — ONTAP

» Storage system initialization
 Storage virtual machine (SVM) creation
« Assignment of logical network interfaces

* NFS, S3 configuration and licensing
Please follow the steps below for NFS (Network File System):

1. Create a FlexGroup volume for NFSv4. In our set up for this validation, we have used 48 SSDs, 1 SSD
dedicated for the controller’s root volume and 47 SSDs spread across for NFSv4]].Verify that the NFS
export policy for the FlexGroup volume has read/write permissions for the Kubernetes (K8s) nodes
network. If these permissions are not in place, grant read/write (rw) permissions for the K8s nodes network.

2. On all K8s nodes, create a folder and mount the FlexGroup volume onto this folder through a Logical
Interface (LIF) on each K8s nodes.

Please follow the steps below for NAS S3 (Network Attached Storage Simple Storage Service):

1. Create a FlexGroup volume for NFS.

2. Set up an object-store-server with HTTP enabled and the admin status set to 'up' using the "vserver object-
store-server create" command. You have the option to enable HTTPS and set a custom listener port.

3. Create an object-store-server user using the "vserver object-store-server user create -user <username>"
command.

4. To obtain the access key and secret key, you can run the following command: "set diag; vserver object-
store-server user show -user <username>". However, moving forward, these keys will be supplied during
the user creation process or can be retrieved using REST API calls.

5. Establish an object-store-server group using the user created in step 2 and grant access. In this example,
we have provided "FullAccess".

6. Create a NAS bucket by setting its type to "nas" and supplying the path to the NFSv3 volume. It's also
possible to utilize an S3 bucket for this purpose.

NetApp storage setup — StorageGRID

1. Install the storageGRID software.
2. Create a tenant and bucket.

3. Create user with required permission.

Please check more details in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Solution verification

Solution Overview

We have conducted a comprehensive solution validation focused on five key areas, the
details of which are outlined below. Each section delves into the challenges faced by
customers, the solutions provided by NetApp, and the subsequent benefits to the
customer.

1. Milvus cluster setup with Kubernetes in on-premises
Customer challenges to scale independently on storage and compute, effective infrastructure management
and data management. In this section, we detail the process of installing a Milvus cluster on Kubernetes,
utilizing a NetApp storage controller for both cluster data and customer data.

2. Milvus with Amazon FSx ONTAP for NetApp ONTAP — file and object duality
In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database
(milvus standalone) in Amazon FSx ONTAP for NetApp ONTAP within docker containers.

3. Vector database protection using NetApp SnapCenter.
In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data
residing in ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS
ONTAP volume (vol1) for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster
configuration data.

4. Disaster Recovery using NetApp SnapMirror
In this section, we discuss about the importance of Disaster recovery(DR) for vector database and how
netapp disaster recovery product snapmirror provides DR solution to vector database.

5. Performance validation
In this section, we aim to delve into the performance validation of vector databases, such as Milvus and
pgvecto.rs, focusing on their storage performance characteristics such as /O profile and netapp storage

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html
https://docs.netapp.com/us-en/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for-NetApp-ONTAP.html

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate
and identify any performance differentiators when these databases are combined with the ONTAP storage
solution. Our analysis will be based on key performance indicators, such as the number of queries
processed per second(QPS).

Milvus Cluster Setup with Kubernetes in on-premises

This section discusses the milvus cluster setup for the vector database solution for
NetApp.

Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management and
data management,

Kubernetes and vector databases together form a powerful, scalable solution for managing large data
operations. Kubernetes optimizes resources and manages containers, while vector databases efficiently
handle high-dimensional data and similarity searches. This combination enables swift processing of complex
queries on large datasets and seamlessly scales with growing data volumes, making it ideal for big data
applications and Al workloads.

1. In this section, we detail the process of installing a Milvus cluster on Kubernetes, utilizing a NetApp storage
controller for both cluster data and customer data.

2. To install a Milvus cluster, Persistent Volumes (PVs) are required for storing data from various Milvus
cluster components. These components include etcd (three instances), pulsar-bookie-journal (three
instances), pulsar-bookie-ledgers (three instances), and pulsar-zookeeper-data (three instances).

In milvus cluster, we can use either pulsar or kafka for the underlying engine supporting
Milvus cluster’s reliable storage and publication/subscription of message streams. For Kafka
with NFS,NetApp has made improvements in ONTAP 9.12.1 and later, and these

@ enhancements, along with NFSv4.1 and Linux changes that are included in RHEL 8.7 or 9.1
and higher, resolve the "silly rename" issue that can occur when running Kafka over NFS. if
you interested in more in-depth information on the topic of running kafka with netapp NFS
solution, please check - this link.

3. We created a single NFS volume from NetApp ONTAP and established 12 persistent volumes, each with
250GB of storage. The storage size can vary depending on the cluster size; for instance, we have another
cluster where each PV has 50GB. Please refer below to one of the PV YAML files for more details; we had
12 such files in total. In each file, the storageClassName is set to 'default’, and the storage and path are
unique to each PV.

10

https://docs.netapp.com/us-en/netapp-solutions-ai/data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai nfs to default pvl.yaml
apiVersion: vl
kind: PersistentVolume
metadata:
name: karthik-pvl
spec:
capacity:
storage: 250Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: default
local:
path: /vectordbsc/milvus/milvusl
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- node?2
- node3
- node4
- nodeb
- nodeo6
root@node2:~#

4. Execute the 'kubectl apply' command for each PV YAML file to create the Persistent Volumes, and then
verify their creation using 'kubectl get pv'

11

12

root@node2:~# for i in $(seq 1 12); do kubectl apply -f
sai nfs to default pv$Si.yaml; done
persistentvolume/karthik-pvl created
persistentvolume/karthik-pv2 created
persistentvolume/karthik-pv3 created
persistentvolume/karthik-pv4 created
persistentvolume/karthik-pv5 created
persistentvolume/karthik-pv6 created
persistentvolume/karthik-pv7 created
persistentvolume/karthik-pv8 created
persistentvolume/karthik-pv9 created
persistentvolume/karthik-pvl0 created
persistentvolume/karthik-pvll created
persistentvolume/karthik-pvl2 created
root@node?2: ~#

For storing customer data, Milvus supports object storage solutions such as MinlO, Azure Blob, and S3. In
this guide, we utilize S3. The following steps apply to both ONTAP S3 and StorageGRID object store. We
use Helm to deploy the Milvus cluster. Download the configuration file, values.yaml, from the Milvus
download location. Please refer to the appendix for the values.yaml file we used in this document.

Ensure that the 'storageClass' is set to 'default' in each section, including those for the log, etcd,
zookeeper, and bookkeeper.

In the MinlO section, disable MinlO.

Create a NAS bucket from ONTAP or StorageGRID object storage and include them in an External S3 with
the object storage credentials.

FHAHH A H AR A AR
External S3
- these configs are only used when “externalS3.enabled’ is true
FHARHHEHHH AR A AR S
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "Zd28p43rgzaU44PX ftT279z9nt4jBSro97387Bx"
useSSL: false
bucketName: "milvusdbvoll"
rootPath: ""
useIAM: false
cloudProvider: "aws"
iamEndpoint: ""
region: ""

useVirtualHost: false

9. Before creating the Milvus cluster, ensure that the PersistentVolumeClaim (PVC) does not have any pre-
existing resources.

root@node2:~# kubectl get pvc
No resources found in default namespace.
root@node2:~#

10. Utilize Helm and the values.yaml configuration file to install and start the Milvus cluster.

root@node2:~# helm upgrade --install my-release milvus/milvus --set
global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node? : ~#

11. Verify the status of the PersistentVolumeClaims (PVCs).

13

root@node2:~# kubectl get pvc

NAME

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-my-release-etcd-0

karthik-pv8 250G1 RWO default 3s
data-my-release-etcd-1

karthik-pv5 250G1 RWO default 2s
data-my-release-etcd-2

karthik-pv4 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0
karthik-pv10 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1
karthik-pv3 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2
karthik-pvl 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0
karthik-pv2 250G1i RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1
karthik-pv9 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2
karthik-pvll 250G1 RWO default 3s
my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0
karthik-pv7 250G1i RWO default 3s

root@node2:~#

12. Check the status of the pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

<content removed to save page space>

Please make sure the pods status are 'running' and working as expected

13. Test data writing and reading in Milvus and NetApp object storage.

14

o Write data using the "prepare_data_netapp_new.py" Python program.

STATUS

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

root@node2:~# date;python3 prepare data netapp new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew update2 sc exist in Milvus:
False

=== Drop collection - hello milvus ntapnew update2 sc ===

=== Drop collection - hello milvus ntapnew update2 sc2 ===

=== Create collection "hello milvus ntapnew update2 sc’ ===

=== Start inserting entities ==
Number of entities in hello milvus ntapnew update2 sc: 3000
Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

o Read the data using the "verify_data_netapp.py" Python file.

root@node2:~# python3 verify data netapp.py
=== start connecting to Milvus ===
=== Milvus host: localhost ===

Does collection hello milvus ntapnew updateZ sc exist in Milvus: True

{'auto_id': False, 'description': 'hello milvus ntapnew update2Z sc',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': False}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',
'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello milvus ntapnew update2 sc : 3000

=== Start Creating index IVF FLAT ===
=== Start loading ===
=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':
0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':
0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':
0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with “random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,
0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.8236044¢0,
0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,
0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with “random > 0.5 ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':
0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':
0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':
0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':
0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello milvus ntapnew updateZ sc2 exist in Milvus:

True

{'auto id': True, 'description': 'hello milvus ntapnew update2 sc2',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': True}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Based on the above validation, the integration of Kubernetes with a vector database, as demonstrated
through the deployment of a Milvus cluster on Kubernetes using a NetApp storage controller, offers
customers a robust, scalable, and efficient solution for managing large-scale data operations. This
setup provides customers with the ability to handle high-dimensional data and execute complex queries
rapidly and efficiently, making it an ideal solution for big data applications and Al workloads. The use of
Persistent Volumes (PVs) for various cluster components, along with the creation of a single NFS
volume from NetApp ONTAP, ensures optimal resource utilization and data management. The process
of verifying the status of PersistentVolumeClaims (PVCs) and pods, as well as testing data writing and

reading, provides customers with the assurance of reliable and consistent data operations. The use of
ONTAP or StorageGRID object storage for customer data further enhances data accessibility and
security. Overall, this setup empowers customers with a resilient and high-performing data
management solution that can seamlessly scale with their growing data needs.

Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality

This section discusses the milvus cluster setup with Amazon FSx ONTAP for the vector
database solution for NetApp.

Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database (
milvus standalone) in Amazon FSx ONTAP for NetApp ONTAP within docker containers.

Deploying a vector database in the cloud provides several significant benefits, particularly for applications that
require handling high-dimensional data and executing similarity searches. First, cloud-based deployment offers
scalability, allowing for the easy adjustment of resources to match the growing data volumes and query loads.
This ensures that the database can efficiently handle increased demand while maintaining high performance.
Second, cloud deployment provides high availability and disaster recovery, as data can be replicated across
different geographical locations, minimizing the risk of data loss, and ensuring continuous service even during
unexpected events. Third, it provides cost-effectiveness, as you only pay for the resources you use, and can
scale up or down based on demand, avoiding the need for substantial upfront investment in hardware. Finally,
deploying a vector database in the cloud can enhance collaboration, as data can be accessed and shared from
anywhere, facilitating team-based work and data-driven decision making.

Please check the architecture of the milvus standalone with Amazon FSx ONTAP for NetApp ONTAP used in
this validation.

Subcomponents
Query Coord Data Coord Index Coord Root Coord
| Query Node | Data Node | Index Node | Proxy

Al Workloads

I

¥
Milvus cluster +

1 1
! :
1
i ! !
Reliable States I 9 !
1
1 1
' [User requests (image)] ,
| Object Storage Key-Value-Meta-Store : 1
M " 1
: : :
: [Recommendation system] 1
' :
1 1
il API calls for Similarity Similar images H
A A T \| embeddings search recommended to user |
' 1
Y A 4 v h v h 4 h 4 3 1 H
\ 1 H
1
Bucket File ! H
H i
1 1
1 1
: :
1
1
1

FS%

Customer Data and Milvus config data /

Amazon FSXn for
NetApp ONTAP

1. Create an Amazon FSx ONTAP for NetApp ONTAP instance and note down the details of the VPC, VPC

17

4.

5.
6.

7.

8.

18

security groups, and subnet. This information will be required when creating an EC2 instance. You can find
more details here - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east- 1#file-system-
create

. Create an EC2 instance, ensuring that the VPC, Security Groups, and subnet match those of the Amazon

FSx ONTAP for NetApp ONTAP instance.

Install nfs-common using the command 'apt-get install nfs-common' and update the package information
using 'sudo apt-get update'.

Create a mount folder and mount the Amazon FSx ONTAP for NetApp ONTAP on it.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/voll
/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on
172.31.255.228:/voll 973G 126G 848G 13% /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~$

Install Docker and Docker Compose using 'apt-get install'.

Set up a Milvus cluster based on the docker-compose.yaml file, which can be downloaded from the Milvus
website.

root@ip-172-31-22-245:~# wget https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
-0 docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
<removed some output to save page space>

In the 'volumes' section of the docker-compose.yml file, map the NetApp NFS mount point to the
corresponding Milvus container path, specifically in etcd, minio, and standalone.Check Appendix D:
docker-compose.yml for details about changes in yml

Verify the mounted folders and files.

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -1ltrh
/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3 access.py
drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes
ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -ltrh
/home/ubuntu/milvusvectordb/volumes/

total O

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
ubuntu@ip-172-31-29-98:~$ 1s

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb
vectordbvoll

ubuntu@ip-172-31-29-98:~$

9. Run 'docker-compose up -d' from the directory containing the docker-compose.yml file.

10. Check the status of the Milvus container.

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

Name Command State
Ports
milvus-etcd etcd -advertise-client-url ... Up (healthy)
2379/tcp, 2380/tcp
milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp, :::9000->9000/tcp, 0.0.0.0:9001-
>9001/tcp, :::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)
0.0.0.0:19530->19530/tcp, :::19530->19530/tcp, 0.0.0.0:9091-
>9091/tcp, :::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ 1s -1ltrh /home/ubuntu/milvusvectordb/volumes/
total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milwvus
ubuntu@ip-172-31-29-98:~$

11. To validate the read and write functionality of vector database and it's data in Amazon FSx ONTAP for
NetApp ONTAP, we used the Python Milvus SDK and a sample program from PyMilvus. Install the
necessary packages using 'apt-get install python3-numpy python3-pip' and install PyMilvus using 'pip3
install pymilvus'.

12. Validate data writing and reading operations from Amazon FSx ONTAP for NetApp ONTAP in the vector

19

20

database.

root@ip-172-31-29-98:~/pymilvus/examples# python3
prepare data netapp new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True
=== Drop collection - hello milvus ntapnew sc ===
=== Drop collection - hello milvus ntapnew sc2 ===
=== Create collection "hello milvus ntapnew sc ===
=== Start inserting entities ===

Number of entities in hello milvus ntapnew sc: 9000
root@ip-172-31-29-98:~/pymilvus/examplesi# find

/home/ubuntu/milvusvectordb/
<removed content to save page space >

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-cl17-4fba-8256-96cb7557cd6c
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-c117-4fba-8256-96cb7557cdbc/part.1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920/x1.meta

13. Check the reading operation using the verify_data_netapp.py script.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify data netapp.py
=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True
{'auto_id': False, 'description': 'hello milvus ntapnew sc', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is primary': True, 'auto id': False}, {'name': 'random', 'description':
'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, ({'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}

Number of entities in Milvus: hello milvus ntapnew sc : 9000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},
random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':
0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with "random > 0.5 ===

21

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,
0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],
'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with "random > 0.5° ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':
0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':
0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello milvus ntapnew sc2Z exist in Milvus: True
{'auto_id': True, 'description': 'hello milvus ntapnew sc2', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is primary': True, 'auto id': True}, {'name': 'random', 'description':
'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',
'"type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}

14. If the customer wants to access (read) NFS data tested in the vector database via the S3 protocol for Al
workloads, this can be validated using a straightforward Python program. An example of this could be a
similarity search of images from another application as mentioned in the picture that is in the beginning of
this section.

root@ip-172-31-29-98:~/pymilvus/examplesi# sudo python3
/home/ubuntu/milvusvectordb/s3 access.py -1 172.31.255.228 --bucket
milvusnasvol —--access-key PY6UF318996I86NBYNDD --secret-key
hoPctr9abD88clj0SkIYZ2uPal03v1bgKAOc5feKo6F

OBJECTS in the bucket milvusnasvol are
PR b

<output content removed to save page space>

bucket/files/insert 10g/448789845791611912/448789845791611913/4487898457
91611920/0/448789845791411917/x1 .meta

22

volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920,/1/448789845791411918/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411913/x1.meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/101/448789845791411914/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/102/448789845791411915/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/1c48abbe-
1546-4503-9084-28c629216c33/part.1
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/0/448789845791411924/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/1,/448789845791411925/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/100/448789845791411920/x1 .meta
volumes/minio/a-bucket/files/insert 1o0g/448789845791611912
/448789845791611913/448789845791611939/101/448789845791411921/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/102/448789845791411922/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-
cll7-4fba-8256-96cb7557cd6c/part.1
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/103/448789845791411923/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791211880
/448789845791211881/448789845791411889/100/1/x1.meta
volumes/minio/a-bucket/files/stats 1og/448789845791211880
/448789845791211881,/448789845791411889/100/448789845791411912/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/1/x1 .meta
volumes/minio/a-bucket/files/stats 10g/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411919/x1.meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611939/100/1/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611939/100/448789845791411926/x1 .meta

R b b b b b b b b b b b I P I b 4

root@ip-172-31-29-98:~/pymilvus/examples

This section effectively demonstrates how customers can deploy and operate a standalone Milvus setup
within Docker containers, utilizing Amazon’s NetApp FSx ONTAP for NetApp ONTAP data storage. This
setup allows customers to leverage the power of vector databases for handling high-dimensional data and

23

executing complex queries, all within the scalable and efficient environment of Docker containers. By
creating an Amazon FSx ONTAP for NetApp ONTAP instance and matching EC2 instance, customers can
ensure optimal resource utilization and data management. The successful validation of data writing and
reading operations from FSx ONTAP in the vector database provides customers with the assurance of
reliable and consistent data operations. Additionally, the ability to list (read) data from Al workloads via the
S3 protocol offers enhanced data accessibility. This comprehensive process, therefore, provides customers
with a robust and efficient solution for managing their large-scale data operations, leveraging the
capabilities of Amazon’s FSx ONTAP for NetApp ONTAP.

Vector Database Protection using SnapCenter

This section describes how to provide data protection for the vector database using
NetApp SnapCenter.

Vector database protection using NetApp SnapCenter.

For example, in the film production industry, customers often possess critical embedded data such as video
and audio files. Loss of this data, due to issues like hard drive failures, can have a significant impact on their
operations, potentially jeopardizing multimillion-dollar ventures. We have encountered instances where
invaluable content was lost, causing substantial disruption and financial loss. Ensuring the security and
integrity of this essential data is therefore of paramount importance in this industry.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data residing in
ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS ONTAP volume (vol1)
for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster configuration data. please check
the here for the snapcenter backup workflow

1. Set up the host that will be used to execute SnapCenter commands.

24

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html

v [snepCenter x 4

L » O 0 Not secure Bitpsf/localhostB 146,/ Host#

M NetApp SnapCenter®
: Managed Hosts

Host Details
Host Mame nodal
Host IF 10.63,150.204

Crverall Status @ Running

Host Type Lindix
System Stand-alone
Credentials ’
Plug-ins SnapCenter Flug-ins package 1.0 for Linus

Slorage B

£ More Ontipns © Poct, inszall Path, Add Piug-ins...

it is recommended to configurs Cregential with non-root wuser 3of
friorm waimg the Yool Credentlsl 1o & non-fosl Credential snd dal

2. Install and configure the storage plugin. From the added host, select "More Options". Navigate to and
select the downloaded storage plugin from the NetApp Automation Store. Install the plugin and save the
configuration.

[e
@ Open X

A e smapcenter 5 » SC-ANF » g v & eech customeplugin s

Organize v Hew folder - m e

& Downlosds # A Mame

4 Documents # i oz

= b .

:“'" : n‘;‘}‘: More Options
8 This PC S
1 Postgresat :

B 30 Objucts |, SnapCenter Plug-in for DPGLUE 28

0 Desitop 1 SmapCenter Plug-in for MongeDB 2pp o

% Documents 1 storage 2220 0 d (zipp

3 Dovnloads ¥ sveas 2120 ompressed (ipF

B Music

& Pictures e
8 Videos Custom Plugins
L Local Disk (Cy)

Choose a File

= sapcenter

File name: || «| [ansies ~

Plug-n Version @

20

25

https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Set up the storage system and volume: Add the storage system under "Storage System" and select the
SVM (Storage Virtual Machine). In this example, we’ve chosen "vs_nvidia".

M NotApp Snaplenter®
[Frrra—

4. Establish a resource for the vector database, incorporating a backup policy and a custom snapshot name.

o Enable Consistency Group Backup with default values and enable SnapCenter without filesystem

consistency.

o In the Storage Footprint section, select the volumes associated with the vector database customer data

and Milvus cluster data. In our example, these are "vol1" and "vectordbpv".

o Create policy for vector database protection and protect vector database resource using the policy.

Modify Storage Storage Resource

o Hame Summary
o Storage Footprint MName
Type
o Resource Settings
Host scalesorver].s
| 4 Summary Mount Paints

Credential Name

Storage Footprint

Storage System Vaolums

Custom Resource Parameters

LUN/Ctree

-

Frevous

5. Insert data into the S3 NAS bucket using a Python script. In our case, we modified the backup script

26

provided by Milvus, namely 'prepare_data_netapp.py', and executed the 'sync' command to flush the data

from the operating system.

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost

Does collection hello milvus netapp sc test exist in Milvus: False

=== Create collection "hello milvus netapp sc test ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc test: 3000
=== Create collection "hello milvus netapp sc test2 ' ===

Number of entities in hello milvus netapp sc_test2: 6000

root@node2:~# for 1 in 2 3 4 5 6 ; do ssh node$i "hostname;
'sync executed';" ; done
node?2

sync executed
node3
sync executed
node4
sync executed
nodeb
sync executed
nodeb
sync executed
root@node2 :~#

sync; echo

6. Verify the data in the S3 NAS bucket. In our example, the files with the timestamp '2024-04-08 21:22' were

created by the 'prepare_data_netapp.py' script.

27

root@node2:~# aws s3 1s —--profile ontaps3 s3://milvusdbvoll/
--recursive | grep '2024-04-08"

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/1
2024-04-08 21:18:12 5654

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/4
48950615990800869

2024-04-08 21:18:17 5656

stats 10g/448950615991000809/448950615991000810/448950615991001872/100/1
2024-04-08 21:18:15 5654

stats 1og/448950615991000809/448950615991000810/448950615991001872/100/4
48950615990800876

2024-04-08 21:22:46 5625

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/1
2024-04-08 21:22:45 5623

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/4
48950615990800899

2024-04-08 21:22:49 5656

stats 1og/448950615991003408/448950615991003409/448950615991003416/100/1
2024-04-08 21:22:47 5654

stats 10g/448950615991003408/448950615991003409/448950615991003416/100/4
48950615990800906

2024-04-08 21:22:52 5656

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/1
2024-04-08 21:22:50 5654

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/4
48950615990800913

root@node2:~#

7. Initiate a backup using the Consistency Group (CG) snapshot from the 'milvusdb' resource

28

v [snapCenter x +
£+ r O O Notsecure Rigsy flocalhost8146/PluginCreatorinventoryProtect/Protectindex?Resource Type = Storage 20 ResourcefiHost= nul & PlugmMame=Storage# b+ o 2

M NetApp SnapCenter® B ©®- 1 msqanfadministrator SnapCent

Storage ‘ Resource - Details

o | Nartie Detalls for selected resource
] Name
w 20 mibwusdb
Type turage Resour
ﬁ 2a mikusnode2
Haost Name
| 20 vectordb
LI Mount Points
2 volumebackupl
:-l e = Credantisl Name
— Plug-in name
Last backup A ORI2024 2 14 PM (Completed)
A Resource Groups aleserver] mssola cal_Starage_milvusdt
Policy
Storage Footprint
SV Yolume Junction Fath LUN/Gtrae
iby
Custorn Resource Parameters
Koy Value
Total &

. To test the backup functionality, we either added a new table after the backup process or removed some
data from the NFS (S3 NAS bucket).

For this test, imagine a scenario where someone created a new, unnecessary, or inappropriate collection
after the backup. In such a case, we would need to revert the vector database to its state before the new
collection was added. For instance, new collections such as 'hello_milvus_netapp_sc_testnew' and
'hello_milvus_netapp_sc_testnew?2' have been inserted.

29

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===
Does collection hello milvus netapp sc testnew exist in Milvus: False

=== Create collection "hello milvus netapp sc testnew ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc testnew: 3000
=== Create collection "hello milvus netapp sc testnew2 ===

Number of entities in hello milvus netapp sc testnew2: 6000
root@node2:~#

9. Execute a full restore of the S3 NAS bucket from the previous snapshot.

30

Job Details

Restore 'scaleserver1.mssglanf.local\Storage\milvusdb’

v ¥ Restore ‘scaleserveri.mssqlanflocal\Starageimilvusdb’

v v scaleserverl.mssqlanf.lacal

v Restore

W » Validate Plugin Parameters
L * Pre Restore Application

W » File or Volume Restore

W * Recover Application

v » Cleaning Storage Resources
W * Clear Catalog on Server

v » Application Clean-Up

© Task Name: Restore Start Time: 04/08/2024 2:37:21 PM End Time: 04/08/2024 2:37:55 PM

View Logs Close

10. Use a Python script to verify the data from the 'hello_milvus_netapp_sc_test' and
'hello_milvus_netapp_sc_test2' collections.

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus netapp sc test exist in Milvus: True

{'auto id': False, 'description': 'hello milvus netapp sc test', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':
'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1]}

Number of entities in Milvus: hello milvus netapp sc _test : 3000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':
0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':
0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},
random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':
0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with “random > 0.5 ===
query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

31

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],
'pk': 0}
search latency = 0.2257s

=== Start hybrid searching with "random > 0.5° ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':
0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':
0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':
0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':
0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello milvus netapp sc test2 exist in Milvus: True
{'auto_id': True, 'description': 'hello milvus netapp sc test2', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': True}, {'name': 'random', 'description':
v 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',
'"type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1}

Number of entities in Milvus: hello milvus netapp sc test2 : 6000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {
'"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {
"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {
"random': 0.7864676926688837}, random field: 0.7864676926688837
hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {
'random': 0.2209597460821181}, random field: 0.2209597460821181
hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random

hit: id: 448950615990640004, distance:

0.7765521996186631}, random
search latency = 0.2381s

'random':

=== Start querying with "random > 0.5°

query result:
-{'embeddings"':

0.7820620141382767}
search latency = 0.3106s

'random':

field: 0.2209597460821181

0.11571306735277176, entity:

field: 0.7765521996186631

[0.15983285, 0.72214717, 0.7414838, 0.44471496,
0.50356466, 0.8750043, 0.316556, 0.7871702],

=== Start hybrid searching with "random > 0.5 ===

hit: id: 448950615990642008, distance:

'random': 0.5326684390871348}, random
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:

'random':

0.5326684390871348}, random
0.7864676926688837}, random
0.7765521996186631}, random
0.7765521996186631}, random
0.9742541034109935}, random

search latency = 0.4906s
root@node2 :~#

448950615990645009, distance:

448950615990640618, distance:

448950615990640004, distance:

448950615990643005, distance:

448950615990640402, distance:

0.07805602252483368, entity:

field: 0.5326684390871348

0.07805602252483368, entity:

field: 0.5326684390871348

0.13562293350696564, entity:

field: 0.7864676926688837

0.11571306735277176, entity:

field: 0.7765521996186631

0.11571306735277176, entity:

field: 0.7765521996186631

0.13665105402469635, entity:

field: 0.9742541034109935

11. Verify that the unnecessary or inappropriate collection is no longer present in the database.

'pk': 448950615990639798,

33

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost

Does collection hello milvus netapp sc testnew exist in Milvus: False
Traceback (most recent call last):
File "/root/verify data netapp.py", line 37, in <module>
recover collection = Collection(recover collection name)
File "/usr/local/lib/python3.10/dist-
packages/pymilvus/orm/collection.py"”, line 137, in init
raise SchemaNotReadyException (
pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:
(code=1, message=Collection 'hello milvus netapp sc testnew' not exist,
or you can pass in schema to create one.)>
root@node?2 : ~4

In conclusion, the use of NetApp’s SnapCenter to safeguard vector database data and Milvus data residing in
ONTARP offers significant benefits to customers, particularly in industries where data integrity is paramount,
such as film production. SnapCenter’s ability to create consistent backups and perform full data restores
ensures that critical data, such as embedded video and audio files, are protected against loss due to hard drive
failures or other issues. This not only prevents operational disruption but also safeguards against substantial
financial loss.

In this section, we demonstrated how SnapCenter can be configured to protect data residing in ONTAP,
including the setup of hosts, installation and configuration of storage plugins, and the creation of a resource for
the vector database with a custom snapshot name. We also showcased how to perform a backup using the
Consistency Group snapshot and verify the data in the S3 NAS bucket.

Furthermore, we simulated a scenario where an unnecessary or inappropriate collection was created after the
backup. In such cases, SnapCenter’s ability to perform a full restore from a previous snapshot ensures that the
vector database can be reverted to its state before the addition of the new collection, thus maintaining the
integrity of the database. This capability to restore data to a specific point in time is invaluable for customers,
providing them with the assurance that their data is not only secure but also correctly maintained. Thus,
NetApp’s SnapCenter product offers customers a robust and reliable solution for data protection and
management.

Disaster Recovery using NetApp SnapMirror

This section discusses DR (disaster recovery) with SnapMirror for the vector database
solution for NetApp.

Disaster Recovery using NetApp SnapMirror

34

Milvus Cluster

Subcompanants

Quity Coddd eita Coord Ivibiry Coond Hoot Coard

| Crusry Hode | Data MNode Indaex Hode | Proxy

Rellable Stotos

Dbjecs Jooroge | - Koy~ Yok~ Wiabo~Fhoe e

LI T T NS I

Milvus Cluster

Subcomponants

Ty Coced Bata Coafd et G Root Ceard
| Grumry Hode | Pata Nede Indez Node i Proay
Ralioble Stoles
Cbtec droge

| Wby -V Lheta-Sicee

[I S W T vw Ty

Y v VeryVyvg? ¥

= Cloud
B * Service
Providers

NetApp SnapMirror i :
/ Data Mover :r Foity m !

Disaster recovery is crucial for maintaining the integrity and availability of a vector database, especially given
its role in managing high-dimensional data and executing complex similarity searches. A well-planned and
implemented disaster recovery strategy ensures that data is not lost or compromised in the event of
unforeseen incidents, such as hardware failures, natural disasters, or cyber-attacks. This is particularly
significant for applications relying on vector databases, where the loss or corruption of data could lead to
significant operational disruptions and financial losses. Moreover, a robust disaster recovery plan also ensures
business continuity by minimizing downtime and allowing for the quick restoration of services. This is achieved
through NetApp data replication product SnapMirrror across different geographical locations, regular backups,
and failover mechanisms. Therefore, disaster recovery is not just a protective measure, but a critical
component of responsible and efficient vector database management.

Buckat Fila
Y
X

NetApp’s SnapMirror provides data replication from one NetApp ONTAP storage controller to another, primarily
used for disaster recovery (DR) and hybrid solutions. In the context of a vector database, this tool facilitates the
smooth transition of data between on-premises and cloud environments. This transition is achieved without
necessitating any data conversions or application refactoring, thereby enhancing the efficiency and flexibility of
data management across multiple platforms.

NetApp Hybrid solution in a vector database scenario can bring about more advantages:

1. Scalability: NetApp’s hybrid cloud solution offers the ability to scale your resources as per your
requirements. You can utilize on-premises resources for regular, predictable workloads and cloud
resources such as Amazon FSx ONTAP for NetApp ONTAP and Google Cloud NetApp Volume (NetApp
Volumes) for peak times or unexpected loads.

2. Cost Efficiency: NetApp’s hybrid cloud model allows you to optimize your costs by using on-premises
resources for regular workloads and only paying for cloud resources when you need them. This pay-as-
you-go model can be quite cost-effective with a NetApp instaclustr service offering. For on-prem and major
cloud service providers, instaclustr provids support and consultation.

3. Flexibility: NetApp’s hybrid cloud gives you the flexibility to choose where to process your data. For
example, you might choose to perform complex vector operations on-premises where you have more
powerful hardware, and less intensive operations in the cloud.

4. Business Continuity: In the event of a disaster, having your data in a NetApp hybrid cloud can ensure
business continuity. You can quickly switch to the cloud if your on-premises resources are affected. We can
leverage NetApp SnapMirror to move the data from on-prem to cloud and vice versa.

35

5. Innovation: NetApp’s hybrid cloud solutions can also enable faster innovation by providing access to
cutting-edge cloud services and technologies. NetApp innovations in cloud such as Amazon FSx ONTAP
for NetApp ONTAP, Azure NetApp Files and Google Cloud NetApp Volumes are cloud service providers
innovative products and preferred NAS.

Vector Database Performance Validation

This section highlights the performance validation that was performed on the vector
database.

Performance validation

Performance validation plays a critical role in both vector databases and storage systems, serving as a key
factor in ensuring optimal operation and efficient resource utilization. Vector databases, known for handling
high-dimensional data and executing similarity searches, need to maintain high performance levels to process
complex queries swiftly and accurately. Performance validation helps identify bottlenecks, fine-tune
configurations, and ensure the system can handle expected loads without degradation in service. Similarly, in
storage systems, performance validation is essential to ensure data is stored and retrieved efficiently, without
latency issues or bottlenecks that could impact overall system performance. It also aids in making informed
decisions about necessary upgrades or changes in storage infrastructure. Therefore, performance validation is
a crucial aspect of system management, contributing significantly to maintaining high service quality,
operational efficiency, and overall system reliability.

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and
pgvecto.rs, focusing on their storage performance characteristics such as 1/0O profile and netapp storage
controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate and
identify any performance differentiators when these databases are combined with the ONTAP storage solution.
Our analysis will be based on key performance indicators, such as the number of queries processed per
second(QPS).

Please check the methodology used for milvus and progress below.

Details Milvus (Standalone and Cluster) Postgres(pgvecto.rs)
#

version 2.3.2 0.2.0

Filesystem XFS on iSCSI LUNs

Workload Generator VectorDB-Bench —v0.0.5

Datasets LAION Dataset

* 10Million Embeddings
* 768 Dimensions
* ~300GB dataset size

Storage controller AFF 800
* Version — 9.14 .1

* 4 x 100GbE — for milvus and 2x
100GbE for postgres
* iscsi

VectorDB-Bench with Milvus standalone cluster

we did the following performance validation on milvus standalone cluster with vectorDB-Bench.

36

https://github.com/zilliztech/VectorDBBench

The network and server connectivity of the milvus standalone cluster is below.

Management network

...

wle-A800-A-01 ;

I I milvus-standalone | I | | I I |

wle-A800-A-02
”””l milvus-minio

milvus-etcd ! l

iSCSI 100Gbps network docker

In this section, we share our observations and results from testing the Milvus standalone database.

. We selected DiskANN as the index type for these tests.

. Ingesting, optimizing, and creating indexes for a dataset of approximately 100GB took around 5 hours. For
most of this duration, the Milvus server, equipped with 20 cores (which equates to 40 vcpus when Hyper-
Threading is enabled), was operating at its maximum CPU capacity of 100%.We found that DiskANN is
particularly important for large datasets that exceed the system memory size.

. In the query phase, we observed a Queries per Second (QPS) rate of 10.93 with a recall of 0.9987. The 99th
percentile latency for queries was measured at 708.2 milliseconds.

From the storage perspective, the database issued about 1,000 ops/sec during the ingest, post-insert
optimization, and index creation phases. In the query phase, it demanded 32,000 ops/sec.

The following section presents the storage performance metrics.

Workload Phase Metric Value
Data Ingestion IOPS < 1,000
and

Post insert optimization

Latency <400 usecs
Workload Read/Write mix, mostly writes
10 size 64KB
Query IOPS Peak at 32,000
Latency <400 usecs
Workload 100% cached read
1O size Mainly 8KB

The vectorDB-bench result is below.

37

.<~. VDB
z' Benchmark

Vector Database Benchmark

Filtering Search Performance Test (5M Dataset, 1536 Dim, Filter 1%) A

Qps (more is better)

Milvus 1093

Recall (more is better)

Vi L5 09987

Load_duration (less is better)

M a5 15,3605

Serial_latency_p99 (less is better)

i L5 708.2ms

From the performance validation of the standalone Milvus instance, it's evident that the current setup is
insufficient to support a dataset of 5 million vectors with a dimensionality of 1536. we’ve determined that the
storage possesses adequate resources and does not constitute a bottleneck in the system.

VectorDB-Bench with milvus cluster

In this section, we discuss the deployment of a Milvus cluster within a Kubernetes environment. This
Kubernetes setup was constructed atop a VMware vSphere deployment, which hosted the Kubernetes master
and worker nodes.

The details of the VMware vSphere and Kubernetes deployments are presented in the following sections.

38

Management network

wle-A800-A-01

wle-A800-A-02

iSCSI 100Gbps network

VMware vSphere

A

vm-kube-worker-14

vm-kube-worker-15

vm-kube-worker-16

vm-kube-master-01 vm-kube-master-02 vm-kube-master-03

vm-kube-worker-17

vm-kube-worker-18

vm-kube-worker-19

39

|

|

i i |
Q000 |

- g~ -~ indexnode-0 indexnode-1 indexnode-2 indexnode-3 E |
- — '
|
|

my-release-eted my-release-minio my-release-milvus-indexnode

|

|

|

|

|

|

|

|

| £ = fTT ST SRTeeRsmRmemsmmsemssee oo .

@I @I i '

| my-releasa-pulsar-bookie my-release-pulsar-broker : E

| : querynode-0 querynode-1 qQuerynode-2 querynode-3 querynode-di
L) r=? : :

I I H '

| my-release-pulsar-proxy my-release-pulsar-recovery : .

|

|

|

|

|

|

|

|

|

|

|

|

: querynode-5 querynode-6 querynode-7 querynode-8 querynode-S | |
f '-.'; "-'-n‘l v
. __ ‘ |
|

|

|

|

my-release-pulsar-zookeeper my-release-milvus-querynode

kube-worker-14 kube-worker-15 kube-worker-16 kube-worker-17 kube-worker-18 kube-worker-19

| |
0-0-0

kube-master-01 kube-master-02 kube-master-03

In this section, we present our observations and results from testing the Milvus database.

* The index type used was DiskANN.

* The table below provides a comparison between the standalone and cluster deployments when working with
5 million vectors at a dimensionality of 1536. We observed that the time taken for data ingestion and post-insert
optimization was lower in the cluster deployment. The 99th percentile latency for queries was reduced by six
times in the cluster deployment compared to the standalone setup.

* Although the Queries per Second (QPS) rate was higher in the cluster deployment, it was not at the desired
level.

Metric _______________| Milvus Standalone _| Milvus Cluster

QPS @ Recall 10.93 @ 0.9987 18.42 @ 0.9952 +40%
p99 Latency (less is better) 708.2 ms 117.6 ms -83%
Load Duration time (less is better) 18,360 secs 12,730 secs -30%

The images below provide a view of various storage metrics, including storage cluster latency and total IOPS

40

(Input/Output Operations Per Second).

, Summary

Cluster Latency

800 ps 100K ops

600 ps 75K ops
400 ps

fl
200 ps ﬁﬁ |

Ops
17:30

50K ops

25K ops

oops I

17:30

‘L\j

PAR]

18:00 19:00 19:30 20:00 20:30 21:30 18:00

== average == min == max == wle-a800-a-01 == wle-a800-a-02

The following section presents the key storage performance metrics.

Workload Phase Metric

Data Ingestion IOPS

and

Post insert optimization
Latency
Workload
1O size

Query IOPS
Latency
Workload
1O size

18:30

Total OPS

19:00 19:30 20:00 20:30 AR 21:30

Value

< 1,000

<400 usecs

Read/Write mix, mostly writes
64KB

Peak at 147,000

<400 usecs

100% cached read

Mainly 8KB

Based on the performance validation of both the standalone Milvus and the Milvus cluster, we present the

details of the storage I/O profile.

* We observed that the I/O profile remains consistent across both standalone and cluster deployments.
* The observed difference in peak IOPS can be attributed to the larger number of clients in the cluster

deployment.

vectorDB-Bench with Postgres (pgvecto.rs)

We conducted the following actions on PostgreSQL (pgvecto.rs) using VectorDB-Bench:
The details regarding the network and server connectivity of PostgreSQL (specifically, pgvecto.rs) are as

follows:

41

Management network

wle-AB00-A-01 ‘
] 11111 g

wle-AB00-A-02 — .
Postgres :

docker

In this section, we share our observations and results from testing the PostgreSQL database, specifically using
pgvecto.rs.

* We selected HNSW as the index type for these tests because at the time of testing, DiskANN wasn’t
available for pgvecto.rs.

* During the data ingestion phase, we loaded the Cohere dataset, which consists of 10 million vectors at a
dimensionality of 768. This process took approximately 4.5 hours.

* In the query phase, we observed a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344. The 99th
percentile latency for queries was measured at 20 milliseconds. Throughout most of the runtime, the client
CPU was operating at 100% capacity.

The images below provide a view of various storage metrics, including storage cluster latency total IOPS
(Input/Output Operations Per Second).

Summary

The following section presents the key storage performance metrics.

42

Workload Phase M Milvus Standalone Milvus Cluster

IOPS < 1,000 < 1,000

Data Ingestion and Post- Latency <400 usecs < 400 usecs
Optimization Workload Mix ~ Read/Write mix, mostly writes Read/Write mix, mostly writes

10 Size 64 KB 64 KB

I0PS Peak at 32,000 Peak at 147,000

Quoery Latency < 400 usecs < 400 usecs
Workload Mix 100% cache reads 100% cache reads

10 Size Mainly 8KB Mainly 8KB

Performance comparison between milvus and postgres on vector DB Bench

.%~-. DB
f/r‘)" Benchmark

Vector Database Benchmark

Note that all testing was completed in July 2023, except for the times already noted.

Search Performance Test (1L0M Dataset, 768 Dim) ~

Qps (more is better)

Pgvectors-20¢_250g 001 |, 055
Milvus-20c_250g_002 | 106

Recall (more is better)
Milvus-20c_250g._00: | 0.9842
Pevectors-20c_250g 001 |, 034+
Serial_latency_p99 (less is better)

Milvus-20c_250g 002 | 15.8ms
PgVectors-20c_250g 00 | 20ms

Based on our performance validation of Milvus and PostgreSQL using VectorDBBench, we observed the
following:

43

* Index Type: HNSW

» Dataset: Cohere with 10 million vectors at 768 dimensions

We found that pgvecto.rs achieved a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344, while
Milvus achieved a QPS rate of 106 with a recall of 0.9842.

If high precision in your queries is a priority, Milvus outperforms pgvecto.rs as it retrieves a higher proportion of
relevant items per query. However, if the number of queries per second is a more crucial factor, pgvecto.rs
exceeds Milvus. It's important to note, though, that the quality of the data retrieved via pgvecto.rs is lower, with
around 37% of the search results being irrelevant items.

Observation based on our performance validations:

Based on our performance validations, we have made the following observations:

In Milvus, the I/O profile closely resembles an OLTP workload, such as that seen with Oracle SLOB. The
benchmark consists of three phases: Data Ingestion, Post-Optimization, and Query. The initial stages are
primarily characterized by 64KB write operations, while the query phase predominantly involves 8KB reads.
We expect ONTAP to handle the Milvus 1/O load proficiently.

The PostgreSQL 1/O profile does not present a challenging storage workload. Given the in-memory
implementation currently in progress, we didn’t observe any disk 1/0 during the query phase.

DiskANN emerges as a crucial technology for storage differentiation. It enables the efficient scaling of vector
DB search beyond the system memory boundary. However, it's unlikely to establish storage performance
differentiation with in-memory vector DB indices such as HNSW.

It's also worth noting that storage does not play a critical role during the query phase when the index type is
HSNW, which is the most important operating phase for vector databases supporting RAG applications. The
implication here is that the storage performance does not significantly impact the overall performance of these
applications.

Vector Database with Instaclustr using PostgreSQL.:
pgvector

This section discusses the specifics of how instaclustr product integrates with
postgreSQL on pgvector fuctionality in the vector database solution for NetApp.
Vector Database with Instaclustr using PostgreSQL: pgvector

In this section, we delve into the specifics of how instaclustr product integrates with postgreSQL on pgvector
fuctionality. We have an example of "How To Improve Your LLM Accuracy and Performance With PGVector
and PostgreSQL: Introduction to Embeddings and the Role of PGVector". Please check the blog to get more
information.

Vector Database Use Cases

This section provides an overview of the use cases for the NetApp vector database
solution.

44

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Vector Database Use Cases

In this section, we discuss about two use cases such as Retrieval Augmented Generation with Large
Language Models and NetApp IT chatbot.

Retrieval Augmented Generation (RAG) with Large Language Models (LLMs)

Retrieval-augmented generation, or RAG, is a technique for enhancing the
accuracy and reliability of Large Language Models, or LLMs, by augmenting
prompts with facts fetched from external sources. In a traditional RAG
deployment, vector embeddings are generated from an existing dataset and
then stored in a vector database, often referred to as a knowledgebase.
Whenever a user submits a prompt to the LLM, a vector embedding
representation of the prompt is generated, and the vector database is
searched using that embedding as the search query. This search operation
returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can
be augmented with additional information that was not part of its original

training dataset.

The NVIDIA Enterprise RAG LLM Operator is a useful tool for implementing RAG in the enterprise. This
operator can be used to deploy a full RAG pipeline. The RAG pipeline can be customized to utilize either

Milvus or pgvecto as the vector database for storing knowledgebase embeddings. Refer to the documentation

for details.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA
Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figure 1) Enterprise RAG powered by NVIDIA NeMo Microservices and NetApp

Existing data sources
f/F ﬂx\ | Chat Ute, APts, SDWs
SloragoGRID .
; ey <3
DA
DINTAP
Kii B roni o
Any Kubarpolos — clawd of an-pramiies

MVIA NeWo Microearvicns

Entwrpiias RAG

O Amazon Fox for MobApp DNTAP

RaotAgpy Intelligent Data Blerage

Al-Regh appllancs; adlivo cloud aadvicas
@ Arura NedApp Flies
Enterprise data protection and govemanos
#- fram NetApp
Googin Cloud Nolapp Volumas
i | aws mm
" 8

On-prem and/or cloud Datacenter

On-prem andfor cloud

45

NetApp IT chatbot use case

NetApp’s chatbot serves as another real-time use case for the vector database. In this instance, the NetApp
Private OpenAl Sandbox provides an effective, secure, and efficient platform for managing queries from
NetApp’s internal users. By incorporating stringent security protocols, efficient data management systems, and
sophisticated Al processing capabilities, it guarantees high-quality, precise responses to users based on their
roles and responsibilities in the organization via SSO authentication. This architecture highlights the potential
of merging advanced technologies to create user-focused, intelligent systems.

1 ‘@

User Azure OpenAl
Base Model

VPN 550
A58
Filtering
File Upload

= E : Client-side A File
5 —— Heip==- -© B w

Weaviate
Proxy - Server Web-App React Engine $3 Storage

Vector DB
+ (= ——— _J*T] File Meta Data— .
e_ _wee | J
Redis

nede—{E 0 S

/

2

File

Server-side

Mongo DB

Queue

Chat History Rabbitmq Azure OpenAl

Ingestion)
Embedding Model

The use case can be divided into four primary sections.

User Authentication and Verification:

» User queries first go through the NetApp Single Sign-On (SSO) process to confirm the user’s identity.
« After successful authentication, the system checks the VPN connection to ensure a secure data
transmission.

Data Transmission and Processing:

* Once the VPN is validated, the data is sent to MariaDB through the NetAIChat or NetAlCreate web
applications. MariaDB is a fast and efficient database system used to manage and store user data.

« MariaDB then sends the information to the NetApp Azure instance, which connects the user data to the Al
processing unit.

Interaction with OpenAl and Content Filtering:

» The Azure instance sends the user’s questions to a content filtering system. This system cleans up the
query and prepares it for processing.

* The cleaned-up input is then sent to the Azure OpenAl base model, which generates a response based on
the input.

46

Response Generation and Moderation:

* The response from the base model is first checked to ensure it is accurate and meets content standards.

+ After passing the check, the response is sent back to the user. This process ensures that the user receives
a clear, accurate, and appropriate answer to their query.

Conclusion

This section concludes the vector database solution for NetApp.

Conclusion

In conclusion, this document provides a comprehensive overview of deploying and managing vector
databases, such as Milvus and pgvector, on NetApp storage solutions. We discussed the infrastructure
guidelines for leveraging NetApp ONTAP and StorageGRID object storage and validated the Milvus database
in AWS FSx ONTAP through file and object store.

We explored NetApp'’s file-object duality, demonstrating its utility not only for data in vector databases but also
for other applications. We also highlighted how SnapCenter, NetApp’s enterprise management product, offers
backup, restore, and clone functionalities for vector database data, ensuring data integrity and availability.

The document also delves into how NetApp’s Hybrid Cloud solution offers data replication and protection
across on-premises and cloud environments, providing a seamless and secure data management experience.
We provided insights into the performance validation of vector databases like Milvus and pgvecto on NetApp
ONTARP, offering valuable information on their efficiency and scalability.

Finally, we discussed two generative Al use cases: RAG with LLM and the NetApp’s internal ChatAl. These
practical examples underscore the real-world applications and benefits of the concepts and practices outlined
in this document. Overall, this document serves as a comprehensive guide for anyone looking to leverage
NetApp’s powerful storage solutions for managing vector databases.

Acknowledgments

The author like to heartfelt thanks to the below contributors, others who provided their feedback and comments
to make this paper valuable to NetApp customers and NetApp fields.
1. Sathish Thyagarajan, Technical Marketing Engineer, ONTAP Al & Analytics, NetApp
. Mike Oglesby, Technical Marketing Engineer, NetApp
. AJ Mahajan, Senior Director, NetApp
. Joe Scott, Manager, Workload Performance Engineering, NetApp

. Puneet Dhawan, Senior Director, Product Management Fsx, NetApp

o o0 A WODN

. Yuval Kalderon, Senior Product Manager, FSx Product Team, NetApp

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or
websites:

* Milvus documentation - https://milvus.io/docs/overview.md

* Milvus standalone documentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

47

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

* NetApp Product Documentation
https://www.netapp.com/support-and-training/documentation/

* instaclustr - instalclustr documentation

Version history

Version Date Document version history

Version 1.0 April 2024 Initial release

Appendix A: Values.yaml

This section provides sample YAML code for the values used in the NetApp vector
database solution.

Appendix A: Values.yaml

root@node2:~# cat values.yaml
Enable or disable Milvus Cluster mode
cluster:

enabled: true

image:
all:
repository: milvusdb/milvus
tag: v2.3.4
pullPolicy: IfNotPresent
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-
image-private-registry/
#4
pullSecrets:
- myRegistryKeySecretName
tools:
repository: milvusdb/milvus-config-tool
tag: v0.1.2
pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector
nodeSelector: {}

Global tolerations
If set, this will apply to all milvus components

48

https://www.netapp.com/support-and-training/documentation/
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Individual components can be set to a different tolerations
tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity
affinity: {}

Global labels and annotations

If set, this will apply to all milvus components
labels: {}

annotations: {}

Extra configs for milvus.yaml
If set, this config will merge into milvus.yaml
Please follow the config structure in the milvus.yaml

+H H = H

config
in the image and helm chart.

extraConfigFiles:
user.yaml: |+

For example enable rest http for milvus proxy
Proxy:
http:
enabled: true
Enable tlsMode and set the tls cert and key
tls:
serverPemPath: /etc/milvus/certs/tls.crt
serverKeyPath: /etc/milvus/certs/tls.key
common :
security:
tlsMode: 1

Expose the Milvus service to be accessed from outside the
(LoadBalancer service).
or access it from within the cluster (ClusterIP service).
service type and the port to serve it.
ref: http://kubernetes.io/docs/user—-guide/services/
#4
service:
type: ClusterIP
port: 19530
portName: milvus
nodePort: ""

annotations: {}

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml
Note: this config will be the top priority which will override the

cluster

Set the

49

50

labels: {}

List of IP addresses at which the Milvus service is available

Ref: https://kubernetes.io/docs/user-guide/services/#external-ips
#4

externallIPs: []

- externallpl

LoadBalancerSourcesRange is a list of allowed CIDR values, which are
combined with ServicePort to

set allowed inbound rules on the security group assigned to the master
load balancer

loadBalancerSourceRanges:

- 0.0.0.0/0

Optionally assign a known public LB IP

loadBalancerIP: 1.2.3.4

ingress:
enabled: false
annotations:
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/backend-protocol: GRPC
nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]"'
nginx.ingress.kubernetes.io/proxy-body-size: 4m
nginx.ingress.kubernetes.io/ssl-redirect: "true"
labels: {}
rules:
- host: "milvus-example.local"
path: "/"
pathType: "Prefix"
- host: "milvus-example2.local"
path: "/otherpath"
pathType: "Prefix"

tls: T[]

- secretName: chart-example-tls

hosts:

- milvus-example.local
serviceAccount:

create: false
name:
annotations:
labels:

metrics:

enabled: true

serviceMonitor:

Set this to "true’ to create ServiceMonitor for Prometheus operator

enabled: false

interval: "30s"

scrapeTimeout: "10s"

Additional labels that can be used so ServiceMonitor will be
discovered by Prometheus

additionalLabels: {}

livenessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 30
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 10
timeoutSeconds: 5

successThreshold: 1
failureThreshold: 5
log:

level: "info"

file:
maxSize: 300 # MB
maxAge: 10 # day
maxBackups: 20

format: "text" # text/json

persistence:
mountPath: "/milvus/logs"

If true, create/use a Persistent Volume Claim
If false, use emptyDir
##
enabled: false
annotations:

helm.sh/resource-policy: keep
persistentVolumeClaim:

existingClaim: ""

Milvus Logs Persistent Volume Storage Class

If defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic

provisioning

52

If undefined (the default) or set to null, no storageClassName
spec is

#4 set, choosing the default provisioner.

ReadWriteMany access mode required for milvus cluster.

#4

storageClass: default

accessModes: ReadWriteMany

size: 10Gi

subPath: ""

Heaptrack traces all memory allocations and annotates these events with
stack traces.
See more: https://github.com/KDE/heaptrack
Enable heaptrack in production is not recommended.
heaptrack:
image:

repository: milvusdb/heaptrack

tag: v0.1.0

pullPolicy: IfNotPresent

standalone:

replicas: 1 # Run standalone mode with replication disabled
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:

enabled: false
disk:

enabled: true

size:

enabled: false # Enable local storage size limit

profiling:

enabled: false # Enable live profiling

Default message queue for milvus standalone
Supported value: rocksmg, natsmg, pulsar and kafka
messageQueue: rocksmg

persistence:

mountPath: "/var/lib/milvus"
If true, alertmanager will create/use a Persistent Volume Claim
If false, use emptyDir
#H
enabled: true
annotations:
helm.sh/resource-policy: keep
persistentVolumeClaim:
existingClaim: ""
Milvus Persistent Volume Storage Class
If defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic
provisioning

If undefined (the default) or set to null, no storageClassName

spec is
set, choosing the default provisioner.
##
storageClass:

accessModes: ReadWriteOnce
size: 50Gi
subPath: ""

Proxy:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
http:
enabled: true # whether to enable http rest server
debugMode:
enabled: false
Mount a TLS secret into proxy pod
tls:
enabled: false
when enabling proxy.tls, all items below should be uncommented and the
key and crt values should be populated.
enabled: true

54

#

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base6d -w 0)
and $(cat tls.key | base64 -w 0)

H H= H H H= H H H= FH

key: LSOtLS1CRUdJJTiBQU--REDUCT
crt: LSOtLSICRUAJTiBDR--REDUCT
volumes:
— secret:
secretName: milvus-tls
name: milvus-tls
volumeMounts:
- mountPath: /etc/milvus/certs/
name: milvus-tls

rootCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Root Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

service:
port: 53100
annotations: {}
labels: {}
clusterIP: ""

queryCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Query Coordinator mode with replication disabled
resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

service:
port: 19531
annotations: {}
labels: {}
clusterIP: ""

queryNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
disk:
enabled: true # Enable querynode load disk index, and search on disk
index
size:
enabled: false # Enable local storage size limit
profiling:
enabled: false # Enable live profiling

indexCoordinator:
enabled: true
You can set the number of replicas greater than 1, only if enable
active standby
replicas: 1 # Run Index Coordinator mode with replication disabled
resources: {}
nodeSelector: {}

affinity: {}

55

tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false
activeStandby:
enabled: false

Enable live profiling

Enable active-standby when you set multiple replicas

for index coordinator

service:
port: 31000
annotations: {}
labels: {}
clusterIP: ""
indexNode:
enabled: true

You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

replicas: 1

resources: {}

Set local storage size in resources

limits:

ephemeral-storage: 100Gi

nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:

enabled: false
profiling:

enabled: false
disk:

enabled: true

size:

Enable live profiling

Enable index node build disk vector index

enabled: false # Enable local storage size limit

dataCoordinator:
enabled: true

You can set the number of replicas greater than 1, only if enable

active standby
replicas: 1

disabled
resources: {}
nodeSelector: {}

56

Run Data Coordinator mode with replication

affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

service:
port: 13333
annotations: {}
labels: {}
clusterIP: ""

dataNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling

mixCoordinator contains all coord
If you want to use mixcoord, enable this and disable all of other
coords
mixCoordinator:

enabled: false

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Mixture Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

57

heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

service:
annotations: {}
labels: {}
clusterIP: ""

attu:

enabled: false

name: attu

image:
repository: zilliz/attu
tag: v2.2.8
pullPolicy: IfNotPresent

service:

annotations: {}

labels: {}
type: ClusterIP
port: 3000

loadBalancerIP: ""
resources: {}
podLabels: {}
ingress:
enabled: false
annotations: {}
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
labels: {}
hosts:
- milvus-attu.local

tls: []

- secretName: chart-attu-tls
hosts:

- milvus-attu.local

Configuration values for the minio dependency
ref: https://github.com/minio/charts/blob/master/README .md
ki

58

minio:
enabled: false
name: minio
mode: distributed
image:
tag: "RELEASE.2023-03-20T20-16-187"
pullPolicy: IfNotPresent
accessKey: minioadmin
secretKey: minioadmin
existingSecret: ""
bucketName: "milvus-bucket"
rootPath: file
useIAM: false
iamEndpoint: ""
region: ""
useVirtualHost: false
podDisruptionBudget:
enabled: false
resources:
requests:
memory: 2Gi

gcsgateway:
enabled: false
replicas: 1
gcsKeyJson: "/etc/credentials/gcs_ key.json"
projectId: ""

service:
type: ClusterIP
port: 9000

persistence:
enabled: true
existingClaim: ""
storageClass:
accessMode: ReadWriteOnce
size: 500Gi

livenessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

60

readinessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 1
successThreshold: 1
failureThreshold: 5

startupProbe:
enabled: true
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 60

Configuration values for the etcd dependency
ref: https://artifacthub.io/packages/helm/bitnami/etcd
##

etcd:

enabled: true

name: etcd

replicaCount: 3

pdb:
create: false

image:
repository: "milvusdb/etcd"
tag: "3.5.5-r2"
pullPolicy: IfNotPresent

service:
type: ClusterIP
port: 2379
peerPort: 2380

auth:
rbac:
enabled: false

persistence:
enabled: true
storageClass: default
accessMode: ReadWriteOnce
size: 10Gi

Change default timeout periods to mitigate zoobie probe process

livenessProbe:
enabled: true
timeoutSeconds: 10

readinessProbe:
enabled: true
periodSeconds: 20
timeoutSeconds: 10

Enable auto compaction

compaction by every 1000 revision
##

autoCompactionMode: revision
autoCompactionRetention: "1000"

Increase default quota to 4G

#H

extraknvVars:

- name: ETCD QUOTA BACKEND BYTES
value: "4294967296"

- name: ETCD HEARTBEAT INTERVAL
value: "500"

- name: ETCD ELECTION TIMEOUT
value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

pulsar:

enabled: true
name: pulsar
fullnameOverride: ""
persistence: true

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes,

message in pulsar.

rbac:
enabled: false
psp: false
limit to namespace: true

affinity:

Maximum size of each

61

anti affinity: false
enableAntiAffinity: no

components:
zookeeper: true
bookkeeper: true
bookkeeper - autorecovery
autorecovery: true
broker: true
functions: false
proxy: true
toolset: false
pulsar manager: false

monitoring:
prometheus: false
grafana: false
node exporter: false
alert manager: false

images:

broker:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

autorecovery:
repository: apachepulsar/pulsar
tag: 2.8.2
pullPolicy: IfNotPresent

zookeeper:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

bookie:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pProxy:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pulsar manager:
repository: apachepulsar/pulsar-manager
pullPolicy: IfNotPresent
tag: v0.1.0

62

zookeeper:
volumes:
persistence: true
data:
name: data
size: 20Gi #SSD Required
storageClassName: default
resources:
requests:
memory: 1024Mi
cpu: 0.3
configData:
PULSAR MEM: >
-Xms1024m
-Xmx1024m
PULSAR GC: >

-Dcom. sun.management . jmxremote

-Djute.maxbuffer=10485760

—-XX:+ParallelRefProcEnabled
-XX:+UnlockExperimentalVMOptions

—-XX:+DoEscapeAnalysis
-XX:+DisableExplicitGC
-XX:+PerfDisableSharedMem
-Dzookeeper.forceSync=no
pdb:
usePolicy: false

bookkeeper:
replicaCount: 3
volumes:
persistence: true
journal:
name: journal
size: 100Gi
storageClassName: default
ledgers:
name: ledgers
size: 200Gi
storageClassName: default
resources:
requests:
memory: 2048Mi
cpu: 1
configData:
PULSAR MEM: >

63

64

-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m

PULSAR GC: >
-Dio.netty.leakDetectionlLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:4UseGlGC -XX:MaxGCPauseMillis=10
-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+Exi1itOnOutOfMemoryError
-XX:+PerfDisableSharedMem
-XX:+PrintGCDetails

nettyMaxFrameSizeBytes: "104867840"

pdb:
usePolicy: false

broker:
component: broker
podMonitor:
enabled: false
replicaCount: 1
resources:
requests:
memory: 4096Mi
cpu: 1.5
configData:
PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m
PULSAR GC: >
-Dio.netty.leakDetectionlLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC

-XX:-ResizePLAB

-XX:+ExitOnOutOfMemoryError
maxMessageSize: "104857600"
defaultRetentionTimeInMinutes: "10080"
defaultRetentionSizeInMB: "-1"
backlogQuotaDefaultLimitGB: "8"
ttlDurationDefaultInSeconds: "259200"
subscriptionExpirationTimeMinutes: "3"
backlogQuotaDefaultRetentionPolicy: producer exception

pdb:

usePolicy: false

autorecovery:

resources:

requests:
memory: 512Mi

cpu: 1

proxy:
replicaCount: 1
podMonitor:
enabled: false
resources:
requests:
memory: 2048Mi
cpu: 1
service:
type: ClusterIP
ports:
pulsar: 6650
configData:
PULSAR MEM: >
-Xms2048m -Xmx2048m
PULSAR GC: >
-XX:MaxDirectMemorySize=2048m
httpNumThreads: "100"
pdb:
usePolicy: false

pulsar manager:
service:

type: ClusterIP

pulsar metadata:
component: pulsar-init

image:

66

the image used for running “pulsar-cluster-initialize” job
repository: apachepulsar/pulsar
tag: 2.8.2

Configuration values for the kafka dependency
ref: https://artifacthub.io/packages/helm/bitnami/kafka
##

kafka:
enabled: false
name: kafka
replicaCount: 3
image:
repository: bitnami/kafka
tag: 3.1.0-debian-10-r52
Increase graceful termination for kafka graceful shutdown
terminationGracePeriodSeconds: "90"
pdb:
create: false

Enable startup probe to prevent pod restart during recovering
startupProbe:
enabled: true

Kafka Java Heap size

heapOpts: "-Xmx4096m -Xms4096m"

maxMessageBytes: 10485760

defaultReplicationFactor: 3

offsetsTopicReplicationFactor: 3

Only enable time based log retention

logRetentionHours: 168

logRetentionBytes: -1

extrakEnvVars:

- name: KAFKA CFG_MAX PARTITION FETCH BYTES
value: "5242880"

- name: KAFKA CFG_MAX REQUEST SIZE
value: "5242880"

- name: KAFKA CFG REPLICA FETCH MAX BYTES
value: "10485760"

- name: KAFKA CFG_FETCH MESSAGE MAX BYTES
value: "5242880"

- name: KAFKA CFG LOG ROLL HOURS
value: "24"

persistence:

enabled: true
storageClass:

accessMode: ReadWriteOnce
size: 300Gi

metrics:
Prometheus Kafka exporter: exposes complimentary metrics to JMX
exporter
kafka:
enabled: false
image:
repository: bitnami/kafka-exporter
tag: 1.4.2-debian-10-rl182

Prometheus JMX exporter: exposes the majority of Kafkas metrics
Jjmx:
enabled: false
image:
repository: bitnami/jmx-exporter
tag: 0.16.1-debian-10-r245

To enable serviceMonitor, you must enable either kafka exporter or
jmx exporter.
And you can enable them both
serviceMonitor:
enabled: false

service:
type: ClusterIP
ports:
client: 9092

zookeeper:
enabled: true
replicaCount: 3

FHAH A
External S3
- these configs are only used when “externalS3.enabled’ is true
FHAH A
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "7Zd28p43rgzaU44PX ftT279z9nt4jBSro97j87Bx"

67

false
"milvusdbvoll"

useSSL:
bucketName:
rootPath:
useIAM: false
cloudProvider:

"w aws "w

iamEndpoint:
region: ""
useVirtualHost: false

FHEHHHHH AR A AR A A AR S A
GCS Gateway

- these configs are only used when
FHEHHHH AR AR A AR A AR A AR AR AR
externalGces:

bucketName:

FHHHHHFHAHEH AR E SRS
External etcd
- these configs are only used when
FHHHHHFHAHAH AR AR
externalEtcd:

enabled: false

‘minio.gcsgateway.enabled” is true

‘externalEtcd.enabled”™ 1is true

the endpoints of the external etcd

##
endpoints:
- localhost:2379

FHAFH A H A AR
External pulsar
- these configs are only used when
FHARH A H AR
externalPulsar:
enabled: false
host: localhost
port: 6650
maxMessageSize: "5242880"
message in pulsar.
tenant: public

default

namespace:
authPlugin:

authParams:

FHAFHHEHHH A AR A AR S
External kafka
- these configs are only used when

igdddssasiaasdsaadiaasdaaadiaad it

68

5 * 1024 * 1024 Bytes,

"externalPulsar.enabled” 1s true

Maximum size of each

‘externalKafka.enabled®™ 1is true

externalKafka:
enabled: false
brokerList: localhost:9092
securityProtocol: SASL SSL
sasl:
mechanisms: PLAIN
username: ""
password: ""

root@node2: ~#

Appendix B: prepare_data_netapp_new.py

This section provides a sample Python script used to prepare data for the vector
database.

Appendix B: prepare_data_netapp_new.py

root@node2:~# cat prepare data netapp new.py

hello milvus.py demonstrates the basic operations of PyMilvus, a Python
SDK of Milvus.

connect to Milvus

create collection

insert data

create index

search, query, and hybrid search on entities

delete entities by PK

7. drop collection

S e S S o S o
o U W N R

import time

import os

import numpy as np
from pymilvus import (

connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

#num entities, dim = 3000, 8
num entities, dim = 3000, 16

C R o o o i
FHEHHEH

1. connect to Milvus

69

Add a new connection alias "default® for Milvus server in
"localhost:19530°

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as "localhost:19530°, you can omit
all

parameters and call the method as: “connections.connect ()
#

Note: the “using’ parameter of the following methods is default to
"default".

print (fmt.format ("start connecting to Milvus"))

N

host = os.environ.get ('MILVUS HOST')
if host == None:

host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

has = utility.has_collection("hello milvus ntapnew update2 sc")
print (f"Does collection hello milvus ntapnew update2 sc exist in Milvus:
{has}")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc"))
utility.drop collection("hello milvus ntapnew update2 sc'")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc2"))
utility.drop_collection("hello milvus ntapnew update2 sc2")

HHEHHHHF A A A H A AR A AR AR AR A H AR AR AR
FHAHHHE

2. create collection

We're going to create a collection with 3 fields.

-t Fom - Fom

| | field name | field type | other attributes | field description

=
+

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1] "pk" | Int64 | 1is primary=True | "primary field"

| auto id=False |

H — H= — =H*

| 2] "random" | Double | "a double field"

70

|3|"embeddings" | FloatVector]| dim=8 "float vector with dim

fields = [
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=False),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema = CollectionSchema (fields, "hello milvus ntapnew update2 sc")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc "))
hello milvus ntapnew update2 sc = Collection
"hello milvus ntapnew update2 sc", schema, consistency level="Strong")

id s s Exa LA E R A AR A ERA SRR R R R R R R AR RS EE AL
#HAHHH

3. insert data

We are going to insert 3000 rows of data into

"hello milvus ntapnew update2 sc®

Data to be inserted must be organized in fields.

#

The insert () method returns:

- either automatically generated primary keys by Milvus if auto id=True
in the schema;

- or the existing primary key field from the entities if auto id=False
in the schema.

print (fmt.format ("Start inserting entities"))
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result = hello milvus ntapnew update2 sc.insert(entities)

71

72

hello milvus ntapnew update2 sc.flush()
print (f"Number of entities in hello milvus ntapnew updateZ sc:

{hello milvus ntapnew update2 sc.num entities}") # check the num entites

create another collection
fields2 = |
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=True),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema2 = CollectionSchema (fields2, "hello milvus ntapnew update2 sc2")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc2 "))
hello milvus ntapnew update2 sc2 = Collection
"hello milvus ntapnew updateZ sc2", schemaZ2, consistency level="Strong")

entities2 = |
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result2 = hello milvus ntapnew update2 sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()
insert result2 = hello milvus ntapnew updateZ sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()

index params = {"index type": "IVF FLAT", "params": {"nlist": 128},
"metric type": "L2"}

hello milvus ntapnew update2 sc.create index("embeddings", index params)
#

hello milvus ntapnew update2 sc2.create index(field name="var", index name=

"scalar index")

index params2 = {"index type": "Trie"}

hello milvus ntapnew update2 sc2.create index("var", index params2)

print (f"Number of entities in hello milvus ntapnew update2 sc2:
{hello milvus ntapnew update2 sc2.num entities}") # check the num entites

root@node2:~#

Appendix C: verify_data_netapp.py

This section contains a sample Python script that can be used to validate the vector
database in the NetApp vector database solution.

Appendix C: verify_data_netapp.py

root@node2:~# cat verify data netapp.py
import time
import os
import numpy as np
from pymilvus import (
connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

num entities, dim = 3000, 16
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

xS EEE
iR L&
1. get recovered collection hello milvus ntapnew update2 sc
print (fmt.format ("start connecting to Milwvus"))
host = os.environ.get ('MILVUS HOST')
if host == None:
host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

recover collections = ["hello milvus ntapnew update2 sc",

"hello milvus ntapnew updateZ sc2"]

for recover collection name in recover collections:

has = utility.has_collection(recover collection name)

73

74

print (f"Does collection {recover collection name} exist in Milvus:
{has}")

recover collection = Collection(recover collection name)

print (recover collection.schema)

recover collection.flush/()

print (f"Number of entities in Milvus: {recover collection name}
{recover collection.num entities}") # check the num entites

it EddaEasaEdsEdd s AR AR AR AR AR AR R AR AR SR AE AL
#HA#HH

4. create index

We are going to create an IVF FLAT index for
hello milvus ntapnew update2 sc collection.

create index() can only be applied to "FloatVector and
"BinaryVector fields.

print (fmt.format ("Start Creating index IVEF FLAT"))

index = {
"index type": "IVEF FLAT",
"metric type": "L2",

"params": {"nlist": 128},

recover collection.create index ("embeddings", index)

C i o o o o
#HEHAES

=+

5. search, query, and hybrid search
After data were inserted into Milvus and indexed, you can perform:
- search based on vector similarity

#

#

- query based on scalar filtering(boolean, int, etc.)

- hybrid search based on vector similarity and scalar filtering.
#

Before conducting a search or a query, you need to load the data in
"hello milvus into memory.

print (fmt.format ("Start loading"))

recover collection.load()

search based on vector similarity
print (fmt.format ("Start searching based on vector similarity"))

vectors to search = entities[-1][-2:]

search params = ({
"metric type": "L2",
"params": {"nprobe": 10},
}
start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, limit=3, output fields=["random"])
end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")

print (search latency fmt.format(end time - start time))

query based on scalar filtering (boolean, int, etc.)
print (fmt.format ("Start gquerying with “random > 0.5 "))

start time = time.time ()

result = recover collection.query(expr="random > 0.5", output fields=
["random", "embeddings"])

end time = time.time ()

print (f"query result:\n-{result[0]}")
print (search latency fmt.format(end time - start time))

hybrid search
print (fmt.format ("Start hybrid searching with “random > 0.5°"))

start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, 1limit=3, expr="random > 0.5", output fields=["random"])

end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format (end time - start time))

75

FH A A R S
#HHH#

7. drop collection

Finally, drop the hello milvus, hello milvus ntapnew update2 sc

collection

#print (fmt.format (£f"Drop collection {recover collection name}"))

#utility.drop collection (recover collection name)

root@node2:~#

Appendix D: docker-compose.yml

This section includes sample YAML code for the vector database solution for NetApp.

Appendix D: docker-compose.yml

version: '3.5"

services:
etcd:
container name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD AUTO COMPACTION MODE=revision
= ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA BACKEND BYTES=4294967296
- ETCD SNAPSHOT COUNT=50000
volumes:
- /home/ubuntu/milvusvectordb/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen
-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s

retries: 3

minio:
container name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18%
environment:
MINIO ACCESS KEY: miniocadmin
MINIO SECRET KEY: minioadmin

76

ports:

- "9001:9001"

- "9000:9000"
volumes:

- /home/ubuntu/milvusvectordb/volumes/minio:/minio data
command: minio server /minio data --console-address ":9001"
healthcheck:

test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]
interval: 30s

timeout: 20s

retries: 3

standalone:
container name: milvus-standalone
image: milvusdb/milvus:v2.4.0-rc.1
command: ["milvus", "run", "standalone"]
security opt:
- seccomp:unconfined
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO ADDRESS: minio:9000
volumes:
- /home/ubuntu/milvusvectordb/volumes/milvus: /var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends on:
- "etcd"

- "minio"

networks:
default:

name: milwvus

77

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

78

http://www.netapp.com/TM

	Vector database solution with NetApp : NetApp artificial intelligence solutions
	Table of Contents
	Vector database solution with NetApp
	Vector Database Solution with NetApp
	Introduction
	Introduction

	Solution Overview
	Solution overview

	Vector Database
	Vector Database

	Technology Requirement
	Technology Requirement
	Hardware requirements
	Software requirements

	Deployment Procedure
	Deployment procedure

	Solution verification
	Solution Overview
	Milvus Cluster Setup with Kubernetes in on-premises
	Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality
	Vector Database Protection using SnapCenter
	Disaster Recovery using NetApp SnapMirror
	Vector Database Performance Validation

	Vector Database with Instaclustr using PostgreSQL: pgvector
	Vector Database with Instaclustr using PostgreSQL: pgvector

	Vector Database Use Cases
	Vector Database Use Cases

	Conclusion
	Conclusion

	Appendix A: Values.yaml
	Appendix A: Values.yaml

	Appendix B: prepare_data_netapp_new.py
	Appendix B: prepare_data_netapp_new.py

	Appendix C: verify_data_netapp.py
	Appendix C: verify_data_netapp.py

	Appendix D: docker-compose.yml
	Appendix D: docker-compose.yml

