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Karthikeyan Nagalingam and Rodrigo Nascimento, NetApp

This document provides a thorough exploration of the deployment and management of

vector databases, such as Milvus, and pgvecto an open-source PostgreSQL extension,

using NetApp’s storage solutions. It details the infrastructure guidelines for using NetApp

ONTAP and StorageGRID object storage and validates the application of Milvus database

in AWS FSx ONTAP. The document elucidates NetApp’s file-object duality and its utility

for vector databases and applications that support vector embeddings. It emphasizes the

capabilities of SnapCenter, NetApp’s enterprise management product, in offering backup

and restore functionalities for vector databases, ensuring data integrity and availability.

The document further delves into NetApp’s hybrid cloud solution, discussing its role in

data replication and protection across on-premises and cloud environments. It includes

insights into the performance validation of vector databases on NetApp ONTAP, and

concludes with two practical use cases on generative AI : RAG with LLM and the

NetApp’s internal ChatAI. This document serves as a comprehensive guide for leveraging

NetApp’s storage solutions for managing vector databases.

The Reference Architecture focus on the following:

1. Introduction

2. Solution Overview

3. Vector Database

4. Technology Requirement

5. Deployment Procedure

6. Solution Verification Overview

◦ Milvus cluster setup with Kubernetes in on-premises

◦ Milvus with Amazon FSx ONTAP for NetApp ONTAP – file and object duality

◦ Vector database protection using NetApp SnapCenter.

◦ Disaster Recovery using NetApp SnapMirror

◦ Performance validation

7. Vector Database with Instaclustr using PostgreSQL: pgvector

8. Vector Database Use Cases

9. Conclusion

10. Appendix A: values.yaml

11. Appendix B: prepare_data_netapp_new.py

12. Appendix C: verify_data_netapp.py

13. Appendix D: docker-compose.yml
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Introduction

This section provide an introduction to vector database solution for NetApp.

Introduction

Vector databases effectively address the challenges that are designed to handle the complexities of semantic

search in Large Language Models (LLMs) and generative Artificial Intelligence (AI). Unlike traditional data

management systems, vector databases are capable of processing and searching through various types of

data, including images, videos, text, audio, and other forms of unstructured data, by using the content of the

data itself rather than labels or tags.

The limitations of Relational Database Management Systems (RDBMS) are well-documented, particularly their

struggles with high-dimensional data representations and unstructured data common in AI applications.

RDBMS often necessitate a time-consuming and error-prone process of flattening data into more manageable

structures, leading to delays and inefficiencies in searches. Vector databases, however, are designed to

circumvent these issues, offering a more efficient and accurate solution for managing and searching through

complex and high-dimensional data, thus facilitating the advancement of AI applications.

This document serves as a comprehensive guide for customers who are currently using or planning to use

vector databases, detailing the best practices for utilizing vector databases on platforms such as NetApp

ONTAP, NetApp StorageGRID, Amazon FSx ONTAP for NetApp ONTAP, and SnapCenter. The content

provided herein covers a range of topics:

• Infrastructure guidelines for vector databases, like Milvus, provided by NetApp storage through NetApp

ONTAP and StorageGRID object storage.

• Validation of the Milvus database in AWS FSx ONTAP through file and object store.

• Delves into NetApp’s file-object duality, demonstrating its utility for data in vector databases as well as

other applications.

• How NetApp’s Data Protection Management product, SnapCenter, offers backup and restore functionalities

for vector database data.

• How NetApp’s Hybrid Cloud offers data replication and protection across on-premises and cloud

environments.

• Provides insights into the performance validation of vector databases like Milvus and pgvector on NetApp

ONTAP.

• Two specific use cases: Retrieval Augmented Generation (RAG) with Large Language Models(LLM) and

the NetApp IT team’s ChatAI, thereby offering practical examples of the concepts and practices outlined.

Solution Overview

This section provides an overview for the NetApp vector database solution.

Solution overview

This solution showcases the distinctive benefits and capabilities that NetApp brings to the table to tackle the

challenges faced by vector database customers. By leveraging NetApp ONTAP, StorageGRID, NetApp’s cloud

solutions, and SnapCenter, customers can add significant value to their business operations. These tools not

only address existing issues but also enhance efficiency and productivity, thereby contributing to overall

business growth.
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Why NetApp?

• NetApp’s offerings, such as ONTAP and StorageGRID, allow for the separation of storage and compute,

enabling optimal resource utilization based on specific requirements. This flexibility empowers customers to

independently scale their storage using NetApp storage solutions.

• By leveraging NetApp’s storage controllers, customers can efficiently serve data to their vector database

using NFS and S3 protocols. These protocols facilitate customer data storage and manage the vector

database index, eliminating the need for multiple copies of data accessed through file and object methods.

• NetApp ONTAP provides native support for NAS and Object storage across leading cloud service providers

like AWS, Azure, and Google Cloud. This wide compatibility ensures seamless integration, enabling

customer data mobility, global accessibility, disaster recovery, dynamic scalability, and high performance.

• With NetApp’s robust data management capabilities, customers can rest assured knowing that their data is

well-protected against potential risks and threats. NetApp prioritizes data security, offering peace of mind to

customers regarding the safety and integrity of their valuable information.

Vector Database

This section covers the definition and use of a vector database in NetApp AI solutions.

Vector Database

A vector database is a specialized type of database designed to handle, index, and search unstructured data

using embeddings from machine learning models. Instead of organizing data in a traditional tabular format, it

arranges data as high-dimensional vectors, also known as vector embeddings. This unique structure allows the

database to handle complex, multi-dimensional data more efficiently and accurately.

One of the key capabilities of a vector database is its use of generative AI to perform analytics. This includes

similarity searches, where the database identifies data points that are like a given input, and anomaly

detection, where it can spot data points that deviate significantly from the norm.

Furthermore, vector databases are well-suited to handle temporal data, or time-stamped data. This type of

data provides information about 'what' happened and when it happened, in sequence and in relation to all other

events within a given IT system. This ability to handle and analyze temporal data makes vector databases

particularly useful for applications that require an understanding of events over time.

Advantages of vector database for ML and AI:

• High-dimensional Search: Vector databases excel in managing and retrieving high-dimensional data, which

is often generated in AI and ML applications.

• Scalability: They can efficiently scale to handle large volumes of data, supporting the growth and expansion

of AI and ML projects.

• Flexibility: Vector databases offer a high degree of flexibility, allowing for the accommodation of diverse

data types and structures.

• Performance: They provide high-performance data management and retrieval, critical for the speed and

efficiency of AI and ML operations.

• Customizable Indexing: Vector databases offer customizable indexing options, enabling optimized data

organization and retrieval based on specific needs.
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Vector databases and use cases.

This section provides varies vector databases and their use case details.

Faiss and ScaNN

They are libraries that serve as crucial tools in the realm of vector search. These libraries provide functionality

that is instrumental in managing and searching through vector data, making them invaluable resources in this

specialized area of data management.

Elasticsearch

It’s a widely used search and analytics engine, has recently incorporated vector search capabilities. This new

feature enhances its functionality, enabling it to handle and search through vector data more effectively.

Pinecone

It is a robust vector database with a unique set of features. It supports both dense and sparse vectors in its

indexing functionality, which enhances its flexibility and adaptability. One of its key strengths lies in its ability to

combine traditional search methods with AI-based dense vector search, creating a hybrid search approach that

leverages the best of both worlds.

Primarily cloud-based, Pinecone is designed for machine learning applications and integrates well with a

variety of platforms, including GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut Plus, Elasticsearch,

Haystack, and more. It’s important to note that Pinecone is a closed-source platform and is available as a

Software as a Service (SaaS) offering.

Given its advanced capabilities, Pinecone is particularly well-suited for the cybersecurity industry, where its

high-dimensional search and hybrid search capabilities can be leveraged effectively to detect and respond to

threats.

Chroma

It’s a vector database that has a Core-API with four primary functions, one of which includes an in-memory

document-vector store. It also utilizes the Face Transformers library to vectorize documents, enhancing its

functionality and versatility.

Chroma is designed to operate both in the cloud and on-premises, offering flexibility based on user needs.

Particularly, it excels in audio-related applications, making it an excellent choice for audio-based search

engines, music recommendation systems, and other audio-related use cases.

Weaviate

It’s a versatile vector database that allows users to vectorize their content using either its built-in modules or

custom modules, providing flexibility based on specific needs. It offers both fully managed and self-hosted

solutions, catering to a variety of deployment preferences.

One of Weaviate’s key features is its ability to store both vectors and objects, enhancing its data handling

capabilities. It is widely used for a range of applications, including semantic search and data classification in

ERP systems. In the e-commerce sector, it powers search and recommendation engines. Weaviate is also

used for image search, anomaly detection, automated data harmonization, and cybersecurity threat analysis,

showcasing its versatility across multiple domains.

Redis

Redis is a high-performing vector database known for its fast in-memory storage, offering low latency for read-
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write operations. This makes it an excellent choice for recommendation systems, search engines, and data

analytics applications that require quick data access.

Redis supports various data structures for vectors, including lists, sets, and sorted sets. It also provides vector

operations such as calculating distances between vectors or finding intersections and unions. These features

are particularly useful for similarity search, clustering, and content-based recommendation systems.

In terms of scalability and availability, Redis excels in handling high throughput workloads and offers data

replication. It also integrates well with other data types, including traditional relational databases (RDBMS).

Redis includes a Publish/Subscribe (Pub/Sub) feature for real-time updates, which is beneficial for managing

real-time vectors. Moreover, Redis is lightweight and simple to use, making it a user-friendly solution for

managing vector data.

Milvus

It’s a versatile vector database that offers an API like a document store, much like MongoDB. It stands out due

to its support for a wide variety of data types, making it a popular choice in the data science and machine

learning fields.

One of Milvus' unique features is its multi-vectorization capability, which allows users to specify at runtime the

type of vector to use for the search. Furthermore, it utilizes Knowwhere, a library that sits atop other libraries

like Faiss, to manage communication between queries and the vector search algorithms.

Milvus also offers seamless integration with machine learning workflows, thanks to its compatibility with

PyTorch and TensorFlow. This makes it an excellent tool for a range of applications, including e-commerce,

image and video analysis, object recognition, image similarity search, and content-based image retrieval. In the

realm of natural language processing, Milvus is used for document clustering, semantic search, and question-

answering systems.

For this solution, we picked milvus for the solution validation. For performance, we used both milvus and

postgres(pgvecto.rs).

Why we chose milvus for this solution?

• Open-Source: Milvus is an open-source vector database, encouraging community-driven development and

improvements.

• AI Integration: It leverages embedding similarity search and AI applications to enhance vector database

functionality.

• Large Volume Handling: Milvus has the capacity to store, index, and manage over a billion embedding

vectors generated by Deep Neural Networks (DNN) and Machine Learning (ML) models.

• User-Friendly: It is easy to use, with setup taking less than a minute. Milvus also offers SDKs for different

programming languages.

• Speed: It offers blazing fast retrieval speeds, up to 10 times faster than some alternatives.

• Scalability and Availability: Milvus is highly scalable, with options to scale up and out as needed.

• Feature-Rich: It supports different data types, attribute filtering, User-Defined Function (UDF) support,

configurable consistency levels, and travel time, making it a versatile tool for various applications.

Milvus architecture overview
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This section provides higher lever components and services are used in Milvus architecture.

* Access layer – It’s composed of a group of stateless proxies and serves as the front layer of the system and

endpoint to users.

* Coordinator service – it assigns the tasks to the worker nodes and act as a system’s brain. It has three

coordinator types: root coord,data coord and query coord.

* Worker nodes : It follows the instruction from coordinator service and execute user triggered DML/DDL

commands.it has three types of worker nodes such as query node, data node and index node.

* Storage: it’s responsible for data persistence. It comprises meta storage, log broker, and object storage.

NetApp storage such as ONTAP and StorageGRID provides object storage and File based storage to Milvus

for both customer data and vector database data.

Technology Requirement

This section provides an overview of the requirements for the NetApp vector database

solution.

Technology Requirement

The hardware and software configurations outlined below were utilized for the majority of the validations

performed in this document, with the exception of performance. These configurations serve as a guideline to

help you set up your environment. However, please note that the specific components may vary depending on

individual customer requirements.

Hardware requirements
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Hardware Details

NetApp AFF Storage array HA Pair * A800

* ONTAP 9.14.1

* 48 x 3.49TB SSD-NVM

* Two Flexible group volumes: metadata and data.

* Metadata NFS volume has 12 x Persistent Volumes

with 250GB.

* Data is a ONTAP NAS S3 volume

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPUs

* Intel® Xeon® Gold 6142 CPU @ 2.60GHz

* 256 GM Physical Memory

* 1 x 100GbE network port

Networking 100 GbE

StorageGRID * 1 x SG100, 3xSGF6024

* 3 x 24 x 7.68TB

Software requirements

Software Details

Milvus cluster * CHART - milvus-4.1.11.

* APP Version – 2.3.4

* Dependent bundles such as bookkeeper, zookeeper,

pulsar, etcd, proxy, querynode, worker

Kubernetes * 5 node K8s cluster

* 1 Master node and 4 Worker nodes

* Version – 1.7.2

Python *3.10.12.

Deployment Procedure

This section discusses the deployment procedure for the vector database solution for

NetApp.

Deployment procedure

In this deployment section, we used milvus vector database with Kubernetes for the lab setup as below.
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The netapp storage provides the storage for the cluster to keep customers data and milvus cluster data.

NetApp storage setup – ONTAP

• Storage system initialization

• Storage virtual machine (SVM) creation

• Assignment of logical network interfaces

• NFS, S3 configuration and licensing

Please follow the steps below for NFS (Network File System):

1. Create a FlexGroup volume for NFSv4. In our set up for this validation, we have used 48 SSDs, 1 SSD

dedicated for the controller’s root volume and 47 SSDs spread across for NFSv4]].Verify that the NFS

export policy for the FlexGroup volume has read/write permissions for the Kubernetes (K8s) nodes

network. If these permissions are not in place, grant read/write (rw) permissions for the K8s nodes network.

2. On all K8s nodes, create a folder and mount the FlexGroup volume onto this folder through a Logical

Interface (LIF) on each K8s nodes.

Please follow the steps below for NAS S3 (Network Attached Storage Simple Storage Service):

1. Create a FlexGroup volume for NFS.
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2. Set up an object-store-server with HTTP enabled and the admin status set to 'up' using the "vserver object-

store-server create" command. You have the option to enable HTTPS and set a custom listener port.

3. Create an object-store-server user using the "vserver object-store-server user create -user <username>"

command.

4. To obtain the access key and secret key, you can run the following command: "set diag; vserver object-

store-server user show -user <username>". However, moving forward, these keys will be supplied during

the user creation process or can be retrieved using REST API calls.

5. Establish an object-store-server group using the user created in step 2 and grant access. In this example,

we have provided "FullAccess".

6. Create a NAS bucket by setting its type to "nas" and supplying the path to the NFSv3 volume. It’s also

possible to utilize an S3 bucket for this purpose.

NetApp storage setup – StorageGRID

1. Install the storageGRID software.

2. Create a tenant and bucket.

3. Create user with required permission.

Please check more details in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Solution verification

Solution Overview

We have conducted a comprehensive solution validation focused on five key areas, the

details of which are outlined below. Each section delves into the challenges faced by

customers, the solutions provided by NetApp, and the subsequent benefits to the

customer.

1. Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management

and data management. In this section, we detail the process of installing a Milvus cluster on Kubernetes,

utilizing a NetApp storage controller for both cluster data and customer data.

2. Milvus with Amazon FSx ONTAP for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database

( milvus standalone ) in Amazon FSx ONTAP for NetApp ONTAP within docker containers.

3. Vector database protection using NetApp SnapCenter.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data

residing in ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS

ONTAP volume (vol1) for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster

configuration data.

4. Disaster Recovery using NetApp SnapMirror

In this section, we discuss about the importance of Disaster recovery(DR) for vector database and how

netapp disaster recovery product snapmirror provides DR solution to vector database.

5. Performance validation

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage
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controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate

and identify any performance differentiators when these databases are combined with the ONTAP storage

solution. Our analysis will be based on key performance indicators, such as the number of queries

processed per second(QPS).

Milvus Cluster Setup with Kubernetes in on-premises

This section discusses the milvus cluster setup for the vector database solution for

NetApp.

Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management and

data management,

Kubernetes and vector databases together form a powerful, scalable solution for managing large data

operations. Kubernetes optimizes resources and manages containers, while vector databases efficiently

handle high-dimensional data and similarity searches. This combination enables swift processing of complex

queries on large datasets and seamlessly scales with growing data volumes, making it ideal for big data

applications and AI workloads.

1. In this section, we detail the process of installing a Milvus cluster on Kubernetes, utilizing a NetApp storage

controller for both cluster data and customer data.

2. To install a Milvus cluster, Persistent Volumes (PVs) are required for storing data from various Milvus

cluster components. These components include etcd (three instances), pulsar-bookie-journal (three

instances), pulsar-bookie-ledgers (three instances), and pulsar-zookeeper-data (three instances).

In milvus cluster, we can use either pulsar or kafka for the underlying engine supporting

Milvus cluster’s reliable storage and publication/subscription of message streams. For Kafka

with NFS,NetApp has made improvements in ONTAP 9.12.1 and later, and these

enhancements, along with NFSv4.1 and Linux changes that are included in RHEL 8.7 or 9.1

and higher, resolve the "silly rename" issue that can occur when running Kafka over NFS. if

you interested in more in-depth information on the topic of running kafka with netapp NFS

solution, please check - this link.

3. We created a single NFS volume from NetApp ONTAP and established 12 persistent volumes, each with

250GB of storage. The storage size can vary depending on the cluster size; for instance, we have another

cluster where each PV has 50GB. Please refer below to one of the PV YAML files for more details; we had

12 such files in total. In each file, the storageClassName is set to 'default', and the storage and path are

unique to each PV.
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root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

  name: karthik-pv1

spec:

  capacity:

    storage: 250Gi

  volumeMode: Filesystem

  accessModes:

  - ReadWriteOnce

  persistentVolumeReclaimPolicy: Retain

  storageClassName: default

  local:

    path: /vectordbsc/milvus/milvus1

  nodeAffinity:

    required:

      nodeSelectorTerms:

      - matchExpressions:

        - key: kubernetes.io/hostname

          operator: In

          values:

          - node2

          - node3

          - node4

          - node5

          - node6

root@node2:~#

4. Execute the 'kubectl apply' command for each PV YAML file to create the Persistent Volumes, and then

verify their creation using 'kubectl get pv'

11



root@node2:~# for i in $( seq 1 12 ); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. For storing customer data, Milvus supports object storage solutions such as MinIO, Azure Blob, and S3. In

this guide, we utilize S3. The following steps apply to both ONTAP S3 and StorageGRID object store. We

use Helm to deploy the Milvus cluster. Download the configuration file, values.yaml, from the Milvus

download location. Please refer to the appendix for the values.yaml file we used in this document.

6. Ensure that the 'storageClass' is set to 'default' in each section, including those for the log, etcd,

zookeeper, and bookkeeper.

7. In the MinIO section, disable MinIO.

8. Create a NAS bucket from ONTAP or StorageGRID object storage and include them in an External S3 with

the object storage credentials.

###################################

# External S3

# - these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

  enabled: true

  host: "192.168.150.167"

  port: "80"

  accessKey: "24G4C1316APP2BIPDE5S"

  secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

  useSSL: false

  bucketName: "milvusdbvol1"

  rootPath: ""

  useIAM: false

  cloudProvider: "aws"

  iamEndpoint: ""

  region: ""

  useVirtualHost: false
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9. Before creating the Milvus cluster, ensure that the PersistentVolumeClaim (PVC) does not have any pre-

existing resources.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilize Helm and the values.yaml configuration file to install and start the Milvus cluster.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default  -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verify the status of the PersistentVolumeClaims (PVCs).
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root@node2:~# kubectl get pvc

NAME                                                             STATUS

VOLUME         CAPACITY   ACCESS MODES   STORAGECLASS   AGE

data-my-release-etcd-0                                           Bound

karthik-pv8    250Gi      RWO            default        3s

data-my-release-etcd-1                                           Bound

karthik-pv5    250Gi      RWO            default        2s

data-my-release-etcd-2                                           Bound

karthik-pv4    250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0      Bound

karthik-pv10   250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1      Bound

karthik-pv3    250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2      Bound

karthik-pv1    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0      Bound

karthik-pv2    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1      Bound

karthik-pv9    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2      Bound

karthik-pv11   250Gi      RWO            default        3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0   Bound

karthik-pv7    250Gi      RWO            default        3s

root@node2:~#

12. Check the status of the pods.

root@node2:~# kubectl get pods -o wide

NAME                                            READY   STATUS

RESTARTS        AGE    IP              NODE    NOMINATED NODE

READINESS GATES

<content removed to save page space>

Please make sure the pods status are 'running' and working as expected

13. Test data writing and reading in Milvus and NetApp object storage.

◦ Write data using the "prepare_data_netapp_new.py" Python program.
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root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr  4 04:15:35 PM UTC 2024

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr  4 04:18:01 PM UTC 2024

root@node2:~#

◦ Read the data using the "verify_data_netapp.py" Python file.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':
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0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Based on the above validation, the integration of Kubernetes with a vector database, as demonstrated

through the deployment of a Milvus cluster on Kubernetes using a NetApp storage controller, offers

customers a robust, scalable, and efficient solution for managing large-scale data operations. This

setup provides customers with the ability to handle high-dimensional data and execute complex queries

rapidly and efficiently, making it an ideal solution for big data applications and AI workloads. The use of

Persistent Volumes (PVs) for various cluster components, along with the creation of a single NFS

volume from NetApp ONTAP, ensures optimal resource utilization and data management. The process

of verifying the status of PersistentVolumeClaims (PVCs) and pods, as well as testing data writing and
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reading, provides customers with the assurance of reliable and consistent data operations. The use of

ONTAP or StorageGRID object storage for customer data further enhances data accessibility and

security. Overall, this setup empowers customers with a resilient and high-performing data

management solution that can seamlessly scale with their growing data needs.

Milvus with Amazon FSx ONTAP for NetApp ONTAP - file and object duality

This section discusses the milvus cluster setup with Amazon FSx ONTAP for the vector

database solution for NetApp.

Milvus with Amazon FSx ONTAP for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database (

milvus standalone) in Amazon FSx ONTAP for NetApp ONTAP within docker containers.

Deploying a vector database in the cloud provides several significant benefits, particularly for applications that

require handling high-dimensional data and executing similarity searches. First, cloud-based deployment offers

scalability, allowing for the easy adjustment of resources to match the growing data volumes and query loads.

This ensures that the database can efficiently handle increased demand while maintaining high performance.

Second, cloud deployment provides high availability and disaster recovery, as data can be replicated across

different geographical locations, minimizing the risk of data loss, and ensuring continuous service even during

unexpected events. Third, it provides cost-effectiveness, as you only pay for the resources you use, and can

scale up or down based on demand, avoiding the need for substantial upfront investment in hardware. Finally,

deploying a vector database in the cloud can enhance collaboration, as data can be accessed and shared from

anywhere, facilitating team-based work and data-driven decision making.

Please check the architecture of the milvus standalone with Amazon FSx ONTAP for NetApp ONTAP used in

this validation.

1. Create an Amazon FSx ONTAP for NetApp ONTAP instance and note down the details of the VPC, VPC
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security groups, and subnet. This information will be required when creating an EC2 instance. You can find

more details here - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-

create

2. Create an EC2 instance, ensuring that the VPC, Security Groups, and subnet match those of the Amazon

FSx ONTAP for NetApp ONTAP instance.

3. Install nfs-common using the command 'apt-get install nfs-common' and update the package information

using 'sudo apt-get update'.

4. Create a mount folder and mount the Amazon FSx ONTAP for NetApp ONTAP on it.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem            Size  Used Avail Use% Mounted on

172.31.255.228:/vol1  973G  126G  848G  13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Install Docker and Docker Compose using 'apt-get install'.

6. Set up a Milvus cluster based on the docker-compose.yaml file, which can be downloaded from the Milvus

website.

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23--  https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. In the 'volumes' section of the docker-compose.yml file, map the NetApp NFS mount point to the

corresponding Milvus container path, specifically in etcd, minio, and standalone.Check Appendix D:

docker-compose.yml for details about changes in yml

8. Verify the mounted folders and files.
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ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr  2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr  4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml  docker-compose.yml~  milvus.yaml  milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Run 'docker-compose up -d' from the directory containing the docker-compose.yml file.

10. Check the status of the Milvus container.

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

      Name                     Command                  State

Ports

------------------------------------------------------------------------

------------------------------------------------------------------------

----------

milvus-etcd         etcd -advertise-client-url ...   Up (healthy)

2379/tcp, 2380/tcp

milvus-minio        /usr/bin/docker-entrypoint ...   Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone   /tini -- milvus run standalone   Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr  4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr  4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr  4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. To validate the read and write functionality of vector database and it’s data in Amazon FSx ONTAP for

NetApp ONTAP, we used the Python Milvus SDK and a sample program from PyMilvus. Install the

necessary packages using 'apt-get install python3-numpy python3-pip' and install PyMilvus using 'pip3

install pymilvus'.

12. Validate data writing and reading operations from Amazon FSx ONTAP for NetApp ONTAP in the vector
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database.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457
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91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Check the reading operation using the verify_data_netapp.py script.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===
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query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. If the customer wants to access (read) NFS data tested in the vector database via the S3 protocol for AI

workloads, this can be validated using a straightforward Python program. An example of this could be a

similarity search of images from another application as mentioned in the picture that is in the beginning of

this section.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

***************************************

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta
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volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

***************************************

root@ip-172-31-29-98:~/pymilvus/examples#

This section effectively demonstrates how customers can deploy and operate a standalone Milvus setup

within Docker containers, utilizing Amazon’s NetApp FSx ONTAP for NetApp ONTAP data storage. This

setup allows customers to leverage the power of vector databases for handling high-dimensional data and
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executing complex queries, all within the scalable and efficient environment of Docker containers. By

creating an Amazon FSx ONTAP for NetApp ONTAP instance and matching EC2 instance, customers can

ensure optimal resource utilization and data management. The successful validation of data writing and

reading operations from FSx ONTAP in the vector database provides customers with the assurance of

reliable and consistent data operations. Additionally, the ability to list (read) data from AI workloads via the

S3 protocol offers enhanced data accessibility. This comprehensive process, therefore, provides customers

with a robust and efficient solution for managing their large-scale data operations, leveraging the

capabilities of Amazon’s FSx ONTAP for NetApp ONTAP.

Vector Database Protection using SnapCenter

This section describes how to provide data protection for the vector database using

NetApp SnapCenter.

Vector database protection using NetApp SnapCenter.

For example, in the film production industry, customers often possess critical embedded data such as video

and audio files. Loss of this data, due to issues like hard drive failures, can have a significant impact on their

operations, potentially jeopardizing multimillion-dollar ventures. We have encountered instances where

invaluable content was lost, causing substantial disruption and financial loss. Ensuring the security and

integrity of this essential data is therefore of paramount importance in this industry.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data residing in

ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS ONTAP volume (vol1)

for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster configuration data. please check

the here for the snapcenter backup workflow

1. Set up the host that will be used to execute SnapCenter commands.

24

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html


2. Install and configure the storage plugin. From the added host, select "More Options". Navigate to and

select the downloaded storage plugin from the NetApp Automation Store. Install the plugin and save the

configuration.
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3. Set up the storage system and volume: Add the storage system under "Storage System" and select the

SVM (Storage Virtual Machine). In this example, we’ve chosen "vs_nvidia".

4. Establish a resource for the vector database, incorporating a backup policy and a custom snapshot name.

◦ Enable Consistency Group Backup with default values and enable SnapCenter without filesystem

consistency.

◦ In the Storage Footprint section, select the volumes associated with the vector database customer data

and Milvus cluster data. In our example, these are "vol1" and "vectordbpv".

◦ Create policy for vector database protection and protect vector database resource using the policy.

5. Insert data into the S3 NAS bucket using a Python script. In our case, we modified the backup script
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provided by Milvus, namely 'prepare_data_netapp.py', and executed the 'sync' command to flush the data

from the operating system.

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6   ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verify the data in the S3 NAS bucket. In our example, the files with the timestamp '2024-04-08 21:22' were

created by the 'prepare_data_netapp.py' script.
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root@node2:~# aws s3 ls --profile ontaps3  s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14       5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12       5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17       5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15       5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46       5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45       5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49       5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47       5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52       5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50       5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Initiate a backup using the Consistency Group (CG) snapshot from the 'milvusdb' resource
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8. To test the backup functionality, we either added a new table after the backup process or removed some

data from the NFS (S3 NAS bucket).

For this test, imagine a scenario where someone created a new, unnecessary, or inappropriate collection

after the backup. In such a case, we would need to revert the vector database to its state before the new

collection was added. For instance, new collections such as 'hello_milvus_netapp_sc_testnew' and

'hello_milvus_netapp_sc_testnew2' have been inserted.
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root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Execute a full restore of the S3 NAS bucket from the previous snapshot.
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10. Use a Python script to verify the data from the 'hello_milvus_netapp_sc_test' and

'hello_milvus_netapp_sc_test2' collections.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

31



0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {
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'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verify that the unnecessary or inappropriate collection is no longer present in the database.
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root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

  File "/root/verify_data_netapp.py", line 37, in <module>

    recover_collection = Collection(recover_collection_name)

  File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

    raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

In conclusion, the use of NetApp’s SnapCenter to safeguard vector database data and Milvus data residing in

ONTAP offers significant benefits to customers, particularly in industries where data integrity is paramount,

such as film production. SnapCenter’s ability to create consistent backups and perform full data restores

ensures that critical data, such as embedded video and audio files, are protected against loss due to hard drive

failures or other issues. This not only prevents operational disruption but also safeguards against substantial

financial loss.

In this section, we demonstrated how SnapCenter can be configured to protect data residing in ONTAP,

including the setup of hosts, installation and configuration of storage plugins, and the creation of a resource for

the vector database with a custom snapshot name. We also showcased how to perform a backup using the

Consistency Group snapshot and verify the data in the S3 NAS bucket.

Furthermore, we simulated a scenario where an unnecessary or inappropriate collection was created after the

backup. In such cases, SnapCenter’s ability to perform a full restore from a previous snapshot ensures that the

vector database can be reverted to its state before the addition of the new collection, thus maintaining the

integrity of the database. This capability to restore data to a specific point in time is invaluable for customers,

providing them with the assurance that their data is not only secure but also correctly maintained. Thus,

NetApp’s SnapCenter product offers customers a robust and reliable solution for data protection and

management.

Disaster Recovery using NetApp SnapMirror

This section discusses DR (disaster recovery) with SnapMirror for the vector database

solution for NetApp.

Disaster Recovery using NetApp SnapMirror
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Disaster recovery is crucial for maintaining the integrity and availability of a vector database, especially given

its role in managing high-dimensional data and executing complex similarity searches. A well-planned and

implemented disaster recovery strategy ensures that data is not lost or compromised in the event of

unforeseen incidents, such as hardware failures, natural disasters, or cyber-attacks. This is particularly

significant for applications relying on vector databases, where the loss or corruption of data could lead to

significant operational disruptions and financial losses. Moreover, a robust disaster recovery plan also ensures

business continuity by minimizing downtime and allowing for the quick restoration of services. This is achieved

through NetApp data replication product SnapMirrror across different geographical locations, regular backups,

and failover mechanisms. Therefore, disaster recovery is not just a protective measure, but a critical

component of responsible and efficient vector database management.

NetApp’s SnapMirror provides data replication from one NetApp ONTAP storage controller to another, primarily

used for disaster recovery (DR) and hybrid solutions. In the context of a vector database, this tool facilitates the

smooth transition of data between on-premises and cloud environments. This transition is achieved without

necessitating any data conversions or application refactoring, thereby enhancing the efficiency and flexibility of

data management across multiple platforms.

NetApp Hybrid solution in a vector database scenario can bring about more advantages:

1. Scalability: NetApp’s hybrid cloud solution offers the ability to scale your resources as per your

requirements. You can utilize on-premises resources for regular, predictable workloads and cloud

resources such as Amazon FSx ONTAP for NetApp ONTAP and Google Cloud NetApp Volume (NetApp

Volumes) for peak times or unexpected loads.

2. Cost Efficiency: NetApp’s hybrid cloud model allows you to optimize your costs by using on-premises

resources for regular workloads and only paying for cloud resources when you need them. This pay-as-

you-go model can be quite cost-effective with a NetApp instaclustr service offering. For on-prem and major

cloud service providers, instaclustr provids support and consultation.

3. Flexibility: NetApp’s hybrid cloud gives you the flexibility to choose where to process your data. For

example, you might choose to perform complex vector operations on-premises where you have more

powerful hardware, and less intensive operations in the cloud.

4. Business Continuity: In the event of a disaster, having your data in a NetApp hybrid cloud can ensure

business continuity. You can quickly switch to the cloud if your on-premises resources are affected. We can

leverage NetApp SnapMirror to move the data from on-prem to cloud and vice versa.
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5. Innovation: NetApp’s hybrid cloud solutions can also enable faster innovation by providing access to

cutting-edge cloud services and technologies. NetApp innovations in cloud such as Amazon FSx ONTAP

for NetApp ONTAP, Azure NetApp Files and Google Cloud NetApp Volumes are cloud service providers

innovative products and preferred NAS.

Vector Database Performance Validation

This section highlights the performance validation that was performed on the vector

database.

Performance validation

Performance validation plays a critical role in both vector databases and storage systems, serving as a key

factor in ensuring optimal operation and efficient resource utilization. Vector databases, known for handling

high-dimensional data and executing similarity searches, need to maintain high performance levels to process

complex queries swiftly and accurately. Performance validation helps identify bottlenecks, fine-tune

configurations, and ensure the system can handle expected loads without degradation in service. Similarly, in

storage systems, performance validation is essential to ensure data is stored and retrieved efficiently, without

latency issues or bottlenecks that could impact overall system performance. It also aids in making informed

decisions about necessary upgrades or changes in storage infrastructure. Therefore, performance validation is

a crucial aspect of system management, contributing significantly to maintaining high service quality,

operational efficiency, and overall system reliability.

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate and

identify any performance differentiators when these databases are combined with the ONTAP storage solution.

Our analysis will be based on key performance indicators, such as the number of queries processed per

second(QPS).

Please check the methodology used for milvus and progress below.

Details Milvus ( Standalone and Cluster) Postgres(pgvecto.rs)

#

version 2.3.2 0.2.0

Filesystem XFS on iSCSI LUNs

Workload Generator VectorDB-Bench – v0.0.5

Datasets LAION Dataset

* 10Million Embeddings

* 768 Dimensions

* ~300GB dataset size

Storage controller AFF 800

* Version – 9.14.1

* 4 x 100GbE – for milvus and 2x

100GbE for postgres

* iscsi

VectorDB-Bench with Milvus standalone cluster

we did the following performance validation on milvus standalone cluster with vectorDB-Bench.
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The network and server connectivity of the milvus standalone cluster is below.

In this section, we share our observations and results from testing the Milvus standalone database.

. We selected DiskANN as the index type for these tests.

. Ingesting, optimizing, and creating indexes for a dataset of approximately 100GB took around 5 hours. For

most of this duration, the Milvus server, equipped with 20 cores (which equates to 40 vcpus when Hyper-

Threading is enabled), was operating at its maximum CPU capacity of 100%.We found that DiskANN is

particularly important for large datasets that exceed the system memory size.

. In the query phase, we observed a Queries per Second (QPS) rate of 10.93 with a recall of 0.9987. The 99th

percentile latency for queries was measured at 708.2 milliseconds.

From the storage perspective, the database issued about 1,000 ops/sec during the ingest, post-insert

optimization, and index creation phases. In the query phase, it demanded 32,000 ops/sec.

The following section presents the storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 32,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

The vectorDB-bench result is below.
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From the performance validation of the standalone Milvus instance, it’s evident that the current setup is

insufficient to support a dataset of 5 million vectors with a dimensionality of 1536. we’ve determined that the

storage possesses adequate resources and does not constitute a bottleneck in the system.

VectorDB-Bench with milvus cluster

In this section, we discuss the deployment of a Milvus cluster within a Kubernetes environment. This

Kubernetes setup was constructed atop a VMware vSphere deployment, which hosted the Kubernetes master

and worker nodes.

The details of the VMware vSphere and Kubernetes deployments are presented in the following sections.

38



39



In this section, we present our observations and results from testing the Milvus database.

* The index type used was DiskANN.

* The table below provides a comparison between the standalone and cluster deployments when working with

5 million vectors at a dimensionality of 1536. We observed that the time taken for data ingestion and post-insert

optimization was lower in the cluster deployment. The 99th percentile latency for queries was reduced by six

times in the cluster deployment compared to the standalone setup.

* Although the Queries per Second (QPS) rate was higher in the cluster deployment, it was not at the desired

level.

The images below provide a view of various storage metrics, including storage cluster latency and total IOPS
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(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 147,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

Based on the performance validation of both the standalone Milvus and the Milvus cluster, we present the

details of the storage I/O profile.

* We observed that the I/O profile remains consistent across both standalone and cluster deployments.

* The observed difference in peak IOPS can be attributed to the larger number of clients in the cluster

deployment.

vectorDB-Bench with Postgres (pgvecto.rs)

We conducted the following actions on PostgreSQL(pgvecto.rs) using VectorDB-Bench:

The details regarding the network and server connectivity of PostgreSQL (specifically, pgvecto.rs) are as

follows:
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In this section, we share our observations and results from testing the PostgreSQL database, specifically using

pgvecto.rs.

* We selected HNSW as the index type for these tests because at the time of testing, DiskANN wasn’t

available for pgvecto.rs.

* During the data ingestion phase, we loaded the Cohere dataset, which consists of 10 million vectors at a

dimensionality of 768. This process took approximately 4.5 hours.

* In the query phase, we observed a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344. The 99th

percentile latency for queries was measured at 20 milliseconds. Throughout most of the runtime, the client

CPU was operating at 100% capacity.

The images below provide a view of various storage metrics, including storage cluster latency total IOPS

(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

42



Performance comparison between milvus and postgres on vector DB Bench

Based on our performance validation of Milvus and PostgreSQL using VectorDBBench, we observed the

following:
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• Index Type: HNSW

• Dataset: Cohere with 10 million vectors at 768 dimensions

We found that pgvecto.rs achieved a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344, while

Milvus achieved a QPS rate of 106 with a recall of 0.9842.

If high precision in your queries is a priority, Milvus outperforms pgvecto.rs as it retrieves a higher proportion of

relevant items per query. However, if the number of queries per second is a more crucial factor, pgvecto.rs

exceeds Milvus. It’s important to note, though, that the quality of the data retrieved via pgvecto.rs is lower, with

around 37% of the search results being irrelevant items.

Observation based on our performance validations:

Based on our performance validations, we have made the following observations:

In Milvus, the I/O profile closely resembles an OLTP workload, such as that seen with Oracle SLOB. The

benchmark consists of three phases: Data Ingestion, Post-Optimization, and Query. The initial stages are

primarily characterized by 64KB write operations, while the query phase predominantly involves 8KB reads.

We expect ONTAP to handle the Milvus I/O load proficiently.

The PostgreSQL I/O profile does not present a challenging storage workload. Given the in-memory

implementation currently in progress, we didn’t observe any disk I/O during the query phase.

DiskANN emerges as a crucial technology for storage differentiation. It enables the efficient scaling of vector

DB search beyond the system memory boundary. However, it’s unlikely to establish storage performance

differentiation with in-memory vector DB indices such as HNSW.

It’s also worth noting that storage does not play a critical role during the query phase when the index type is

HSNW, which is the most important operating phase for vector databases supporting RAG applications. The

implication here is that the storage performance does not significantly impact the overall performance of these

applications.

Vector Database with Instaclustr using PostgreSQL:
pgvector

This section discusses the specifics of how instaclustr product integrates with

postgreSQL on pgvector fuctionality in the vector database solution for NetApp.

Vector Database with Instaclustr using PostgreSQL: pgvector

In this section, we delve into the specifics of how instaclustr product integrates with postgreSQL on pgvector

fuctionality. We have an example of "How To Improve Your LLM Accuracy and Performance With PGVector

and PostgreSQL: Introduction to Embeddings and the Role of PGVector". Please check the blog to get more

information.

Vector Database Use Cases

This section provides an overview of the use cases for the NetApp vector database

solution.
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Vector Database Use Cases

In this section, we discuss about two use cases such as Retrieval Augmented Generation with Large

Language Models and NetApp IT chatbot.

Retrieval Augmented Generation (RAG) with Large Language Models (LLMs)

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

The NVIDIA Enterprise RAG LLM Operator is a useful tool for implementing RAG in the enterprise. This

operator can be used to deploy a full RAG pipeline. The RAG pipeline can be customized to utilize either

Milvus or pgvecto as the vector database for storing knowledgebase embeddings. Refer to the documentation

for details.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figure 1) Enterprise RAG powered by NVIDIA NeMo Microservices and NetApp
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NetApp IT chatbot use case

NetApp’s chatbot serves as another real-time use case for the vector database. In this instance, the NetApp

Private OpenAI Sandbox provides an effective, secure, and efficient platform for managing queries from

NetApp’s internal users. By incorporating stringent security protocols, efficient data management systems, and

sophisticated AI processing capabilities, it guarantees high-quality, precise responses to users based on their

roles and responsibilities in the organization via SSO authentication. This architecture highlights the potential

of merging advanced technologies to create user-focused, intelligent systems.

The use case can be divided into four primary sections.

User Authentication and Verification:

• User queries first go through the NetApp Single Sign-On (SSO) process to confirm the user’s identity.

• After successful authentication, the system checks the VPN connection to ensure a secure data

transmission.

Data Transmission and Processing:

• Once the VPN is validated, the data is sent to MariaDB through the NetAIChat or NetAICreate web

applications. MariaDB is a fast and efficient database system used to manage and store user data.

• MariaDB then sends the information to the NetApp Azure instance, which connects the user data to the AI

processing unit.

Interaction with OpenAI and Content Filtering:

• The Azure instance sends the user’s questions to a content filtering system. This system cleans up the

query and prepares it for processing.

• The cleaned-up input is then sent to the Azure OpenAI base model, which generates a response based on

the input.
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Response Generation and Moderation:

• The response from the base model is first checked to ensure it is accurate and meets content standards.

• After passing the check, the response is sent back to the user. This process ensures that the user receives

a clear, accurate, and appropriate answer to their query.

Conclusion

This section concludes the vector database solution for NetApp.

Conclusion

In conclusion, this document provides a comprehensive overview of deploying and managing vector

databases, such as Milvus and pgvector, on NetApp storage solutions. We discussed the infrastructure

guidelines for leveraging NetApp ONTAP and StorageGRID object storage and validated the Milvus database

in AWS FSx ONTAP through file and object store.

We explored NetApp’s file-object duality, demonstrating its utility not only for data in vector databases but also

for other applications. We also highlighted how SnapCenter, NetApp’s enterprise management product, offers

backup, restore, and clone functionalities for vector database data, ensuring data integrity and availability.

The document also delves into how NetApp’s Hybrid Cloud solution offers data replication and protection

across on-premises and cloud environments, providing a seamless and secure data management experience.

We provided insights into the performance validation of vector databases like Milvus and pgvecto on NetApp

ONTAP, offering valuable information on their efficiency and scalability.

Finally, we discussed two generative AI use cases: RAG with LLM and the NetApp’s internal ChatAI. These

practical examples underscore the real-world applications and benefits of the concepts and practices outlined

in this document. Overall, this document serves as a comprehensive guide for anyone looking to leverage

NetApp’s powerful storage solutions for managing vector databases.
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Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• Milvus documentation - https://milvus.io/docs/overview.md

• Milvus standalone documentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md
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• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

• instaclustr - instalclustr documentation

Version history

Version Date Document version history

Version 1.0 April 2024 Initial release

Appendix A: Values.yaml

This section provides sample YAML code for the values used in the NetApp vector

database solution.

Appendix A: Values.yaml

root@node2:~# cat  values.yaml

## Enable or disable Milvus Cluster mode

cluster:

  enabled: true

image:

  all:

    repository: milvusdb/milvus

    tag: v2.3.4

    pullPolicy: IfNotPresent

    ## Optionally specify an array of imagePullSecrets.

    ## Secrets must be manually created in the namespace.

    ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

    ##

    # pullSecrets:

    #   - myRegistryKeySecretName

  tools:

    repository: milvusdb/milvus-config-tool

    tag: v0.1.2

    pullPolicy: IfNotPresent

# Global node selector

# If set, this will apply to all milvus components

# Individual components can be set to a different node selector

nodeSelector: {}

# Global tolerations

# If set, this will apply to all milvus components

48

https://www.netapp.com/support-and-training/documentation/
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE


# Individual components can be set to a different tolerations

tolerations: []

# Global affinity

# If set, this will apply to all milvus components

# Individual components can be set to a different affinity

affinity: {}

# Global labels and annotations

# If set, this will apply to all milvus components

labels: {}

annotations: {}

# Extra configs for milvus.yaml

# If set, this config will merge into milvus.yaml

# Please follow the config structure in the milvus.yaml

# at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

# Note: this config will be the top priority which will override the

config

# in the image and helm chart.

extraConfigFiles:

  user.yaml: |+

    #    For example enable rest http for milvus proxy

    #    proxy:

    #      http:

    #        enabled: true

    ##  Enable tlsMode and set the tls cert and key

    #  tls:

    #    serverPemPath: /etc/milvus/certs/tls.crt

    #    serverKeyPath: /etc/milvus/certs/tls.key

    #   common:

    #     security:

    #       tlsMode: 1

## Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

## or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

## ref: http://kubernetes.io/docs/user-guide/services/

##

service:

  type: ClusterIP

  port: 19530

  portName: milvus

  nodePort: ""

  annotations: {}
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  labels: {}

  ## List of IP addresses at which the Milvus service is available

  ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

  ##

  externalIPs: []

  #   - externalIp1

  # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

  # set allowed inbound rules on the security group assigned to the master

load balancer

  loadBalancerSourceRanges:

  - 0.0.0.0/0

  # Optionally assign a known public LB IP

  # loadBalancerIP: 1.2.3.4

ingress:

  enabled: false

  annotations:

    # Annotation example: set nginx ingress type

    # kubernetes.io/ingress.class: nginx

    nginx.ingress.kubernetes.io/backend-protocol: GRPC

    nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

    nginx.ingress.kubernetes.io/proxy-body-size: 4m

    nginx.ingress.kubernetes.io/ssl-redirect: "true"

  labels: {}

  rules:

    - host: "milvus-example.local"

      path: "/"

      pathType: "Prefix"

    # - host: "milvus-example2.local"

    #   path: "/otherpath"

    #   pathType: "Prefix"

  tls: []

  #  - secretName: chart-example-tls

  #    hosts:

  #      - milvus-example.local

serviceAccount:

  create: false

  name:

  annotations:

  labels:

metrics:
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  enabled: true

  serviceMonitor:

    # Set this to `true` to create ServiceMonitor for Prometheus operator

    enabled: false

    interval: "30s"

    scrapeTimeout: "10s"

    # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

    additionalLabels: {}

livenessProbe:

  enabled: true

  initialDelaySeconds: 90

  periodSeconds: 30

  timeoutSeconds: 5

  successThreshold: 1

  failureThreshold: 5

readinessProbe:

  enabled: true

  initialDelaySeconds: 90

  periodSeconds: 10

  timeoutSeconds: 5

  successThreshold: 1

  failureThreshold: 5

log:

  level: "info"

  file:

    maxSize: 300    # MB

    maxAge: 10    # day

    maxBackups: 20

  format: "text"    # text/json

  persistence:

    mountPath: "/milvus/logs"

    ## If true, create/use a Persistent Volume Claim

    ## If false, use emptyDir

    ##

    enabled: false

    annotations:

      helm.sh/resource-policy: keep

    persistentVolumeClaim:

      existingClaim: ""

      ## Milvus Logs Persistent Volume Storage Class
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      ## If defined, storageClassName: <storageClass>

      ## If set to "-", storageClassName: "", which disables dynamic

provisioning

      ## If undefined (the default) or set to null, no storageClassName

spec is

      ##   set, choosing the default provisioner.

      ## ReadWriteMany access mode required for milvus cluster.

      ##

      storageClass: default

      accessModes: ReadWriteMany

      size: 10Gi

      subPath: ""

## Heaptrack traces all memory allocations and annotates these events with

stack traces.

## See more: https://github.com/KDE/heaptrack

## Enable heaptrack in production is not recommended.

heaptrack:

  image:

    repository: milvusdb/heaptrack

    tag: v0.1.0

    pullPolicy: IfNotPresent

standalone:

  replicas: 1  # Run standalone mode with replication disabled

  resources: {}

  # Set local storage size in resources

  # limits:

  #    ephemeral-storage: 100Gi

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  disk:

    enabled: true

    size:

      enabled: false  # Enable local storage size limit

  profiling:

    enabled: false  # Enable live profiling

  ## Default message queue for milvus standalone

  ## Supported value: rocksmq, natsmq, pulsar and kafka

  messageQueue: rocksmq

  persistence:
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    mountPath: "/var/lib/milvus"

    ## If true, alertmanager will create/use a Persistent Volume Claim

    ## If false, use emptyDir

    ##

    enabled: true

    annotations:

      helm.sh/resource-policy: keep

    persistentVolumeClaim:

      existingClaim: ""

      ## Milvus Persistent Volume Storage Class

      ## If defined, storageClassName: <storageClass>

      ## If set to "-", storageClassName: "", which disables dynamic

provisioning

      ## If undefined (the default) or set to null, no storageClassName

spec is

      ##   set, choosing the default provisioner.

      ##

      storageClass:

      accessModes: ReadWriteOnce

      size: 50Gi

      subPath: ""

proxy:

  enabled: true

  # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

  replicas: 1

  resources: {}

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  http:

    enabled: true  # whether to enable http rest server

    debugMode:

      enabled: false

  # Mount a TLS secret into proxy pod

  tls:

    enabled: false

## when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

#    enabled: true
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#    secretName: milvus-tls

## expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

#    key: LS0tLS1CRUdJTiBQU--REDUCT

#    crt: LS0tLS1CRUdJTiBDR--REDUCT

#  volumes:

#  - secret:

#      secretName: milvus-tls

#    name: milvus-tls

#  volumeMounts:

#  - mountPath: /etc/milvus/certs/

#    name: milvus-tls

rootCoordinator:

  enabled: true

  # You can set the number of replicas greater than 1, only if enable

active standby

  replicas: 1  # Run Root Coordinator mode with replication disabled

  resources: {}

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  activeStandby:

    enabled: false  # Enable active-standby when you set multiple replicas

for root coordinator

  service:

    port: 53100

    annotations: {}

    labels: {}

    clusterIP: ""

queryCoordinator:

  enabled: true

  # You can set the number of replicas greater than 1, only if enable

active standby

  replicas: 1  # Run Query Coordinator mode with replication disabled

  resources: {}

  nodeSelector: {}

  affinity: {}

  tolerations: []
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  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  activeStandby:

    enabled: false  # Enable active-standby when you set multiple replicas

for query coordinator

  service:

    port: 19531

    annotations: {}

    labels: {}

    clusterIP: ""

queryNode:

  enabled: true

  # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

  replicas: 1

  resources: {}

  # Set local storage size in resources

  # limits:

  #    ephemeral-storage: 100Gi

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  disk:

    enabled: true  # Enable querynode load disk index, and search on disk

index

    size:

      enabled: false  # Enable local storage size limit

  profiling:

    enabled: false  # Enable live profiling

indexCoordinator:

  enabled: true

  # You can set the number of replicas greater than 1, only if enable

active standby

  replicas: 1   # Run Index Coordinator mode with replication disabled

  resources: {}

  nodeSelector: {}

  affinity: {}
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  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  activeStandby:

    enabled: false  # Enable active-standby when you set multiple replicas

for index coordinator

  service:

    port: 31000

    annotations: {}

    labels: {}

    clusterIP: ""

indexNode:

  enabled: true

  # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

  replicas: 1

  resources: {}

  # Set local storage size in resources

  # limits:

  #    ephemeral-storage: 100Gi

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  disk:

    enabled: true  # Enable index node build disk vector index

    size:

      enabled: false  # Enable local storage size limit

dataCoordinator:

  enabled: true

  # You can set the number of replicas greater than 1, only if enable

active standby

  replicas: 1           # Run Data Coordinator mode with replication

disabled

  resources: {}

  nodeSelector: {}

56



  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  activeStandby:

    enabled: false  # Enable active-standby when you set multiple replicas

for data coordinator

  service:

    port: 13333

    annotations: {}

    labels: {}

    clusterIP: ""

dataNode:

  enabled: true

  # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

  replicas: 1

  resources: {}

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []

  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

## mixCoordinator contains all coord

## If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

  enabled: false

  # You can set the number of replicas greater than 1, only if enable

active standby

  replicas: 1           # Run Mixture Coordinator mode with replication

disabled

  resources: {}

  nodeSelector: {}

  affinity: {}

  tolerations: []

  extraEnv: []
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  heaptrack:

    enabled: false

  profiling:

    enabled: false  # Enable live profiling

  activeStandby:

    enabled: false  # Enable active-standby when you set multiple replicas

for Mixture coordinator

  service:

    annotations: {}

    labels: {}

    clusterIP: ""

attu:

  enabled: false

  name: attu

  image:

    repository: zilliz/attu

    tag: v2.2.8

    pullPolicy: IfNotPresent

  service:

    annotations: {}

    labels: {}

    type: ClusterIP

    port: 3000

    # loadBalancerIP: ""

  resources: {}

  podLabels: {}

  ingress:

    enabled: false

    annotations: {}

    # Annotation example: set nginx ingress type

    # kubernetes.io/ingress.class: nginx

    labels: {}

    hosts:

      - milvus-attu.local

    tls: []

    #  - secretName: chart-attu-tls

    #    hosts:

    #      - milvus-attu.local

## Configuration values for the minio dependency

## ref: https://github.com/minio/charts/blob/master/README.md

##
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minio:

  enabled: false

  name: minio

  mode: distributed

  image:

    tag: "RELEASE.2023-03-20T20-16-18Z"

    pullPolicy: IfNotPresent

  accessKey: minioadmin

  secretKey: minioadmin

  existingSecret: ""

  bucketName: "milvus-bucket"

  rootPath: file

  useIAM: false

  iamEndpoint: ""

  region: ""

  useVirtualHost: false

  podDisruptionBudget:

    enabled: false

  resources:

    requests:

      memory: 2Gi

  gcsgateway:

    enabled: false

    replicas: 1

    gcsKeyJson: "/etc/credentials/gcs_key.json"

    projectId: ""

  service:

    type: ClusterIP

    port: 9000

  persistence:

    enabled: true

    existingClaim: ""

    storageClass:

    accessMode: ReadWriteOnce

    size: 500Gi

  livenessProbe:

    enabled: true

    initialDelaySeconds: 5

    periodSeconds: 5

    timeoutSeconds: 5

    successThreshold: 1

    failureThreshold: 5
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  readinessProbe:

    enabled: true

    initialDelaySeconds: 5

    periodSeconds: 5

    timeoutSeconds: 1

    successThreshold: 1

    failureThreshold: 5

  startupProbe:

    enabled: true

    initialDelaySeconds: 0

    periodSeconds: 10

    timeoutSeconds: 5

    successThreshold: 1

    failureThreshold: 60

## Configuration values for the etcd dependency

## ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

  enabled: true

  name: etcd

  replicaCount: 3

  pdb:

    create: false

  image:

    repository: "milvusdb/etcd"

    tag: "3.5.5-r2"

    pullPolicy: IfNotPresent

  service:

    type: ClusterIP

    port: 2379

    peerPort: 2380

  auth:

    rbac:

      enabled: false

  persistence:

    enabled: true

    storageClass: default

    accessMode: ReadWriteOnce

    size: 10Gi
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  ## Change default timeout periods to mitigate zoobie probe process

  livenessProbe:

    enabled: true

    timeoutSeconds: 10

  readinessProbe:

    enabled: true

    periodSeconds: 20

    timeoutSeconds: 10

  ## Enable auto compaction

  ## compaction by every 1000 revision

  ##

  autoCompactionMode: revision

  autoCompactionRetention: "1000"

  ## Increase default quota to 4G

  ##

  extraEnvVars:

  - name: ETCD_QUOTA_BACKEND_BYTES

    value: "4294967296"

  - name: ETCD_HEARTBEAT_INTERVAL

    value: "500"

  - name: ETCD_ELECTION_TIMEOUT

    value: "2500"

## Configuration values for the pulsar dependency

## ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

  enabled: true

  name: pulsar

  fullnameOverride: ""

  persistence: true

  maxMessageSize: "5242880"  # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

  rbac:

    enabled: false

    psp: false

    limit_to_namespace: true

  affinity:
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    anti_affinity: false

## enableAntiAffinity: no

  components:

    zookeeper: true

    bookkeeper: true

    # bookkeeper - autorecovery

    autorecovery: true

    broker: true

    functions: false

    proxy: true

    toolset: false

    pulsar_manager: false

  monitoring:

    prometheus: false

    grafana: false

    node_exporter: false

    alert_manager: false

  images:

    broker:

      repository: apachepulsar/pulsar

      pullPolicy: IfNotPresent

      tag: 2.8.2

    autorecovery:

      repository: apachepulsar/pulsar

      tag: 2.8.2

      pullPolicy: IfNotPresent

    zookeeper:

      repository: apachepulsar/pulsar

      pullPolicy: IfNotPresent

      tag: 2.8.2

    bookie:

      repository: apachepulsar/pulsar

      pullPolicy: IfNotPresent

      tag: 2.8.2

    proxy:

      repository: apachepulsar/pulsar

      pullPolicy: IfNotPresent

      tag: 2.8.2

    pulsar_manager:

      repository: apachepulsar/pulsar-manager

      pullPolicy: IfNotPresent

      tag: v0.1.0
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  zookeeper:

    volumes:

      persistence: true

      data:

        name: data

        size: 20Gi   #SSD Required

        storageClassName: default

    resources:

      requests:

        memory: 1024Mi

        cpu: 0.3

    configData:

      PULSAR_MEM: >

        -Xms1024m

        -Xmx1024m

      PULSAR_GC: >

         -Dcom.sun.management.jmxremote

         -Djute.maxbuffer=10485760

         -XX:+ParallelRefProcEnabled

         -XX:+UnlockExperimentalVMOptions

         -XX:+DoEscapeAnalysis

         -XX:+DisableExplicitGC

         -XX:+PerfDisableSharedMem

         -Dzookeeper.forceSync=no

    pdb:

      usePolicy: false

  bookkeeper:

    replicaCount: 3

    volumes:

      persistence: true

      journal:

        name: journal

        size: 100Gi

        storageClassName: default

      ledgers:

        name: ledgers

        size: 200Gi

        storageClassName: default

    resources:

      requests:

        memory: 2048Mi

        cpu: 1

    configData:

      PULSAR_MEM: >
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        -Xms4096m

        -Xmx4096m

        -XX:MaxDirectMemorySize=8192m

      PULSAR_GC: >

        -Dio.netty.leakDetectionLevel=disabled

        -Dio.netty.recycler.linkCapacity=1024

        -XX:+UseG1GC -XX:MaxGCPauseMillis=10

        -XX:+ParallelRefProcEnabled

        -XX:+UnlockExperimentalVMOptions

        -XX:+DoEscapeAnalysis

        -XX:ParallelGCThreads=32

        -XX:ConcGCThreads=32

        -XX:G1NewSizePercent=50

        -XX:+DisableExplicitGC

        -XX:-ResizePLAB

        -XX:+ExitOnOutOfMemoryError

        -XX:+PerfDisableSharedMem

        -XX:+PrintGCDetails

      nettyMaxFrameSizeBytes: "104867840"

    pdb:

      usePolicy: false

  broker:

    component: broker

    podMonitor:

      enabled: false

    replicaCount: 1

    resources:

      requests:

        memory: 4096Mi

        cpu: 1.5

    configData:

      PULSAR_MEM: >

        -Xms4096m

        -Xmx4096m

        -XX:MaxDirectMemorySize=8192m

      PULSAR_GC: >

        -Dio.netty.leakDetectionLevel=disabled

        -Dio.netty.recycler.linkCapacity=1024

        -XX:+ParallelRefProcEnabled

        -XX:+UnlockExperimentalVMOptions

        -XX:+DoEscapeAnalysis

        -XX:ParallelGCThreads=32

        -XX:ConcGCThreads=32

        -XX:G1NewSizePercent=50

        -XX:+DisableExplicitGC
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        -XX:-ResizePLAB

        -XX:+ExitOnOutOfMemoryError

      maxMessageSize: "104857600"

      defaultRetentionTimeInMinutes: "10080"

      defaultRetentionSizeInMB: "-1"

      backlogQuotaDefaultLimitGB: "8"

      ttlDurationDefaultInSeconds: "259200"

      subscriptionExpirationTimeMinutes: "3"

      backlogQuotaDefaultRetentionPolicy: producer_exception

    pdb:

      usePolicy: false

  autorecovery:

    resources:

      requests:

        memory: 512Mi

        cpu: 1

  proxy:

    replicaCount: 1

    podMonitor:

      enabled: false

    resources:

      requests:

        memory: 2048Mi

        cpu: 1

    service:

      type: ClusterIP

    ports:

      pulsar: 6650

    configData:

      PULSAR_MEM: >

        -Xms2048m -Xmx2048m

      PULSAR_GC: >

        -XX:MaxDirectMemorySize=2048m

      httpNumThreads: "100"

    pdb:

      usePolicy: false

  pulsar_manager:

    service:

      type: ClusterIP

  pulsar_metadata:

    component: pulsar-init

    image:
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      # the image used for running `pulsar-cluster-initialize` job

      repository: apachepulsar/pulsar

      tag: 2.8.2

## Configuration values for the kafka dependency

## ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

  enabled: false

  name: kafka

  replicaCount: 3

  image:

    repository: bitnami/kafka

    tag: 3.1.0-debian-10-r52

  ## Increase graceful termination for kafka graceful shutdown

  terminationGracePeriodSeconds: "90"

  pdb:

    create: false

  ## Enable startup probe to prevent pod restart during recovering

  startupProbe:

    enabled: true

  ## Kafka Java Heap size

  heapOpts: "-Xmx4096m -Xms4096m"

  maxMessageBytes: _10485760

  defaultReplicationFactor: 3

  offsetsTopicReplicationFactor: 3

  ## Only enable time based log retention

  logRetentionHours: 168

  logRetentionBytes: _-1

  extraEnvVars:

  - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

    value: "5242880"

  - name: KAFKA_CFG_MAX_REQUEST_SIZE

    value: "5242880"

  - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

    value: "10485760"

  - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

    value: "5242880"

  - name: KAFKA_CFG_LOG_ROLL_HOURS

    value: "24"

  persistence:
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    enabled: true

    storageClass:

    accessMode: ReadWriteOnce

    size: 300Gi

  metrics:

    ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

    kafka:

      enabled: false

      image:

        repository: bitnami/kafka-exporter

        tag: 1.4.2-debian-10-r182

    ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

    jmx:

      enabled: false

      image:

        repository: bitnami/jmx-exporter

        tag: 0.16.1-debian-10-r245

    ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

    ## And you can enable them both

    serviceMonitor:

      enabled: false

  service:

    type: ClusterIP

    ports:

      client: 9092

  zookeeper:

    enabled: true

    replicaCount: 3

###################################

# External S3

# - these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

  enabled: true

  host: "192.168.150.167"

  port: "80"

  accessKey: "24G4C1316APP2BIPDE5S"

  secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"
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  useSSL: false

  bucketName: "milvusdbvol1"

  rootPath: ""

  useIAM: false

  cloudProvider: "aws"

  iamEndpoint: ""

  region: ""

  useVirtualHost: false

###################################

# GCS Gateway

# - these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

  bucketName: ""

###################################

# External etcd

# - these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

  enabled: false

  ## the endpoints of the external etcd

  ##

  endpoints:

    - localhost:2379

###################################

# External pulsar

# - these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

  enabled: false

  host: localhost

  port: 6650

  maxMessageSize: "5242880"  # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

  tenant: public

  namespace: default

  authPlugin: ""

  authParams: ""

###################################

# External kafka

# - these configs are only used when `externalKafka.enabled` is true

###################################
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externalKafka:

  enabled: false

  brokerList: localhost:9092

  securityProtocol: SASL_SSL

  sasl:

    mechanisms: PLAIN

    username: ""

    password: ""

root@node2:~#

Appendix B: prepare_data_netapp_new.py

This section provides a sample Python script used to prepare data for the vector

database.

Appendix B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

# 1. connect to Milvus

# 2. create collection

# 3. insert data

# 4. create index

# 5. search, query, and hybrid search on entities

# 6. delete entities by PK

# 7. drop collection

import time

import os

import numpy as np

from pymilvus import (

    connections,

    utility,

    FieldSchema, CollectionSchema, DataType,

    Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##########################################################################

#######

# 1. connect to Milvus
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# Add a new connection alias `default` for Milvus server in

`localhost:19530`

# Actually the "default" alias is a buildin in PyMilvus.

# If the address of Milvus is the same as `localhost:19530`, you can omit

all

# parameters and call the method as: `connections.connect()`.

#

# Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

    host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##########################################################################

#######

# 2. create collection

# We're going to create a collection with 3 fields.

# +-+------------+------------+------------------

+------------------------------+

# | | field name | field type | other attributes |       field description

|

# +-+------------+------------+------------------

+------------------------------+

# |1|    "pk"    |    Int64   |  is_primary=True |      "primary field"

|

# | |            |            |   auto_id=False  |

|

# +-+------------+------------+------------------

+------------------------------+

# |2|  "random"  |    Double  |                  |      "a double field"
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|

# +-+------------+------------+------------------

+------------------------------+

# |3|"embeddings"| FloatVector|     dim=8        |  "float vector with dim

8"   |

# +-+------------+------------+------------------

+------------------------------+

fields = [

    FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

    FieldSchema(name="random", dtype=DataType.DOUBLE),

    FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##########################################################################

######

# 3. insert data

# We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

# Data to be inserted must be organized in fields.

#

# The insert() method returns:

# - either automatically generated primary keys by Milvus if auto_id=True

in the schema;

# - or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

    # provide the pk field because `auto_id` is set to False

    [i for i in range(num_entities)],

    rng.random(num_entities).tolist(),  # field random, only supports list

    [str(i) for i in range(num_entities)],

    rng.random((num_entities, dim)),    # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)
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hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}")  # check the num_entites

# create another collection

fields2 = [

    FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

    FieldSchema(name="random", dtype=DataType.DOUBLE),

    FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

    rng.random(num_entities).tolist(),  # field random, only supports list

    [str(i) for i in range(num_entities)],

    rng.random((num_entities, dim)),    # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

# index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

# hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

# index_params2 = {"index_type": "Trie"}

# hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}")  # check the num_entites

root@node2:~#
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Appendix C: verify_data_netapp.py

This section contains a sample Python script that can be used to validate the vector

database in the NetApp vector database solution.

Appendix C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

    connections,

    utility,

    FieldSchema, CollectionSchema, DataType,

    Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

    # provide the pk field because `auto_id` is set to False

    [i for i in range(num_entities)],

    rng.random(num_entities).tolist(),  # field random, only supports list

    rng.random((num_entities, dim)),    # field embeddings, supports

numpy.ndarray and list

]

##########################################################################

######

# 1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

    host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

    has = utility.has_collection(recover_collection_name)
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    print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

    recover_collection = Collection(recover_collection_name)

    print(recover_collection.schema)

    recover_collection.flush()

    print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}")  # check the num_entites

 

##########################################################################

######

    # 4. create index

    # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

    # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

    print(fmt.format("Start Creating index IVF_FLAT"))

    index = {

        "index_type": "IVF_FLAT",

        "metric_type": "L2",

        "params": {"nlist": 128},

    }

    recover_collection.create_index("embeddings", index)

 

##########################################################################

######

    # 5. search, query, and hybrid search

    # After data were inserted into Milvus and indexed, you can perform:

    # - search based on vector similarity

    # - query based on scalar filtering(boolean, int, etc.)

    # - hybrid search based on vector similarity and scalar filtering.

    #

    # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

    print(fmt.format("Start loading"))

    recover_collection.load()

    #

--------------------------------------------------------------------------

---

    # search based on vector similarity

    print(fmt.format("Start searching based on vector similarity"))
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    vectors_to_search = entities[-1][-2:]

    search_params = {

        "metric_type": "L2",

        "params": {"nprobe": 10},

    }

    start_time = time.time()

    result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

    end_time = time.time()

    for hits in result:

        for hit in hits:

            print(f"hit: {hit}, random field: {hit.entity.get('random')}")

    print(search_latency_fmt.format(end_time - start_time))

    #

--------------------------------------------------------------------------

---

    # query based on scalar filtering(boolean, int, etc.)

    print(fmt.format("Start querying with `random > 0.5`"))

    start_time = time.time()

    result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

    end_time = time.time()

    print(f"query result:\n-{result[0]}")

    print(search_latency_fmt.format(end_time - start_time))

    #

--------------------------------------------------------------------------

---

    # hybrid search

    print(fmt.format("Start hybrid searching with `random > 0.5`"))

    start_time = time.time()

    result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

    end_time = time.time()

    for hits in result:

        for hit in hits:

            print(f"hit: {hit}, random field: {hit.entity.get('random')}")

    print(search_latency_fmt.format(end_time - start_time))
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##########################################################################

#####

    # 7. drop collection

    # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

    #print(fmt.format(f"Drop collection {recover_collection_name}"))

    #utility.drop_collection(recover_collection_name)

root@node2:~#

Appendix D: docker-compose.yml

This section includes sample YAML code for the vector database solution for NetApp.

Appendix D: docker-compose.yml

version: '3.5'

services:

  etcd:

    container_name: milvus-etcd

    image: quay.io/coreos/etcd:v3.5.5

    environment:

      - ETCD_AUTO_COMPACTION_MODE=revision

      - ETCD_AUTO_COMPACTION_RETENTION=1000

      - ETCD_QUOTA_BACKEND_BYTES=4294967296

      - ETCD_SNAPSHOT_COUNT=50000

    volumes:

      - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

    command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

    healthcheck:

      test: ["CMD", "etcdctl", "endpoint", "health"]

      interval: 30s

      timeout: 20s

      retries: 3

  minio:

    container_name: milvus-minio

    image: minio/minio:RELEASE.2023-03-20T20-16-18Z

    environment:

      MINIO_ACCESS_KEY: minioadmin

      MINIO_SECRET_KEY: minioadmin
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    ports:

      - "9001:9001"

      - "9000:9000"

    volumes:

      - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

    command: minio server /minio_data --console-address ":9001"

    healthcheck:

      test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

      interval: 30s

      timeout: 20s

      retries: 3

  standalone:

    container_name: milvus-standalone

    image: milvusdb/milvus:v2.4.0-rc.1

    command: ["milvus", "run", "standalone"]

    security_opt:

    - seccomp:unconfined

    environment:

      ETCD_ENDPOINTS: etcd:2379

      MINIO_ADDRESS: minio:9000

    volumes:

      - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

    healthcheck:

      test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

      interval: 30s

      start_period: 90s

      timeout: 20s

      retries: 3

    ports:

      - "19530:19530"

      - "9091:9091"

    depends_on:

      - "etcd"

      - "minio"

networks:

  default:

    name: milvus
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