
NetApp SAP Landscape Management
Integration using Ansible
NetApp Solutions SAP
NetApp
March 11, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions-sap/lifecycle/lama-ansible-
introduction.html on March 11, 2024. Always check docs.netapp.com for the latest.

Table of Contents

NetApp SAP Landscape Management Integration using Ansible . 1

TR-4953: NetApp SAP Landscape Management Integration using Ansible . 1

SAP system clone, copy, and refresh scenarios . 1

Use cases for system refresh, copy, and cloning. 2

NetApp SAP LaMa integration using Ansible . 5

Example implementation . 5

SAP LaMa provisioning workflow - clone system. 10

SAP LaMa deprovisioning workflow - system destroy . 18

SAP LaMa provisioning workflow - copy system . 21

SAP LaMa provisioning workflow - system refresh . 25

Provider script configuration and Ansible playbooks . 27

Conclusion . 40

NetApp SAP Landscape Management Integration
using Ansible

TR-4953: NetApp SAP Landscape Management Integration
using Ansible

Michael Schlosser, Nils Bauer, NetApp

SAP Landscape Management (LaMa) enables SAP system administrators to automate

SAP system operations, including end-to-end SAP system clone, copy, and refresh

operations.

NetApp offers a rich set of Ansible modules that allows SAP LaMa to access technologies such as NetApp

Snapshot and FlexClone through SAP LaMa Automation Studio. These technologies help to simplify and

accelerate SAP system clone, copy, and refresh operations.

The integration can be used by customers who run NetApp storage solutions on-premises or by customers

using NetApp storage services at public cloud providers such as Amazon Web Services, Microsoft Azure, or

Google Cloud Platform.

This document describes the configuration of SAP LaMa with NetApp storage features for SAP system copy,

clone, and refresh operations using Ansible automation.

SAP system clone, copy, and refresh scenarios

The term SAP system copy is often used as a synonym for three different processes:

SAP system clone, SAP system copy, or SAP system refresh. It is important to distinguish

between the different operations because the workflows and use cases differ for each

one.

• SAP system clone. An SAP system clone is an identical clone of a source SAP system. SAP system

clones are typically used to address logical corruption or to test disaster recovery scenarios. With a system

clone operation, the hostname, instance number, and SID remain the same. It is therefore important to

establish proper network fencing for the target system to make sure that there is no communication with

the production environment.

• SAP system copy. An SAP system copy is a setup of a new target SAP system with data from a source

SAP system. The new target system could be, for example, an additional test system with data from the

production system. The hostname, instance number, and SID are different for the source and target

systems.

• SAP system refresh. An SAP system refresh is a refresh of an existing target SAP system with data from

a source SAP system. The target system is typically part of an SAP transport landscape, for example a

quality assurance system, that is refreshed with data from the production system. The hostname, instance

number, and SID are different for the source and target systems.

The following figure illustrates the main steps that must be performed during a system clone, system copy, or

system refresh operation. The purple boxes indicate steps where NetApp storage features can be integrated.

All three operations can be fully automated by using SAP LaMa.

1

Use cases for system refresh, copy, and cloning

There are multiple scenarios in which data from a source system must be made available

to a target system for testing or training purposes. These test and training systems must

be updated with data from the source system on a regular basis to make sure that testing

and training is performed with the current data set.

These system refresh operations consist of multiple tasks on the infrastructure, database, and application

layers, and they can take multiple days depending on the level of automation.

SAP LaMa and NetApp cloning workflows can be used to accelerate and automate the required tasks at the

2

infrastructure and database layers. Instead of restoring a backup from the source system to the target system,

SAP LaMa uses NetApp Snapshot copy and NetApp FlexClone technology so that required tasks up to a

started HANA database can be performed in minutes instead of hours as shown in the following figure. The

time needed for the cloning process is independent from the size of the database; therefore even very large

systems can be created in a couple of minutes. Further reduction of the runtime is accomplished by automating

tasks on the operating system and database layer as well as on the SAP post processing side.

Address logical corruption

Logical corruption can be caused by software errors, human errors, or sabotage. Unfortunately, logical

corruption often cannot be addressed with standard high-availability and disaster recovery solutions. As a

result, depending on the layer, application, file system, or storage where the logical corruption occurred,

minimal downtime and acceptable data loss requirements can sometimes not be fulfilled.

The worst case is logical corruption in an SAP application. SAP applications often operate in a landscape in

which different applications communicate with each other and exchange data. Therefore, restoring and

recovering an SAP system in which a logical corruption has occurred is not the recommended approach.

Restoring the system to a point in time before the corruption occurred results in data loss. Also, the SAP

landscape would no longer be in sync and would require additional postprocessing.

Instead of restoring the SAP system, the better approach is to try to fix the logical error within the system by

analyzing the problem in a separate repair system. Root cause analysis requires the involvement of the

business process and application owner. For this scenario, you create a repair system (a clone of the

production system) based on data stored before the logical corruption occurred. Within the repair system, the

required data can be exported and imported into the production system. With this approach, the production

system does not need to be stopped, and, in the best-case scenario, no data or only a small fraction of data is

lost.

When setting up the repair system, flexibility and speed are crucial. With NetApp storage-based Snapshot

backups, multiple consistent database images are available to create a clone of the production system by

using NetApp FlexClone technology. FlexClone volumes can be created in a matter of seconds rather than

3

multiple hours if a redirected restore from a file-based backup is used to set up the repair system.

Disaster recovery testing

An effective disaster recovery strategy requires testing the required workflow. Testing demonstrates whether

the strategy works and whether the internal documentation is sufficient. It also allows administrators to train on

the required procedures.

Storage replication with SnapMirror makes it possible to execute disaster recovery testing without putting RTO

and RPO at risk. Disaster recovery testing can be performed without interrupting data replication. Disaster

recovery testing for both asynchronous and synchronous SnapMirror uses Snapshot backups and FlexClone

volumes at the disaster recovery target.

SAP LaMa can be used to orchestrate the entire testing procedure, and it also takes care of network fencing,

target host maintenance, and so on.

4

NetApp SAP LaMa integration using Ansible

The integration approach uses SAP LaMa custom provisioning and operation hooks

combined with Ansible playbooks for NetApp storage management. The following figure

shows a high-level overview of the configuration on the LaMa side as well as the

corresponding components of the example implementation.

A central host acting as an Ansible control node is used to execute the requests from SAP LaMa and to trigger

the NetApp storage operations using Ansible playbooks. The SAP host agent components must be installed on

this host so that the host can be used as a communication gateway to SAP LaMa.

Within LaMa Automation Studio, a provider is defined that is registered at the Ansible host’s SAP host agent. A

host agent configuration file points to a shell script that is called by SAP LaMa with a set of command line

parameters, depending on the requested operation.

Within LaMa Automation Studio, custom provisioning and a custom hook is defined to execute storage cloning

operations during provisioning and also during clean-up operations when the system is deprovisioned. The

shell script on the Ansible control node then executes the corresponding Ansible playbooks, which trigger the

Snapshot and FlexClone operations as well as the deletion of the clones with the deprovisioning workflow.

More information on NetApp Ansible modules and the LaMa provider definitions can be found at:

• NetApp Ansible modules

• SAP LaMa documentation – provider definitions

Example implementation

Due to the large number of options available for system and storage setups, the example implementation

should be used as a template your individual system setup and configuration requirements.

The example scripts are provided as is and are not supported by NetApp. You can request the

current version of the scripts via email to ng-sapcc@netapp.com.

5

https://www.ansible.com/integrations/infrastructure/netapp
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/bf6b3e43340a4cbcb0c0f3089715c068.html
mailto:ng-sapcc@netapp.com

Validated configurations and limitations

The following principles were applied to the example implementation and might need to be adapted to meet

customer needs:

• Managed SAP systems used NFS to access NetApp storage volumes and were set up based on the

adaptive design principle.

• You can use all ONTAP releases supported by NetApp Ansible modules (ZAPI and REST API).

• Credentials for a single NetApp cluster and SVM were hard coded as variables in the provider script.

• Storage cloning was performed on the same storage system that was used by the source SAP system.

• Storage volumes for the target SAP system had the same names as the source with an appendix.

• No cloning at secondary storage (SV/SM) was implemented.

• FlexClone split was not implemented.

• Instance numbers were identical for the source and target SAP systems.

Lab setup

The following figure shows the lab setup we used. The source SAP system HN9 used for the system clone

operation consisted of the database H09, the SAP CS, and the SAP AS services running on the same host

(sap-lnx32) with installed adaptive design enabled. An Ansible control node was prepared according to the

Ansible Playbooks for NetApp ONTAP documentation.

The SAP host agent was installed on this host as well. The NetApp provider script as well as the Ansible

playbooks were configured on the Ansible control node as described in the “Appendix: Provider Script

Configuration.”

The host sap-lnx49 was used as the target for the SAP LaMa cloning operations, and the isolation-ready

feature was configured there.

Different SAP systems (HNA as source and HN2 as target) were used for system copy and refresh operations,

because Post Copy Automation (PCA) was enabled there.

6

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/737a99e86f8743bdb8d1f6cf4b862c79.html
https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md
https://docs.netapp.com/us-en/netapp-solutions-sap/lifecycle/ama-ansible-appendix—provider-script-configuration-and-ansible-playbooks.html
https://docs.netapp.com/us-en/netapp-solutions-sap/lifecycle/ama-ansible-appendix—provider-script-configuration-and-ansible-playbooks.html

The following software releases were used in the lab setup:

• SAP LaMa Enterprise Edition 3.00 SP23_2

• SAP HANA 2.00.052.00.1599235305

• SAP 7.77 Patch 27 (S/4 HANA 1909)

• SAP Host Agent 7.22 Patch 56

• SAPACEXT 7.22 Patch 69

• Linux SLES 15 SP2

• Ansible 2. 13.7

• NetApp ONTAP 9.8P8

SAP LaMa configuration

SAP LaMa provider definition

The provider definition is performed within Automation Studio of SAP LaMa as shown in the following

screenshot. The example implementation uses a single provider definition that is used for different custom

provisioning steps and operation hooks as explained before.

7

The provider netapp_clone is defined as the script netapp_clone.sh registered at the SAP host agent.

The SAP host agent runs on the central host sap-jump, which also acts as the Ansible control node.

The Used in tab shows which custom operations the provider is used for. The configuration for the custom

provisioning NetAppClone and the custom hooks Delete NetAppClone and Delete NetAppClone Refresh

are shown in the next chapters.

The parameters ClonePostFix and SnapPostFix are requested during the execution of the provisioning

workflow and are used for the Snapshot and FlexClone volume names.

8

SAP LaMa custom provisioning

In the SAP LaMa custom provisioning configuration, the customer provider described before is used to replace

the provisioning workflow steps Clone Volumes and PostCloneVolumes.

SAP LaMa custom hook

If a system is deleted with the system destroy workflow, the hook Delete NetAppClone is used to call the

provider definition netapp_clone. The Delete NetApp Clone Refresh hook is used during the system

refresh workflow because the instance is preserved during the execution.

It is important to configure Use Mount Data XML for the custom hook, so that SAP LaMa provides the

information of the mount point configuration to the provider.

To ensure that the custom hook is only used and executed when the system was created with a custom

provisioning workflow, the following constraint is added to it.

9

More information about the use of custom hooks can be found in the SAP LaMa Documentation.

Enable custom provisioning workflow for SAP source system

To enable the custom provisioning workflow for the source system, it must be adapted in the configuration. The

Use Custom Provisioning Process checkbox with the corresponding custom provisioning definition must be

selected.

SAP LaMa provisioning workflow - clone system

The following figure highlights the main steps executed with the system clone workflow.

10

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/139eca2f925e48738a20dbf0b56674c5.html

In this section, we go through the complete SAP LaMa system cloning workflow based on the source SAP

system HN9 with HANA database H09. The following picture gives an overview of the steps executed during

the workflow.

1. To start the cloning workflow, open Provisioning in the menu tree and select the source system (in our

example HN9). Then start the Clone System wizard.

2. Enter the requested values. Screen 1 of the wizard asks for the pool name for the cloned system. This step

specifies the instances (virtual or physical) on which the cloned system will be started. The default is to

clone the system into the same pool as the target system.

11

3. Screen 2 of the wizard asks for the target hosts that the new SAP instances are started on. The target

hosts for this instance(s) can be selected out of the host pool specified in the previous screen. Each

instance or service can be started on a different host. In our example, all three services run on the same

host.

4. Provide the information requested in screen 3, which asks for virtual host names and networks. Typically,

the host names are maintained in DNS, so the IP addresses are prepopulated accordingly.

12

5. In screen 4, the custom clone operations are listed. A clone and a SnapPostfix name are provided, which

are used during the storage clone operation for the FlexClone volume and Snapshot name, respectively. If

you leave these fields empty, the default value configured in the variable section of the provider script

netapp_clone.sh is used.

6. In screen 5, the database consistency option is selected. In our example, we selected Online: Clone

running DB.

13

7. In screen 6, input is only required if you perform a tenant clone.

8. In screen 7, system isolation can be configured.

14

9. In screen 8, a summary page contains all the settings for final confirmation before the workflow is started.

Click Execute to start the workflow.

SAP LaMa now performs all the actions indicated in the configuration. These actions include creating the

storage volume clones and exports, mounting them to the target host, adding the firewall rules for isolation,

and starting the HANA database and SAP services.

10. You can monitor the progress of the clone workflow under the Monitoring menu.

15

Within the detailed log, the operations Clone Volume and Modify Mountpoints and add Custom

Properties are executed at the Ansible node, the sap-jump host. These steps are executed for each

service, the HANA database, the SAP central services, and the SAP AS service.

11. By selecting the Clone Volumes task the detailed log for that step is displayed and the execution of the

Ansible Playbook is shown here. You can see, that the Ansible playbook

netapp_lama_CloneVolumes.yml is executed for each HANA database volume, data, log, and shared.

16

12. In the details view of the step Modify Mountpoints and add Custom Properties, you can find information

about the mount points and the custom properties handed over by the execution script.

After the workflow has been completed, the cloned SAP system is prepared, started, and ready for use.

17

SAP LaMa deprovisioning workflow - system destroy

The following figure highlights the main steps executed with the system destroy workflow.

1. To decommission a cloned system, it must be stopped and prepared in advance. Afterwards the system

destroy workflow can be started.

2. In this example, we run the system destroy workflow for the system created before. We select the system

in the System View screen and start the system destroy workflow under Destroy Processes.

3. All the mount points maintained during the provisioning phase are shown here and are deleted during the

system destroy workflow process.

18

No virtual hostnames are deleted because they are maintained through DNS and have been assigned

automatically.

4. The operation is started by clicking the execute button.

19

SAP LaMa now performs the deletion of the volume clones and deletes the configuration of the cloned

system.

5. You can monitor the progress of the clone workflow under the Monitoring menu.

6. By selecting the Delete NetAppClone task, the detailed log for that step is displayed. The execution of the

Ansible Playbook is shown here. As you can see, the Ansible playbook

netapp_lama_ServiceConfigRemoval.yml is executed for each HANA database volume, data, log,

and shared.

20

SAP LaMa provisioning workflow - copy system

The following figure highlights the primary steps executed with the system copy workflow.

In this chapter, we briefly discuss the differences for the system clone workflow and input screens. As you can

see in the following image, nothing changes in the storage workflow.

21

1. The system copy workflow can be started when the system is prepared accordingly. This is not a specific

task for this configuration, and we do not explain it in detail. If you need further information, review the SAP

LaMa documentation.

2. During the copy workflow, the system is renamed, as must be specified in the first screen.

22

3. During the workflow, you can change the instance numbers.

Changing instance numbers has not been tested and might require changes in the provider

script.

4. As described, the Custom Clone screen does not differ from the cloning workflow, as is shown here.

23

5. As we already described, the remaining input masks do not deviate from the standard, and we do not go

into them any further here. The final screen shows a summary, and execution can now be started.

After the copy process, the target instance is not enabled for the custom cloning process.

24

It must be adopted manually to run the pre-hook step during the system destroy process because a constraint

is set and would prevent execution.

SAP LaMa provisioning workflow - system refresh

The following figure highlights the main steps executed with the system refresh workflow.

25

During the refresh workflow, the storage clone must be deleted. You can use the same Ansible playbook as for

the system destroy workflow. However, the custom hook is defined to a different step, so the playbook is

named accordingly. The process step for the clone doesn´t differ.

The refresh workflow can be triggered through the provisioning screen for a copied system.

26

Again, nothing differs in the input screens from the standard, and the workflow execution can be started from

the summary screen.

Provider script configuration and Ansible playbooks

The following provider configuration file, execution script, and Ansible playbooks are used

27

during the sample deployment and workflow execution in this documentation.

The example scripts are provided as is and are not supported by NetApp. You can request the

current version of the scripts via email to ng-sapcc@netapp.com.

Provider configuration file netapp_clone.conf

The configuration file is created as described in the SAP LaMa Documentation - Configuring SAP Host Agent

Registered Scripts. This configuration file must be located on the Ansible control node where the SAP host

agent is installed.

The configured os-user sapuser must have the appropriate permissions to execute the script and the called

Ansible playbooks. You can place the script in a common script directory. SAP LaMa can provide multiple

parameters when calling the script.

In addition to the custom parameters, PARAM_ClonePostFix, PROP_ClonePostFix,

PARAM_ClonePostFix, and PROP_ClonePostFix, many others can be handed over, as is shown in the

SAP LaMa Documentation.

root@sap-jump:~# cat /usr/sap/hostctrl/exe/operations.d/netapp_clone.conf

Name: netapp_clone

Username: sapuser

Description: NetApp Clone for Custom Provisioning

Command: /usr/sap/scripts/netapp_clone.sh

--HookOperationName=$[HookOperationName] --SAPSYSTEMNAME=$[SAPSYSTEMNAME]

--SAPSYSTEM=$[SAPSYSTEM] --MOUNT_XML_PATH=$[MOUNT_XML_PATH]

--PARAM_ClonePostFix=$[PARAM-ClonePostFix] --PARAM_SnapPostFix=$[PARAM

-SnapPostFix] --PROP_ClonePostFix=$[PROP-ClonePostFix]

--PROP_SnapPostFix=$[PROP-SnapPostFix]

--SAP_LVM_SRC_SID=$[SAP_LVM_SRC_SID]

--SAP_LVM_TARGET_SID=$[SAP_LVM_TARGET_SID]

ResulConverter: hook

Platform: Unix

Provider script netapp_clone.sh

The provider script must be stored in /usr/sap/scripts as configured in the provider configuration file.

Variables

The following variables are hard coded in the script and must be adapted accordingly.

• PRIMARY_CLUSTER=<hostname of netapp cluster>

• PRIMARY_SVM=<SVM name where source system volumes are stored>

The certificate files PRIMARY_KEYFILE=/usr/sap/scripts/ansible/certs/ontap.key and

PRIMARY_CERTFILE=/usr/sap/scripts/ansible/certs/ontap.pem must be provided as described

in NetApp Ansible modules - Prepare ONTAP.

28

mailto:ng-sapcc@netapp.com
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/250dfc5eef4047a38bab466c295d3a49.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/250dfc5eef4047a38bab466c295d3a49.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/0148e495174943de8c1c3ee1b7c9cc65.html
https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md

If different clusters or SVMs are required for different SAP systems, these variables can be

added as parameters in the SAP LaMa provider definition.

Function: create inventory file

To make Ansible playbook execution more dynamic, an inventory. yml file is created on the fly. Some

static values are configured in the variable section and some are dynamically created during execution.

Function: run Ansible playbook

This function is used to execute the Ansible playbook together with the dynamically created inventory.yml

file. The naming convention for the playbooks is netapp_lama_${HookOperationName}.yml. The values

for ${HookOperationName} is dependent on the LaMa operation and handed over by LaMa as a command

line parameter.

Section Main

This section contains the main execution plan. The variable ${HookOperationName} contains the name of

the LaMa replacement step and is provided by LaMa when the script is called.

• Values with the system clone and system copy provisioning workflow:

◦ CloneVolumes

◦ PostCloneVolumes

• Value with the system destroy workflow:

◦ ServiceConfigRemoval

• Value with the system refresh workflow:

◦ ClearMountConfig

HookOperationName = CloneVolumes

With this step, the Ansible playbook is executed, which triggers the Snapshot copy and cloning operation. The

volume names and mount configuration are handed over by SAP LaMa through an XML file defined in the

variable $MOUNT_XML_PATH. This file is saved because it is used later in the step FinalizeCloneVolumes

to create the new mount-point configuration. The volume names are extracted from the XML file and the

Ansible cloning playbook is executed for each volume.

In this example, the AS instance and the central services share the same volume. Therefore,

volume cloning is only executed when the SAP instance number ($SAPSYSTEM) is not 01. This

might differ in other environments and must be changed accordingly.

HookOperationName = PostCloneVolumes

During this step, the custom properties ClonePostFix and SnapPostFix and the mount point configuration

for the target system are maintained.

The custom properties are used later as input when the system is decommissioned during the

ServiceConfigRemoval or ClearMountConfig phase. The system is designed to preserve the settings of

the custom parameters that were specified during the system provisioning workflow.

The values used in this example are ClonePostFix=_clone_20221115 and

29

SnapPostFix=_snap_20221115.

For the volume HN9_sap, the dynamically created Ansible file includes the following values:

datavolumename: HN9_sap, snapshotpostfix: _snap_20221115, and clonepostfix:

_clone_20221115.

Which leads into the snapshot name on the volume HN9_sap HN9_sap_snap_20221115 and the created

volume clone name HN9_sap_clone_20221115.

Custom properties could be used in any way to preserve parameters used during the

provisioning process.

The mount point configuration is extracted from the XML file that has been handed over by LaMa in the

CloneVolume step. The ClonePostFix is added to the volume names and send back to LaMa through the

default script output. The functionality is described in SAP Note 1889590.

In this example, qtrees on the storage system are used as a common way to place different data

on a single volume. For example, HN9_sap holds the mount points for /usr/sap/HN9,

/sapmnt/HN9, and /home/hn9adm. Subdirectories work in the same way. This might differ in

other environments and must be changed accordingly.

HookOperationName = ServiceConfigRemoval

In this step, the Ansible playbook that is responsible for the deletion of the volume clones is running.

The volume names are handed over by SAP LaMa through the mount configuration file, and the custom

properties ClonePostFix and SnapPostFix are used to hand over the values of the parameters originally

specified during the system provisioning workflow (see the note at HookOperationName =

PostCloneVolumes).

The volume names are extracted from the xml file, and the Ansible cloning playbook is executed for each

volume.

In this example, the AS instance and the central services share the same volume. Therefore, the

volume deletion is only executed when the SAP instance number ($SAPSYSTEM) is not 01. This

might differ in other environments and must be changed accordingly.

HookOperationName = ClearMountConfig

In this step, the Ansible playbook that is responsible for the deletion of the volume clones during a system

refresh workflow is running.

The volume names are handed over by SAP LaMa through the mount configuration file, and the custom

properties ClonePostFix and SnapPostFix are used to hand over the values of the parameters originally

specified during the system provisioning workflow.

The volume names are extracted from the XML file and the Ansible cloning playbook is executed for each

volume.

In this example, the AS instance and the central services share the same volume. Therefore,

volume deletion is only executed when the SAP instance number ($SAPSYSTEM) is not 01. This

might differ in other environments and must be changed accordingly.

30

https://launchpad.support.sap.com/

root@sap-jump:~# cat /usr/sap/scripts/netapp_clone.sh

#!/bin/bash

#Section - Variables

###

VERSION="Version 0.9"

#Path for ansible play-books

ANSIBLE_PATH=/usr/sap/scripts/ansible

#Values for Ansible Inventory File

PRIMARY_CLUSTER=grenada

PRIMARY_SVM=svm-sap01

PRIMARY_KEYFILE=/usr/sap/scripts/ansible/certs/ontap.key

PRIMARY_CERTFILE=/usr/sap/scripts/ansible/certs/ontap.pem

#Default Variable if PARAM ClonePostFix / SnapPostFix is not maintained in

LaMa

DefaultPostFix=_clone_1

#TMP Files - used during execution

YAML_TMP=/tmp/inventory_ansible_clone_tmp_$$.yml

TMPFILE=/tmp/tmpfile.$$

MY_NAME="`basename $0`"

BASE_SCRIPT_DIR="`dirname $0`"

#Sendig Script Version and run options to LaMa Log

echo "[DEBUG]: Running Script $MY_NAME $VERSION"

echo "[DEBUG]: $MY_NAME $@"

#Command declared in the netapp_clone.conf Provider definition

#Command: /usr/sap/scripts/netapp_clone.sh

--HookOperationName=$[HookOperationName] --SAPSYSTEMNAME=$[SAPSYSTEMNAME]

--SAPSYSTEM=$[SAPSYSTEM] --MOUNT_XML_PATH=$[MOUNT_XML_PATH]

--PARAM_ClonePostFix=$[PARAM-ClonePostFix] --PARAM_SnapPostFix=$[PARAM

-SnapPostFix] --PROP_ClonePostFix=$[PROP-ClonePostFix]

--PROP_SnapPostFix=$[PROP-SnapPostFix]

--SAP_LVM_SRC_SID=$[SAP_LVM_SRC_SID]

--SAP_LVM_TARGET_SID=$[SAP_LVM_TARGET_SID]

#Reading Input Variables hand over by LaMa

for i in "$@"

do

case $i in

--HookOperationName=*)

HookOperationName="${i#*=}";shift;;

--SAPSYSTEMNAME=*)

SAPSYSTEMNAME="${i#*=}";shift;;

--SAPSYSTEM=*)

SAPSYSTEM="${i#*=}";shift;;

--MOUNT_XML_PATH=*)

MOUNT_XML_PATH="${i#*=}";shift;;

--PARAM_ClonePostFix=*)

31

PARAM_ClonePostFix="${i#*=}";shift;;

--PARAM_SnapPostFix=*)

PARAM_SnapPostFix="${i#*=}";shift;;

--PROP_ClonePostFix=*)

PROP_ClonePostFix="${i#*=}";shift;;

--PROP_SnapPostFix=*)

PROP_SnapPostFix="${i#*=}";shift;;

--SAP_LVM_SRC_SID=*)

SAP_LVM_SRC_SID="${i#*=}";shift;;

--SAP_LVM_TARGET_SID=*)

SAP_LVM_TARGET_SID="${i#*=}";shift;;

*)

unknown option

;;

esac

done

#If Parameters not provided by the User - defaulting to DefaultPostFix

if [-z $PARAM_ClonePostFix]; then PARAM_ClonePostFix=$DefaultPostFix;fi

if [-z $PARAM_SnapPostFix]; then PARAM_SnapPostFix=$DefaultPostFix;fi

#Section - Functions

###

#Function Create (Inventory) YML File

###

create_yml_file()

{

echo "ontapservers:">$YAML_TMP

echo " hosts:">>$YAML_TMP

echo " ${PRIMARY_CLUSTER}:">>$YAML_TMP

echo " ansible_host: "'"'$PRIMARY_CLUSTER'"'>>$YAML_TMP

echo " keyfile: "'"'$PRIMARY_KEYFILE'"'>>$YAML_TMP

echo " certfile: "'"'$PRIMARY_CERTFILE'"'>>$YAML_TMP

echo " svmname: "'"'$PRIMARY_SVM'"'>>$YAML_TMP

echo " datavolumename: "'"'$datavolumename'"'>>$YAML_TMP

echo " snapshotpostfix: "'"'$snapshotpostfix'"'>>$YAML_TMP

echo " clonepostfix: "'"'$clonepostfix'"'>>$YAML_TMP

}

#Function run ansible-playbook

###

run_ansible_playbook()

{

echo "[DEBUG]: Running ansible playbook

netapp_lama_${HookOperationName}.yml on Volume $datavolumename"

ansible-playbook -i $YAML_TMP

$ANSIBLE_PATH/netapp_lama_${HookOperationName}.yml

}

#Section - Main

32

###

#HookOperationName – CloneVolumes

###

if [$HookOperationName = CloneVolumes] ;then

#save mount xml for later usage - used in Section FinalizeCloneVolues to

generate the mountpoints

echo "[DEBUG]: saving mount config...."

cp $MOUNT_XML_PATH /tmp/mount_config_${SAPSYSTEMNAME}_${SAPSYSTEM}.xml

#Instance 00 + 01 share the same volumes - clone needs to be done once

if [$SAPSYSTEM != 01]; then

#generating Volume List - assuming usage of qtrees - "IP-

Adress:/VolumeName/qtree"

xmlFile=/tmp/mount_config_${SAPSYSTEMNAME}_${SAPSYSTEM}.xml

if [-e $TMPFILE];then rm $TMPFILE;fi

numMounts=`xml_grep --count "/mountconfig/mount" $xmlFile | grep "total: "

| awk '{ print $2 }'`

i=1

while [$i -le $numMounts]; do

 xmllint --xpath "/mountconfig/mount[$i]/exportpath/text()" $xmlFile

|awk -F"/" '{print $2}' >>$TMPFILE

i=$((i + 1))

done

DATAVOLUMES=`cat $TMPFILE |sort -u`

#Create yml file and rund playbook for each volume

for I in $DATAVOLUMES; do

datavolumename="$I"

snapshotpostfix="$PARAM_SnapPostFix"

clonepostfix="$PARAM_ClonePostFix"

create_yml_file

run_ansible_playbook

done

else

echo "[DEBUG]: Doing nothing Volume cloned in different Task"

fi

fi

#HookOperationName – PostCloneVolumes

###

if [$HookOperationName = PostCloneVolumes] ;then

#Reporting Properties back to LaMa Config for Cloned System

echo "[RESULT]:Property:ClonePostFix=$PARAM_ClonePostFix"

echo "[RESULT]:Property:SnapPostFix=$PARAM_SnapPostFix"

#Create MountPoint Config for Cloned Instances and report back to LaMa

according to SAP Note: https://launchpad.support.sap.com/#/notes/1889590

echo "MountDataBegin"

echo '<?xml version="1.0" encoding="UTF-8"?>'

echo "<mountconfig>"

33

xmlFile=/tmp/mount_config_${SAPSYSTEMNAME}_${SAPSYSTEM}.xml

numMounts=`xml_grep --count "/mountconfig/mount" $xmlFile | grep "total: "

| awk '{ print $2 }'`

i=1

while [$i -le $numMounts]; do

MOUNTPOINT=`xmllint --xpath "/mountconfig/mount[$i]/mountpoint/text()"

$xmlFile`;

 EXPORTPATH=`xmllint --xpath

"/mountconfig/mount[$i]/exportpath/text()" $xmlFile`;

 OPTIONS=`xmllint --xpath "/mountconfig/mount[$i]/options/text()"

$xmlFile`;

#Adopt Exportpath and add Clonepostfix - assuming usage of qtrees - "IP-

Adress:/VolumeName/qtree"

TMPFIELD1=`echo $EXPORTPATH|awk -F":/" '{print $1}'`

TMPFIELD2=`echo $EXPORTPATH|awk -F"/" '{print $2}'`

TMPFIELD3=`echo $EXPORTPATH|awk -F"/" '{print $3}'`

EXPORTPATH=$TMPFIELD1":/"${TMPFIELD2}$PARAM_ClonePostFix"/"$TMPFIELD3

echo -e '\t<mount fstype="nfs" storagetype="NETFS">'

echo -e "\t\t<mountpoint>${MOUNTPOINT}</mountpoint>"

echo -e "\t\t<exportpath>${EXPORTPATH}</exportpath>"

echo -e "\t\t<options>${OPTIONS}</options>"

echo -e "\t</mount>"

i=$((i + 1))

done

echo "</mountconfig>"

echo "MountDataEnd"

#Finished MountPoint Config

#Cleanup Temporary Files

rm $xmlFile

fi

#HookOperationName – ServiceConfigRemoval

###

if [$HookOperationName = ServiceConfigRemoval] ;then

#Assure that Properties ClonePostFix and SnapPostfix has been configured

through the provisioning process

if [-z $PROP_ClonePostFix]; then echo "[ERROR]: Propertiy ClonePostFix

is not handed over - please investigate";exit 5;fi

if [-z $PROP_SnapPostFix]; then echo "[ERROR]: Propertiy SnapPostFix is

not handed over - please investigate";exit 5;fi

#Instance 00 + 01 share the same volumes - clone delete needs to be done

once

if [$SAPSYSTEM != 01]; then

#generating Volume List - assuming usage of qtrees - "IP-

Adress:/VolumeName/qtree"

xmlFile=$MOUNT_XML_PATH

if [-e $TMPFILE];then rm $TMPFILE;fi

34

numMounts=`xml_grep --count "/mountconfig/mount" $xmlFile | grep "total: "

| awk '{ print $2 }'`

i=1

while [$i -le $numMounts]; do

 xmllint --xpath "/mountconfig/mount[$i]/exportpath/text()" $xmlFile

|awk -F"/" '{print $2}' >>$TMPFILE

i=$((i + 1))

done

DATAVOLUMES=`cat $TMPFILE |sort -u| awk -F $PROP_ClonePostFix '{ print $1

}'`

#Create yml file and rund playbook for each volume

for I in $DATAVOLUMES; do

datavolumename="$I"

snapshotpostfix="$PROP_SnapPostFix"

clonepostfix="$PROP_ClonePostFix"

create_yml_file

run_ansible_playbook

done

else

echo "[DEBUG]: Doing nothing Volume deleted in different Task"

fi

#Cleanup Temporary Files

rm $xmlFile

fi

#HookOperationName - ClearMountConfig

###

if [$HookOperationName = ClearMountConfig] ;then

 #Assure that Properties ClonePostFix and SnapPostfix has been

configured through the provisioning process

 if [-z $PROP_ClonePostFix]; then echo "[ERROR]: Propertiy

ClonePostFix is not handed over - please investigate";exit 5;fi

 if [-z $PROP_SnapPostFix]; then echo "[ERROR]: Propertiy

SnapPostFix is not handed over - please investigate";exit 5;fi

 #Instance 00 + 01 share the same volumes - clone delete needs to

be done once

 if [$SAPSYSTEM != 01]; then

 #generating Volume List - assuming usage of qtrees - "IP-

Adress:/VolumeName/qtree"

 xmlFile=$MOUNT_XML_PATH

 if [-e $TMPFILE];then rm $TMPFILE;fi

 numMounts=`xml_grep --count "/mountconfig/mount" $xmlFile

| grep "total: " | awk '{ print $2 }'`

 i=1

 while [$i -le $numMounts]; do

 xmllint --xpath

"/mountconfig/mount[$i]/exportpath/text()" $xmlFile |awk -F"/" '{print

35

$2}' >>$TMPFILE

 i=$((i + 1))

 done

 DATAVOLUMES=`cat $TMPFILE |sort -u| awk -F

$PROP_ClonePostFix '{ print $1 }'`

 #Create yml file and rund playbook for each volume

 for I in $DATAVOLUMES; do

 datavolumename="$I"

 snapshotpostfix="$PROP_SnapPostFix"

 clonepostfix="$PROP_ClonePostFix"

 create_yml_file

 run_ansible_playbook

 done

 else

 echo "[DEBUG]: Doing nothing Volume deleted in

different Task"

 fi

 #Cleanup Temporary Files

 rm $xmlFile

fi

#Cleanup

###

#Cleanup Temporary Files

if [-e $TMPFILE];then rm $TMPFILE;fi

if [-e $YAML_TMP];then rm $YAML_TMP;fi

exit 0

Ansible Playbook netapp_lama_CloneVolumes.yml

The playbook that is executed during the CloneVolumes step of the LaMa system clone workflow is a

combination of create_snapshot.yml and create_clone.yml (see NetApp Ansible modules - YAML

files). This playbook can be easily extended to cover additional use cases like cloning from secondary and

clone split operations.

36

https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md
https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md

root@sap-jump:~# cat /usr/sap/scripts/ansible/netapp_lama_CloneVolumes.yml

- hosts: ontapservers

 connection: local

 collections:

 - netapp.ontap

 gather_facts: false

 name: netapp_lama_CloneVolumes

 tasks:

 - name: Create SnapShot

 na_ontap_snapshot:

 state: present

 snapshot: "{{ datavolumename }}{{ snapshotpostfix }}"

 use_rest: always

 volume: "{{ datavolumename }}"

 vserver: "{{ svmname }}"

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

 - name: Clone Volume

 na_ontap_volume_clone:

 state: present

 name: "{{ datavolumename }}{{ clonepostfix }}"

 use_rest: always

 vserver: "{{ svmname }}"

 junction_path: '/{{ datavolumename }}{{ clonepostfix }}'

 parent_volume: "{{ datavolumename }}"

 parent_snapshot: "{{ datavolumename }}{{ snapshotpostfix }}"

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

Ansible Playbook netapp_lama_ServiceConfigRemoval.yml

The playbook that is executed during the ServiceConfigRemoval phase of the LaMa system destroy

workflow is combination of delete_clone.yml and delete_snapshot.yml (see NetApp Ansible modules

- YAML files). It must be aligned to the execution steps of the netapp_lama_CloneVolumes playbook.

37

https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md
https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md

root@sap-jump:~# cat

/usr/sap/scripts/ansible/netapp_lama_ServiceConfigRemoval.yml

- hosts: ontapservers

 connection: local

 collections:

 - netapp.ontap

 gather_facts: false

 name: netapp_lama_ServiceConfigRemoval

 tasks:

 - name: Delete Clone

 na_ontap_volume:

 state: absent

 name: "{{ datavolumename }}{{ clonepostfix }}"

 use_rest: always

 vserver: "{{ svmname }}"

 wait_for_completion: True

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

 - name: Delete SnapShot

 na_ontap_snapshot:

 state: absent

 snapshot: "{{ datavolumename }}{{ snapshotpostfix }}"

 use_rest: always

 volume: "{{ datavolumename }}"

 vserver: "{{ svmname }}"

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

root@sap-jump:~#

Ansible Playbook netapp_lama_ClearMountConfig.yml

The playbook, which is executed during the netapp_lama_ClearMountConfig phase of the LaMa system

refresh workflow is combination of delete_clone.yml and delete_snapshot.yml (see NetApp Ansible

modules - YAML files). It must be aligned to the execution steps of the netapp_lama_CloneVolumes

playbook.

38

https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md
https://github.com/sap-linuxlab/demo.netapp_ontap/blob/main/netapp_ontap.md

root@sap-jump:~# cat

/usr/sap/scripts/ansible/netapp_lama_ServiceConfigRemoval.yml

- hosts: ontapservers

 connection: local

 collections:

 - netapp.ontap

 gather_facts: false

 name: netapp_lama_ServiceConfigRemoval

 tasks:

 - name: Delete Clone

 na_ontap_volume:

 state: absent

 name: "{{ datavolumename }}{{ clonepostfix }}"

 use_rest: always

 vserver: "{{ svmname }}"

 wait_for_completion: True

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

 - name: Delete SnapShot

 na_ontap_snapshot:

 state: absent

 snapshot: "{{ datavolumename }}{{ snapshotpostfix }}"

 use_rest: always

 volume: "{{ datavolumename }}"

 vserver: "{{ svmname }}"

 hostname: "{{ inventory_hostname }}"

 cert_filepath: "{{ certfile }}"

 key_filepath: "{{ keyfile }}"

 https: true

 validate_certs: false

root@sap-jump:~#

Sample Ansible inventory.yml

This inventory file is dynamically built during workflow execution, and it is only shown here for illustration.

39

ontapservers:

 hosts:

 grenada:

 ansible_host: "grenada"

 keyfile: "/usr/sap/scripts/ansible/certs/ontap.key"

 certfile: "/usr/sap/scripts/ansible/certs/ontap.pem"

 svmname: "svm-sap01"

 datavolumename: "HN9_sap"

 snapshotpostfix: " _snap_20221115"

 clonepostfix: "_clone_20221115"

Conclusion

The integration of a modern automation framework like Ansible into SAP LaMa

provisioning workflows gives customers a flexible solution to address standard or more

complex infrastructure requirements.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• Collections in the NetApp Namespace

https://docs.ansible.com/ansible/latest/collections/netapp/index.html

• Documentation about Ansible Integration and Sample Ansible Playbooks

https://github.com/sap-linuxlab/demo.netapp_ontap

• General Ansible and NetApp Integration

https://www.ansible.com/integrations/infrastructure/netapp

• Blog on integrating SAP LaMa with Ansible

https://blogs.sap.com/2020/06/08/outgoing-api-calls-from-sap-landscape-management-lama-with-

automation-studio/

• SAP Landscape Management 3.0, Enterprise Edition Documentation

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/4df88a8f418c5059e10000000a42189c.html#loio4df88a8f418c5059e10000000a42189c

• SAP LaMa Documentation – Provider Definitions

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/bf6b3e43340a4cbcb0c0f3089715c068.html

• SAP LaMa Documentation - Custom Hooks

40

https://docs.ansible.com/ansible/latest/collections/netapp/index.html
https://github.com/sap-linuxlab/demo.netapp_ontap
https://www.ansible.com/integrations/infrastructure/netapp
https://blogs.sap.com/2020/06/08/outgoing-api-calls-from-sap-landscape-management-lama-with-automation-studio/
https://blogs.sap.com/2020/06/08/outgoing-api-calls-from-sap-landscape-management-lama-with-automation-studio/
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/4df88a8f418c5059e10000000a42189c.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/4df88a8f418c5059e10000000a42189c.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/bf6b3e43340a4cbcb0c0f3089715c068.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/bf6b3e43340a4cbcb0c0f3089715c068.html

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/139eca2f925e48738a20dbf0b56674c5.html

• SAP LaMa Documentation - Configuring SAP Host Agent Registered Scripts

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/250dfc5eef4047a38bab466c295d3a49.html

• SAP LaMa Documentation - Parameters for Custom Operations and Custom Hooks

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/0148e495174943de8c1c3ee1b7c9cc65.html

• SAP LaMa Documentation - Adaptive Design

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-

US/737a99e86f8743bdb8d1f6cf4b862c79.html

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

Version history

Version Date Document version history

Version 1.0 January 2023 Initial release

41

https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/139eca2f925e48738a20dbf0b56674c5.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/139eca2f925e48738a20dbf0b56674c5.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/250dfc5eef4047a38bab466c295d3a49.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/250dfc5eef4047a38bab466c295d3a49.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/0148e495174943de8c1c3ee1b7c9cc65.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/0148e495174943de8c1c3ee1b7c9cc65.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/737a99e86f8743bdb8d1f6cf4b862c79.html
https://help.sap.com/doc/700f9a7e52c7497cad37f7c46023b7ff/3.0.11.0/en-US/737a99e86f8743bdb8d1f6cf4b862c79.html
https://www.netapp.com/support-and-training/documentation/

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

42

http://www.netapp.com/TM

	NetApp SAP Landscape Management Integration using Ansible : NetApp Solutions SAP
	Table of Contents
	NetApp SAP Landscape Management Integration using Ansible
	TR-4953: NetApp SAP Landscape Management Integration using Ansible
	SAP system clone, copy, and refresh scenarios
	Use cases for system refresh, copy, and cloning
	NetApp SAP LaMa integration using Ansible
	Example implementation
	SAP LaMa provisioning workflow - clone system
	SAP LaMa deprovisioning workflow - system destroy
	SAP LaMa provisioning workflow - copy system
	SAP LaMa provisioning workflow - system refresh
	Provider script configuration and Ansible playbooks
	Conclusion

