

Use Shift Toolkit to migrate or convert VMs

NetApp virtualization solutions

NetApp
January 29, 2026

This PDF was generated from <https://docs.netapp.com/us-en/netapp-solutions-virtualization/migration/shift-toolkit-overview.html> on January 29, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Use Shift Toolkit to migrate or convert VMs	1
Learn about migrating VMs between virtualization environments using NetApp Shift Toolkit	1
Use case	1
Toolkit Overview	1
Benefits of VM portability	2
How Shift toolkit works	2
Supported versions for the NetApp Shift Toolkit	4
Supported VM guest operating systems	4
Supported ONTAP versions	4
Supported hypervisors	4
Install Shift Toolkit	5
Prepare to install the NetApp Shift Toolkit for ONTAP storage	5
Requirements to install the NetApp Shift Toolkit	6
Install or upgrade the NetApp Shift Toolkit for ONTAP storage	10
Configure the NetApp Shift Toolkit	20
Run Shift toolkit	20
Shift Toolkit Configuration	22
Migrate VMs using Shift Toolkit	38
Migrate VMs using the Shift Toolkit	38
Migrate VMs from VMware ESXi to Microsoft Hyper-V using the Shift Toolkit	42
Migrate VMs from Microsoft Hyper-V to VMware ESXi using the Shift Toolkit	63
Migrate VMs from VMware ESXi to Red Hat OpenShift Virtualization	84
Migrate VMs from VMware ESXi to Red Hat OpenShift Virtualization using Shift toolkit and Migration Toolkit for Virtualization	100
Migrate VMs from VMware ESXi to Oracle Linux Virtualization Manager	114
Convert VMs using the Shift Toolkit	126
Overview	126
Convert to QCOW2 format	127
Convert to VHDX format	132
Convert to RAW format	135
Monitor migration jobs with the Shift Toolkit dashboard	139
Job monitoring dashboard	139
Understanding job status	139
Configure advanced settings in the Shift Toolkit	140
Credential Security Service Provider (CredSSP)	141
Logging and debugging	142
Swagger	143
Script block and automation	147
Email notifications and alerts	149
Abort and revert capabilities	150
Migrate VMs from SAN environments for conversion with Shift Toolkit	150
Requirements for SAN-based VMs	151
Migration workflow for SAN environments	151

Handling processor compatibility issues	152
Next steps after converting or migrating VMs using the Shift Toolkit	152
Conclusion	152
Next Steps	152
Troubleshooting and Known Issues	152
Appendix	154

Use Shift Toolkit to migrate or convert VMs

Learn about migrating VMs between virtualization environments using NetApp Shift Toolkit

The NetApp Shift Toolkit is a standalone product designed to simplify and accelerate VM migrations across hypervisors, such as VMware ESXi, Microsoft Hyper-V, Oracle Linux Virtualization Manager, Redhat OpenShift, and others. It also supports disk-level conversions between various virtual disk formats.

Use case

Every organization is now seeing the benefit of having multi-hypervisor environment. With recent changes in the market, every organization is deciding on the best course(s) of action by weighing technical and commercial risks including migrating workload VMs to alternate hypervisors and focus on achieving business-defined objectives, and controlling vendor lock-in. This enables them to operate in an optimized fashion wrt licensing cost and extend IT budget on the right areas than spending for those unused cores on a specific hypervisor. However, the challenge has always been around migration time and the associated downtime.

With the NetApp Shift toolkit, migrating virtual machines (VMs) is no longer a concern. This standalone product enables fast and efficient migration of VMs from VMware ESXi to Microsoft Hyper-V. Additionally, it supports disk-level conversions between various virtual disk formats. Thanks to the out-of-the-box capabilities provided by ONTAP, these migrations can be incredibly swift, with minimal downtime. For example, converting a 1TB VMDK file typically takes a couple of hours, but with the Shift toolkit, it can be completed in seconds.

Toolkit Overview

The NetApp Shift toolkit is an easy-to-use, graphical user interface (GUI) solution that allows to migrate virtual machines (VMs) between different hypervisors and convert virtual disk formats. It utilizes NetApp FlexClone® technology to quickly convert VM hard disks. Additionally, the toolkit manages the creation and configuration of destination VMs.

Shift toolkit provides flexibility in a multi-hypervisor environment by supporting bidirectional conversion between the following hypervisors:

- VMware ESXi to Microsoft Hyper-V
- Microsoft Hyper-V to VMware ESXi
- VMWare ESXi to Oracle Linux Virtualization Manager (OLVM)
- VMWare ESXi to Red Hat OpenShift Virtualization

Shift toolkit supports disk-level conversions of virtual disks between hypervisors for the following disk formats:

- VMware ESX to Microsoft Hyper-V (virtual machine disk [VMDK] to virtual hard disk format [VHDX])
- Microsoft Hyper-V to VMware ESX (virtual hard disk format [VHDX] to virtual machine disk [VMDK])
- VMware ESX to KVM compatible hypervisors (VMDK to QCOW2)
- VMware ESX to KVM compatible hypervisors (VMDK to RAW)

Note: VMs to be migrated / converted must leverage NetApp NAS storage
 Note: Shift Toolkit supports Hyper-V, OLV & OpenShift E2E migration
 Note: Shift Toolkit supports virtual disk (QCOW2) conversion for KVM

Shift toolkit can be downloaded [here](#) and is available for Windows Systems only.

Benefits of VM portability

ONTAP is ideal for any hypervisor and in any hyperscalar. With FlexClone technology. VM portability in minutes is a reality than waiting for longer downtimes or settling down with pass through options.

Shift toolkit:

- helps minimize downtime and enhances business productivity.
- offers choice and flexibility by reducing licensing costs, lock-in, and commitments to a single vendor.
- enables organizations looking to optimize VM licensing costs and extend IT budgets.
- reduces virtualization costs with VM portability and is offered free from NetApp.

How Shift toolkit works

At conversion time, Shift toolkit connects to VMware ESXi and Microsoft Hyper-V hosts and to shared NetApp storage. Shift toolkit leverages FlexClone to convert VM hard drives from one hypervisor to another by using three key NetApp technologies:

- Single volume and multiple protocols
 With NetApp ONTAP, multiple protocols can be easily used to access a single volume. For example, VMware ESXi can access a volume that is enabled with the Network File System (NFS) protocol, and Microsoft Hyper-V can access the same volume with the CIFS/SMB protocol.
- FlexClone technology
 FlexClone allows the rapid cloning of entire files or volumes with no data copy. Common blocks on the storage system are shared between multiple files or volumes. As a result, large VM disks can be cloned very quickly.

- VM disk conversion

The NetApp PowerShell Toolkit and Shift toolkit contain a large number of workflows that can be used to perform various actions on a NetApp storage controller. Included are PowerShell cmdlets that convert virtual disks to different formats. For example, VMware VMDK can be converted to Microsoft VHDX, and vice versa. These conversions are performed with FlexClone, which enables very rapid cloning and conversion of disk formats in one step.

Protocols and communication methods

Shift toolkit uses the following protocols during conversion or migration operations.

- HTTPS - Used by the Shift toolkit to communicate with the Data ONTAP cluster.
- VI Java (openJDK), VMware PowerCLI - Used to communicate with VMware ESXi.
- Windows PowerShell module - Used to communicate with Microsoft Hyper-V.

The firewalls must enable traffic over the following ports:

Port	Protocol	Source	Destination	Purpose
443	TCP	Shift toolkit node	VMware vCenter	VMware Inventory
443	TCP	Shift toolkit node	VMware ESXi nodes	Invoke-vmscript dependency (routed)
443	TCP	Shift toolkit node	Target Hypervisor	Target inventory
443	TCP	Shift toolkit node	ONTAP system	ONTAP access
5985/5986	HTTP	Shift toolkit node	Hyper-V Hosts	WinRM

Supported versions for the NetApp Shift Toolkit

Verify that your Windows and Linux guest operating systems, ONTAP version, and hypervisors are supported by the NetApp Shift Toolkit.

Supported VM guest operating systems

The Shift Toolkit supports the following Windows and Linux guest operating systems for VM conversion.

Windows operating systems

- Windows 10
- Windows 11
- Windows Server 2016
- Windows Server 2019
- Windows Server 2022
- Windows Server 2025

Linux operating systems

- CentOS Linux 7.x
- Alma Linux 7.x
- Red Hat Enterprise Linux 7.2 or later
- Red Hat Enterprise Linux 8.x
- Red Hat Enterprise Linux 9.x
- Ubuntu 2018
- Ubuntu 2022
- Ubuntu 2024
- Debian 12
- SUSE Linux Enterprise Server 12
- SUSE Linux Enterprise Server 15

CentOS Linux and Red Hat Enterprise Linux versions 5 and 6 are not supported.

Windows Server 2008 is not officially supported. However, the conversion process may work, and some customers have successfully converted Windows Server 2008 VMs. After migration, manually update the IP address, as the PowerShell version used for IP assignment automation is not compatible with Windows Server 2008.

Supported ONTAP versions

The Shift Toolkit supports ONTAP 9.14.1 or later.

Supported hypervisors

The Shift Toolkit supports the following hypervisor platforms for VM migration and conversion.

In the current release, end-to-end virtual machine migration is supported only with Hyper-V, VMware, OpenShift, Oracle Virtualization. For KVM destinations, only disk conversion is supported.

VMware vSphere

The Shift toolkit is validated against vSphere 7.0.3 or later.

Microsoft Hyper-V

The Shift toolkit is validated against the following Hyper-V roles:

- Hyper-V role running on Windows Server 2019
- Hyper-V role running on Windows Server 2022
- Hyper-V role running on Windows Server 2025

Red Hat OpenShift

The Shift toolkit is validated against Red Hat OpenShift and OpenShift Virtualization running 4.17 and later.

Oracle Linux Virtualization Manager

The Shift toolkit is validated against the following Oracle Linux Virtualization Manager versions:

- Oracle Linux Virtualization Manager 4.5 or later
- The Oracle Linux Virtualization Manager host must have ovirt-engine-4.5.4-1.el8 RPM or later installed

KVM

For KVM destinations, the Shift Toolkit supports disk format conversion only (VMDK to QCOW2 or RAW). Hypervisor connection details are not required when selecting KVM from the destination dropdown. After conversion, use the QCOW2 disks to provision VMs on KVM-based platforms.

Install Shift Toolkit

Prepare to install the NetApp Shift Toolkit for ONTAP storage

Prepare to install the NetApp Shift Toolkit by ensuring your environment meets the prerequisites and selecting the appropriate installation package for your deployment scenario.

Before you begin

Verify that your environment meets the following requirements:

- Windows Server 2019, 2022, or 2025
- Dedicated virtual machine for the Shift Toolkit installation
- Network connectivity between source and target environments
- Virtual machine running on VMware vSphere or Microsoft Hyper-V

Install the Shift Toolkit on a dedicated VM to enable management of multiple source and target hypervisors from a single server.

Select an installation package

The Shift Toolkit is available in two installation packages from [NetApp Toolchest](#):

Online installer (~130 MB)

- Downloads and installs prerequisites from the internet during installation
- Requires internet connectivity during installation
- Smaller package size for faster download

Offline installer (~1.2 GB)

- Includes all prerequisites bundled within the package
- Supports installation on VMs without internet access
- No proxy configuration required
- Provides more control over the installation process

Use the offline installer for air-gapped environments or when you need complete control over the installation process without external dependencies.

Requirements to install the NetApp Shift Toolkit

Verify that your environment meets the hardware, connectivity, and ONTAP storage requirements before installing the Shift Toolkit.

Hardware requirements

Ensure the Shift Toolkit server meets the following minimum hardware requirements:

- **CPU:** 4 vCPUs
- **Memory:** 8 GB minimum
- **Disk space:** 100 GB minimum (900 MB available for installation)

Connectivity requirements

Verify the following connectivity requirements are met:

- Shift Toolkit must be installed on a standalone Windows server (physical or virtual)
- The hypervisor and storage environment must be configured to allow the Shift Toolkit to interact with all components
- For Hyper-V migrations, the Shift server, ONTAP CIFS server, and Hyper-V servers must be on the same Windows Active Directory domain
- Multiple LIFs for CIFS and NFS are supported for use with Storage Virtual Machines (SVMs) during VM

conversions

- For CIFS operations, time settings must be synchronized between the Windows domain controller and the ONTAP storage controller

ONTAP storage configurations

Configure ONTAP storage components including SVMs, qtrees, and CIFS shares to support Shift Toolkit migrations.

Create a new SVM (recommended)

Although the Shift Toolkit permits the use of an existing SVM, NetApp recommends creating a dedicated SVM for migration operations.

Creating a new SVM provides the following benefits:

- Isolates migration operations from production workloads
- Ensures the SVM meets Shift Toolkit requirements without modifying production configurations
- Simplifies configuration for bi-directional migrations between VMware and Hyper-V

Use Storage vMotion to move VMs to a new designated NFSv3 datastore on the dedicated SVM without downtime. This approach ensures migrated VMs do not reside on the production SVM.

Use the ONTAP CLI, NetApp PowerShell Toolkit, or ONTAP System Manager to create the new SVM. For detailed steps, refer to the ONTAP documentation for [provisioning a new SVM](#) with both NFS and SMB protocols enabled.

For bi-directional migration between VMware and Hyper-V, enable both NFS and SMB protocols on the SVM and provisioned volumes.

Qtree requirements

Create qtrees on the volume that will host converted VMs. Qtrees segregate and store converted disk files based on the target hypervisor.

Security style by migration type:

- **ESXi to Hyper-V:** NTFS security style (stores converted VHDXs)
- **Hyper-V to ESXi:** UNIX security style (stores converted VMDKs)
- **ESXi to OpenShift Virtualization (QCOW2):** UNIX security style
- **ESXi to OLVM (RAW or QCOW2):** UNIX security style

Source Hypervisor	Target Hypervisor	Protocol	Source	Destination
VMware	Hyper-V	NFS	Volume (with NFSv3 and SMB)	Qtree with NTFS sec style within the same source volume
Hyper-V	VMware	SMB	Volume (with SMB and NFSv3)	Qtree with UNIX sec style within the same source volume
VMware	OpenShift	NFS	Volume (NFS v3)	New Cloned Volume as the PVC
VMware	Oracle Virtualization	NFS	Volume (NFS v3)	Qtree with UNIX sec style within the same source volume

The Shift Toolkit does not verify qtree security styles. Create qtrees with the appropriate security style for your target hypervisor and disk format.

For detailed steps, refer to [Create a qtree](#) in the ONTAP documentation.

The destination path must be on the same volume as the source VM.

For OpenShift Virtualization, converted QCOW2 files can optionally be placed directly on the volume without using a qtree. Use the Shift Toolkit GUI or APIs to perform this conversion.

CIFS share requirements

For Hyper-V migrations, create a CIFS share for storing converted VM data. Both the NFS share (source VMs) and CIFS share (converted VMs) must reside on the same volume.

Configure the CIFS share with the following properties:

- SMB 3.0 enabled (enabled by default)
- Continuously available property enabled
- Export policies for SMB disabled on the SVM
- Kerberos and NTLMv2 authentication permitted on the domain

For detailed steps, refer to [Create an SMB share](#) in the ONTAP documentation. Select the continuous availability property along with other default properties.

Dashboard

Insights

Storage ^

Overview

Volumes

LUNs

NVMe namespaces

Consistency groups

Shares

Buckets

Qtrees

Quotas

Storage VMs

Tiers

Network ^

Events & jobs ^

Protection ^

Hosts ^

Cluster ^

Add share

Share name

Folder name

Browse

Description

Access permission

User/group	User type	Access permission
Everyone	Windows	Full control

+ Add

Enable continuous availability
Enable this function to have uninterrupted access to shares that contain Hyper-V and SQL Server over SMB.

Encrypt data while accessing this share
Encrypts data using SMB 3.0 to prevent unauthorized file access on this share.

Save
Cancel

```
HCG-NetApp-C400-E9U9::> vserver cifs share show -vserver svm0_c400 -share-name nimshiftstage
          Vserver: svm0_c400
          Share: nimshiftstage
          CIFS Server NetBIOS Name: NIMSMB009
          Path: /nimshiftstage
          Share Properties: oplocks
                                browsable
                                changenotify
                                continuously-available
                                show-previous-versions
          Symlink Properties: symlinks
          File Mode Creation Mask: -
          Directory Mode Creation Mask: -
          Share Comment: -
          Share ACL: Everyone / Full Control
                      NIMDEMO\administrator / Full Control
                      NIMDEMO\ClusnimCNO$ / Full Control
                      NIMDEMO\nimHVHost01$ / Full Control
                      NIMDEMO\nimHVHost02$ / Full Control
                      nimdemo\SHIFTTESTUIS / Full Control
          File Attribute Cache Lifetime: -
          Volume Name: nimshiftstage
          Offline Files: manual
          Vscan File-Operations Profile: standard
          Maximum Tree Connections on Share: 4294967295
          UNIX Group for File Create: -
          By default, Everyone / Full Control is
          added, however permissions can be
          modified to restrict as required
```


ONTAP creates the share with the Windows default share permission of Everyone / Full Control.

Install or upgrade the NetApp Shift Toolkit for ONTAP storage

Install or upgrade the NetApp Shift Toolkit after verifying that your environment meets the preparation and prerequisite requirements.

Install the Shift Toolkit

Download and run the installer to set up the Shift Toolkit on your Windows server.

Steps

1. Download the [Shift Toolkit](#) package and unzip it.

Show example

The screenshot shows the 'NetApp Shift Toolkit' download page. It features three main download options:

- Offline-Installer:** A download link for 'NetApp_Shift_Toolkit_offline_4.0.zip' (1.27 GB).
- Online-Installer:** A download link for 'NetApp_Shift_Toolkit_online_4.0.zip' (190.33 MB).
- Update-Package:** A download link for 'update_NetApp_ShiftToolkit_4.0.zip' (634.94 MB).

2. Double-click the downloaded .exe file to initiate the Shift Toolkit installation.

Show example

The screenshot shows a Windows File Explorer window with the following details:

- Path: This PC > Downloads > NetApp Shift Toolkit (online)
- File: NetApp Shift Toolkit (online)
- File Type: Application
- Size: 136,712 KB

All pre-checks are performed during installation. If minimum requirements are not met, appropriate error or warning messages are displayed.

3. Select the installation location or use the default and click **Next**.

Show example

4. Select the IP address that will be used to access the Shift Toolkit UI.

Show example

If the VM has multiple NICs, the setup process allows you to select the appropriate IP address from a dropdown.

5. Review the required components that will be automatically downloaded and installed, and then click **Next**.

These mandatory components are required for proper Shift Toolkit operation:

Show example

6. Review the Java OpenJDK GNU licensing information and click **Next**.

Show example

The screenshot shows a software setup window titled "Setup - Shift Toolkit version 4.0". A red box highlights the "Adoptium OpenJDK GNU License Information" section. Inside this section, the text "Below is the GNU License for Adoptium OpenJDK:" is followed by the "GNU General Public License (GPL)" text. The text includes the version (Version 2, June 1991), copyright information (Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA), and the license terms. A scroll bar is visible on the right. Below the license text, there are two radio button options: "I accept these terms and understand the privacy statement" (selected) and "I do not accept these terms". At the bottom of the window, there are "Back", "Next", and "Cancel" buttons, with "Next" being the active button.

Adoptium OpenJDK GNU License Information

Below is the GNU License for Adoptium OpenJDK:

You must accept these terms before continuing with the installation

The GNU General Public License (GPL)

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to

I accept these terms and understand the privacy statement

I do not accept these terms

Back Next Cancel

7. Keep the default setting for creating a desktop shortcut and click **Next**.

Show example

8. Click **Install** to begin the installation.

Show example

9. Wait for the installation to complete. The installer downloads and installs all required components. Click **Finish** when complete.

Show example

The installation can take 10-15 minutes.

10. Accept the self-signed certificate prompt and click **Next**.

Show example

The self-signed certificate can be replaced with a third-party or CA-generated certificate. Replace the certificate in the certs folder located at <installation directory>\Storage\Certs.

Result

The Shift Toolkit installation is complete.

Show example

For VMs without internet access, the offline installer performs the same steps but installs components using packages included in the executable.

Upgrade the Shift Toolkit

Upgrades are fully automated and can be completed with a single click.

Show example

The Shift Toolkit updater service listens on port 3002 and performs the following steps:

1. Downloads the upgrade package

2. Stops the Shift Toolkit service
3. Extracts files and overwrites required files
4. Runs the update using the same IP address (retaining metadata)
5. Redirects the UI to the Shift Toolkit UI listening on port 3001

For deployments without internet connectivity

Manually download the upgrade package (filename starts with "update") from NetApp Toolchest and place it in the designated folder C:\NetApp_Shift.

Create this folder path if it doesn't exist. All other steps remain the same as the online upgrade procedure.

Show example

Tools & Security > All Tools & Security > NetApp Shift Toolkit > Download

NetApp Shift Toolkit

Offline-Installer	Online-Installer
NetApp_Shift_Toolkit_offline_4.0.zip [1.27 GB]	NetApp_Shift_Toolkit_online_4.0.zip [190.33 MB]
Update-Package	
update_NetApp_ShiftToolkit_4.0.zip [634.94 MB]	

Configure the NetApp Shift Toolkit

Configure the Shift Toolkit to automate the migration or conversion of VMs. This process includes adding source and destination sites, configuring storage, grouping VMs into resource groups, creating migration blueprints, and scheduling migrations.

Run Shift toolkit

- Using the browser, access Shift toolkit UI by entering the `http://<IP address specified during installation>:3001`

 Use Google chrome or Internet explorer for best experience.

- Access the UI using default credentials as below:
Username: admin
Password: admin

Admins are required to change their credentials during the initial login.

After the mandatory password change, the admin credential can also be changed using "Change Password" option after logging in to the GUI.

Once done, accept the legal EULA by clicking on "Accept and Continue"

LICENSE AGREEMENT FOR NETAPP, INC. TOOLS

This License Agreement ("Agreement") is a legal agreement between You either as an individual or as an authorized representative of a business entity (hereafter referred to as You and/or Your), and NetApp, Inc. (NetApp). NetApp is willing to license to You the NetApp software product accompanying this EULA, which includes, without limitation, computer software features, authorized updates and upgrades or other supplements to the software, images, music, text and/or animations incorporated into the software, media, printed materials, or online or electronic documentation, provided by NetApp or made available for download (collectively referred to as the Software). Your download, installation and/or use of the Software constitutes acceptance of all of the terms stated herein. If You do not agree with all of these terms, You must promptly return the Software to NetApp or the authorized reseller from which You obtained the Software.

1. License Grant. Subject to payment of applicable fees, if any, and the limitations and restrictions set forth herein, NetApp and its licensors grant to You a non-exclusive, non-transferable, worldwide, limited, royalty-free license, without right of sublicense, to install and use the Software, in accordance with the terms contained in the user documentation accompanying the Software (the Documentation). Use of the Software outside the scope of the Documentation is unauthorized and shall constitute a material breach of this EULA. NetApp's licensors shall be a direct and intended third party beneficiary of this EULA and may enforce their rights directly against You in the event of Your breach of this EULA. The Software is licensed, not sold, to You.

2. License Restrictions.

2.1 Standard Use Restrictions. Subject to any express restrictions contained within the Documentation, You shall not nor shall You allow any third party to: (a) decompile, disassemble, decrypt, extract, or otherwise reverse engineer or attempt to reconstruct or discover any source code or underlying ideas, algorithms, or file formats of, or of any components used in the Software by any means whatever; (b) remove or conceal any product identification, copyright, patent or other notices contained in or on the Software or Documentation; (c) electronically transmit the Software from one computer to another or over a network; (d) use any locked or restricted feature, function, service, application, protocol, operation, or capability without first purchasing the applicable license(s) and/or obtaining a valid license enablement key from NetApp, even if such feature, function, service, application, protocol, operation or capability is technically achievable without a key; (e) sell, lease, rent, lend, sublicense, distribute or otherwise transfer in whole or in part the Software or the applicable license enablement key to another party or to a different storage controller or cluster; or (f) modify the Software, incorporate it into or with other software, or create a derivative work of any part of the Software. Your modification of the Software will breach this EULA, and such derivative work is and shall be owned entirely by NetApp or its licensors. You hereby assign and agree to assign to NetApp or the licensor of the Software all right, title and interest in and to said derivative work. You acknowledge that the Software is not designed, licensed or intended for use in the design, construction, operation or maintenance of any nuclear facility, aircraft operation, air traffic control or life support system. NetApp disclaims any express or implied warranty of fitness for such uses. If You use the Software for such applications, You agree to indemnify, defend and hold NetApp and its licensors harmless from all claims, actions, losses, liabilities, damages, costs and expenses (including attorney fees) arising out of or relating to such prohibited uses. You agree to use Software which NetApp has embedded in the NetApp equipment (Embedded Software) solely as embedded in, and for execution on, NetApp equipment You originally purchased from NetApp or its authorized resellers.

2.2 Support. NetApp and its licensors are under no obligation to support the Software or to provide You with updates, unless otherwise agreed in writing by an authorized representative of NetApp and only for the current version of the Software available for download. If NetApp, at its sole option, supplies updates to You, the updates will be considered part of the Software, and subject to the terms of this EULA.

3. Intellectual Property Rights. The Software is protected by intellectual property and copyright laws and treaties worldwide and may contain trade secrets of NetApp or its licensors, who have and

Accept and Continue

Shift Toolkit Configuration

Once the storage and connectivity to both the source and destination hypervisors have been configured properly, begin configuring Shift toolkit to automate the migration or conversion of the virtual machines to appropriate format, leveraging the FlexClone functionality.

Add Sites

The first step is to discover and add the source and then the target Hypervisor details (both hypervisors and storage) to Shift toolkit. Open Shift toolkit in a supported browser and use the default username and the password and click on "Add Sites".

Shift Toolkit (Shift)

The NetApp Shift toolkit is an easy-to-use, graphical user interface (GUI) solution that migrates virtual machines (VM) between different hypervisors and convert virtual disk formats. The toolkit manages the creation and configuration of destination VMs.

Shift toolkit provides flexibility in a multi-hypervisor environment by supporting migration between the following hypervisors:

- VMware ESXi to Microsoft Hyper-V
- Microsoft Hyper-V to VMware ESXi
- VMWare ESXi to Oracle Linux Virtualization Manager (OLVM)
- VMWare ESXi to Red Hat OpenShift

Shift toolkit supports disk-level conversions of virtual disks between hypervisors for the following disk formats:

- VMware ESX to Microsoft Hyper-V (virtual machine disk [VMDK] to virtual hard disk format [VHDX])
- VMware ESX to KVM compatible hypervisors (VMDK to qcow2)
- VMware ESX to KVM compatible hypervisors (VMDK to RAW)
- Microsoft Hyper-V to VMware ESX (VHDX to VMDK)

Shift toolkit reduces virtualization costs with VM portability and is offered free from NetApp.

[Add Site](#)

Sites can also be added using Discover option.

Add the following platforms:

Source

- Source Site Details
 - Site Name - Provide a name for the site
 - Hypervisor – Select VMware or Hyper-V as the source
 - Site Location – Select the default option
 - Connector – Select the default selection

Once filled, click Continue.

- If the selection is VMware, enter the Source vCenter details.
 - Endpoint - Enter the IP address or FQDN of the vCenter server
 - Username - username to access the vCenter (in UPN format: username@domain.com)
 - vCenter Password – Password to access vCenter for performing inventory of the resources.
 - vCenter SSL Thumbprint (optional)
- If the selection is Hyper-V, enter the Source Hyper-V details.
 - Endpoint - Enter the IP address or FQDN of the standalone hosts or the failover cluster endpoint.
 - Hyper-V Username - username to access the Hyper-V (in Down-level login (domain\username) or UPN format)
 - Hyper-V Password – Password to access Hyper-V for performing inventory of the resources.

Select "Accept Self signed certificate" and click Continue.

- ONTAP Storage system credentials

Add New Site Site Type Site Details Hypervisor Details Storage Details X

Source Storage Details

Storage Endpoint
10.61.180.100

Storage Username
admin

Storage Password
.....

Accept self-signed certificates

Previous **Create Site**

Once added, Shift toolkit will perform an automatic discovery and display the VMs along with the relevant metadata information. Shift toolkit will automatically detect the networks and vLANs used by the VMs and will populate them.

- i If any modifications are made to the source site, ensure to run the discovery to fetch the latest information. This can be done by clicking on 3 dots against the site name and click on “Discover Site”.
- i The VM inventory is auto-refreshed every 24 hours.

NetApp Shift Toolkit Dashboard Discover Resource Groups Blueprints Job Monitoring X

1 Site 1 vCenter 1 Datastore

Site Type
1 Source 0 Destination

1 Site

Site Name	Site Type	Location	Hypervisor	Virtual Environ	Storage	VM List	Discovery Status
DemoSrc	Source	On Prem	VMware	1	1	View VM List	• 172.21.156.110 Success

Discover Site

- New Resource Group
- Add vCenter Environment
- Add Storage Environment
- Delete Site

To view the discovery data for a specific source hypervisor, go to the dashboard, click on “View VM List” against the appropriate site name. The page will display the VM inventory along with the VM attributes.

NetApp Shift Toolkit | Dashboard | Discover | Resource Groups | Blueprints | Job Monitoring | Back

VM List
Site: DemoSrc | vCenter: 172.21.156.110

 7 Datastores

 36 Virtual Machines

VM Protection

 0 Protected

 36 Unprotected

36 VMs Search Create Resource Group

VM Name	VM Status	VM State	DataStore	CPU	Memory (Used Provisioned)	Capacity (Used Alloc)
TVM01-U18	⚠️ Not Protected	🔴 Powered Off	TME_NestedESXi_D...	2	0 GB 2 GB	
TVM01-W2K22	⚠️ Not Protected	🔴 Powered Off	NestedESXi_DS01	2	0 GB 4 GB	
TVM01-RHEL92	⚠️ Not Protected	🟢 Powered On	nimravDS001	1	0 GB 2 GB	
TVM01-W2K19	⚠️ Not Protected	🟢 Powered On	nimravDS001	2	0 GB 4 GB	
TVM01-Cent10	⚠️ Not Protected	🔴 Powered Off	nimravDS001	1	0 GB 2 GB	

Next step is to add the destination hypervisor. To add, click on “Add New Site” and select “Destination”.

Destination

NetApp Shift Toolkit | Dashboard | Discover | Resource Groups | Blueprints | Job Monitoring | Site Type Site Details Hypervisor Details Storage Details Close

Site Type

 Source

 Destination

Continue

- Destination Site Details
 - Site Name - Provide a name for the site
 - Hypervisor – Choose the appropriate target platform from the following options:
 - VMware
 - Hyper-V
 - OpenShift
 - OLVM

- KVM (conversion only)
- Site Location – Select the default option
- Connector – Select the default selection

Once filled, click Continue.

Based on the hypervisor selection, fill in the necessary details.

- Destination hypervisor details
 - Respective hypervisor manager Endpoint IP address or FQDN
 - Username - username to access (in UPN format: username@domain.com or domain\administrator)
 - Password – Password to access for performing inventory of the resources.

Select “Accept Self signed certificate”.

- Once done, click “Create Site”

The source and destination storage system should be the same as the disk format conversion happens at the volume level and within the same volume.

The screenshot shows the NetApp Shift Toolkit dashboard. At the top, there are summary counts: 2 Sites, 1 vCenter, 1 Host (Microsoft Hyper-V), and 2 Datastores. Below this, a table lists discovered sites: DemoDest (Destination, On Prem, Hyper-V) and DemoSrc (Source, VMware). The table includes columns for Site Name, Site Type, Location, Hypervisor, Storage, VM List, and Discovery Status. The DemoDest row is highlighted with a red border. The Discovery Status for DemoDest shows a success message: "172.21.156.110 Success".

Next step is to group the required VMs into their migration groups as resource groups.

Resource Groupings

Once the platforms have been added, group the VMs you want to migrate or convert into resource groups. Shift toolkit resource groups allow you to group set of dependent VMs into logical groups that contain their boot orders and boot delays.

Ensure the Qtrees are provisioned (as mentioned in the pre-requisite section) before creating the resource groups.

To start creating resource groups, click on the “Create New Resource Group” menu item.

1. Access Resource groups, click on “Create New Resource Group”.

The screenshot shows the NetApp Shift Toolkit Resource Groups page. The top navigation bar has a red box around the "Resource Groups" tab. Below the navigation, there are four icons: Resource Group (shield), Site (cloud), vCenter (green plus), and Virtual Machine (blue square). A table at the bottom shows 0 Resource Groups. The table has columns for Resource Group Name, Site Name, Source vCenter, Workflow, Destination, and VM List. A red box highlights the "Create New Resource Group" button in the top right corner of the table area.

2. On the “New resource group”, select the Source site from the dropdown and click “Create”
3. Provide Resource Group Details and select the workflow. The workflow provides two options
 - a. Clone based Migration – performs end to end migration of the VM from source hypervisor to destination hypervisor.
 - b. Clone based Conversion – Performs conversion of the disk format to the selected hypervisor type.

4. Click on “Continue”
5. Select appropriate VMs using the search option. The default filter option is “Datastore”.

Move the VMs to convert or migrate to a designated datastore on a newly created ONTAP SVM before conversion. This helps isolating the production NFS datastore and the designated datastore can be used for staging the virtual machines.

For OpenShift environment, VMDKs should be relocated to their corresponding volumes to replicate the PVC (Persistent Volume Claim) structure using ONTAP NAS storage driver. In future releases, additional enhancements will be incorporated to leverage ONTAP NAS economy driver.

The datastore dropdown in this context will only show NFSv3 datastores. NFSv4 datastores will not be displayed.

5 VMs

Virtual Machine	Datastore
TVM01-RHEL92	nimravDS001
TVM01-W2K19	nimravDS001
TVM01-Cent10	nimravDS001
TVM03-W2K22	nimravDS001
nim_demowin10	nimravDS001

2 Selected VMs

Virtual Machine	Datastore
STK-W2K19VM01	nimravDS001
STK-U18VM01	nimravDS001

Previous Continue

6. Update the migration details by selecting “Destination Site”, Destination Hypervisor entry” and Datastore to Qtree or storage class mapping.

Migration Details

Destination Site

DemoDest

Destination Hyper-V

10.61.184.170

ONTAP Volume

nimravDS001

Datastore -> Qtree Mapping

Source	Destination QTree
nimravDS001	→ nimshift

Previous Continue

- Make sure that the destination path (where the converted VMs are stored) is set to a qtree when converting VMs. Set the destination path to the appropriate qtree.
- Multiple qtrees can be created and used for storing the converted VM disks accordingly.
- Virtual machines can be running on spanned datastores, and Shift toolkit will automatically detect them, however a qtree should be mapped for each volume.

Ability to migrate VMs with spanned VMDKs across multiple volumes

The Shift toolkit UI automatically selects all the spanned volumes that is part of a VM or VMs that are selected for that specific RG. This will list all the volumes in the RG page where we do the datastore –

qtree mapping.

Migration Details

Destination Site: DemoDest

Destination Hyper-V: 10.61.184.170

ONTAP Volume: OSDisk_250624

Datastore -> Qtree Mapping

Source	Destination QTree
OSDisk_250624	<input type="button" value="vmdk list"/> → <input type="button" value="Select -"/>
RH9_Disk03_250624	<input type="button" value="vmdk list"/> → <input type="button" value="Select -"/>
RH9_Disk01_250624	<input type="button" value="vmdk list"/> → <input type="button" value="Select -"/>
RH9_Disk02_250624	<input type="button" value="vmdk list"/> → <input type="button" value="Select -"/>

Shift toolkit automatically discovers each VMDK in this case is residing on different ONTAP NFSv3 volume

Previous Continue

7. Select the Boot Order and Boot delay (secs) for all the selected VMs. Set the order of power on sequence by selecting each virtual machine and setting up the priority for it. 3 is the default value for all virtual machines.

Options are as follows:

- 1 – The first virtual machine to power on
- 3 – Default
- 5 – The last virtual machine to power on

Boot order and Delay

2 VMs

VM Name	Boot Order	Boot Delay (secs)
STK-W2K19VM01	3	0
STK-U18VM01	3	0

Previous Create Resource Group

8. Click on “Create Resource Group”.

1 Resource Group

1 Site

1 vCenter

2 Virtual Machines

1 Resource Group

Resource Group Name: DemoRG | Site Name: DemoSrc | Source vCenter: 172.21.156.110 | Workflow: Migration | Destination: | VM List |

Configured | View VM List | ...

Resource group registered

In the event of the need to modify the resource group so as to add or remove virtual machines, use this option against the resource group name and select “Edit Resource Group”.

Blueprints

To migrate or convert virtual machines, a plan is necessary. Select the source and destination hypervisor platforms from the drop down and pick the resource groups to be included in this blueprint, along with the grouping of how applications should be powered on (i.e. domain controllers, then tier-1, then tier-2, etc). These are often called as migration plans as well. To define the blueprint, navigate to the “Blueprints” tab and click on “Create New Blueprint”.

To start creating blueprint, click on the “Create New Blueprint”.

1. Access Blueprints, click on “Create New Blueprint”.

Blueprints

Resource Groups

Blueprints

Source Details

Sites

vCenters

Destination Details

Sites

0 Blueprint

Name | Active Site | Status | Compliance | Source Site | Destination Site |

Create New Blueprint

2. On the “New Blueprint”, provide a name for plan and add necessary host mappings by selecting Source Site > associated vCenter, Destination Site and the associated hypervisor.
3. Once mappings are done, select the cluster and host mapping.
In the example below, Hyper-V is shown as the target. The hypervisor option displayed will vary based on the selected source site.

Blueprint Name
DemoBP

Resource Mapping

Source Site DemoSrc	Destination Site DemoDest
Source vCenter 172.21.156.110	Destination Hyper-V 10.61.184.170

Cluster and Host Mapping

Source Resource	Destination Resource	Delete
NimRav-Cluster01	HVHOSTN01	Delete

Continue

4. Select Resource Group Details and click on “Continue”

0 Unselected Resource Groups

1 Selected Resource Groups

Resource Group Name	Workflow
DemoRG	Migration

Previous **Continue**

5. Set Execution Order for Resource Group. This option enables to select the sequence of operations when multiple resource groups exist.

6. After completing the previous steps, select Network Mapping and assign it to the appropriate network map. Ensure that the virtual switches, network profiles, or operators are already provisioned on the target hypervisor.

For test migration, “Do no configure Network” is the default selection and Shift toolkit does not perform IP address assignment. Once the disk is converted and virtual machine is bought on respective hypervisor side, manually assign the bubble network switches to avoid any colliding with production network.

7. Based on the selection of VMs, storage mappings will be automatically selected.

Make sure the qtree is provisioned beforehand and the necessary permissions are assigned so the virtual machine can be created and powered ON.

NOTE: In case of OpenShift, the PVCs are created using Trident CSI and there is no need to pre-create qtrees.

8. Under VM details, provide service account and valid user credentials for each OS type. This is used to connect to the virtual machine to create and run certain scripts that are necessary for removing VMware tools and backing up IP configuration details.

- For Windows based OS, it is recommended to use a user with local administrator privileges. Domain credential can also be used, however ensure there is a user profile existing on the VM before conversion, otherwise domain credentials won't work as it would look for domain authentication when

there is no network connected.

b. In case of Linux distribution-based guest VMs, provide a user that can execute sudo commands without password meaning the user should be part of the sudoers list or added as a new configuration file to the /etc/sudoers.d/ folder.

The screenshot shows the Shift Toolkit interface for creating a new blueprint. The 'Service Account' section is highlighted, showing configurations for Linux (username root, password) and Windows (username administrator, password). The 'IP Config' section is also highlighted, showing options: 'Do Not Configure' (unchecked), 'Retain IP' (checked), 'Assign New IP' (unchecked), and 'DHCP' (unchecked). Below these, a table lists 2 VMs in a 'Resource Group : DemoRG'. The table columns include VM Name, CPUs, Mem (MB), NIC/IP, Power On, Boot Order, Gen, Remove VMware Tools, Retain MAC, and Service Account Override. The 'Continue' button at the bottom is highlighted with a red box.

In the recent release, the Shift Toolkit introduced greater flexibility in virtual machine preparation. By default, the toolkit automates VM preparation by deploying OS-specific scripts to:

- * Remove VMware Tools
- * Back up IP settings for reassignment based on the selected Blueprint

+

With the new enhancement, users can now override the default prepareVM tasks, enabling to execute custom scripts for manual VM preparation including IP assignment. This provides more control for environments with unique configuration or compliance requirements.

9. Again under VM details, select the relevant IP config option. By default, “Do not configure” is selected.
 - a. To migrate VMs with the same IPs from the source system, select “Retain IP”.
 - b. To migrate VMs using static IPs in the source system and to assign DHCP on the target VMs, then select “DHCP”.

Make sure the following requirements are met for this functionality to work:

- Ensure the VMs are powered on during the prepareVM phase and up to the scheduled migration time.
- For VMware VMs, ensure that VMware Tools are installed.
- For Hyper-v as the source hypervisor, ensure Integration services is enabled and configured.
- For OLVM and OpenShift as the target hypervisor, ensure to mount the virtIO ISO file to the Windows VMs.
- Ensure the preparation script is run on the source VM by an account with administrator privileges on windows OS and with sudo privileges with no password option on Linux based distribution OS to create cron jobs.

10. The next step is VM configuration.

- Optionally resize the VMs CPU/RAM parameters which can be very helpful for resizing purposes.
- Boot Order override: Also modify the Boot Order and Boot delay (secs) for all the selected VMs across the resource groups. This is an additional option to modify the boot order if any changes required from what was selected during Resource group boot order selection. By default, the boot order selected during resource group selection is used, however any modifications can be done at this stage.
- Power ON: Uncheck this option if workflow should not power ON the virtual machine. Default option is ON meaning the VM will be powered ON.
- Remove VMware tools: Shift toolkit removes VMware tools after the conversion. This option is selected by default. This can be unselected if the plan is to execute customer's own customized scripts.
- Generation: Shift toolkit uses the following rule of thumb and defaults to the appropriate one- Gen1 > BIOS and Gen2 > EFI. No selection is possible for this option.
- Retain MAC: The MAC address of the respective VMs can be retained to overcome licensing challenges for those applications relying on MAC.
- Service Account override: This option allows to specify a separate service account if the global one cannot be used.

VM Name	CPU	Mem (MB)	NIC/IP	Power On	Boot Order Override	Gen	Remove VMware Tools	Retain MAC	Service Account Override
Resource Group : DemoRG									
STK-U18VM01	2	2048	172.21.156.33	<input checked="" type="checkbox"/>	3	<input type="radio"/> Gen 1 <input checked="" type="radio"/> Gen 2	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
STK-W2K19VM01	2	4096	172.21.156.34	<input checked="" type="checkbox"/>	3	<input type="radio"/> Gen 1 <input checked="" type="radio"/> Gen 2	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

11. Click “Continue”.
12. In the next step, schedule the migration by selecting the checkbox to set the date and time. Make sure all the virtual machines (VMs) are prepared and powered off before the scheduled date. Once done, click on “Create Blueprint”.

The screenshot shows the Shift Toolkit interface for creating a new blueprint. The top navigation bar includes 'NetApp', 'Shift Toolkit', 'Dashboard', 'Discover', 'Resource Groups', 'Blueprints', 'Job Monitoring', and a user icon. Below the navigation, there are tabs for 'Create New Blueprint', 'Plan and Site Details', 'Select Resource Groups', 'Set Execution Order', 'Set VM Details', and 'Schedule'. The 'Schedule' tab is active, indicated by a blue background. A red box highlights the 'Schedule' section, which contains a 'Blueprint Details' table and a date input field. The 'Blueprint Details' table shows: Blueprint Name: DemoBP, Resource Groups: DemoRG, and VMs: STK-W2K19VM01, STK-U18VM01. The date input field shows '01/05/2025 05:30 PM' with a calendar icon. At the bottom of the page, there are 'Previous' and 'Create Blueprint' buttons, with the 'Create Blueprint' button also highlighted with a red box.

While scheduling, choose a date that is at least 30 minutes ahead of the current Shift VM time. This is to ensure the workflow gets enough time to prepare the VMs within the resource group.

13. Once the blueprint is created, a prepareVM job is initiated and it automatically runs scripts on the source VMs to prepare them for migration

The screenshot shows the Shift Toolkit dashboard with the following details:

- NetApp Shift Toolkit
- 1 Blueprints
- 1 Resource Groups
- Source Details: 1 Site, 1 vCenter
- Destination Details: 1 Site, 1 Host
- Blueprints list: DemoBP (selected, Source tab, PrepareVM In Progress, Not Available), DemoSrc, DemoDest
- Create New Blueprint button

This job runs a script using invoke-VMScript method to copy the necessary scripts for removing VMware tools and backing up network configuration details, including IP address, routes, and DNS information, which will be used to maintain the same settings on the target VM.

a. For Windows-based operating systems, the default location where the preparation scripts are stored is the “C:\NetApp” folder.

The screenshot shows a Windows Server Manager interface with the following file structure:

- Server Manager
- File, Home, Share, View
- Dashboard
- Local Server, All Servers, File and Storage Services
- This PC
- NetApp
- File Explorer: This PC > Local Disk (C:) > NetApp
- Content pane: A list of files in the NetApp folder, including:
 - AddressTypes
 - DNSServers
 - Gateways
 - IPAddresses
 - netapp_prepare_vm (highlighted with a red box)
 - netapp_startup_script
 - prepareVMScriptWindow_vm-1080
 - removeVmToolsTarget
 - SubnetMasks

b. For Linux-based VMs, the default location where the preparation scripts are stored is /NetApp and the /opt directory.

The screenshot shows a Linux terminal session with the following command history:

```
root@tvm01-u18:~# cd /opt
root@tvm01-u18:/opt# ls
netapp_prepare_vm.sh
root@tvm01-u18:/opt# cd ..
root@tvm01-u18:~# cd /netapp/
root@tvm01-u18:/netapp# ls
ethernet_devices.txt  ip_backup.txt  nm.txt  preMigrationScriptLinux_vm-1081.sh  routes_backup.txt
root@tvm01-u18:/netapp#
```


For a Linux source VM running CentOS or Red Hat, Shift toolkit is intelligent to automatically install the necessary Hyper-V drivers. These drivers must be present in the source VM before the disk conversion to ensure the VM can boot successfully after the conversion.

For detailed information, refer to [System stuck in dracut after the migration of a RHEL VM to hyper-v](#).

Once the prepareVM job completes successfully (as shown in the screenshot below), the VMs are ready for migration, and the blueprint status will update to "Active."

The screenshot shows two main sections of the Shift Toolkit interface. The top section, titled 'Prepare VM Steps' for Blueprint 'DemoBP', lists two tasks: 'Preparing VMs in parallel' and 'Preparing VM - STK-U18VM01'. Both tasks are marked as 'Success' with a green checkmark and a duration of '237 Seconds'. The bottom section shows 'Source Details' (1 site, 1 vCenters) and 'Destination Details' (1 site, 1 Hosts). A table lists the blueprint 'DemoBP' with status 'Active' and 'In Progress'. A 'Create New Blueprint' button is also visible.

Migration will now happen at the set time or can be started manually by clicking on Migrate option.

Migrate VMs using Shift Toolkit

Migrate VMs using the Shift Toolkit

Use the Shift Toolkit to migrate VMs between virtualization platforms. The process involves preparing the VMs, converting disk formats, and configuring network settings on the target environment.

Supported migrations

The Shift Toolkit provides flexibility in multi-hypervisor environments by supporting bidirectional migration between the following hypervisors:

- VMware ESXi to Microsoft Hyper-V
- Microsoft Hyper-V to VMware ESXi
- VMware ESXi to Oracle Linux Virtualization Manager (OLVM)
- VMware ESXi to Red Hat OpenShift Virtualization

Migration workflow

After creating a blueprint, you can initiate the migration process. During migration, the Shift Toolkit performs a series of steps to convert disk formats and create virtual machines on the target host as defined in the

blueprint.

The Shift Toolkit performs the following steps during migration:

1. Delete existing snapshots for all VMs in the blueprint
2. Trigger VM snapshots for the blueprint at the source
3. Trigger volume snapshot before disk conversion
4. Clone and convert VMDK to VHDx format for all VMs
5. Power on VMs in the protection group at the target
6. Register the networks on each VM
7. Remove VMware Tools and assign IP addresses using trigger scripts or cron jobs depending on the OS type

Network tips and considerations

Consider the following network requirements and behaviors when planning your migration. The Shift Toolkit automatically copies network settings from source VMs and reapplies them to migrated VMs, but interface naming and network adapter configurations may vary between Windows and Linux systems.

General requirement

- Ensure static IP addresses are available and not assigned to another VM

Windows VMs

- The prepare script copies network configuration details (IP address space, gateway address, DNS servers)
- The trigger script reapplies network settings during migration for single or multiple NICs based on blueprint mapping
- After migration, Windows Device Manager may display old network adapter information from pre-migration, which doesn't affect the new adapter or cause IP conflicts
- Upgrade to v4.0 to automatically remove orphaned network devices from the registry and Device Manager

Linux VMs

- The prepare script copies network configuration details (IP address space, routes, DNS servers, network device names)
- The script identifies the Linux distribution's networking type and applies IP settings accordingly
- The network reassignment script is configured as a cron job using crontab and triggered on boot
- The script reapplies network settings for single or multiple NICs based on blueprint mapping

Interface naming

- Converted VMs may have interface names like `eth0` or `ensp0` instead of the source interface names (for example, `ens192` or `ens33`)
- The script updates network configuration details to match new interface names
- If predictable names are used with proper udev matching rules and the interface name is retained on the target hypervisor, the script skips network configuration, removes VMware Tools, and reboots the VM

The Shift Toolkit allows overriding network preparation, enabling administrators to run custom scripts for IP assignment or other configurations.

Supported networking mechanisms

- NetworkManager
- Netplan
- ifconfig
- wicked

The Shift Toolkit retains IP addresses as specified in the blueprint.

Migration phases

The following are the migration phases you will follow to migrate VMs using the Shift Toolkit.

1. **Prepare VM:** Prepare VMs for migration and verify that all prerequisites are completed.
2. **Migrate and validate:** After preparation is complete, migrate VMware VMs to the target hypervisor.

After migration completes, verify that VMs boot successfully and data has migrated properly.

3. **Test the migration:** Test migration simulates the migration by converting the VMDK to the appropriate format and creating VMs using the converted virtual disk file on the qtree.

Test migration does not include network mapping configuration, which should be performed manually to a test network.

The Shift Toolkit does not alter the source VM except for copying scripts needed for VM preparation. This allows for swift rollback in case of conversion failures.

Execute a migration

To trigger the migration workflow with the configuration specified in the blueprint, click **Migrate**.

The screenshot shows the Shift Toolkit web interface. At the top, there's a navigation bar with links for NetApp, Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, and Job Monitoring. Below the navigation is a summary bar with counts for Blueprints (1), Resource Groups (1), and vCenters (1). The main area shows a list of 'Blueprints' with one item named 'DemoBP'. The 'Blueprint' row has columns for Name, Active Site, Status, Compliance, Source Site, and Destination Site. A 'Resource Groups' button is also present. To the right of the list is a context menu with options: Blueprint Details, Edit Blueprint, Prepare VM, **Migrate** (which is highlighted with a red box), Test Migrate, Run Compliance, and Delete Blueprint.

Once initiated, the workflow activates and the conversion process follows the outlined steps to register the VM. If VMs within the blueprint are not powered off, the Shift Toolkit prompts for a graceful shutdown before

proceeding.

NetApp recommends triggering no more than ten conversions in parallel from the same source to the same destination.

The conversion of VMDK to any file format completes in seconds, making this the fastest option available. This approach helps reduce VM downtime during migration.

Migrate Steps

Migration Plan: DemoBP

Overall job completed in ~5mins for 2 VMs

Deleting existing snapshots for all VMs in the setup	Success	3.4 Seconds
Triggering VM snapshots for resource groups at source before disk conversion (in parallel)	Success	30.2 Seconds
Triggering volume snapshots before disk conversion in parallel	Success	5.2 Seconds
Powering off VMs in protection group - DemoRG - in target (parallel)	Success	7.7 Seconds
Unregistering VMs in target (in parallel)	Success	5.8 Seconds
Converting VMDK disks to VHDX format for all VMs (in parallel)	Success	10 Seconds
Converting VMDK disks to VHDX format for VM - STK-U18VM01	Success	10 Seconds
Converting VMDK disks to VHDX format for VM - STK-W2K19VM01	Success	10 Seconds
Registering VMs (in parallel)	Success	21 Seconds
Powering on VMs in protection group - DemoRG - in target (in parallel)	Success	6 Seconds
Registering Networks (in parallel)	Success	81.4 Seconds
Triggering config scripts for Target VMs	Success	146.2 Seconds

Once the job completes, the blueprint status changes to "Migration Complete".

Name	Active Site	Status	Compliance	Source Site	Destination Site
DemoBP	Destination	Migration Complete	In Progress	DemoSrc	DemoDest

Migrate VMs from VMware ESXi to Microsoft Hyper-V using the Shift Toolkit

Migrate VMs from VMware ESXi to Microsoft Hyper-V using the Shift Toolkit by preparing VMs, converting disk formats, and configuring the target environment.

The Shift Toolkit enables VM migration between virtualization platforms through disk format conversion and network reconfiguration on the destination environment.

Before you begin

Verify that the following prerequisites are met before starting the migration.

Hyper-V requirements

- Hyper-V hosts configured as standalone hosts or failover cluster
- Hyper-V user account with administrator privileges
- Hyper-V hosts are network reachable with up-to-date DNS entries
- Virtual switches configured with appropriate trunking

- Virtual switch type "External" for network selection
- NFS share (for VMs to be converted) and destination share (for converted VMs) on the same volume
- SMB Constrained Delegation configured using `Enable-SmbDelegation` to avoid access denied errors
- SMB 3.0 enabled (default)
- Continuously available property enabled for SMB shares
- Export policies for SMB disabled on the storage virtual machine (SVM)

SCVMM is not a supported endpoint for migration in the current release.

- The Hyper-V FCI and host discovery relies on DNS resolution. Ensure hostnames are resolvable from Shift Toolkit VM. If resolution fails, update the host file (`C:\Windows\System32\drivers\etc\hosts`) and retry the discovery operation.

VMware requirements

- VM VMDKs are placed on NFSv3 volume (all VMDKs for a given VM should be part of the same volume)
- VMware tools are running on guest VMs
- VMs to be migrated are in a RUNNING state for preparation
- VMs must be powered off before triggering migration
- VMware tools removal happens on the destination hypervisor once VMs are powered on

Guest VM requirements

- For Windows VMs: Use local administrator credentials (domain credentials can also be used, however ensure a user profile exists on the VM before conversion)
- For Linux VMs: Use a user with permissions to execute sudo commands without password prompt (user should be part of the sudoers list or added to `/etc/sudoers.d/` folder)

Step 1: Add the destination site (Hyper-V)

Add the destination Hyper-V environment to the Shift Toolkit.

Steps

1. Click **Add New Site** and select **Destination**.

Show example

2. Enter the destination site details:

- **Site Name:** Provide a name for the site
- **Hypervisor:** Select Hyper-V as the target
- **Site Location:** Select the default option
- **Connector:** Select the default selection

3. Click **Continue**.

Show example

The screenshot shows the 'Add New Site' wizard in the NetApp Shift Toolkit. The current step is 'Site Details' (Step 2). The 'Destination Site Details' section is highlighted with a red box. It contains the following fields:

- Site Name: DemoDestHV
- Hypervisor: Hyper-V
- Site Location: On Prem
- Connector: default-connector

Below the form are 'Previous' and 'Continue' buttons. A note at the bottom right says 'Activate Windows' and 'Go to Settings to activate Windows.'

4. Enter the destination Hyper-V details:
 - **Hyper-V Standalone or failover cluster manager:** IP address or FQDN
 - **Username:** Username to access (in UPN format: username@domain.com or domain\administrator)
 - **Password:** Password to access Hyper-V host or FCI instance for performing inventory of the resources
5. Select **Accept Self signed certificate** and click **Continue**.

Show example

Destination Hyper-V Details

Standalone Failover Cluster SCVMM

Hyper-V Endpoint
10.61.187.12

Hyper-V Username
administrator@nimdemo.com

Hyper-V Password

Previous **Create Site** Next

Activate Windows
Go to Settings to activate Windows.

6. Click **Create Site**.

Show example

5 Sites

Site Type: 2 Source, 3 Destination

Site Location: 5 On Prem, 0 Cloud

Site Name	Site Type	Location	Hypervisor	Virtual Enviro	Storage	VM List	Discovery Status	Actions
DemovmwSRC	Source	On Prem	VMware	1	1	View VM List	Success	...
DemoDestHV	Destination	On Prem	Hyper-V	1		View VM List	Success	...
ConvertDest	Destination	On Prem	KVM	1				...
SRCDemo	Source	On Prem	Hyper-V	1	1	View VM List	Success	...
Dest-vmw	Destination	On Prem	VMware	1	1	View VM List	Success	...

Activate Windows
Go to Settings to activate Windows.

The source and destination storage system should be the same as the disk format conversion happens at the volume level and within the same volume.

Step 2: Create resource groups

Organize VMs into resource groups to preserve boot order and boot delay configurations.

Before you begin

- Ensure qtrees are provisioned as specified in the prerequisites
- Move VMs to a designated datastore on a newly created ONTAP SVM before conversion to isolate production NFS datastores from the staging area

Steps

1. Navigate to **Resource Groups** and click **Create New Resource Group**.

Show example

The screenshot shows the NetApp Shift Toolkit web interface. At the top, there is a navigation bar with links for NetApp, Shift Toolkit, Dashboard, Discover, Resource Groups (which is highlighted with a red box), Blueprints, and Job Monitoring. To the right of the navigation bar are several small icons for notifications, settings, and help.

The main content area displays four resource counts: 1 Resource Group, 1 Site, 1 vCenter, and 1 Host. Below this is a table with a single row for a 'Resource Group'. The table columns are: Resource Group Name, Site Name, Source Hypervisor, Workflow, Destination, and VM List. The row data is: DemoRG, SRCDemo, Hyper-V (10.61.187.12), Migration, Configured, and a 'View VM List' button. A 'Create New Resource Group' button is located at the top right of the table area, also highlighted with a red box.

At the bottom right of the interface, there is a watermark that says 'Activate Windows' and 'Go to Settings to activate Windows.'

2. Select the **Source site** from the dropdown and click **Create**.
3. Provide resource group details and select the workflow:
 - **Clone based Migration**: Performs end-to-end migration from source to destination hypervisor
 - **Clone based Conversion**: Converts disk format to the selected hypervisor type

Show example

Resource Group Details

Resource Group Name: DemoHVmigRG

Associated Site: DemovmmeSRC

Associated vCenter: a300-vcsa31.ehcldc.com

Destination Site: DemoDestHV

Workflow: - Select -

- Clone based Migration
- NetApp ONTAP (NFS/CIFS)
- Clone based Conversion
- NetApp ONTAP (NFS/CIFS)

Activate Windows
Go to Settings to activate Windows.

Continue

4. Click **Continue**.

5. Select VMs using the search option (default filter is "Datastore").

The datastore dropdown only shows NFSv3 datastores. NFSv4 datastores are not displayed.

Show example

Select Virtual Machines

Datastore: Blogdemo

3 VMs

Virtual Machine	Datastore
BlogDemo_W2K22	Blogdemo
hvdemowin22	Blogdemo
BlogDemo_U18	Blogdemo

Activate Windows
Go to Settings to activate Windows.

Previous Continue

Show example

Select Virtual Machines

2 VMs

Virtual Machine	Datastore
hvdemowin22	Blogdemo
BlogDemo_U18	Blogdemo

1 Selected VMs

Virtual Machine	Datastore
BlogDemo_W2K22	Blogdemo

Activate Windows
Go to Settings to activate Windows.

Previous Continue

6. Update migration details:

- Select **Destination Site**
- Select **Destination Hyper-V entry**
- Configure Datastore to Qtree mapping

Show example

Migration Details

Destination Site: DemoDestHV

Destination Hyper-V: 10.61.187.12

ONTAP Volume: BlogDemo

Datastore -> Qtree Mapping

Source	Destination QTree	Choose Preferred LIF
Blogdemo	blogdemovm	10.61.181.77
	blogdemovm	Select the appropriate LIF that has access to the Hyper-V hosts

Activate Windows
Go to Settings to activate Windows.

Previous Continue

Show example

The screenshot shows the NetApp Shift Toolkit interface. The top navigation bar includes 'NetApp', 'Shift Toolkit', 'Dashboard', 'Discover', 'Resource Groups', 'Blueprints', 'Job Monitoring', and a user icon. The main window is titled 'Create Resource Group' and is on step 4: 'Destination Details'. The 'Migration Details' section shows 'Destination Site' as 'DemoDestHV', 'Destination Hyper-V' as '10.61.187.12', and 'ONTAP Volume' as 'BlogDemo'. The 'Datastore -> Qtree Mapping' section shows a table mapping 'Blogdemo' to '10.61.181.77'. A red box highlights the dropdown menu for 'Choose Preferred LIF' which contains '10.61.181.77', '10.61.181.78', and '10.61.181.79'. At the bottom are 'Previous' and 'Continue' buttons, and a note to 'Activate Windows'.

Ensure the destination path (where the converted VMs are stored) is set to a qtree when converting VMs from ESXi to Hyper-V. Multiple qtrees can be created and used for storing converted VM disks.

7. Configure boot order and boot delay for all selected VMs:

- **1:** First VM to power on
- **3:** Default
- **5:** Last VM to power on

Show example

1 VM

VM Name	Boot Order	Boot Delay (secs)
BlogDemo_W2K22	3	0

Boot order and Delay

Previous Create Resource Group

Activate Windows
Go to Settings to activate Windows.

8. Click **Create Resource Group**.

Show example

2 Resource Groups

Resource Group Name	Site Name	Source Hypervisor	Workflow	Destination	VM List	...
DemoHVmigRG	DemovmwSRC	VCenter (a300-vcsa31.ehcdc.co...)	Migration	Configured	View VM List	...
DemoRG	SRCDemo	Hyper-V (10.61.187.12)	Migration	Configured	View VM List	...

Activate Windows
Go to Settings to activate Windows.

Result

The resource group is created and ready for blueprint configuration.

Step 3: Create a migration blueprint

Create a blueprint to define the migration plan, including platform mappings, network configuration, and VM settings.

Steps

1. Navigate to **Blueprints** and click **Create New Blueprint**.

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site	...
DemoBP	Destination	Migration Complete	Partially Healthy	SRCDemo	Dest-vmw	Resource Groups ...

Activate Windows
Go to Settings to activate Windows.

2. Provide a name for the blueprint and configure host mappings:

- Select **Source Site** and associated vCenter
- Select **Destination Site** and associated Hyper-V target
- Configure cluster and host mapping

Show example

Blueprint Details

Blueprint Name: DemoHVmigBP

Resource Mapping

Source Site	Destination Site
DemovmwSRC	DemoDestHV

Source vCenter	Destination Hyper-V
a300-vcsa31.ahcdc.com	10.61.187.12

Cluster and Host Mapping

Source Site Resource	Destination Site Resource
Cluster41	W2K22-HVN1

Add

Source Resource	Destination Resource
Cluster31	W2K22-HVN1

Delete

Activate Windows
Go to Settings to activate Windows.

Continue

3. Select resource group details and click **Continue**.

Show example

Select Resource Groups

0 Unselected Resource Groups

Resource Group Name	Workflow
---------------------	----------

1 Selected Resource Groups

Resource Group Name	Workflow
DemoHVmigRG	Migration

Migration

Activate Windows
Go to Settings to activate Windows.

Previous Continue

4. Set execution order for resource groups if multiple groups exist.
5. Configure network mapping to appropriate virtual switches.

Virtual switches should already be provisioned within Hyper-V. On Hyper-V side, the virtual switch type "External" is the only supported option for network selection. For test migration, select "Do not configure Network" to avoid production network conflicts; manually assign network settings after conversion.

Show example

The screenshot shows the Shift Toolkit interface for migration setup. The 'Migration Details' screen is displayed, specifically the 'Select Execution Order' and 'Network Mapping' sections. The 'Network Mapping' section is highlighted with a red box. It shows a table with 'Source Resource' (VMN_184) and 'Destination Resource' (vmxnet3 Ethernet Adapter #2 - Virtual Switch). The 'Datastore Mapping' section below it is also highlighted with a red box and shows a table with 'Source DataStore' (Blogdemo) and 'Destination Volume' (BlogDemo). At the bottom, there are 'Previous' and 'Continue' buttons, and a 'Activate Windows' message.

Show example

The screenshot shows the Shift Toolkit interface for migration setup, similar to the previous one but with a different configuration. The 'Network Mapping' section is highlighted with a red box. It shows a table with 'Source Resource' (VMN_184) and 'Destination Resource' (vmxnet3 Ethernet Adapter #2 - Virtual Switch). A radio button for 'Do not Configure' is selected. The 'Datastore Mapping' section below it shows a table with 'Source DataStore' (Blogdemo) and 'Destination Volume' (BlogDemo). At the bottom, there are 'Previous' and 'Continue' buttons, and a 'Activate Windows' message.

6. Review storage mappings (automatically selected based on VM selection).

Ensure the qtree is provisioned beforehand and necessary permissions are assigned so the virtual machine can be created and powered on from SMB share.

7. Configure the prepareVM override option if needed. This option is useful when you need to skip VM preparation by the Shift Toolkit and instead perform those tasks using custom scripts. It also enables customization of the IP address to meet specific environment requirements.

Show example

Override prepareVM (→)

Skip PrepareVM

Do not perform IP backup or reassignment

Skip VMware Tools removal

8. Under VM details, select configuration details and provide service account credentials for each OS type:

- **Windows:** Use a user with local administrator privileges (domain credentials can also be used, however ensure a user profile exists on the VM before conversion)
- **Linux:** Use a user that can execute sudo commands without password prompt (user should be part of the sudoers list or added to /etc/sudoers.d/ folder)

Show example

Create New Blueprint Plan and Site Details Select Resource Groups Set Execution Order Set VM Details Schedule

Virtual Machines Details

Override prepareVM (→)

Service Account (→)

OS	Username	Password
Linux		
Windows	administrator

IP Config

Do Not Configure Retain IP Assign New IP DHCP

1 VMs

VM Name	CPUs	Mem (MB)	NIC/IP	Power On	Boot Order	Override #	Gen	Remove VMware Tools	Retain MAC	Service Account Override	VLAN Override
BlogDemo_W2K22	8	16384	10.61.184.14		3		<input type="radio"/> Gen 1 <input checked="" type="radio"/> Gen 2	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Resource Group : DemoHVmigRG

Activate Windows
Go to Settings to activate Windows.

Previous Continue

9. Configure IP settings:

- **Do not configure:** Default option
- **Retain IP:** Keep same IPs from source system

- **DHCP**: Assign DHCP on target VMs

Ensure VMs are powered on during prepareVM phase, VMware Tools are installed, and preparation scripts run with proper privileges.

10. Configure VM settings:

- Resize CPU/RAM parameters (optional)
- Modify boot order and boot delay
- **Power ON**: Select to power on VMs after migration (default: ON)
- **Remove VMware tools**: Remove VMware Tools after conversion (default: selected)
- **VM Firmware**: Gen1 > BIOS and Gen2 > EFI (automatic)
- **Retain MAC**: Keep MAC addresses for licensing requirements
- **Service Account override**: Specify separate service account if needed
- **VLAN override**: Select correct tagged VLAN name when target hypervisor uses different VLAN name

Show example

VM Name	CPUs	Mem (MB)	NIC/IP	Power On	Boot Order ⓘ Override	Gen	Remove VMware Tools	Retain MAC	Service Account Override	VLAN Override
Resource Group : DemoHVmigRG										
BlogDemo_W2K22	8	16384	10.61.184.14	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/> Gen 1 <input type="checkbox"/> Gen 2	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

11. Click **Continue**.

12. Schedule the migration by selecting a date and time.

Schedule migrations at least 30 minutes ahead to allow time for VM preparation.

Show example

The screenshot shows the Shift Toolkit interface with the 'Blueprint Details' section. It includes fields for Blueprint Name (DemoHVmigBP), Resource Groups (DemoHVmigRG), and VMs (BlogDemo_W2K22). Below this, the 'Schedule' section is highlighted with a red box, showing a date of 05/11/2025 05:33 AM. At the bottom, there are 'Previous' and 'Create Blueprint' buttons, with 'Create Blueprint' being the active button.

13. Click **Create Blueprint**.

Result

The Shift Toolkit initiates a prepareVM job that runs scripts on source VMs to prepare them for migration.

Show example

The screenshot shows the Shift Toolkit interface with the 'Blueprints' list. It displays two blueprints: 'DemoHVmigBP' (Source, In Progress) and 'DemoBP' (Destination, Migration Complete). The 'DemoHVmigBP' row is highlighted with a red box. The 'Create New Blueprint' button is visible at the top right of the list.

Activate Windows
Go to Settings to activate Windows.

The preparation process:

- Injects scripts to add drivers (RHEL/CentOS, Alma Linux), remove VMware tools, and backup IP/route/DNS information
- Uses invoke-VMScript to connect to guest VMs and execute preparation tasks
- For Windows VMs: Stores scripts in C:\NetApp
- For Linux VMs: Stores scripts in /NetApp and /opt

Show example

Show example

For Linux source VMs running CentOS or Red Hat, Shift Toolkit automatically installs necessary Hyper-V drivers before disk conversion to ensure successful boot after conversion. For detailed information, refer to [System stuck in dracut after the migration of a RHEL VM to hyper-v](#).

When prepareVM completes successfully, the blueprint status updates to "Active." Migration will now happen at the scheduled time or can be started manually by clicking the **Migrate** option.

Show example

Back

Prepare VM Steps

Blueprint: DemoHVmigBP

Preparing VMs in parallel! Success 244.2 Seconds

Preparing VM - BlogDemo_W2K22 Success 244.2 Seconds

Show example

Blueprints

Source Details

Destination Details

2 Blueprints

Name	Active Site	Status	Compliance	Source Site	Destination Site	Resource Groups
DemoHVmigBP	Source	Preparevm Complete	Healthy	DemovmwSRC	DemoDestHV	Resource Groups

Step 4: Execute the migration

Trigger the migration workflow to convert VMs from VMware ESXi to Microsoft Hyper-V.

Before you begin

- All VMs are gracefully powered off according to the planned maintenance schedule
- Ensure the Shift VM is part of the domain
- Ensure CIFS share is configured with appropriate permissions
- The qtree used for migration or conversion has the right security style
- As a quick test, try creating a VM using Hyper-V Manager from any Hyper-V host within the cluster and place the VHDX on the CIFS share

Steps

1. On the blueprint, click **Migrate**.

Show example

The screenshot shows the Shift Toolkit dashboard. In the top right, a context menu is open for a blueprint named 'DemoHVmigBP'. The 'Migrate' option is highlighted with a red box. The dashboard displays 2 Blueprints and 2 Resource Groups. Under 'Source Details', there are 2 Sites, 1 vCenter, and 1 Host. Under 'Destination Details', there are 2 Sites and 1 vCenter. A table lists the blueprint details: Name (DemoHVmigBP), Active Site (Source), Status (Preparevm Com, Healthy), Source Site (DemovmwSRC), Destination Site (DemoDestHV), and Resource Groups (Dest-vmw). Below the table, a status bar shows 'DemoBP' as Destination, 'Migration Comp' as green, 'Partially Healthy' as yellow, and 'SRCDemo' as blue. A message at the bottom right says 'Activate Windows' and 'Go to Settings to activate Windows.'

2. If VMs are not powered off, the Shift Toolkit will prompt for a graceful shutdown before proceeding.

Show example

The screenshot shows the Shift Toolkit dashboard. A 'Confirm' dialog box is in the foreground, listing VMs that are not powered off: 'Prepared VM Name (2)' with entries 'STK-U18VM01' and 'STK-W2K19VM01'. The 'Continue' button is highlighted with a red box. The background shows 1 Blueprint and 1 Resource Group. Under 'Source Details', there is 1 Site and 1 vCenter. Under 'Destination Details', there is 1 Site and 1 Host. A 'Create New Blueprint' button is visible in the top right.

3. The Shift Toolkit takes the following actions:

- Deletes existing snapshots for all VMs in the blueprint
- Triggers VM snapshots at the source
- Triggers volume snapshot before disk conversion
- Converts VMDK to VHDx format for all VMs

The conversion happens in seconds, making this the fastest migration approach and reducing VM downtime.

Show example

The screenshot shows the 'Migrate Steps' page of the NetApp Shift Toolkit. The title bar includes the NetApp logo, Shift Toolkit icon, and navigation links: Dashboard, Discover, Resource Groups, Blueprints, and Job Monitoring. The top right corner has icons for Abort, Notifications (3), Settings, Help, and User. The main content area is titled 'Migrate Steps' and shows a list of tasks for a 'Migration Plan: DemoHVmigBP'. The tasks are:

Task	Status	Duration
Checking if a snapshot can be triggered on the volumes in parallel	Success	0.2 Seconds ⓘ
Deleting existing snapshots for all VMs in the setup	In progress	- ⓘ
Triggering VM snapshots for resource groups at source before disk conversion (in parallel)	Initialized	- ⓘ
Triggering volume snapshots before disk conversion in parallel	Initialized	- ⓘ
Cleaning up VMs in target (in sequence)	Initialized	- ⓘ
Converting disks for VM - BlogDemo_W2K22	Initialized	- ⓘ
Registering VMs (in parallel)	Initialized	- ⓘ

At the bottom right of the list, there is a note: 'Activate Windows' and 'Go to Settings to activate Windows.'

Show example

The screenshot shows the 'Migrate Steps' page of the NetApp Shift Toolkit, similar to the previous one but with more detailed information. The tasks are:

Task	Status	Duration
Checking if a snapshot can be triggered on the volumes in parallel	Success	0.1 Seconds ⓘ
Deleting existing snapshots for all VMs in the setup	Success	0.2 Seconds ⓘ
Triggering VM snapshots for resource groups at source before disk conversion (in parallel)	Success	30.2 Seconds ⓘ
Triggering volume snapshots before disk conversion in parallel	Success	5.2 Seconds ⓘ
Cleaning up VMs in target (in sequence)	Success	12.1 Seconds ⓘ
Converting disks for VM - BlogDemo_W2K22	Success	49.4 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22.vmdk	Success	48.8 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22_1.vmdk	Success	49.3 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22_2.vmdk	Success	49.2 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22_3.vmdk	Success	49.3 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22_4.vmdk	Success	49.4 Seconds ⓘ
Converting VMDK disk to VHDX Disk - BlogDemo_W2K22_6.vmdk	Success	47.5 Seconds ⓘ
Registering VMs (in parallel)	Success	19.7 Seconds ⓘ
Powering on VMs in protection group - DemoHVmigRG - in target	Success	7.8 Seconds ⓘ

At the bottom right of the list, there is a note: 'Activate Windows' and '7.8 Seconds ⓘ to Settings to activate Windows.'

- Powers on VMs at the target
- Registers networks on each VM
- Removes VMware tools and assigns IP addresses using trigger scripts or cron jobs

Result

When the job completes, the blueprint status changes to "Migration Complete."

Show example

The screenshot shows the NetApp Shift Toolkit dashboard. At the top, there are summary cards for Blueprints (2), Resource Groups (2), Source Details (2 Sites, 1 vCenter, 1 Host), and Destination Details (2 Sites, 1 vCenter, 1 Host). Below this is a table of Blueprints:

Name	Active Site	Status	Compliance	Source Site	Destination Site	Resource Groups	...
DemoHVmigBP	Destination	Migration Complete	Partially Healthy	DemovmixSRC	DemoDestHV	Resource Groups	...
DemoBP	Destination	Migration Complete	Partially Healthy	SRCDemo	Dest-vmw	Resource Groups	...

Show example

The screenshot shows the Hyper-V Manager interface for a host named 'W2K22-HVNI'. The left pane shows a list of virtual machines:

Name	State	CPU Usage	Assigned Memory	Uptime	Status	Configurati...
BlogDemo_W2K22	Running	0%	4096 MB	00:07:30	10.0	
hvdemoub18	Off				10.0	
hvdemoub22	Off				10.0	
hvdemoub24	Running	0%	2048 MB	1.03:41:10	10.0	
hvdemowin22	Running	0%	4096 MB	4.23:51:45	10.0	

The right pane shows the actions for the selected virtual machine 'BlogDemo_W2K22':

- New
- Import Virtual Machine...
- Hyper-V Settings...
- Virtual Switch Manager...
- Virtual SAN Manager...
- Edit Disk...
- Inspect Disk...
- Stop Service
- Remove Server
- Refresh
- View
- Help

Below the actions, there is a note: "Activate Windows. Go to Settings to activate Windows."

Show example

- i No more than ten conversions should be triggered in parallel from the same ESXi source to the same Hyper-V destination.
- i If there are failures, [enable delegation using any authentication protocol](#).
- i After migration when Windows VMs are powered on, Shift Toolkit uses PowerShell Direct to connect to Windows-based guest VMs regardless of network configuration or remote management settings.
- i After conversion, all VM disks on Windows OS except the OS disk will be offline because the NewDiskPolicy parameter is set to offlineAll on VMware VMs by default. Run this PowerShell command to fix: `Set-StorageSetting -NewDiskPolicy OnlineAll`
- i Shift Toolkit uses cron jobs that execute on boot for Linux-based distributions. No SSH connections are created for Linux-based VMs once they are brought on Hyper-V hosts.

Video demonstration

The following video demonstrates the process outlined in this solution.

[Migrate VMs from ESXi to Hyper-V using Shift Toolkit](#)

Migrate VMs from Microsoft Hyper-V to VMware ESXi using the Shift Toolkit

Migrate VMs from Microsoft Hyper-V to VMware ESXi using the Shift Toolkit by configuring source and destination sites, creating resource groups and blueprints, and

executing the migration workflow.

The Shift Toolkit enables direct VM conversion between hypervisors without creating additional disk copies, delivering copy-less migration with minimal downtime for both Windows and Linux virtual machines.

Before you begin

Verify that the following prerequisites are met before starting the migration.

VMware requirements

- vCenter and ESXi hosts are configured
- vCenter server account (RBAC user) with minimum required privileges
- vCenter and ESXi hosts are reachable from the Shift Toolkit and DNS entries are current
- Distributed port groups are configured with appropriate VLAN IDs (standard port groups are not supported)
- NFS share (for storing migrated VMs) and source share (for VMs to be migrated) reside on the same volume

Hyper-V requirements

- VM VHDx files are placed on an SMB share
 - If VMs are on a Cluster Shared Volume (CSV), perform a live migration to an SMB share
- Hyper-V integration services are enabled and running on guest VMs
- VMs to be migrated are in a RUNNING state for preparation
- VMs must be powered off before triggering migration

Guest VM requirements

- For Windows VMs: Use local administrator credentials or domain credentials with an existing user profile on the VM
- For Linux VMs: Use a user with permissions to execute sudo commands without password prompt
- Shift Toolkit uses PowerShell Direct for Windows VMs and SSH for Linux VMs

Step 1: Add the source site (Hyper-V)

Add the source Hyper-V environment to the Shift Toolkit.

Steps

1. Open the Shift Toolkit in a supported browser and log in with the default credentials.
2. Navigate to **Discover > Add Sites**.

Show example

Site Name	Site Type	Location	Hypervisor	VM List	Discovery Status
DemoDestHV	Destination	On Prem	Hyper-V	1	10.61.187.12 Success
DemovmvSRC	Source	On Prem	VMware	1 1	a300-vcsa31.ehcdc.com Success
ConvertDest	Destination	On Prem	KVM	1 1	...
SRCDemo	Source	On Prem	Hyper-V	1 1	10.61.187.12 Success
Dest-vmw	Destination	On Prem	VMware	1 1	a300-vcsa31.ehcdc.com Success

3. Click **Add New Site** and select **Source**.

4. Enter the source site details:

- **Site Name:** Provide a name for the site
- **Hypervisor:** Select Hyper-V
- **Site Location:** Select the default option
- **Connector:** Select the default selection

5. Click **Continue**.

Show example

Source Site Details

Site Name: ShiftHVsrcDemo

Hypervisor: Hyper-V

Site Location: On Prem

Connector: default-connector

Site Type

Activate Windows
Go to Settings to activate Windows.

Previous Continue

6. Enter the Hyper-V details:

- **Hyper-V standalone or failover cluster manager:** IP address or FQDN
- **Username:** Username in UPN format (username@domain.com or domain\administrator)
- **Password:** Password to access Hyper-V host or FCI instance

7. Click **Continue**.

Show example

The screenshot shows the 'Add New Site' wizard in the NetApp Shift Toolkit. The current step is 'Hypervisor Details'. The 'Source Hyper-V Details' section is displayed, with the 'Standalone' radio button selected. The 'Hyper-V Endpoint' field contains 'W2K22-HVN1.nimdemo.com', the 'Hyper-V Username' field contains 'administrator@nimdemo.com', and the 'Hyper-V Password' field contains a redacted password. At the bottom right, there is an 'Activate Windows' link with the text 'Go to Settings to activate Windows.'

The Hyper-V FCI and host discovery relies on DNS resolution. If resolution fails, update the host file (C:\Windows\System32\drivers\etc\hosts) and retry the discovery operation.

8. Enter the ONTAP storage system credentials.

Show example

The screenshot shows the 'Add New Site' wizard in the Shift Toolkit. The current step is 'Storage Details'. It includes fields for 'Storage Endpoint' (10.61.180.106), 'Storage Username' (admin), 'Storage Password', and a checkbox for 'Accept self-signed certificates'. The 'Create Site' button is highlighted with a red box.

9. Click **Create Site**.

Result

The Shift Toolkit performs automatic discovery and displays VMs with metadata information, including networks, virtual switches, and VLAN IDs.

Show example

The screenshot shows the Shift Toolkit dashboard with the 'Site List' section. It displays 4 Sites, 2 vCenters, 2 Hosts, 3 Datastores, 2 Sources, 2 Destinations, 4 On Prem locations, and 0 Cloud locations. The 'ShiftHVs' entry in the table is highlighted with a red box. A success message 'Source site registered, Discovery initiated!' is displayed in a green box at the bottom.

VM inventory auto-refreshes every 24 hours. To manually refresh after modifications, click the three dots next to the site name and select **Discover Site**.

Step 2: Add the destination site (VMware ESXi)

Add the destination VMware environment to the Shift Toolkit.

Steps

1. Click **Add New Site** and select **Destination**.

[Show example](#)

2. Enter the destination site details:

- **Site Name:** Provide a name for the site
- **Hypervisor:** Select VMware
- **Site Location:** Select the default option
- **Connector:** Select the default selection

3. Click **Continue**.

Show example

The screenshot shows the 'Add New Site' wizard in the NetApp Shift Toolkit. The current step is 'Site Details' (Step 2). The 'Site Name' field contains 'ShiftvmwDest'. The 'Hypervisor' field is highlighted with a red box and contains 'VMware'. The 'Site Location' field contains 'On Prem'. The 'Connector' field contains 'default-connector'. At the bottom, there are 'Previous' and 'Continue' buttons, and a 'Activate Windows' message.

4. Enter the VMware vCenter details:

- **Endpoint:** IP address or FQDN of the vCenter server
- **Username:** Username in UPN format (username@domain.com)
- **vCenter Password:** Password to access vCenter
- **vCenter SSL Thumbprint** (optional)

5. Select **Accept Self signed certificate** and click **Continue**.

Show example

Destination vCenter Details

vCenter Endpoint
a300-vcsa31.ehcdc.com

vCenter Username
administrator@ehcdc.com

vCenter Password
.....

Accept self-signed certificates

Previous Create Site Next

6. Click **Create Site**.

Show example

5 Sites | 3 vCenters | 2 Hosts | 3 Datastores

Site Name	Site Type	Location	Hyperviso	Virtual Envi	Storage	VM List	Discovery Status
ShiftvmwC	Destination	On Prem	VMware	1			Success
ShiftHVs	Source	On Prem	Hyper-V	1	1	View VM List	Success
Demovmw	Source	On Prem	VMware	1	1	View VM List	Success
DemoDest	Destination	On Prem	Hyper-V	1	1		Success
ConvertDe	Destination	On Prem	VMware	1	1		Success

Destination Site Registered, Discovery initiated!

The source and destination storage system must be the same, as disk format conversion occurs at the volume level within the same volume.

Step 3: Create resource groups

Organize VMs into resource groups to preserve boot order and boot delay configurations.

Before you begin

Ensure qtrees are provisioned as specified in the prerequisites.

Steps

1. Navigate to **Resource Groups** and click **Create New Resource Group**.
2. Select the source site from the dropdown and click **Create**.
3. Provide resource group details and select the workflow:
 - **Clone based Migration**: Performs end-to-end migration from source to destination hypervisor
 - **Clone based Conversion**: Converts disk format to the selected hypervisor type

Show example

The screenshot shows the 'Create Resource Group' wizard in the NetApp Shift Toolkit. The current step is 'Resource Group Details'. The 'Workflow' dropdown is open, displaying two options: 'Clone based Migration' and 'Clone based Conversion', both of which are highlighted with a red box. The 'Clone based Migration' option is described as 'NetApp ONTAP (NFS/CIFS)'. The 'Clone based Conversion' option is described as 'NetApp ONTAP (NFS/CIFS)'. The 'Associated Site' is set to 'ShiftHVsrdemo' and the 'Associated Hyper-V' is set to 'W2K22-HVN1.nimdemo.com'. The 'Destination Site' is set to 'ShiftvmwDest'. The 'Resource Group Name' is 'ShiftDemoRG'. The 'Workflow' dropdown has a placeholder 'Select' and a 'Continue' button at the bottom.

4. Click **Continue**.
5. Select VMs using the search option (default filter is "Datastore").

Show example

Volume

- Select -

BlogDemo

0 VMs

0 Selected VMs

Virtual Machine Volume

Virtual Machine Volume

Activate Windows
Go to Settings to activate Windows.

Previous Continue

Move VMs to a designated SMB share on a newly created ONTAP SVM before conversion to isolate production shares from the staging area. The datastore dropdown only shows SMB shares; CSVs are not displayed.

Show example

Volume

BlogDemo

5 VMs

1 Selected VMs

Virtual Machine Volume

Virtual Machine Volume

BlogDemo_U18 BlogDemo

BlogDemo_W2K22 BlogDemo

hvdemoubu18 BlogDemo

hvdemoubu22 BlogDemo

hvdemoubu24 BlogDemo

hvdemowin22 BlogDemo

Activate Windows
Go to Settings to activate Windows.

Previous Continue

6. Update migration details:

- Select **Destination Site**
- Select **Destination VMware entry**
- Configure volume to qtree mapping

Show example

Migration Details

Destination Site: ShiftvmwDest

Destination vCenter: a300-vcsa31.ehcdc.com

ONTAP Volume: BlogDemo

Volume -> Qtree Mapping

Source	Destination QTree
BlogDemo	<input type="button" value="vhds List"/> → <input type="button" value="Select"/> blogdemovqmw

Activate Windows
Go to Settings to activate Windows.

Set the destination path to the appropriate qtree when converting VMs from Hyper-V to ESXi.

7. Configure boot order and boot delay for all selected VMs:

- **1:** First VM to power on
- **3:** Default
- **5:** Last VM to power on

8. Click **Create Resource Group**.

Show example

The screenshot shows the Shift Toolkit dashboard with the following statistics:

- 2 Resource Groups
- 2 Sites
- 1 vCenter
- 1 Host
- 3 Virtual Machines

The "Resource Groups" section lists two entries:

Resource Group Name	Site Name	Source Hypervisor	Workflow	Status	Actions
ShiftDemoRG	ShiftHVsrdemo	Hyper-V (W2K22-HVN1....)	Migration	Configured	View VM List ...
DemotstRG	DemovmvSRC	VCenter (a300-vcsa31.eh...)	Migration	Configured	View VM List ...

A success message box is displayed: "Resource group registered".

Result

The resource group is created and ready for blueprint configuration.

Step 4: Create a migration blueprint

Create a blueprint to define the migration plan, including platform mappings, network configuration, and VM settings.

Steps

1. Navigate to **Blueprints** and click **Create New Blueprint**.
2. Provide a name for the blueprint and configure host mappings:
 - Select **Source Site** and associated Hyper-V hypervisor
 - Select **Destination Site** and associated vCenter
 - Configure host and cluster mapping

Show example

The screenshot shows the Shift Toolkit interface for creating a new blueprint. The top navigation bar includes 'NetApp', 'Shift Toolkit', 'Dashboard', 'Discover', 'Resource Groups', 'Blueprints', 'Job Monitoring', and user icons. Below the navigation, a progress bar shows steps 1 through 5: 'Plan and Site Details', 'Select Resource Groups', 'Set Execution Order', 'Set VM Details', and 'Schedule'. The main area is titled 'ShiftDemoBP' and contains two sections highlighted with a red box: 'Resource Mapping' and 'Host and Cluster Mapping'. The 'Resource Mapping' section shows 'Source Site' (ShiftHVsrdemo) and 'Destination Site' (ShiftvmwDest). The 'Host and Cluster Mapping' section shows 'Source Site Resource' (W2K22-HVN1) and 'Destination Site Resource' (Cluster31). Below these sections is a table for 'Source Resource' and 'Destination Resource' with the message 'No Mappings added!'. At the bottom are 'Continue' and 'Activate Windows' buttons.

3. Select resource group details and click **Continue**.
4. Set execution order for resource groups if multiple groups exist.
5. Configure network mapping to appropriate port groups.

Show example

The screenshot shows the Shift Toolkit interface for creating a new blueprint, Step 3: Set Execution Order. The top navigation bar and progress bar are identical to the previous screenshot. The main area is titled 'Migration Details' and 'Select Execution Order'. It shows a table for 'Resource Group Name' and 'Execution Order' with 'ShiftDemoRG' and '3'. Below this is a 'Network Mapping' section highlighted with a red box, containing tabs for 'Target' and 'Test', and dropdowns for 'Source Site Resource' (vmxnet3 Ethernet Adapter #2 - Virtual...) and 'Destination Site Resource' (PG_Mgmt_183). The 'Network Mapping' section is followed by a table for 'Source Resource' and 'Destination Resource' with the message 'No network mappings added!'. At the bottom are 'Previous' and 'Continue' buttons, along with an 'Activate Windows' message.

On VMware, Distributed Port Group is the only supported option. For test migration, select "Do not configure Network" to avoid production network conflicts; manually assign network settings after conversion.

Show example

The screenshot shows the 'Migration Details' step of the Shift Toolkit. The 'Select Execution Order' step is completed. The 'Network Mapping' section is highlighted with a red box. It shows a 'Source Resource' dropdown set to 'vmxnet3 Ethernet Adapter #2 - Virtual...' and a 'Destination Resource' dropdown set to 'PG_Mgmt_183'. The 'Datastore Mapping' section is visible below, with 'Previous' and 'Continue' buttons.

6. Review storage mappings (automatically selected based on VM selection).

Ensure qtrees are provisioned beforehand with necessary permissions.

7. Configure VM preparation override if needed for custom scripts or IP address customization.

Show example

The screenshot shows the 'Virtual Machines Details' step. The 'Override prepareVM' section is highlighted with a red box. It contains a checkbox labeled 'Select to override prepare vm process'.

8. Under VM details, provide service account and credentials for each OS type:

- **Windows:** Local administrator or domain credentials (ensure user profile exists on VM)
- **Linux:** User with sudo privileges without password prompt

Show example

The screenshot shows the 'Set VM Details' step of the Shift Toolkit. The 'Service Account' and 'IP Config' sections are highlighted with red boxes. The 'VM Details' table is also highlighted with a red box. The table shows a single VM named 'hvdemowin22' with the following details:

VM Name	CPUs	Mem (MB)	NIC/IP	Power On	Boot Order	Gen	Add VMware Tools	Retain MAC	Service Account Override
hvdemowin22	1	409	10.61.184.17	<input checked="" type="checkbox"/>	3	Gen 1	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Activate Windows

9. Configure IP settings:

- **Do not configure:** Default option
- **Retain IP:** Keep same IPs from source system
- **DHCP:** Assign DHCP on target VMs

Ensure VMs are powered on during prepareVM phase and integration services are enabled.

10. Configure VM settings:

- Resize CPU/RAM parameters (optional)
- Modify boot order and boot delay
- **Power ON:** Select to power on VMs after migration (default: ON)
- **Add VMware tools:** Install VMware Tools after conversion (default: selected)
- **Retain MAC:** Keep MAC addresses for licensing requirements
- **Service Account override:** Specify separate service account if needed

Show example

The screenshot shows the 'Set VM Details' step of the Shift Toolkit. The 'Service Account' and 'IP Config' sections are highlighted with red boxes. The 'VM Details' table is also highlighted with a red box. The table shows a single VM named 'hvdemowin22' with the following details:

VM Name	CPUs	Mem (MB)	NIC/IP	Power On	Boot Order	Gen	Add VMware Tools	Retain MAC	Service Account Override
hvdemowin22	1	409	10.61.184.17	<input checked="" type="checkbox"/>	3	Gen 1	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

11. Click **Continue**.
12. (Optional) Schedule the migration by selecting a date and time.

[Show example](#)

The screenshot shows the Shift Toolkit interface for creating a new blueprint. The top navigation bar includes the NetApp logo, Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, Job Monitoring, and user icons. Below the navigation, a progress bar indicates steps: Create New Blueprint (unchecked), Plan and Site Details (unchecked), Select Resource Groups (checked), Set Execution Order (unchecked), Set VM Details (unchecked), and Schedule (checked). The main content area is titled 'Schedule Migration'. It displays 'Blueprint Details' with the Blueprint Name set to 'ShiftDemoBP', Resource Groups to 'ShiftDemoRG', and VMs to 'hvdemowin22'. A prominent red box highlights the 'Schedule' button. At the bottom, there are 'Previous' and 'Create Blueprint' buttons, and a Windows activation notice: 'Activate Windows. Go to Settings to activate Windows.'

Schedule migrations at least 30 minutes ahead to allow time for VM preparation.

13. Click **Create Blueprint**.

Result

The Shift Toolkit initiates a prepareVM job that runs scripts on source VMs to prepare them for migration.

Show example

The screenshot shows the NetApp Shift Toolkit interface. At the top, there are summary cards for Blueprints (2), Resource Groups (2), Source Details (2 Sites, 1 vCenter, 1 Host), and Destination Details (2 Sites, 1 vCenter, 1 Host). Below this is a list of Blueprints with a red box around the 'ShiftDemoBP' row. The 'ShiftDemoBP' row shows the following status: Source (green), Preparevm In Pr (yellow), Not Available (yellow), ShiftHVsrdemo (green), ShiftvmwDest (green), and Resource Groups (blue). Below the Blueprint list is a summary row for 'DemotstBP': Destination (red), Migration Comp (green), Healthy (green), DemovmwSRC (green), DemoDestHV (green), and Resource Groups (blue). A success message 'Blueprint registered' is displayed in a green box. A 'Activate Windows' notification is also present.

The preparation process:

- For Windows VMs: Stores scripts in C:\NetApp

Show example

The screenshot shows the Windows Server Manager interface. The left navigation pane includes Dashboard, Local Server, All Servers, and File and Storage Services. The main area shows a file explorer view of 'This PC > Local Disk (C) > NetApp'. A red box highlights the 'NetApp' folder. The folder contains the following files and subfolders:

Name	Date modified	Type	Size
AddressTypes	11/5/2023 5:03 AM	Text Document	1 KB
DNSServers	11/5/2023 5:03 AM	Text Document	1 KB
Gateways	11/5/2023 5:03 AM	Text Document	1 KB
IPAddresses	11/5/2023 5:03 AM	Text Document	1 KB
netapp_prepare_vm	11/5/2023 5:03 AM	Windows PowerShell Script	6 KB
netapp_startup_script	11/5/2023 5:03 AM	Windows Batch File	1 KB
prepareVMScriptWindow_vm-3069	11/5/2023 5:03 AM	Windows PowerShell Script	8 KB
removeVmToolsTarget	11/5/2023 5:02 AM	Windows PowerShell Script	5 KB
SubnetMasks	11/5/2023 5:03 AM	Text Document	1 KB

- For Linux VMs: Stores scripts in /NetApp and /opt

Show example


```
root@tvm01-u18:/opt# netapp_prepare_vm.sh
root@tvm01-u18:/opt# cd /netapp/
root@tvm01-u18:/netapp# ls
ethernet_devices.txt  ip_backup.txt  nm.txt  preMigrationScriptLinux_vm-1081.sh  routes_backup.txt
root@tvm01-u18:/netapp#
```


For CentOS or Red Hat VMs, the Shift Toolkit automatically installs necessary drivers before disk conversion to ensure successful boot after conversion.

When prepareVM completes successfully, the blueprint status updates to "Active."

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site
ShiftDemoBP	Source	Preparevm Com	Healthy	ShiftHVsrdemo	ShiftvmwDest

Step 5: Execute the migration

Trigger the migration workflow to convert VMs from Hyper-V to VMware ESXi.

Before you begin

- All VMs are gracefully powered off according to the planned maintenance schedule
- The Shift Toolkit VM is part of the domain
- CIFS share is configured with appropriate permissions
- Qtrees have the correct security style
- Integration Services are enabled on all guest VMs
- SSH is enabled on Linux-based guest VMs

Steps

1. On the blueprint, click **Migrate**.

Show example

The screenshot shows the NetApp Shift Toolkit interface. In the top right corner, a context menu is open for a blueprint named 'ShiftDemoBP'. The menu items are: Blueprint Details, Edit Blueprint, Prepare VM, Migrate (which is highlighted with a red box), Test Migrate, Run Compliance, and Delete Blueprint. The main interface shows 2 Blueprints and 2 Resource Groups. The 'Blueprints' section lists 'ShiftDemoBP' as a Source and 'DemotstBP' as a Destination. The 'Source Details' and 'Destination Details' sections show 2 Sites, 1 vCenter, and 1 Host for both source and destination environments.

2. If VMs remain powered on, respond to the graceful shutdown prompt.

Show example

The screenshot shows the NetApp Shift Toolkit interface with a 'Confirm' dialog box in the foreground. The dialog box is titled 'Confirm' and contains the message: 'Following VM(s) are not powered off:'. Below this message, it lists 'Prepared VM Name (1)' and 'hvdemowin22'. At the bottom of the dialog box are 'Cancel' and 'Continue' buttons. The background shows the same Blueprint Details interface as the previous screenshot, with the 'Migrate' option still highlighted in the menu.

Show example

The screenshot shows the Shift Toolkit interface with the 'Migrate Steps' page. The title 'Migrate Steps' is at the top, followed by 'Migration Plan: ShiftDemoBP'. Below this is a table of migration tasks:

Task	Status	Duration
Checking if a snapshot can be triggered on the volumes in parallel	Success	0.1 Seconds
Deleting all existing Checkpoints for all VMs (in parallel)	In progress	-
Creating Checkpoints for all VMs (in parallel)	Initialized	-
Triggering volume snapshots before disk conversion in parallel	Initialized	-
Cleaning up VMs in target (in sequence)	Initialized	-
Converting disks for VM - hvdemowin22	Initialized	-
Creating VMs (in parallel)	Initialized	-

At the bottom right of the table, there is a note: 'Activate Windows' and 'Go to Settings to activate Windows.'

Result

The Shift Toolkit performs the following steps:

1. Powers off source VMs
2. Deletes existing checkpoints
3. Triggers VM checkpoints at the source
4. Triggers volume snapshot before disk conversion
5. Clones and converts VHDx files to VMDK format
6. Powers on VMs at the target site
7. Registers network settings
8. Adds VMware Tools and assigns IP addresses

The conversion completes in seconds, minimizing VM downtime.

Show example

Migrate Steps

Migration Plan: ShiftDemoBP

Checking if a snapshot can be triggered on the volumes in parallel	Success	0.1 Seconds ⓘ
Deleting all existing Checkpoints for all VMs (in parallel)	Success	12.2 Seconds ⓘ
Creating Checkpoints for all VMs (in parallel)	Success	15.1 Seconds ⓘ
Triggering volume snapshots before disk conversion in parallel	Success	5.2 Seconds ⓘ
Cleaning up VMs in target (in sequence)	Success	2.2 Seconds ⓘ
Converting disks for VM - hvdemowin22	Success	8.7 Seconds ⓘ
Creating VMs (in parallel)	Success	1.1 Seconds ⓘ

Activate Windows
Go to Settings to activate Windows.

When migration completes, the blueprint status changes to "Migration Complete."

Show example

Blueprints

Resource Groups

Source Details

Destination Details

Name	Active Site	Status	Compliance	Source Site	Destination Site	...
ShiftDemoBP	Destination	Migration Comp	Healthy	ShiftHVsrdemo	ShiftvmwDest	Resource Groups

Step 6: Validate the migration

Verify that VMs are running successfully on the VMware ESXi host.

Steps

1. Log in to vCenter or the ESXi host.
2. Verify that VMs are running on the specified ESXi host.

Show example

The screenshot shows the Shift Toolkit interface. On the left, a tree view of virtual machines under 'a300-vcsa31.ehcdc.com' shows 'Cluster31' with several VMs: '10.61.183.130', '10.61.183.131', 'HVdemo', 'OCPDemo', 'OLVMDemo', 'DemoRHEL-VM01', 'DemoRHEL-VM02', 'hvdemowin22', and 'hvdemowin22_1'. The 'hvdemowin22_1' item is highlighted with a red box. On the right, a 'Virtual Machine Details' panel shows the following information for 'hvdemowin22_1': Power Status (Powered On), Guest OS (Microsoft Windows Server 2022 (64-bit) Running, version:13312 (Current)), VMware Tools (Running, version:13312 (Current)), DNS Name (1) (WIN-NC9KO56IUG4), IP Addresses (2) (10.61.183.6, fe80::8066:f42a:942f:68cb), and Encryption (Not encrypted). Below the details are 'LAUNCH REMOTE CONSOLE' and 'LAUNCH WEB CONSOLE' buttons.

3. Verify VM connectivity and application functionality.
4. (Windows VMs only) Bring offline disks online if needed:

```
Set-StorageSetting -NewDiskPolicy OnlineAll
```


After conversion, all VM disks on Windows OS except the OS disk will be offline due to the default Microsoft Windows SAN policy (offlineALL). This prevents data corruption when LUNs are accessed by multiple servers.

Result

The migration from Hyper-V to VMware ESXi is complete.

The Shift Toolkit uses cron jobs (Linux) and scheduled tasks (Windows) for post-migration operations. No SSH connections or equivalent are created after VMs are running on ESXi hosts.

Migrate VMs from VMware ESXi to Red Hat OpenShift Virtualization

Migrate VMs from VMware ESXi to Red Hat OpenShift Virtualization using the Shift Toolkit by preparing VMs, converting disk formats, and configuring the target environment.

The Shift Toolkit enables VM migration between virtualization platforms through disk format conversion and network reconfiguration on the destination environment.

Before you begin

Verify that the following prerequisites are met before starting the migration.

Red Hat OpenShift Virtualization requirements

- OpenShift Cluster endpoint with the following operators installed:
 - OpenShift Virtualization operator
 - NetApp Trident CSI driver

- NMstate
- NetApp Trident CSI configured with appropriate backends and storage classes
- NodeNetworkConfigurationPolicy and NetworkAttachmentDefinitions (NAD) configured with proper VLANs
- OpenShift cluster is network reachable with current host file entries
- Administrator level privileges on the cluster
- Kubeconfig file downloaded

VMware requirements

- VMDKs are placed on individual volumes (mimicking VMDK to a PVC/PV construct) using svmotion

This limitation will be removed in the next release where NAS-economy driver can be used for PVC provisioning.

- VMware tools are running on guest VMs
- VMs to be migrated are in a RUNNING state for preparation
- VMs must be powered off before triggering migration
- VMware tools removal happens on the destination hypervisor once VMs are powered on

Guest VM requirements

- For Windows VMs: Use local administrator credentials
- For Linux VMs: Use a user with permissions to execute sudo commands without password prompt
- For Windows VMs: Mount the VirtIO ISO to the VM (download from [here](#))

The preparation script uses the .msi package to install drivers and qemu-guest-agents.

Step 1: Add the destination site (OpenShift)

Add the destination OpenShift Virtualization environment to the Shift Toolkit.

Steps

1. Click **Add New Site** and select **Destination**.

Show example

2. Enter the destination site details:

- **Site Name:** Provide a name for the site
- **Hypervisor:** Select OpenShift
- **Site Location:** Select the default option
- **Connector:** Select the default selection

3. Click **Continue**.

Show example

Destination Site Details

Site Name: DemoOCPv

Hypervisor: OpenShift

default-connector

Previous Continue

4. Enter the OpenShift details:

- **Endpoint:** FQDN of OpenShift Cluster endpoint (for example, `api.demomigsno.demoval.com`)
- **Upload Kubeconfig file:** Use the kubeconfig file with minimal permissions

The file extension must be `.yaml`.

Show example

Destination OpenShift Details

OpenShift Endpoint: api.demomigsno.demoval.com

Upload KubeConfig File: Choose file kubeconfig.yaml

Previous Create Site

5. Click **Create Site**.

Show example

The screenshot shows the NetApp Shift Toolkit dashboard. At the top, there are navigation links: NetApp, Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, and Job Monitoring. On the right, there are icons for notifications (1), settings, help, and user profile.

The main area displays various statistics:

- Sites:** 3 Sites, 1 vCenter, 1 Cluster (OpenShift)
- Virtualization:** 1 oVirt
- Datastores:** 6 Datastores
- Site Type:** 1 Source, 2 Destinations
- Site Location:** 3 On Prem, 0 Cloud

Below this, a table lists sites with columns: Site Name, Site Type, Location, Hypervisor, Virtual Environ, Storage, VM List, and Discovery Status. One entry is shown:

Site Name	Site Type	Location	Hypervisor	Virtual Environ	Storage	VM List	Discovery Status
DemoOCPv	Destination	On Prem	OpenShift	1	2		api.demomigsno.demoval.com Success

Add New Site button is located at the top right of the table.

The source and destination volume will be the same as the disk format conversion happens at the volume level within the same volume.

Step 2: Create resource groups

Organize VMs into resource groups to preserve boot order and boot delay configurations.

Before you begin

Ensure VM VMDKs are moved to individual datastore volumes on a newly created ONTAP SVM.

Steps

1. Navigate to **Resource Groups** and click **Create New Resource Group**.
2. Select the source site from the dropdown and click **Create**.
3. Provide resource group details and select the workflow:
 - **Clone based Migration:** Performs end-to-end migration from source to destination hypervisor
 - **Clone based Conversion:** Converts disk format to the selected hypervisor type
4. Click **Continue**.
5. Select VMs using the search option.

VM selection for resource groups is based on virtual machine and not at the datastore level.

Show example

The screenshot shows the Shift Toolkit interface in the 'Select Virtual Machines' step. The left pane displays a list of 35 unprotected VMs, while the right pane shows 0 selected VMs. A tooltip in the center indicates that other datastores are available for selection.

Show example

The screenshot shows the Shift Toolkit interface in the 'Select Virtual Machines' step. The left pane displays a list of 4 unprotected VMs, and the right pane shows 2 selected VMs. The search bar is set to 'shift'.

6. Update migration details:

- Select **Destination Site**
- Select **Destination OpenShift entry**
- Select the storage class

Show example

Migration Details

Destination Site: DemoOCPy

Destination OpenShift: api.demomigsno.demoval.com

Storage Class: nimnas

Source Volume -> TBC Mapping

Source Volume	Destination TBC
LinLargeDisk	→ backend-tbc-ontap-nas
LinLargeDisk01	→ backend-tbc-ontap-nas
LinLargeDisk02	→ backend-tbc-ontap-nas

Previous Continue

The Trident backend will be mapped to the source volume automatically if there is only one TBC; however, if there are multiple TBCs, the backend can be selected.

7. Configure boot order and boot delay for all selected VMs:
 - 1: First VM to power on
 - 3: Default
 - 5: Last VM to power on
8. Click **Create Resource Group**.

Show example

2 Resource Groups

1 Site

1 vCenter

4 Virtual Machines

Resource Group Name	Site Name	Source Hypervisor	Workflow	Destination	VM List
DemoOCPRG	DemoSrc-VMware	VCenter (s01-vc01.demoval.com)	Migration	Configured	View VM List

Create New Resource Group

Result

The resource group is created and ready for blueprint configuration.

Step 3: Create a migration blueprint

Create a blueprint to define the migration plan, including platform mappings, network configuration, and VM settings.

Steps

1. Navigate to **Blueprints** and click **Create New Blueprint**.
2. Provide a name for the blueprint and configure host mappings:
 - Select **Source Site** and associated vCenter
 - Select **Destination Site** and associated OpenShift target
 - Configure cluster and host mapping

Show example

The screenshot shows the 'Blueprint Details' page of the Shift Toolkit. The 'Blueprint Name' is 'DemoOCPvBP'. In the 'Resource Mapping' section, 'Source Site' is 'DemoSrc-VMware' and 'Destination Site' is 'DemoOCPv'. In the 'Cluster and NameSpace Mapping' section, 'Source Resource' is 's01-Cluster01' and 'Destination Resource' is 'default'. The 'Destination OpenShift' field is highlighted with a red box. A note at the bottom says 'No more Source/Destination resources available for mapping'. A 'Continue' button is at the bottom.

3. Select resource group details and click **Continue**.
4. Set execution order for resource groups if multiple groups exist.
5. Configure network mapping to appropriate logical networks.

Network attachment definitions should already be provisioned within the OpenShift cluster with the appropriate VLAN and trunk options. For test migration, select "Do not configure Network" to avoid production network conflicts; manually assign network settings after conversion.

Show example

Migration Details

Select Execution Order

Resource Group Name	Execution Order
DemoOCPRG	3

Network Mapping

Target Test

No more Source network resources available for mapping

Source Resource	Destination Resource	Delete
PG_VMN_3211	vm-vlan-3211	Delete

Datastore Mapping

Source Datastore	Storage Class	Volume	Trident Backend Configuration
LinLargeDisk	nimnas	LinLargeDisk	backend-tbc-ontap-nas

Show more

Previous Continue

6. Review storage class and backend mappings (automatically selected based on VM selection).

Ensure VMDKs are sv motioned to individual volumes beforehand so the virtual machine can be created and powered on from the PVC.

7. Under VM details, select configuration details and provide service account credentials for each OS type:

- **Windows:** Use a user with local administrator privileges (domain credentials can also be used)
- **Linux:** Use a user that can execute sudo commands without password prompt

Show example

The screenshot shows the NetApp Shift Toolkit interface. The top navigation bar includes 'NetApp', 'Shift Toolkit', 'Dashboard', 'Discover', 'Resource Groups', 'Blueprints', 'Job Monitoring', and a set of icons. Below the navigation is a toolbar with buttons for 'Create New Blueprint', 'Plan and Site Details', 'Select Resource Groups', 'Set Execution Order', 'Set VM Details', and 'Schedule'. The main content area is titled 'Configuration Selection'. It includes a 'Service Account' section with two rows: 'Linux' (username: root, password: *****) and 'Windows' (username: administrator, password: *****) with 'Apply To All' buttons. Below this is an 'IP Config' section with radio buttons for 'Do Not Configure', 'Retain IP' (selected), 'Assign New IP', and 'DHCP'. The main table lists '2 VMs' with columns: VM Name, CPUs, Mem (MB), Nic/IP, Power On, Boot Order Override, VM Firmware, Remove VMware Tools, Retain MAC, Service Account Override, and Storage Class Override. The table shows two entries: 'ShiftDemo-RHB' and 'ShiftDemo-W2K22', both with 4 CPUs, 8192 MB, Nic/IP 10.192.112.85, Power On, Boot Order 3, BIOS firmware, and Retain MAC selected. The 'Service Account Override' dropdown is set to 'nimmas'. At the bottom are 'Previous' and 'Continue' buttons.

The configuration selection allows you to select the disk image format, skip override prepareVM, and choose whether to split the volume from the parent. By default, split clone is disabled and the workflow defaults to RAW format.

8. Configure IP settings:

- **Do not configure:** Default option
- **Retain IP:** Keep same IPs from source system
- **DHCP:** Assign DHCP on target VMs

Ensure VMs are powered on during prepareVM phase and VMware Tools are installed.

9. Configure VM settings:

- Resize CPU/RAM parameters (optional)
- Modify boot order and boot delay
- **Power ON:** Select to power on VMs after migration (default: ON)
- **Remove VMware tools:** Remove VMware Tools after conversion (default: selected)
- **VM Firmware:** BIOS > BIOS and EFI > EFI (automatic)
- **Retain MAC:** Keep MAC addresses for licensing requirements

If interface name needs to be retained while retaining the MAC address, ensure appropriate udev rules are created on the source VM.

- **Service Account override:** Specify separate service account if needed

10. Click **Continue**.

11. (Optional) Schedule the migration by selecting a date and time.

Schedule migrations at least 30 minutes ahead to allow time for VM preparation.

12. Click **Create Blueprint**.

Result

The Shift Toolkit initiates a prepareVM job that runs scripts on source VMs to prepare them for migration.

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site	Actions
DemoOCPvBP	Source	Preparevm In Progress	Not Available	DemoSrc-VMware	DemoOCPv	Resource Groups ...
DemoBP-OLVM	Destination	Migration Complete	Healthy	DemoSrc-VMware	Destn-OLVM	Resource Groups ...

The preparation process:

- Injects scripts to update VirtIO drivers, install qemu-agent, remove VMware tools, backup IP details, and update fstab
- Uses PowerCLI to connect to guest VMs (Linux or Windows) and update VirtIO drivers
- For Windows VMs: Stores scripts in C:\\NetApp
- For Linux VMs: Stores scripts in /NetApp and /opt

For any supported VM OSes, the Shift Toolkit automatically installs necessary VirtIO drivers before disk conversion to ensure successful boot after conversion.

When prepareVM completes successfully, the blueprint status updates to "PrepareVM Complete." Migration will now happen at the scheduled time or can be started manually by clicking the **Migrate** option.

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site	Actions
DemoOCPvBP	Source	Preparevm Partially Complete	Healthy	DemoSrc-VMware	DemoOCPv	Resource Groups ...
DemoBP-OLVM	Destination	Migration Complete	Healthy	DemoSrc-VMware	Destn-OLVM	Resource Groups ...

Show example

The screenshot shows the NetApp Shift Toolkit interface. At the top, there are navigation links: NetApp, Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, Job Monitoring, and a set of icons for notifications, settings, and help. Below the navigation, there are three main sections: 'Blueprints' (2), 'Resource Groups' (2), and 'Source Details' (1 Site, 1 vCenter) and 'Destination Details' (2 Sites, 1 Oracle Cluster, 1 oVirt). The 'Blueprints' section lists two entries: 'DemoOCPvBP' (Source, Preparativm Partially Complete, Healthy, DemoSrc-VMware, DemoOCPv) and 'DemoBP-OLVM' (Destination, Migration Complete, Healthy, DemoSrc-VMware, Destn-OLVM). A context menu is open for 'DemoOCPvBP', with 'Migrate' highlighted. Other options in the menu include 'Edit Blueprint', 'Prepare VM', 'Test Migrate', 'Run Compliance', and 'Delete Blueprint'.

Step 4: Execute the migration

Trigger the migration workflow to convert VMs from VMware ESXi to OpenShift Virtualization.

Before you begin

All VMs are gracefully powered off according to the planned maintenance schedule.

Steps

1. On the blueprint, click **Migrate**.

Show example

The screenshot shows the 'Migrate Steps' screen for the 'Migration Plan: DemoOCPvBP'. The steps are listed as follows:

- Checking if a snapshot can be triggered on the volumes in parallel (Success, 0.6 Seconds)
- Deleting existing snapshots for all VMs in the setup (Success, 63.5 Seconds)
- Triggering VM snapshots for resource groups at source before disk conversion (in parallel) (Success, 30.3 Seconds)
- Triggering volume snapshots before disk conversion in parallel (Success, 5.8 Seconds)
- Cleaning up VMs in target (in sequence) (Success, 8.5 Seconds)
- Cleaning up PVCs in target (in sequence) (Success, 12.8 Seconds)
- Cloning volumes on source (in parallel) (Success, 30.6 Seconds)
- Converting disks for VM - ShiftDemo-RH8 (Success, 66.7 Seconds)
- Converting disks for VM - ShiftDemo-W2K22 (Success, 53.7 Seconds)

A red box highlights the last two steps: 'Converting disks for VM - ShiftDemo-RH8' and 'Converting disks for VM - ShiftDemo-W2K22'.

2. The Shift Toolkit performs the following steps:

- Deletes existing snapshots for all VMs in the blueprint
- Triggers VM snapshots at the source
- Triggers volume snapshot before disk conversion
- Clones the individual volumes
- Converts VMDK to RAW format for each VMDK

The Shift Toolkit automatically finds all VMDKs associated with each VM, including the primary boot disk.

If there are multiple VMDK files, each VMDK will be converted. In this release (v4.0), each VMDK should be placed on an individual volume/datastore.

- Cleans up the volumes to have just the disk.img file

With the virtual machine disk image converted to RAW format, the Shift Toolkit cleans up the volumes, renames the raw file to disk.img, and assigns necessary permissions.

- Imports the volumes as PVCs using Trident import

The volumes are then imported as PVCs using NetApp Trident APIs.

- Creates VMs using VM-specific yaml files

Once the PVCs are imported and PVs are in place, the Shift Toolkit uses OC CLI to create each VM depending on the OS using yaml files.

VMs are created under the "Default" namespace.

- Powers on VMs at the target

Depending on the VM OS, the Shift Toolkit auto-assigns the VM boot option along with storage controller interfaces. For Linux distributions, VirtIO or VirtIO SCSI is used. For Windows, the VM powers on with SATA interface, then the scheduled script auto-installs VirtIO drivers and changes the interface to VirtIO.

- Registers networks on each VM

Networks are assigned based on the blueprint selection.

- Removes VMware tools and assigns IP addresses using cron jobs

Show example

Use Migration Toolkit for Virtualization with Shift Toolkit

This section describes how to use Migration Toolkit for Virtualization (MTV) with NetApp Shift Toolkit for seamless migration to Red Hat OpenShift Virtualization.

Before you begin

Ensure the following prerequisites are met:

- OpenShift cluster with OpenShift Virtualization operator and NetApp Trident CSI driver installed
- MTV 2.9.4 (which includes conversion mode)
- [Shift Toolkit](#) installed

Since only Shift Toolkit API is used, there is no need to configure Shift Toolkit resource groups or blueprints.

- Administrator level privileges on the OpenShift cluster
- A Linux instance with tridentctl and OC command line tool installed
 - Kubeconfig exported or OC login executed to connect to the cluster
 - Download the script named "OpenShift-MTV" from Shift Toolkit UI ([Settings > Developer Access > Script Blocker](#))
 - Unzip the file: `unzip openshift-mtv.zip`
 - Ensure Python3 is installed: `dnf install python3`
 - Install OpenJDK 8 or later: `yum install java-1.8.0-openjdk`
 - Install requirements: `pip install -r requirements.txt`
- **Virtual Machine requirements for MTV:** VMDKs for a VM must be placed on individual volumes. For a

VM with 3 disks, each disk should be on its individual volume (mapping datastore to PVC construct). This must be done manually using storage vmotion.

Steps

1. Create migration plans using MTV.

To leverage fast VMDK conversion, create a migration plan for the VMs and ensure the following parameters are in the YAML:

- targetNamespace: default
- type: conversion
- storage: {}

The plan should be created beforehand to ensure preserve IP settings are configured by MTV.

2. Map VMs from vCenter and volumes on ONTAP storage.

Use the script to create necessary PVCs and import them to the OpenShift cluster. The PVCs must have the following labels and annotations:

Labels:

- vmID and vmUUID in the PVC (Forklift looks for these values)

Annotation:

- The vmdk disk name for `forklift.konveyor.io/disk-source`

The script ensures these attributes are set for every PVC and updates disk.img permissions:

- "owner": { "id": 107 }
- "group": { "id": 107 }
- "mode": "0655"

3. Update the JSON file with the following details:

- **ONTAP Cluster:** Can be a SVM; vsadmin can be used. Set splitclone to "False" if clone volume doesn't need immediate detachment
- **vCenter:** Minimum RBAC rights to discover VMs and associated VMDK files
- **Trident storage class:** Should be NFS backend with correct version in yaml
- **OpenShift:** Specify the project name (default is used as an example)

Keep the rest of the values as default.

4. Once prerequisites are met, execute `python3 main.py` to create PVCs and import them to the OpenShift Cluster.
5. Once PVCs are imported, trigger migration using MTV to create the VM with the appropriate specification.

Show example

```
root@JM-Nim-U25:/home/tmeadmin/openshift-mtv/openshift-mtv# python3 main.py
[2025-09-12 12:08:02][INFO] Script started
/usr/lib/python3/dist-packages/urllib3/connectionpool.py:1097: InsecureRequestWarning: Unverified HTTPS request is being made to host '10.61.182.18'. 
strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings
warnings.warn(
[2025-09-12 12:08:02][INFO] Shift session created successfully.
[2025-09-12 12:08:02][INFO] SSL certificate validation disabled.
[2025-09-12 12:08:02][INFO] Connecting to vCenter server 172.21.155.200 ...
[2025-09-12 12:08:02][INFO] Connected to vCenter 172.21.155.200
+-----+-----+-----+-----+-----+
| Name | NumCpu | MemoryGB | Firmware | BootDisk | PrimaryIPv4 | OSFullName |
+-----+-----+-----+-----+-----+
| RH9-TVM01 | 2 | 4 | efi | RH9-TVM01.vmdk | | Red Hat Enterprise Linux 9 (64-bit) |
+-----+-----+-----+-----+-----+
[2025-09-12 12:08:03][INFO] Snapshot shift-script.2025-09-12_120803 created for OSDisk 250624
[2025-09-12 12:08:08][INFO] Cloned volume OSDisk_250624_clone created with job uuid 1b19523e-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:08:11][INFO] Started VMDK to RAW conversion for RH9-TVM01, polling status...
[2025-09-12 12:08:11][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:08:24][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:08:26][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:08:28][INFO] RAW conversion succeeded for RH9-TVM01.
[2025-09-12 12:08:33][INFO] Successfully deleted RH9-TVM01 in volume 1b195077-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:08:33][INFO] Data LIF: 10.61.181.222
[2025-09-12 12:08:33][INFO] Cloned volume mount: OSDisk_250624_clone
[2025-09-12 12:08:33][INFO] Unmounted (forced) /mnt/OSDisk_250624_clone
[2025-09-12 12:08:33][INFO] Deleted mount directory /mnt/OSDisk_250624_clone
[2025-09-12 12:08:33][INFO] Mounted 10.61.181.222:/OSDisk_250624_clone to /mnt/OSDisk_250624_clone and set permissions on disk.img.
[2025-09-12 12:08:33][INFO] Mounted and set permissions for OSDisk 250624 clone/disk.img
[2025-09-12 12:08:34][INFO] Snapshot shift-script.2025-09-12_120833 created for RH9_Disk01_250624
[2025-09-12 12:08:40][INFO] Cloned volume RH9_Disk01_250624_clone created with job uuid 2e817a5c-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:08:46][INFO] Started VMDK to RAW conversion for RH9-TVM01, polling status...
[2025-09-12 12:08:59][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:09:01][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:09:03][INFO] RAW conversion succeeded for RH9-TVM01.
[2025-09-12 12:09:08][INFO] Successfully deleted RH9-TVM01 in volume 2e817895-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:09:08][INFO] Data LIF: 10.61.181.222
[2025-09-12 12:09:08][INFO] Cloned volume mount: RH9_Disk01_250624_clone
[2025-09-12 12:09:08][INFO] Unmounted (forced) /mnt/RH9_Disk01_250624_clone
[2025-09-12 12:09:08][INFO] Deleted mount directory /mnt/RH9_Disk01_250624_clone
[2025-09-12 12:09:08][INFO] Mounted 10.61.181.222:/RH9_Disk01_250624_clone to /mnt/RH9_Disk01_250624_clone and set permissions on disk.img.
[2025-09-12 12:09:08][INFO] Mounted and set permissions for RH9_Disk01_250624_clone/disk.img
[2025-09-12 12:09:08][INFO] Snapshot shift-script.2025-09-12_120908 created for RH9_Disk02_250624
[2025-09-12 12:09:13][INFO] Cloned volume RH9_Disk02_250624_clone created with job uuid 422d2fe0-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:09:16][INFO] Started VMDK to RAW conversion for RH9-TVM01, polling status...
[2025-09-12 12:09:30][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:09:32][INFO] RAW conversion in progress for RH9-TVM01... waiting 2s
[2025-09-12 12:09:34][INFO] RAW conversion succeeded for RH9-TVM01.
[2025-09-12 12:09:40][INFO] Successfully deleted RH9-TVM01 in volume 422d2e38-8ff3-11f0-b6b9-d039eaa90f47
[2025-09-12 12:09:40][INFO] Data LIF: 10.61.181.222
[2025-09-12 12:09:40][INFO] Cloned volume mount: RH9_Disk02_250624_clone
[2025-09-12 12:09:42][INFO] Unmounted (forced) /mnt/RH9_Disk02_250624_clone
[2025-09-12 12:09:42][INFO] Deleted mount directory /mnt/RH9_Disk02_250624_clone
[2025-09-12 12:09:42][INFO] Mounted 10.61.181.222:/RH9_Disk02_250624_clone to /mnt/RH9_Disk02_250624_clone and set permissions on disk.img.
[2025-09-12 12:09:42][INFO] Mounted and set permissions for RH9_Disk02_250624_clone/disk.img
[2025-09-12 12:09:42][INFO] Snapshot shift-script.2025-09-12_120924 created for RH9_Disk03_250624
```

Show example

PVC osdisk-250624 -clone	NS default	Bound	PV pvc-e3a08acl-322d-46ab-bc4efc4618554642	40 GiB	45.63 GiB	SC ontap-nas-sc	
PVC rh9-disk01-250624 -clone	NS default	Bound	PV pvc-c76f1d4-c405-453-a365-91d97a7d9d51	500 GiB	185.5 MiB	SC ontap-nas-sc	
PVC rh9-disk02-250624 -clone	NS default	Bound	PV pvc-90f948c7-9360-4ebb-a8fb-77c8f5ee9570	500 GiB	157.4 MiB	SC ontap-nas-sc	
PVC rh9-disk03-250624 -clone	NS default	Bound	PV pvc-5b139e0d-0e31-4958-9802-eb027aba02ad	500 GiB	131.5 MiB	SC ontap-nas-sc	

6. Convert VMDK with MTV.

The script automatically finds all VMDKs associated with each VM, including the primary boot disk.

If there are multiple VMDK files, each VMDK will be converted.

7. Upload RAW image to OpenShift Virtualization.

The script uses Trident CSI to import volumes as PVCs to the cluster. The PVC yaml is populated with labels and annotations.

8. Create virtual machine with MTV.

After import, call the MTV plan to start migration. The UI shows as "Cold," but based on the yaml specification of conversion, MTV checks for each PVC and the vmID/vmUUID, maps them, and initializes the migration.

Show example

Name	Pipeline status	Disk transfer	Disk counter	Started at	Completed at
VM RH9-TVM01	Succeeded	-	-	Sep 12, 2025, 9:12 AM	Sep 12, 2025, 9:18 AM

Migration progress		
Cold		
Name	Description	Completed at
✓ Initialize	Initialize migration.	Sep 12, 2025, 9:12 AM
✓ ImageConversion	Convert image to kubevirt.	Sep 12, 2025, 9:18 AM
✓ VirtualMachineCreation	Created RH9-TVM01	Sep 12, 2025, 9:18 AM

VMs are created under "Default" project for virtual machines, but this can be modified within the MTV migration plan YAML.

9. Boot VM for the first time with MTV.

Depending on the VM OS, MTV auto-assigns the VM boot option along with storage controller interfaces.

Show example

Migration history			
Migration	VMs	Started at	Completed at
nimttts-rgr2f	Succeeded 1	Sep 12, 2025, 9:12 AM	Sep 12, 2025, 9:18 AM

Migration completed in 6 minutes for a VM with 1.5TB data disk (spread across 3 PVCs). This showcases a streamlined, low-impact approach to re-homing VMs using ONTAP storage.

Before getting started with this specific integration, contact your Red Hat account team.

Video demonstration

The following video demonstrates the process outlined in this solution.

[Zero touch migration from ESX to Red Hat OpenShift Virtualization \(OSV\)](#)

Migrate VMs from VMware ESXi to Red Hat OpenShift Virtualization using Shift toolkit and Migration Toolkit for Virtualization

This section covers how Migration toolkit for virtualization (MTV) and NetApp Shift Toolkit brings seamless migration experience to Red Hat OpenShift Virtualization and provides a

step-by-step guide on transitioning to OpenShift Virtualization using Migration toolkit for virtualization and Shift Toolkit's conversion capabilities.

Before you begin

Verify that the following prerequisites are met before starting the migration.

Red Hat OpenShift Virtualization requirements

- OpenShift cluster is network reachable
- OpenShift Cluster endpoint with the following operators installed:
 - OpenShift Virtualization operator
 - NetApp Trident operator
- NetApp Trident CSI configured with appropriate backends and storage classes
- NodeNetworkConfigurationPolicy and NetworkAttachmentDefinitions (NAD) configured with proper VLANs
- MTV 2.9.4 or later (which includes the conversion mode)
- Service account token with cluster-admin privileges

VMware requirements

- Account with minimal permissions. Refer to this section [for the minimum privileges needed](#)
- VMDKs must be placed on individual volumes (mimicking VMDK to a PVC/PV construct) using svmotion

This limitation will be removed in the next release where NAS-economy driver can be used for PVC provisioning.

Use the script available within the Script block (**Settings > Developer Access > Script block**) to enable PVC placement on a qtree, or allows importing the volume as-is, or cloning and importing the volume, eliminating the need for manual vMotion operations.

- VMware tools are running on guest VMs
- The operating system of each VM is certified and supported as a guest operating system for conversions
- IP addresses, VLANs, and other network configuration settings must not be changed before or during migration. The MAC addresses of the virtual machines are preserved during migration.

Step 1: Create migration plans using Migration Toolkit for Virtualization

1. To leverage the lightning fast conversion of VMs, the first step is to create a migration plan for the VMs using MTV via [web console](#) or the [command line](#).

The plan should be created beforehand to ensure the preserve IP settings are configured by MTV.

Procedure

- a. Log in to the MTV web console.
- b. Add Source and Destination Providers
- c. Create a Migration Plan in the Target Namespace
 - After providers are configured, create a migration plan and select the appropriate source and

destination providers within the target namespace

Show example

The screenshot shows the 'Create migration plan' wizard in the Red Hat OpenShift web interface. The 'Plan name' field is set to 'shiftmydemo' and the 'Plan project' is set to 'openshift-mtv'. The 'Source and target providers' section is highlighted with a red box. The 'Source provider' dropdown is set to 'mtvvmwvc' and the 'Target provider' dropdown is set to 'host'. A note on the right side of the interface states: 'The same source and target hypervisor details should be added within Shift toolkit so Shift toolkit can use APIs to talk to MTV and fetch the migration plan and appropriate mappings configured within the YAML'.

Show example

The screenshot shows the 'Create migration plan' wizard in the Red Hat OpenShift web interface. The 'Plan project' dropdown is set to 'openshift-mtv'. The 'Source and target providers' section is highlighted with a red box. The 'Source provider' dropdown is set to 'mtvvmwvc' and the 'Target provider' dropdown is set to 'host'. A note on the right side of the interface states: 'The same source and target hypervisor details should be added within Shift toolkit so Shift toolkit can use APIs to talk to MTV and fetch the migration plan and appropriate mappings configured within the YAML'.

d. Select the VMs to Migrate

- Identify and choose the virtual machines that will be included in the migration.

Show example

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

Create migration plan

1 Basic setup

General

Virtual machines

Network map

Storage map

Migration type

2 Additional setup

Other settings (optional)

Hooks (optional)

3 Review and create

Back Next Cancel

e. Configure Network and Storage Mappings

- Either select existing mappings or create new ones to align source networks and storage with the destination environment.

Show example

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

Create migration plan

1 Basic setup

General

Virtual machines

Network map

Storage map

Migration type

2 Additional setup

Other settings (optional)

Hooks (optional)

3 Review and create

Source network Target network

PG_VMN_1172 default/vm-vlan-1172

Add mapping

Network map name

Back Next Cancel

Show example

The screenshot shows the 'Create migration plan' wizard in Red Hat OpenShift. The left sidebar shows the 'Migration plans' option is selected. The main panel is titled 'Create migration plan' and is on step 1, 'Basic setup'. The 'Storage map' section is highlighted with a red box. It shows a table for mapping source storage to target storage. The table has four rows:

Source storage	Target storage
mtvlinos	nimnas
mtvlinodata01	nimnas
mtvlinodata02	nimnas
mtvlinodata03	nimnas

At the bottom of the panel are 'Back', 'Next', and 'Cancel' buttons.

f. Choose Migration Type

- Keep the default migration type initially; this will be updated during the migration process to reflect the conversion type.

Show example

The screenshot shows the 'Create migration plan' wizard in Red Hat OpenShift. The left sidebar shows the 'Migration plans' option is selected. The main panel is titled 'Create migration plan' and is on step 1, 'Basic setup'. The 'Migration type' section is highlighted with a red box. It shows two options:

- Cold migration
A cold migration moves a shut-down VM between hosts.
- Warm migration
A warm migration moves an active VM with minimal downtime (not zero-downtime).

To the right of the 'Cold migration' option is a note: 'Select Cold migration. This will be modified to type: conversion so as to use the fast migration method'. At the bottom of the panel are 'Back', 'Next', 'Skip to review', and 'Cancel' buttons.

g. Keep default options

- Retain the default settings. Additionally, select the option to preserve static IP and specify the desired state of the VM after migration.

Show example

The screenshot shows the 'Create migration plan' interface in the Red Hat OpenShift Migration UI. The 'Additional setup' step is currently selected. Key configuration options shown include:

- Use network-bound disk encryption (NBDE/Clevi) (checkbox)
- Disk decryption passphrases (input field)
- Transfer network (dropdown: Target provider default)
- Preserve static IPs (checkbox checked)
- VM target power state (dropdown: Powered on)

At the bottom are buttons for Back, Next, Skip to review, and Cancel.

h. Review and Finalize

- Review all settings carefully, then click Finish to create the migration plan.

Show example

The screenshot shows the 'Create migration plan' interface in the Red Hat OpenShift Migration UI, specifically in the 'Review and create' mode. The 'Additional setup' step is selected. The summary of the migration plan settings is as follows:

- General:
 - Plan name: shiftmtvdemo
 - Plan project: openshift-mtv
 - Source provider: mtvvmwvc
 - Target provider: host
 - Target project: default
- Virtual machines:
 - Selected VMs: 2 virtual machine selected

At the bottom are buttons for Back, Create plan (highlighted with a red box), and Cancel.

- Once the migration plan is created, copy the name of the migration plan and head over to Shift toolkit UI.
- Add the source and destination hypervisors. Follow this link [to create sites](#)

The endpoint configured in the Shift Toolkit must match the format used when adding it through the MTV console. For example, if the source or destination endpoint was added using FQDN, the same FQDN should be used in the Shift Toolkit.

Show example

4. Navigate to Blueprints and Create a New Blueprint.

- After completing the previous steps, go to Blueprints and select Create new blueprint using MTV plan.

Unlike the standard workflow in Shift Toolkit, there is no need to manually create a resource group when using an MTV plan-based migration. Shift Toolkit automatically generates resource groups and applies the necessary mappings based on the migration plan YAML.

Show example

The screenshot shows the Shift Toolkit interface with the 'Blueprints' tab selected. At the top, there are summary counts for Blueprints (3), Resource Groups (3), Sites (2), and vCenters (2). Below this is a table of existing blueprints:

Name	Active Site	Status	Compliance	Source Site	Destination Site	Actions
tstshiftbub	Destination	Migration Complete	Healthy	mtv	DemoDestOCPv	Resource Groups ...
DemoOCPvBP02	Source	Active	Partially Healthy	DemoSRCvmw	DemoDestOCPv	Resource Groups ...
DemoOCPmigBP	Source	Active	Partially Healthy	DemoSRCvmw	DemoDestOCPv	Resource Groups ...

At the top right, there is a 'Create New Blueprint' button with a dropdown menu. The 'Create new blueprint using MTV plan' option is highlighted with a red box. The URL <https://10.192.112.79:3001/drplans#> is visible at the bottom of the page.

5. Select Destination and Migration Plan.

- Choose the destination site and the corresponding OpenShift endpoint. After that, select the migration plan retrieved from the specified cluster, which contains the VMs to be migrated.

Show example

The screenshot shows the 'Create New Blueprint' wizard at the 'Plan and Site Details' step. The steps are numbered 1 through 5. The 'Blueprint Details' section shows a 'Blueprint Name' of 'MTVDemoBP'. The 'Resource Mapping' section shows 'Source Site' as 'mtv' and 'Destination Site' as 'DemoDestOCPv'. The 'Source vCenter' is '10.63.172.125' and the 'Destination OpenShift' is 'api.demomigsno.demoval.com'. The 'MTV Plan Details' section shows a 'Migration plan' dropdown with 'shiftmtvdemo' selected. The 'Cluster and Namespace Mapping' section shows a table with 'MTV-Cluster01' in the 'Source Resource' column and 'default' in the 'Destination Resource' column. A 'Continue' button is at the bottom.

6. The resource group and mappings will all be autoconfigured based on the migration plan yaml.

Show example

Migration Details

Select Execution Order

Resource Group Name	Execution Order
mtv-shiftmtvdemo-rg	3

Network Mapping

Source Resource	Destination Resource
PG_VMN_1172	vm-vlan-1172

Datastore Mapping

Source Datastore	Storage Class	Volume	Trident Backend Configuration
mtwvino	nimnas	mtwvino	tbc-ontap-nassecond

Show more

Previous Continue

7. Choose the PVC import option. By default, the setting is Clone and import the volume.

Volumes can also be imported directly without creating a clone.

Show example

Virtual Machines Details

Configuration Selection (→)

Disk image format

Import volume	
<input checked="" type="radio"/> Clone and import volume	<input type="radio"/> Direct import
<input type="checkbox"/> Enable SplitClone	

2 VMs

VM Name	CPUs	Mem (MB)	NIC/IP
Resource Group : mtv-shiftmtvdemo-rg			
MTV-Demo-W2K22	4	8192	10.63.172.104
MTV-Demo-RH86	4	8192	No IP

Previous Continue

8. Once done, create the blueprint.

9. Trigger the migration by clicking on migration against the blueprint.

The VMs should be powered OFF before triggering the migration. MTV will bring up the VM based on the VM target power state attribute.

Show example

The screenshot shows the Shift Toolkit interface with the following details:

- Header:** NetApp Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, Job Monitoring.
- Top Summary:** 4 Blueprints, 4 Resource Groups, Source Details (2 Sites, 2 vCenters), Destination Details (1 Site, 1 Cluster).
- Blueprint List:** 4 Blueprints listed in a table:

Name	Active Site	Status	Compliance	Source Site	Destination Site	Actions
MTVDemoBP	Source	Active	Healthy	mtv	DemoDestOCPv	Resource Groups ...
ttshiftubu	Destination	Migration Complete	Healthy	mtv	DemoDestOCPv	Resource Groups Blueprint Details Migrate Run Compliance Delete Blueprint
DemoOCPvBP02	Source	Active	Partially Healthy	DemoSRCvmw	DemoDestOCPv	Resource Groups
DemoOCPmigBP	Source	Active	Partially Healthy	DemoSRCvmw	DemoDestOCPv	Resource Groups
- Context Menu (for 'Migrate' button):** Migrate, Run Compliance, Delete Blueprint.

10. Shift toolkit executes the workflow steps to convert the disk format, import the PVCs and creating the VM using OpenShift APIs.

Show example

The screenshot shows the Shift Toolkit interface with the 'Migrate Steps' page. The migration plan is 'MTVDemoBP'. The steps listed are:

- Checking if a snapshot can be triggered on the volumes in parallel (Success, 0.5 Seconds)
- Deleting existing snapshots for all VMs in the setup (Success, 0.3 Seconds)
- Triggering VM snapshots for resource groups at source before disk conversion (in parallel) (Success, 30.2 Seconds)
- Triggering volume snapshots before disk conversion in parallel (Success, 5.6 Seconds)
- Cleaning up PVCs in target (in sequence) (Success, 13.7 Seconds)
- Cloning volumes on source (in parallel) (Success, 30.5 Seconds)
- Converting disks for VM - MTV-Demo-RH86 (Success, 69.6 Seconds)
- Converting disks for VM - MTV-Demo-W2K22 (Success, 56.9 Seconds)

A red box highlights the last two steps, which are noted to have converted **~12TB of data (spread across 8 VMDKs) converted in 2 mins**.

11. After all PVCs are in place as specified and Shift Toolkit triggers MTV, the MTV migration workflow is initiated.
 - a. The Migration Controller creates a VirtualMachineImport (VMI) custom resource (CR) for each source VM.
 - b. Since the PVCs are already imported by Shift Toolkit, the Virtual Machine Import Controller launches a Conversion Pod with the PVCs attached.
 - c. The Conversion Pod runs virt-v2v, installing and configuring device drivers on the PVCs for the target VM.
 - d. The Virtual Machine Import Controller then creates a VirtualMachineInstance (VMI) CR.
 - e. When the target VM powers on, the KubeVirt Controller creates a VM Pod, which runs QEMU-KVM with the PVCs attached as VM disks.

Show example

The screenshot shows the Red Hat OpenShift Migration UI. On the left, a sidebar menu is open under the 'Administrator' section, with 'Migration plans' selected. The main content area shows a 'shiftmtvdemo' migration plan under the 'shiftmtvdemo' project. The 'Virtual machines' tab is selected. A table lists two VMs: 'VM MTV-Demo-RH86' and 'VM MTV-Demo-WK22'. Both VMs are in a 'Succeeded' state. A red box highlights the 'Migration progress' section for the first VM, which shows three steps: 'Initialize', 'ImageConversion', and 'VirtualMachineCreation', all completed successfully. Another red box highlights the 'Migration resources' section for the second VM, which also shows a 'Succeeded' status. A message at the bottom of the table states 'Migration of 2 VMs (12TB of data) completed in <10 mins'.

12. When all VMs have been migrated, the Migration Controller updates the migration plan status to Completed. The original power state of each source VM is preserved after migration.

Show example

The screenshot shows the Red Hat OpenShift Virtual Machines UI. On the left, a sidebar menu is open under the 'Administrator' section, with 'VirtualMachines' selected. The main content area shows a 'VirtualMachines' table with two entries: 'mtv-demo-rh86' and 'mtv-demo-wk22'. Both VMs are in a 'Running' state. A red box highlights the table, showing the VM names, namespaces (both are 'default'), and status ('Running'). The 'Conditions' column indicates 'LiveMigratable=True' for both VMs. The 'Node' column shows the node names '00-50-56-9e-88...' for both VMs. The 'IP address' column shows the IP addresses '10.72.10.11' and '10.72.10.12' respectively.

Show example

This shows Shift toolkit along with MTV simplifying the migration at lighting speed. In this example, 2 VMs with a total of 12TB was migrated. The entire process completed in around 8-10 mins.

What's happening behind the scenes:

The following sections describe the steps triggered by Shift Toolkit APIs and MTV to convert VMDK files and create virtual machines on the OpenShift platform. This workflow remains consistent whether initiated through the Shift Toolkit UI or via scripts provided within Shift Toolkit Script Blocks.

Convert VMDK

Shift toolkit will automatically find the VMDKs associated with each VM including the primary boot disk.

If there are multiple VMDK files, each VMDK will be converted.

Volume Import and Migration Plan Configuration

Shift Toolkit uses Trident CSI to import volumes as PVCs into the cluster. Each PVC manifest is populated with specific labels and annotations to ensure MTV recognizes them:

- Labels
 - vmID
 - vmUUID
- Annotation:
 - vmdk disk path

Additionally, permissions on the disk.img file are updated. The permissions are modified using a POD that is deployed on the fly to mount the imported PVCs and set the permissions as follows:

- "owner": { "id": 107 }, "group": { "id": 107 }, "mode": "0655"

Important Notes:

- Forklift checks for vmID and vmUUID in the PVC.
- Forklift uses the disk name (VMDK path) for forklift.konveyor.io/disk-source.
- The number of imported PVCs must match the number of disks associated with the source VM. For example, if a VM has three VMDKs but four PVCs are imported with matching IDs, MTV will not update the migration plan status to "Ready to start."

Once these steps are complete, Shift Toolkit patches the migration plan YAML so MTV understands that PVCs should be used directly, bypassing the data populator pod process (which is typically time-consuming). The patched YAML includes:

- targetNamespace: default
- type: conversion
- storage: {}

Start Migration Process

Once the configuration is complete, MTV is invoked to begin the migration. The UI will display the migration type as Cold, but based on the YAML specification for conversion, MTV validates each PVC against the associated vmID and vmUUID, maps them accordingly, and then initializes the migration.

.Show example

Name	Pipeline status	Disk transfer	Disk counter	Started at	Completed at
VM MTV-Demo-RH86	Succeeded	-	-	Nov 25, 2025, 4:59 AM	Nov 25, 2025, 5:07 AM
VM MTV-Demo-W2K22	Succeeded	-	-	Nov 25, 2025, 4:59 AM	Nov 25, 2025, 5:05 AM

VMs are created under “Default” project for virtual machines, however it can be modified within the MTV migration plan YAML.

Shift Toolkit accelerates migration by simplifying the process, minimizing downtime, and eliminating the need for ESXi host access or VDDK-based approaches.

Before getting started with this specific integration, contact your Red Hat account team.

Migrate VMs from VMware ESXi to Oracle Linux Virtualization Manager

Migrate VMs from VMware ESXi to Oracle Linux Virtualization Manager (OLVM) using the Shift Toolkit by preparing VMs, converting disk formats, and configuring the target environment.

The Shift Toolkit enables VM migration between virtualization platforms through disk format conversion and network reconfiguration on the destination environment.

Before you begin

Verify that the following prerequisites are met before starting the migration.

Oracle Linux Virtualization Manager requirements

- Oracle Linux Virtualization Manager with Oracle Linux KVM hosts added to the datacenter
- ONTAP NFS storage added as storage domain
- Administrator level privileges on the cluster
- Oracle Linux Virtualization Manager and VDSM releases are ≥ 4.5
- Oracle Linux Virtualization Manager (destination) hosts are network reachable
- NFSv3 Storage domain configured with the appropriate volume and qtree
 - Ensure read-write access to the vdsms user (UID 36) and kvm group (GID 36) is allowed
- Networks configured with the appropriate VLANs

VMware requirements

- VM VMDKs are placed on NFSv3 volume (all VMDKs for a given VM should be part of the same volume)
- VMware tools are running on guest VMs
- VMs to be migrated are in a RUNNING state for preparation
- VMs must be powered off before triggering migration
- VMware tools removal happens on the destination hypervisor once VMs are powered on

Guest VM requirements

- For Windows VMs: Use local administrator credentials
- For Linux VMs: Use a user with permissions to execute sudo commands without password prompt
- For Windows VMs: Mount the VirtIO ISO to the VM (download from [here](#))

The preparation script uses the .msi package to install drivers and qemu-guest-agents.

Step 1: Add the destination site (OLVM)

Add the destination Oracle Linux Virtualization Manager environment to the Shift Toolkit.

Steps

1. Click **Add New Site** and select **Destination**.

Show example

The screenshot shows the 'Shift Toolkit' interface with a blue header bar. In the top left, there are icons for 'NetApp' and 'Shift Toolkit'. The top navigation bar includes 'Dashboard', 'Discover', 'Resource Groups', 'Blueprints', and 'Job Monitoring'. On the right side of the header are icons for 'Bell', 'Settings', 'Help', and a user profile. Below the header, a navigation bar has tabs: 'Add New Site' (highlighted in blue), 'Site Type' (selected), 'Site Details', and 'Hypervisor Details'. The main content area is titled 'Site Type'. It contains two buttons: 'Source' (with a server icon) and 'Destination' (with a cloud icon). The 'Destination' button is highlighted with a blue border. At the bottom of the screen is a blue 'Continue' button.

2. Enter the destination site details:

- **Site Name:** Provide a name for the site
- **Hypervisor:** Select OLVM
- **Site Location:** Select the default option

- **Connector:** Select the default selection

3. Click **Continue**.

Show example

The screenshot shows the 'Add New Site' wizard in the NetApp Shift Toolkit. The current step is 'Site Details' (Step 2). The 'Destination Site Details' page is displayed. The 'Site Name' field contains 'DemoOLVM'. The 'Hypervisor' dropdown menu is open, showing 'OLVM' selected and highlighted with a red box. Other options in the dropdown are 'KVM (conversion only)', 'OpenShift', and 'default-connector'. At the bottom of the page are 'Previous' and 'Continue' buttons.

4. Enter the OLVM details:

- **Endpoint:** IP address or FQDN of Virtualization Manager
- **Username:** Username in format `username@profile` (for example, `admin@internal`)
- **Password:** Password to access Virtualization Manager

5. Select **Accept Self signed certificate** and click **Continue**.

Show example

The screenshot shows the 'Add New Site' wizard in the NetApp Shift Toolkit. The current step is 'Hypervisor Details'. A red box highlights the 'OLVM Endpoint' field, which contains 'olvm8-vm01.demoval.com'. Below it are fields for 'OLVM Username' (admin@internal) and 'OLVM Password' (redacted). A checkbox for 'Accept self-signed certificates' is checked. At the bottom, there are 'Previous' and 'Create Site' buttons, with 'Create Site' being highlighted by a red box.

6. Click **Create Site**.

Show example

The screenshot shows the NetApp Shift Toolkit dashboard. It displays various connectivity statistics: 3 Sites, 1 vCenter, 2 oVirt, and 2 Datastores. Below this, there are sections for 'Site Type' (1 Source, 2 Destination) and 'Site Location' (3 On Prem, 0 Cloud). The main area is a 'Discovery Status' table with the following data:

Site Name	Site Type	Location	Hypervisor	Virtual Env	Storage	VM List	Discovery Status	Actions
DemoOLV1	Destination	On Prem	OLVM	1			olvm8-vm01.demoval.com	Success ...
Destn-OLV	Destination	On Prem	OLVM	1	1		olvm8-vm01.demoval.com	Success ...
DemoSrc-1	Source	On Prem	VMware	1	1	View VM List	s01-vc01.demoval.com	Success ...

The source and destination volume will be the same as the disk format conversion happens at the volume level within the same volume.

Step 2: Create resource groups

Organize VMs into resource groups to preserve boot order and boot delay configurations.

Before you begin

- Ensure qtrees are provisioned as specified in the prerequisites
- Move VMs to a designated datastore on a newly created ONTAP SVM before conversion to isolate production NFS datastores from the staging area

Steps

1. Navigate to **Resource Groups** and click **Create New Resource Group**.
2. Select the source site from the dropdown and click **Create**.
3. Provide resource group details and select the workflow:
 - **Clone based Migration**: Performs end-to-end migration from source to destination hypervisor
 - **Clone based Conversion**: Converts disk format to the selected hypervisor type
4. Click **Continue**.
5. Select VMs using the search option (default filter is "Datastore").

The datastore dropdown only shows NFSv3 datastores. NFSv4 datastores are not displayed.

6. Update migration details:
 - Select **Destination Site**
 - Select **Destination OLVM entry**
 - Configure Datastore to Qtree mapping

Show example

The screenshot shows the 'Create Resource Group' wizard in the NetApp Shift Toolkit. The current step is 'Destination Details'. A red box highlights the 'Datastore -> Qtree Mapping' section. Inside this section, there is a table with two columns: 'Source' and 'Destination QTree'. The 'Source' column contains 'C800_LargeDiskLin' and a 'Vmck List' button. The 'Destination QTree' column contains 'Dem...'. There is also an '→' button between the two columns. Below the table, there are 'Previous' and 'Continue' buttons.

Ensure the destination path (where the converted VMs are stored) is set to a qtree when converting VMs from ESXi to OLVM. Also ensure this qtree is added to the storage domain. Multiple qtrees can be created and used for storing converted VM disks.

7. Configure boot order and boot delay for all selected VMs:

- **1:** First VM to power on
- **3:** Default
- **5:** Last VM to power on

8. Click **Create Resource Group**.

Show example

The screenshot shows the NetApp Shift Toolkit interface. At the top, there are four summary icons: 2 Resource Groups, 1 Site, 1 vCenter, and 3 Virtual Machines. Below this is a navigation bar with tabs: Resource Groups, Dashboard, Discover, Resource Groups (selected), Blueprints, and Job Monitoring. On the right of the navigation bar are icons for notifications, settings, help, and user profile. The main content area shows a table for creating a new Resource Group. The table has columns for Resource Group Name, Site Name, Source Hypervisor, Workflow, Destination, and VM List. A row is selected for 'OLVMDemoRG' with 'DemoSrc-VMware' under Site Name, 'VCenter (s01-vc01.demoval.com)' under Source Hypervisor, 'Migration' under Workflow, and 'Configured' under Destination. A 'View VM List' button is also visible. A 'Create New Resource Group' button is located in the top right of the table area.

Result

The resource group is created and ready for blueprint configuration.

Step 3: Create a migration blueprint

Create a blueprint to define the migration plan, including platform mappings, network configuration, and VM settings.

Steps

1. Navigate to **Blueprints** and click **Create New Blueprint**.
2. Provide a name for the blueprint and configure host mappings:
 - Select **Source Site** and associated vCenter
 - Select **Destination Site** and associated OLVM target
 - Configure cluster and host mapping

Show example

Blueprint Details

Blueprint Name: OLVDemoBP

Resource Mapping

Source Site: DemoSrc-VMware Destination Site: DemoOLVM

Source vCenter: s01-v001.demoval.com Destination OLVM: olvm8-vm01.demoval.com

Cluster Mapping

No more Source/Destination resources available for mapping

Source Resource	Destination Resource	
s01-Cluster01	Default	Delete

Continue

3. Select resource group details and click **Continue**.
4. Set execution order for resource groups if multiple groups exist.
5. Configure network mapping to appropriate logical networks.

Networks should already be provisioned within OLVM with the appropriate VLAN tagging. For test migration, select "Do not configure Network" to avoid production network conflicts; manually assign network settings after conversion.

Show example

The screenshot shows the 'Migration Details' step in the NetApp Shift Toolkit. The 'Select Execution Order' section shows a resource group named 'OLVMDemoRG' with an execution order of 3. The 'Network Mapping' section shows a table with a single entry: 'PG_VMIN_142' as the source resource and 'Private' as the destination resource. The 'Datastore Mapping' section shows a table with a single entry: 'C800_LargeDiskLin' as the source datastore, 'C800_LargeDiskLin' as the destination volume, 'Demogqlinux' as the qtree, and 'Demogqlinux' as the storage domain. Both the 'Network Mapping' and 'Datastore Mapping' tables are highlighted with red boxes.

6. Review storage mappings (automatically selected based on VM selection).

Ensure the qtree is provisioned beforehand and necessary permissions are assigned so the virtual machine can be created and powered on from NFS volume.

7. Under VM details, select configuration details and provide service account credentials for each OS type:

- **Windows:** Use a user with local administrator privileges (domain credentials can also be used)
- **Linux:** Use a user that can execute sudo commands without password prompt

Show example

The screenshot shows the 'Virtual Machines Details' configuration screen in the NetApp Shift Toolkit. The 'Configuration Selection' section is highlighted, showing options for 'Disk image format' and 'Override prepareVM'. The 'Service Account' section is also highlighted, showing service accounts for Linux (tmadmin) and Windows (administrator). The 'IP Config' section is highlighted, showing IP configuration options for 1 VM, including 'Retain IP' (selected), 'Power On', 'Boot Order', 'VM Firmware', 'Remove VMware Tools', 'Retain MAC', and 'Service Account Override'.

The configuration selection allows you to select the disk image format and skip override prepareVM. The workflow defaults to QCOW2 format, but RAW format can be selected if required. The override prepareVM option allows administrators to skip VM preparation and run custom scripts.

8. Configure IP settings:

- **Do not configure:** Default option
- **Retain IP:** Keep same IPs from source system
- **DHCP:** Assign DHCP on target VMs

Ensure VMs are powered on during prepareVM phase and VMware Tools are installed.

9. Configure VM settings:

- Resize CPU/RAM parameters (optional)
- Modify boot order and boot delay
- **Power ON:** Select to power on VMs after migration (default: ON)
- **Remove VMware tools:** Remove VMware Tools after conversion (default: selected)
- **VM Firmware:** BIOS > BIOS and EFI > EFI (automatic)
- **Retain MAC:** Keep MAC addresses for licensing requirements
- **Service Account override:** Specify separate service account if needed

10. Click **Continue**.

11. Schedule the migration by selecting a date and time.

Schedule migrations at least 30 minutes ahead to allow time for VM preparation.

12. Click **Create Blueprint**.

Result

The Shift Toolkit initiates a prepareVM job that runs scripts on source VMs to prepare them for migration.

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site	Resource Groups	...
OLVMBP	Source	Preparevm Complete	Healthy	DemoSrc-VMware	Destn-OLVM	Resource Groups	...
OCPvDemoBP	Destination	Migration Complete	Healthy	DemoSrc-VMware	DemoOCPv	Resource Groups	...
DemoBP-OLVM	Destination	Migration Complete	Healthy	DemoSrc-VMware	Destn-OLVM	Resource Groups	...

The preparation process:

- Injects scripts to update VirtIO drivers, install qemu-agent, remove VMware tools, backup IP details, and update fstab
- Uses PowerCLI to connect to guest VMs (Linux or Windows) and update VirtIO drivers
- For Windows VMs: Stores scripts in C:\\NetApp
- For Linux VMs: Stores scripts in /NetApp and /opt

For any supported VM OSes, the Shift Toolkit automatically installs necessary VirtIO drivers before disk conversion to ensure successful boot after conversion.

When prepareVM completes successfully, the blueprint status updates to "PrepareVM Complete." Migration will now happen at the scheduled time or can be started manually by clicking the **Migrate** option.

Show example

Name	Active Site	Status	Compliance	Source Site	Destination Site	Resource Groups
OLVMBP	Source	Preparevm Complete	Healthy	DemoSrc-VMware	Destn-OLVM	DemoOCPV
OCPvDemoBP	Destination	Migration Complete	Healthy	DemoSrc-VMware	DemoOCPv	DemoOCPV
DemoBP-OLVM	Destination	Migration Complete	Healthy	DemoSrc-VMware	Destn-OLVM	DemoOCPV

Step 4: Execute the migration

Trigger the migration workflow to convert VMs from VMware ESXi to Oracle Linux Virtualization Manager.

Before you begin

All VMs are gracefully powered off according to the planned maintenance schedule.

Steps

1. On the blueprint, click **Migrate**.

Show example

Migrate Steps
Migration Plan: OLVMBP

Checking if a snapshot can be triggered on the volumes (in parallel)	Success	0.1 Seconds ⓘ
Deleting existing snapshots for all VMs in the setup	Success	0.2 Seconds ⓘ
Triggering VM snapshots for resource groups at source before disk conversion (in parallel)	Success	30.1 Seconds ⓘ
Triggering volume snapshots before disk conversion (in parallel)	Success	5.4 Seconds ⓘ
Cleaning up VMs in target (in sequence)	Success	0.3 Seconds ⓘ
Creating disks for all VMs (in parallel)	Success	0.4 Seconds ⓘ
Converting disks for VM - C800_Mig_U188	Success	14.9 Seconds ⓘ
Registering and Powering on VMs in protection group - OLVMRG - in target	Success	82.4 Seconds ⓘ

2. The Shift Toolkit takes the following actions:

- Deletes existing snapshots for all VMs in the blueprint
- Triggers VM snapshots at the source
- Triggers volume snapshot before disk conversion
- Converts VMDK to QCOW2 or RAW format for all VMs

The Shift Toolkit automatically finds all VMDKs associated with each VM, including the primary boot disk.

If there are multiple VMDK files, each VMDK will be converted.

- Uploads the QCOW2 or RAW image to OLVM storage domain

With the virtual machine disk image converted to QCOW2 or RAW format, the Shift Toolkit uploads the file to the appropriate storage domain and adds each disk.

- Creates virtual machines

The Shift Toolkit makes REST API calls to create each VM depending on the OS.

VMs are created under the "Default" cluster.

- Powers on VMs at the target

Depending on the VM OS, the Shift Toolkit auto-assigns the VM boot option along with storage controller interfaces. For Linux distributions, VirtIO or VirtIO SCSI is used. For Windows, the VM powers on with SATA interface, then the scheduled script auto-installs VirtIO drivers and changes the interface to VirtIO.

- Registers networks on each VM
 - Networks are assigned based on the blueprint selection.
- Removes VMware tools and assigns IP addresses using trigger scripts or cron jobs

Show example

Name	Comment	Host	IP Addresses	FQDN	Cluster	Data Center	Memory	CPU	Network	Graphics
C800_Mig_U18B		olvm8-vm02			Default	Default	29%	0%	0%	VNC
ShiftDemoRHB		olvm8-vm02	10.192.112.84 19...	ShiftDemoRHB	Default	Default	0%	0%	0%	VNC
ShiftDemoWin22		olvm8-vm02			Default	Default	20%	14%	0%	VNC

Video demonstration

The following video demonstrates the process outlined in this solution.

[Zero touch migration from ESX to Oracle Linux Virtualization Manager \(OLVM\)](#)

Convert VMs using the Shift Toolkit

Use the Shift Toolkit to convert VMware ESX virtual machine disks (VMDK) to Microsoft Hyper-V (VHDX) disk format or Red Hat KVM (QCOW2) disk format. This process includes setting up resource groups, creating conversion blueprints, and scheduling conversions.

Overview

Shift toolkit supports disk-level conversions of virtual disks between hypervisors for the following disk formats:

- VMware ESX to Microsoft Hyper-V (VMDK to VHDX)
- Microsoft Hyper-V to VMware ESX (VHDX to VMDK)
- VMware ESX to Red Hat KVM (VMDK to QCOW2)
- VMware ESX to Red Hat KVM (VMDK to RAW)

The converted qcows files are compatible with any KVM hypervisors. For example, a qcows file can be utilized with RHEL-based KVM using virt-manager to create a VM, as well as with ubuntu KVM Rocky Linux based KVM and others. The same can be used with Oracle Linux virtualization manager with a tweak and with OpenShift virtualization after importing using NetApp Trident. The goal is to provide the disk (converted in secs to mins) which can then be integrated into existing automation scripts used by organizations to provision the VM and assign the network. This approach helps reduce overall migration times, with disk conversion handled by Shift toolkit APIs and the remaining script bringing up the VMs.

Shift toolkit supports end-to-end migration from VMware to other compatible KVM hypervisors. However, convert option provides ability to migration administrators to run these conversion and migration APIs.

Convert to QCOW2 format

To convert the virtual disks to QCOW2 format with NetApp Shift toolkit, follow these high-level steps:

- Create a destination site type specifying KVM (conversion only) as the hypervisor.

 Hypervisor details are not required for KVM.

The screenshot shows the 'Destination Site Details' step of the 'Add New Site' wizard. The 'Site Name' field contains 'DemoKVM'. The 'Hypervisor' dropdown is set to 'KVM' and is highlighted with a red box. The 'Site Location' dropdown is set to 'On Prem'. The 'Connector' dropdown is set to 'default-connector'. At the bottom, there are 'Previous' and 'Continue' buttons.

- Create a resource group with the VMs for which the disk conversion is required

The screenshot shows the 'Resource Group Details' step of the 'Create Resource Group' wizard. The 'Resource Group Name' field contains 'Democow'. The 'Associated Site' dropdown is set to 'DemoSrc'. The 'Associated vCenter' dropdown is set to '172.21.156.110'. The 'Workflow' dropdown is set to 'Clone based Conversion' and is highlighted with a red box. At the bottom, there is a 'Continue' button.

- Create the blueprint to convert the virtual disk to QCOW2 format.

NetApp Shift Toolkit | Dashboard | Discover | Resource Groups | Blueprints | Job Monitoring | ? ! ? !

Create New Blueprint 1 Plan and Site Details 2 Select Resource Groups 3 Set Execution Order 4 Set VM Details 5 Schedule X

Blueprint Details

Blueprint Name: DemoqcowBP

Resource Mapping

Source Site: DemoSrc | Destination Site: DemoKVM

Source vCenter: 172.21.156.110

Continue

NetApp Shift Toolkit | Dashboard | Discover | Resource Groups | Blueprints | Job Monitoring | ? ! ? !

Create New Blueprint 1 Plan and Site Details 2 Select Resource Groups 3 Set Execution Order 4 Set VM Details 5 Schedule X

Select Resource Groups

1 Unselected Resource Groups

Resource Group Name	Workflow
DemoRG	Migration

1 Selected Resource Groups

Resource Group Name	Workflow
Demoqcow	Conversion

Previous Continue

Virtual Machines Details

Service Account (→)

OS	Username	Password
Linux	root	*****
Windows		

1 VMs

VM Name	Remove VMware Tools	Service Account Override
Resource Group : Demoqcow		
STK-VM01-U18	<input type="checkbox"/>	<input type="checkbox"/>

Previous Continue

- Designate a slot using the scheduling option. If the conversion is to be performed on an ad-hoc basis, leave the scheduling option unchecked.

Schedule Conversion

Blueprint Details

Blueprint Name:	DemoqcowBP
Resource Groups:	Demoqcow
VMs:	STK-VM01-U18

Schedule

Previous Create Blueprint

- After the blueprint is created, a prepareVM job is triggered. This job automatically executes scripts on the source VMs to ready them for conversion. These scripts remove VMware Tools and update drivers to match the target hypervisor requirements.

Blueprint registered

Name	Active Site	Status	Compliance	Source Site	Destination Site
DemoqcowBP	Source	PrepareVM In Progress	Not Available	DemoSrc	DemoVM
DemoBP	Destination	Migration Complete	In Progress	DemoSrc	DemoDest

- Once the prepareVM job completes successfully (as shown in the screenshot below), the VM disks associated with the VMs are ready for conversion, and the blueprint status will update to "Active."
- Click "Convert" after scheduling the required downtime for the VMs.

Blueprint registered

Name	Active Site	Status	Compliance	Source Site	Destination Site
DemoqcowBP	Source	Active	In Progress	DemoSrc	DemoVM
DemoBP	Destination	Migration Complete	In Progress	DemoSrc	DemoDest

- The convert operation uses a point-in-time snapshot. Power off the VM if needed and then retrigger the operation.

Confirm

Convert operation is triggered using a point in time snapshot. If the VM needs to be powered off before conversion, please do so and retry the operation again.

Cancel Continue

- The convert operation executes each operation against the VM and respective disk to generate the appropriate format.

- Use the converted disk by manually creating the VM and attaching the disk to it.

The Shift toolkit supports disk conversions only for the qcow2 format. It doesn't support VM creation or registration. To use the converted disk, manually create the VM and attach the disk.

Convert to VHDX format

To convert the virtual disks to VHDX format with NetApp Shift toolkit, follow these high-level steps:

- Create a destination site type specifying Hyper-V as the hypervisor.
- Create a resource group with the VMs for which the disk conversion is required

Select Resource Groups

2 Unselected Resource Groups

Resource Group Name	Workflow
Demogcow	Conversion
DemoRG	Migration

1 Selected Resource Groups

Resource Group Name	Workflow
Demovhdxconv	Conversion

Previous Continue

- Create the blueprint to convert the virtual disk to VHDX format. Once the blueprint is created, the preparation jobs will be automatically initiated.

Blueprints

Name	Active Site	Status	Compliance	Source Site	Destination Site	...
DemoVHDXconvBP	Source	PrepareVM In Progress	Not Available	DemoSrc	DemoDest	Resource Groups
DemogcowBP	Source	Conversion Complete	In Progress	DemoSrc	DemoVM	Resource Groups
DemoBP	Destination	Migration Complete	In Progress	DemoSrc	DemoDest	Resource Groups

- Choose "Convert" once the required downtime for the VMs has been scheduled.

4 Blueprints

Plan Name	Active Site	Status	Compliance	Source Site	Destination Site
DemoVHDXConvBP	Source	Active	Not Available	DemoSRC	DemoVHDXcon
DemoqcowconvBP	Source	Conversion Complete	Healthy	DemoSRC	DemoSRCqcow
DemoconvHVB	Source	Conversion Error	Partially Healthy	DemoSRC	DemoTarget
DemoBP	Destination	Migration Complete	Partially Healthy	DemoSRC	DemoTarget

Blueprint Details

Edit Blueprint

Convert

Run Compliance

Delete Blueprint

Activate Windows
Go to Settings to activate Windows.

- The convert operation executes each operation against the VM and respective disk to generate the appropriate VHDX format.

Back

Convert Steps

Blueprint: DemoVHDXConvBP

Preparing VMs for conversion in parallel	Success	0 Seconds
Removing VMWare tools for all VMs (in parallel)	Success	304.1 Seconds
Powering off VMs in protection group - DemoVHDXconvRG - in source	Success	5.8 Seconds
Deleting existing snapshots for all VMs in the setup	Success	0.5 Seconds
Triggering VM snapshots for resource groups at source (in parallel)	Success	30.1 Seconds
Triggering volume snapshots in parallel	Success	5.3 Seconds
Converting VMDK disks to VHDX format for all VMs (in parallel)	Success	23.6 Seconds

Activate Windows
Go to Settings to activate Windows.

- Use the converted disk by manually creating the VM and attaching the disk to it.

File	Home	Share	View					
				Network	10.61.181.77	nimshiftstage	shift toolkit	ShiftTk04_Dev12
Quick access	Name			Date modified	Type		Size	
Desktop	ShiftTk04_Dev12			12/10/2024 5:30 PM	Hard Disk Image File		16,781,312 ...	

To use the converted VHDX disk in a VM, the VM must be created manually via Hyper-V manager or PowerShell commands, and the disk must be attached to it. Along with this, network should also be mapped manually.

Convert to RAW format

To convert the virtual disks to RAW format with NetApp Shift toolkit, follow these high-level steps:

- Create a destination site type specifying OpenShift or OLVM as the hypervisor.
- Create a resource group with the VMs for which the disk conversion is required

The screenshot shows the 'Create Resource Group' wizard in the NetApp Shift Toolkit. The current step is '1 Resource Group Details'. The form contains the following fields:

- Resource Group Name: ConvertOCPvRG
- Associated Site: DemoSRCvmw
- Associated vCenter: s01-vc01.demoval.com
- Destination Site: DemoDestOCPv
- Workflow: Clone based Conversion

A red box highlights the entire input section. At the bottom of the form is a 'Continue' button.

0 Unprotected VMs 1 Selected VMs

Virtual Machine	Datastore
ocpvrh8	ocptstrh8

1 - 1 of 1

Virtual Machine Datastore

1 - 0 of 0

Previous Continue

Conversion Details

Destination OpenShift

Source Volume	Destination TBC
ocptstrh8	backend-tbc-ontap-nas

Source Volume -> TBC Mapping

Previous Continue

- Create the blueprint to convert the virtual disk to RAW format. Once the blueprint is created, the preparation jobs will be automatically initiated.

- Choose "Convert" once the required downtime for the VMs has been scheduled.

- The convert operation executes each operation against the VM and respective disk to generate the appropriate RAW format.

Convert Steps			
Blueprint: ConverOCPv8P			
Checking if a snapshot can be triggered on the volumes in parallel	Success	0.1 Seconds	i
Deleting existing snapshots for all VMs in the setup	Success	31.9 Seconds	i
Triggering VM snapshots for resource groups at source before disk conversion (in parallel)	Success	30.2 Seconds	i
Triggering volume snapshots before disk conversion in parallel	Success	5.2 Seconds	i
Deleting volumes in source (in parallel)	Success	5.1 Seconds	i
Cloning volumes on source (in parallel)	Success	30.2 Seconds	i
Converting disks for VM - ocpvrh8	Success	15.7 Seconds	i
Deleting all files and folders in volume except disk.img (in parallel)	Success	5.1 Seconds	i

- Use the converted disk by manually creating a VM.
 - For OpenShift, import the volume as PVC using the tridentctl and then create the VM using the imported disks.
 - For OLVM, head to ovirt engine URL and create a new VM by attaching the Shift toolkit converted RAW file as the OS disk. Ensure to select the appropriate interface.

For OLVM, qcow2 file format can also be used. This selection can be made during the creation of blueprint.

The screenshot shows the Shift Toolkit interface with the following details:

- Header: NetApp Shift Toolkit, Dashboard, Discover, Resource Groups, Blueprints, Job Monitoring.
- Sub-header: Edit Conversion Plan, Plan and Site Details, Select Resource Groups, Set Execution Order, Set VM Details, Schedule.
- Section: Virtual Machines Details.
- Configuration Selection: A dropdown menu is open, showing "Override prepareVM" and "Disk image format".
- Disk image format options: QCOW2 (radio button) and RAW (radio button, selected).

To use the converted RAW disk image in a VM, the VM must be created manually via OpenShift console or OC commands via YAML for OpenShift or using OLVM REST APIs/UI for OLVM, and the disk must be attached to it. Along with this, network should also be mapped manually.

Ensure the appropriate Boot type (EFI or BIOS) is specified when manually creating the VM.

Monitor migration jobs with the Shift Toolkit dashboard

Use the Shift Toolkit Job Monitoring dashboard to track migration, conversion, and blueprint operations in real time, allowing you to quickly identify job status and resolve issues.

Job monitoring dashboard

The Job Monitoring dashboard provides a centralized view of all active and completed operations within the Shift Toolkit. Use this dashboard to monitor the progress of your migration, conversion, and blueprint jobs.

Blueprint	Status	Action Type	Source Site	Destination Site	Timestamp	
DemoVHDXconvBP	In progress	Preparevm	DemoSrc	DemoDest	May 2, 2025, 6:22:03 PM	View Logs
DemoqcowBP	Success	Convert	DemoSrc	DemoKVM	May 2, 2025, 10:27:23 AM	View Logs
DemoqcowBP	Success	Preparevm	DemoSrc	DemoKVM	May 2, 2025, 10:20:39 AM	View Logs
DemoBP	Success	Migrate	DemoSrc	DemoDest	May 1, 2025, 6:15:01 PM	View Logs
DemoBP	Success	Preparevm	DemoSrc	DemoDest	May 1, 2025, 5:17:19 PM	View Logs

The dashboard displays key information for each job:

- Job type (migration, conversion, or blueprint)
- Current status (running, successful, failed, or partially failed)
- Progress indicators and completion percentage
- Number of VMs processed
- Start and end times

Understanding job status

The intuitive interface enables you to quickly evaluate the status of all operations and identify jobs that require attention.

The screenshot shows the Shift Toolkit Dashboard with the following key components:

- Top Bar:** NetApp Shift Toolkit Dashboard, Discover, Resource Groups, Blueprints, Job Monitoring, and a Settings icon.
- Summary Metrics:**
 - 3 Sites, 2 Resource Groups, 2 Blueprints, 48 VMs
 - VMs: 0 Migrated, 1 Converted, 1 Yet to Move
- Environments:** 3 Virtual Environments, 6 Storage Environments
- Workflow:**

Blueprint	Source	Destination	Action
ConvertOCPvBP	vmware	openshift	Convert
DemoOLVMBP	vmware	olvm	Convert
- Topology Canvas:** Shows a migration path from a Source (DemoSRCvm) to a Destination (DemoDestOCPv) via a Blueprint (ConvertOCPvBP), and another path from the Destination to a second Destination (DemoDestOLVM) via a Blueprint (DemoDestOLVMBP).
- Execution Jobs:** 3 Total Jobs, 0 In Progress
- Blueprints:**

Blueprint	Active Site	Status
ConvertOCPvBP	Source	Preparevm Complete
DemoDestOLVMBP	Source	Conversion Complete

Job status indicators help you understand the outcome of each operation:

- Successful:** All VMs in the job completed without errors
- Failed:** The job encountered errors and could not complete
- Partially failed:** Some VMs completed successfully while others encountered errors
- Running:** The job is currently in progress

Use the status information to prioritize troubleshooting efforts and ensure smooth migration workflows.

Configure advanced settings in the Shift Toolkit

Configure advanced settings in Shift Toolkit to manage CredSSP authentication, enable logging and debugging, access REST APIs, and set up email notifications for migration jobs.

Access the advanced settings by clicking the **Settings** icon in the top toolbar.

Credential Security Service Provider (CredSSP)

The Shift Toolkit uses Credential Security Service Provider (CredSSP) to manage credential transfers during the conversion process. The Shift server runs scripts on the guest operating system of the VM being converted, passing credentials through a "double-hop" from the Shift server to the guest OS through the Hyper-V server.

Configure the Shift server as a CredSSP client

The Advanced Settings wizard automatically configures the Shift server as a CredSSP client, enabling it to delegate credentials to the Hyper-V servers.

Behind the scenes

The Shift Toolkit executes the following commands and policy configurations to set itself up as a client:

Commands executed:

- `Set-Item WSMan:\localhost\Client\TrustedHosts -Value "fqdn-of-hyper-v-host"`
- `Enable-WSManCredSSP -Role client -DelegateComputer "fqdn-of-hyper-v-host"`

Group policy configured:

- Computer Configuration > Administrative Templates > System > Credentials Delegation > Allow delegating fresh credentials with NTLM-only server authentication

Enable this policy and add `wsman/fqdn-of-hyper-v-host`.

Configure the Hyper-V server as a CredSSP server

Use the `Enable-WSManCredSSP` cmdlet on the Hyper-V server to configure it as a CredSSP server, enabling it to receive credentials from the Shift server.

Steps

1. On the Hyper-V host where VMs will be provisioned by the Shift Toolkit server, open a Windows PowerShell session as Administrator.
2. Run the following commands:

```
Enable-PSRemoting
Enable-WSManCredSSP -Role server
```

Logging and debugging

The Shift Toolkit includes default logging with a 30-day retention period. Logging can be switched to debug mode upon request from support for troubleshooting purposes.

The screenshot shows the Shift Toolkit dashboard with the following sections:

- Top Metrics:** 3 Sites, 2 Resource Groups, 2 Blueprints, 48 VMs.
- Environments:** 3 Virtual Environments, 6 Storage Environments.
- Workflow:**

Blueprint	Source	Destination	Action
ConvertOCPvBP	vmware	openshift	Convert
DemoOLVMBP	vmware	olvm	Convert
- Execution Jobs:** 3 Total Jobs, 0 In Progress.
- Blueprints:**

Blueprint	Active Site
ConvertOCPvBP	Source
DemoOLVMBP	Source
- Topology Canvas:** Shows a node labeled "DemoSRCvmw" with a "hypervisor: vmware endpoint: s01-vc01.demoval.com". A dashed line labeled "Conversion: Conversion" connects to another node, and a solid line labeled "Conversion: DemoOLVMBP" connects to a third node.
- Advanced Settings (right sidebar):**
 - Delegation:** CredSSP Status (green checkmark).
 - Logging:** Default (selected), Debug (unchecked). Logs retention duration (in days): 30.

Shift v4.0

Swagger

The Swagger page in the advanced settings allows you to interact with the Shift Toolkit REST APIs.

The screenshot shows the Shift Toolkit dashboard with the "Developer Access" panel open, containing the following:

- Developer Access:** Swagger (highlighted with a red box).
- Script Block:**

The main dashboard area shows the following metrics and a table of Resource Groups:

- 2 Resource Groups
- 1 Site
- 1 vCenter

Resource Group Name	Site Name	Source Hypervisor	Workflow
ConvertOCPvRG	DemoSRCvmw	VCenter (s01-vc01.demoval.com)	Conversion
DemoOLVMBPconRG	DemoSRCvmw	VCenter (s01-vc01.demoval.com)	Conversion

Shift v4.0

The Shift Toolkit REST API provides programmatic access to migration, conversion, and automation capabilities. The APIs are organized by functional workflow to help you quickly find the resources you need for specific tasks.

The screenshot shows the SHIFT Swagger Documentation API endpoint list. The endpoints are organized into sections: Session, Connector, and Tenant. Each section contains a list of API endpoints with their methods and paths. The Session section includes endpoints for starting, validating, and ending sessions. The Connector section includes endpoints for adding, updating, and getting connector details. The Tenant section includes endpoints for adding and getting tenants. The API version is 0.0.1 and the OAuth 2.0 version is 3.0.

Session	
POST	/session Start a session
GET	/session Get all session id
POST	/session/validate Validate a session
POST	/session/end End a session

Connector	
POST	/connector Add a connector
GET	/connector Get details of all connectors
POST	/connector/{connectorId} Update the connector details by Id
GET	/connector/{connectorId} Get connector details by Id

Tenant	
POST	/tenant Add Tenant
GET	/tenant Get all tenant

Authentication and setup APIs

Use these APIs to establish connections, manage users, and configure authentication for the Shift Toolkit server.

Session

Manage user authentication and obtain authorization tokens for API requests:

- Start a session
- Validate a session
- Get all session IDs
- End a session

User

Manage user accounts and permissions:

- Add a user
- Get all users
- Change user password
- Accept EULA

CredSSP

Configure Credential Security Service Provider for credential delegation:

- Enable CredSSP
- Get CredSSP status

Connector

Manage connections to infrastructure components:

- Add a connector
- Get details of all connectors
- Update connector details by ID
- Get connector details by ID

Tenant

Manage multi-tenant configurations:

- Add a tenant
- Get all tenants

Infrastructure management APIs

Use these APIs to configure and discover your source and target environments.

Site

Manage migration sites and their associated virtual and storage environments:

- Get count of sites
- Get all site details
- Add a site
- Get site details by ID
- Delete a site by ID
- Add virtual environment to a site
- Add storage environment to a site
- Get virtual environment details for a site
- Update virtual environment details for a site
- Delete virtual environment details for a site
- Get storage environment details for a site
- Update storage environment details for a site
- Delete storage environment details for a site

Discovery

Discover and inventory VMs and resources in source and target sites:

- Discover source site
- Get all discovery requests for source site
- Discover target site
- Get all discovery requests for target site
- Get discovery steps for source site by ID

- Get discovery steps for target site by ID

VM and resource management APIs

Use these APIs to inventory, organize, and manage VMs and resources for migration.

VM

Query and manage virtual machines:

- Get VMs for a site and virtual environment in source
- Get unprotected VMs for a site and virtual environment
- Get VM count
- Get protected VM count

Resource

View resource utilization and availability:

- Get resource details for a site and virtual environment
- Get source site resource count

Resource Group

Organize VMs into protection groups for migration:

- Get protection group count
- Get all protection group details
- Add a protection group
- Get protection group details by ID
- Delete a protection group by ID
- Update protection group details by ID
- Get VMs of a protection group by ID
- Get blueprints containing the protection group

Migration and recovery APIs

Use these APIs to execute migrations, monitor compliance, and manage recovery operations.

Blueprint

Define and manage migration blueprints:

- Get blueprint count
- Get all blueprint details
- Add a blueprint
- Get blueprint details by ID
- Delete blueprint by ID

- Update blueprint details for ID
- Get VMs of a blueprint
- Get power status of VMs present in the blueprint

Compliance

Verify readiness and compatibility before migration:

- Get compliance check result for a blueprint
- Get compliance check final status for a blueprint
- Add on-demand compliance check for a blueprint

Execution

Monitor migration and conversion job execution:

- Get all execution details
- Get details of execution in progress
- Get execution count
- Get count of executions in progress
- Get steps for execution ID

Recovery

Execute and manage migration and recovery operations:

- Add new execution request for a blueprint
- Add retry request of execution for a blueprint
- Get execution statuses of all blueprints
- Get execution status for blueprint ID

Automation APIs

Use these APIs to extend and automate Shift Toolkit functionality.

Script Block

Access and execute automation scripts:

- Get all scripts metadata
- Get script metadata by ID
- Get all refresh metadata
- Execute script

Script block and automation

The script block within the Shift Toolkit provides sample code to help you automate, integrate, and develop features using internal and external APIs. Browse and download samples in the Code Samples section, written

by the Shift Toolkit automation team and community members. Use these samples to get started with automation, management, or integration tasks.

The screenshot shows the Shift Toolkit interface. On the left, there are two main sections: 'Resource Groups' (2) and 'Site' (1). On the right, a 'Developer Access' panel is open, featuring a 'Script Block' button, which is highlighted with a red box. The bottom right corner of the main interface shows 'Shift v4.0'.

The screenshot shows the 'View Scripts' section of the Shift Toolkit. It displays a grid of automation scripts, each with a 'Download' and 'Type: zip' link. The scripts include:

- Shift VM to OLVM (PowerShell)
- Shift VM to OpenShift
- Shift VM to OLVM (Python)
- Trigger Migration
- End to End Execution
- Initiate Prepare VM
- Run Compliance Check
- Get Site

The following example shows a PowerShell script that deletes a specific job within the Shift Toolkit UI. While this capability is not exposed through the standard workflow, it can be accomplished using the script block. The script is also available as a batch script that can be easily downloaded and executed.

The screenshot shows the NetApp Shift Toolkit interface with the 'View Scripts' section selected. On the left, there is a list of automation scripts with their descriptions and download links. The 'Initiate Prepare VM' script is highlighted with a red box. On the right, a detailed view of this script is shown, including its parameters, input JSON, and code. The code is a PowerShell script that initializes a log folder and writes logs.

Script Name	Description	Download Link	Type
Create Blueprint	Automation Script for Creating Blueprint.	Download	zip
Check Prepare VM Status	Automation Script for Checking Prepare VM Status.	Download	zip
Check Migration Status	Automation Script for Checking Migration Status.	Download	zip
Add Resource Groups	Automation Script for Adding Resource Group.	Download	zip
Add Site	Automation Script for Adding Source and Destination sites.	Download	zip
Initiate Prepare VM	Automation Script for Initiating Prepare VM	View Code	powershell
Trigger Migration	Automation Script for Triggering Migration	Download	zip
Remove jobs based on blueprint name	Automation Script for removing a job, provide blueprint name and shift toolkit path as parameters	Download	zip

Initiate Prepare VM

Parameters

InputJson

```
1 param(
2     [Parameter(Mandatory=$true)]
3     [string]$inputJson
4 )
5 $Global:logFolder = ".\logs\initiate_prepare_vm"
6 if (-not (Test-Path $Global:logFolder)) {
7     New-Item -ItemType Directory -Path $Global:logFolder | Out-Null
8 }
9
10 function Write-Log {
11     param(
12         [string]$level,
13         [string]$message
14     )
15 }
```

Status

The objective of the script block is to provide sample scripts for day 0 and ongoing operations on specific hypervisors using the Shift Toolkit APIs and the respective hypervisor published APIs.

The objective of the script block is to provide sample scripts for day 0 and ongoing operations on specific hypervisors using the Shift Toolkit APIs and the respective hypervisor published APIs.

Email notifications and alerts

Configure email notifications to send alerts about discovery, conversion, or migration jobs to specified recipients. UI notifications (alerts within the interface) are also available and stored for 7 days.

Access the email notification settings from **Settings > Platform Settings > Email configuration**.

Steps

1. Log in to the Shift Toolkit UI.
2. Navigate to Settings > Platform Settings.
3. Select Email notifications and update SMTP details:
 - SMTP server address
 - Port
 - Username
 - Password
4. Update the recipient field and select the events from the available categories.
5. Click **Apply**.

The screenshot shows the breakdown for each notification category and event.

The email notification uses basic SMTP authentication and SendGrid in this release. A future release will support modern authentication.

The email notification uses basic SMTP authentication and SendGrid in this release. A future release will support modern authentication.

Abort and revert capabilities

The Shift Toolkit provides the option to cancel a running job at any step within the workflow. When a job is cancelled, all orphaned components are automatically cleaned up, including:

- Powering off VMs on the hypervisor if they were powered on
- Removing disk entries from the appropriate qtree
- Deleting persistent volume claims (PVCs)

Since the Shift Toolkit does not modify the source VM in any way, rollback is straightforward, simply power on the source VM. No other rollback actions are required.

Migrate VMs from SAN environments for conversion with Shift Toolkit

Migrate VMs from SAN-based datastores to NAS before converting them with the Shift Toolkit, using VMware Storage vMotion and Storage Live Migration to maintain business continuity.

Requirements for SAN-based VMs

The Shift Toolkit requires VMs to reside in a NAS environment (NFS for VMware ESXi) before conversion. If your VMs are currently stored on SAN-based datastores using iSCSI, Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), or NVMe over Fibre Channel (NVMe/FC), you must first migrate them to an NFS datastore.

Migration workflow for SAN environments

The following diagram illustrates the complete migration workflow for VMs stored in a SAN environment.

The migration process consists of three main phases:

Migrate from SAN to NAS (VMware environment)

Use VMware vSphere Storage vMotion to migrate VMs and their disks from the SAN datastore to an NFS datastore. This operation can be performed without VM downtime.

Convert VMs with the Shift Toolkit

After the VMs reside on the NFS datastore, the Shift Toolkit uses NetApp FlexClone technology to convert the VMs from VMware ESXi to any hypervisor. The converted VMs and their disks are placed on a qtree accessible by the respective hypervisor host.

Migrate back to SAN

After conversion, use storage migration to move the converted VMs and their disks from the qtree to a SAN-enabled volume. This allows you to maintain your SAN infrastructure in the respective hypervisor environment.

Handling processor compatibility issues

When performing live VM migration between nodes with different processor capabilities, the migration may fail due to processor compatibility checks.

To resolve this issue:

1. Enable the "Migrate to a physical computer with a different processor" option in Hyper-V.
2. Use the processor compatibility script available in the Shift Toolkit script block to configure VMs for cross-processor migration.

This setting allows VMs to migrate between hosts with different processor feature sets while maintaining compatibility.

Next steps after converting or migrating VMs using the Shift Toolkit

After you convert or migrate VMs using the Shift Toolkit, review key post-migration tasks to validate the new environment. You can verify system health, perform cleanup steps, and troubleshoot common issues using detailed examples.

Conclusion

NetApp Shift toolkit helps an administrator to rapidly and seamlessly convert VMs from VMware to Hyper-V. It can also convert just the virtual disks between the different hypervisors. Therefore, Shift toolkit saves you several hours of effort each time that you want to move workloads from one hypervisor to the other. Organizations can now host multi-hypervisor environments without having to worry about whether workloads are tied down to a single hypervisor. This capability increases flexibility and reduces licensing costs, lock-in, and commitments to a single vendor.

Next Steps

Unlock the potential with Data ONTAP by downloading Shift toolkit package and start migrating or converting the virtual machines or the disk files to simplify and streamline migrations.

To learn more about this process, feel free to follow the detailed walkthrough:

[Shift Toolkit walkthrough](#)

Troubleshooting and Known Issues

1. Trigger script for setting IP address and removal VMware tools fails for Windows VM with the following error: The credential is invalid

Error message:

Enter-PSSession : The credential is invalid.

Potential causes:

The guest credentials couldn't be validated

- a. The supplied credentials were incorrect
- b. There are no user accounts in the guest

2. Windows virtual machine encounters BSOD errors

NOTE: This is not a Shift toolkit problem, however environment related.

Error message:

Bluescreen error during initial boot after migration.

Potential cause:

Local group policy setup to block the installation of applications including new drivers for Microsoft Hyper-V.

- a. Update the policy to allow installation of drivers.

3. No datastores listed while trying to create a resource group

Error message:

Mount paths are empty while getting volumes for mountpaths for site.

Potential causes:

The NFS volume used as a datastore is using v4.1

- a. Shift toolkit filters out NFS v3 datastores during the resource group creation. NFS 4.1 or 4.2 is not supported in the current release.

4. Unable to access Shift toolkit UI after enabling SSL.

Error message:

Login failed, Network error

Potential causes:

MongoDB service not running

Using Firefox browser to access Shift UI

a. Ensure Mongo service is running

b. Use Google Chrome or IE to access Shift UI.

5. Unable to migrate VMs with encryption enabled.

Error message:

Boot failure on Hyper-V side

Potential causes:

VMDK encrypted using vSphere encryption

a. Decrypt the VMDK inside VMware and retry the operation.

Appendix

Custom ONTAP role for Shift toolkit

Create an ONTAP role with minimum privileges so that there is no need to use the ONTAP admin role to perform operations in Shift toolkit. These minimum roles are required at the SVM level on the ONTAP Storage Side.

vsadmin can also be used.

Use ONTAP System Manager to create the role.

Perform the following steps in ONTAP System Manager:

Create a custom role:

- To create a custom role at the SVM level, select Storage > Storage VMs > required SVM > Settings > Users and Roles.
- Select the arrow icon (→) next to Users and Roles.
- Select +Add under Roles.
- Define the rules for the role and click Save.

Map the role to the Shift toolkit user:

Perform the following steps on the Users and Roles page:

- Select Add icon + under Users.
- Select the required username and select the role created in the previous step in the drop-down menu for Role.
- Click Save.

Once done, use the above created user while configuring the source and destination sites within Shift toolkit UI.

Minimum permissions role required on VMware

To migrate virtual machines from VMware vSphere using Shift toolkit, create a RBAC user with the below mentioned privileges using Administration > Access Control > Roles.

Select the **PRIVILEGES** tab:

Datastore

- Browse datastore
- Update virtual machine files

Virtual machine

- Edit inventory
 - Register
 - Unregister
- Interaction
 - Answer question
 - Console interaction
 - Power off
 - Power on
- Snapshot management
 - Create snapshot
 - Remove snapshot
 - Rename snapshot
- Guest operations
 - Guest operation modifications
 - Guest operation program execution
 - Guest operation queries

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.