

VMware Cloud Foundation on NetApp

NetApp virtualization solutions

NetApp
January 15, 2026

Table of Contents

VMware Cloud Foundation on NetApp	1
Simplify hybrid cloud experience with VMware Cloud Foundation and ONTAP	1
Introduction	1
Introduction to NetApp ONTAP	1
Introduction to VMware Cloud Foundation	1
VCF Domains	1
Storage with VCF	2
Why ONTAP for VCF	3
Additional information:	4
Summary	5
Documentation resources	5
Design options with VMware Cloud Foundation and ONTAP	6
Storage options	6
Blueprints	6
Set up private cloud environments with VMware Cloud Foundation and ONTAP	11
Deploy a new VCF 9 instance	11
Converge existing components into VCF 9	13
Upgrade an existing VCF environment to VCF 9	14
Implementing Disaster Recovery with NetApp Disaster Recovery	14
Getting started	15
NetApp Disaster Recovery configuration	17
Configuring storage replication between source site array and destination site array	18
How to setup replication relationships for NetApp Disaster Recovery	18
What can NetApp Disaster Recovery do for you?	18
Test failover	23
Cleanup failover test Operation	24
Planned Migration and Fail over	25
Failback	26
Monitoring and Dashboard	28
Convert existing vSphere clusters to VCF	29
Learn about converting a vSphere environment with existing datastores to a VCF management domain	29
Deployment workflow for converting vCenter server instances to VCF management domains with NFS datastores	30
Deployment workflow for converting vCenter server instances to VCF management domains with Fibre Channel datastores	31
Provision VCF with principal storage	32
Provision a VCF environment with ONTAP as the principal storage solution	32
Use an FC-based VMFS datastore on ONTAP as principal storage for VCF management domain	32
Use an NFS datastore on ONTAP as principal storage for VCF management domain	33
Use an FC-based VMFS datastore on ONTAP as principal storage for a VI workload domain	34
Use an NFS datastore on ONTAP as principal storage for a VI workload domain	36
Expand VCF with supplemental storage	57

Learn about expanding storage for a VCF environment using supplemental storage	57
Expand management domains with iSCSI	58
Add an FC-based VMFS datastore as supplemental storage for a management domain using ONTAP tools for VMware vSphere	81
Expand VI workload domains with vVols iSCSI	82
Expand VI workload domains with vVols NFS	109
Expand VI workload domains with NVMe/TCP	134
Add an FC-based VMFS datastore as supplemental storage to a VI workload domains	154
Protect VCF with SnapCenter	155
Learn about protecting VCF workload domains with SnapCenter plug-in for VMware vSphere	155
Protect a VCF workload domain with SnapCenter plug-in for VMware vSphere	155
Protect a VCF management and workload domains using SnapCenter plug-in for VMware vSphere	190
Protect VCF workload domains with NVMe over TCP storage and SnapCenter plug-in for VMware vSphere	203
Protect workloads with vSphere Metro Storage Cluster	210
Learn about integrating ONTAP high availability with VMware vSphere Metro Storage Cluster (vMSC)	210
Configure a stretch cluster for a VCF management domain using MetroCluster	210
Configure a stretch cluster for a VI workload domain using MetroCluster	222
Configure a stretch cluster for a VCF management domain using SnapMirror Active Sync	233
Configure a stretch cluster for a VI workload domain using SnapMirror Active Sync	235
Migrate VMs from VMware vSphere to ONTAP datastores	237
Network Requirements	237
VM Migration Scenarios	239
VM Template Migration Scenarios	262
Use Cases	269
Additional Resources	270
Autonomous Ransomware Protection for NFS Storage	270
Monitor on-premises storage with Data Infrastructure Insights	280
Monitoring On-Premises Storage with Data Infrastructure Insights	280
Solution Deployment Overview	280
Prerequisites	281
Solution Deployment	281
Conclusion	298
Additional Information	298

VMware Cloud Foundation on NetApp

Simplify hybrid cloud experience with VMware Cloud Foundation and ONTAP

NetApp ONTAP integrates with VMware Cloud Foundation (VCF) to deliver a unified storage solution supporting both block and file protocols. This integration simplifies hybrid cloud deployments, improves data management and performance, and ensures consistent data services across on-premises and cloud environments.

Introduction

Using NetApp with VCF enhances data management and storage efficiency through NetApp's advanced features like deduplication, compression, and snapshots. This combination provides seamless integration, high performance, and scalability for virtualized environments. Additionally, it simplifies hybrid cloud deployments by enabling consistent data services and management across on-premises and cloud infrastructures.

Introduction to NetApp ONTAP

NetApp ONTAP is a comprehensive data management software that delivers advanced storage features across a wide product line. ONTAP is available as software defined storage, as a first party service through the major cloud providers and as the storage OS for NetApp ASA (All San Array), AFF (All-flash FAS) and FAS (Fabric-Attached Storage) platforms. ONTAP delivers high-performance and low-latency for a variety of use cases including VMware virtualization, without creating silos.

Introduction to VMware Cloud Foundation

VCF integrates compute, network and storage offerings with VMware products and 3rd party integrations, facilitating both native Kubernetes and virtual machine-based workloads. This software platform includes key components such as VMware vSphere, NSX, Aria Suite Enterprise, VMware vSphere Kubernetes Service, HCX Enterprise, SDDC Manager and storage-capacity linked to host CPU cores via vSAN. NetApp ONTAP integrates seamlessly with a variety of VCF deployment models both on-premises and in the public cloud.

VCF Domains

Domains are a foundational construct within VCF that enable the organization of resources into distinct, independent groupings. Domains help organize the infrastructure more effectively, ensuring resources are utilized efficiently. Each domain is deployed with its own compute, network and storage elements.

There are two primary types of domains with VCF:

- **Management Domain** – The management domain includes components responsible for the core functions of the VCF environment. The components handle essential tasks such as resource provisioning, monitoring, maintenance and include 3rd party plug-in integrations such as NetApp ONTAP Tools for VMware. Management domains can be deployed using the Cloud Builder Appliance to ensure best practices are followed, or an existing vCenter environment can be converted into a VCF management domain.
- **Virtual Infrastructure Workload Domain** – Virtual Infrastructure Workload domains are designed to be pools of resources dedicated to a specific operational need, workload or organization. Workload domains are deployed easily via the SDDC Manager, helping to automate a series of complex tasks. Up to 24 workload domains can be provisioned within a VCF environment, with each representing a unit of application-ready infrastructure.

Storage with VCF

Central to the functionality of domains is the storage that they consume. While VCF includes CPU-core based vSAN capacity for hyper-converged use cases, it also supports a wide range of external storage solutions. This flexibility is crucial for enterprises that have significant investments in existing storage arrays or need to support protocols beyond what vSAN affords. VMware supports multiple storage types with VCF.

There are two primary types of storage with VCF:

- **Principal storage** – This storage type is allocated during the initial creation of the domain. For management domains, this storage houses the VCF administrative and operations components. For workload domains, this storage is designed to support the workloads, VMs or containers for which the domain was deployed.
- **Supplemental storage** – Supplemental storage can be added to any workload domain after deployment. This storage type helps organizations leverage existing investments in storage infrastructure and integrate various storage technologies to optimize performance, scalability, and cost-efficiency.

Support VCF Storage types

Domain Type	Principal Storage	Supplemental Storage
Management Domain	vSAN FC* NFS*	vVols (FC, iSCSI, or NFS) FC NFS iSCSI NVMe/TCP NVMe/FC NVMe/RDMA
Virtual Infrastructure Workload Domain	vSAN vVols (FC, iSCSI, or NFS) FC NFS	vVols (FC, iSCSI, or NFS) FC NFS iSCSI NVMe/TCP NVMe/FC NVMe/RDMA

Note: * Specific protocol support provided when using VCF Import Tool with existing vSphere environments.

Why ONTAP for VCF

In addition to use cases involving investment protection and multi-protocol support, there are many additional reasons to take advantage of external shared storage within a VCF workload domain. It may be assumed that storage provisioned for a workload domain is merely a repository to host VMs and container. However, organization needs often outgrow the capabilities of the licensed-capacity and require enterprise storage. Storage provided by ONTAP, allocated to domains within VCF, is easy to deploy and offers a future-proof shared storage solution.

For more information regarding the top ONTAP Benefits for VMware VCF identified below see [Why ONTAP for VMware](#).

- Flexibility on day 1 and as you scale
- Offload storage tasks to ONTAP
- Best in class storage efficiency
- Enterprise-grade data availability
- Efficient backup and recovery operations
- Wholistic business continuity capabilities

Additional information:

- [NetApp Storage Options](#)
- [vSphere Metro Storage Cluster \(vMSC\) support](#)
- [ONTAP Tools for VMware vSphere](#)
- [VMware Automation with ONTAP](#)

- [NetApp SnapCenter](#)
- [Hybrid Multicloud with VMware and NetApp](#)
- [Security and ransomware protection](#)
- [Easy migration of VMware workloads to NetApp](#)
- [NetApp Disaster Recovery](#)
- [Data Infrastructure Insights](#)
- [VM Data Collector](#)

Summary

ONTAP provides a platform that addresses all workload requirements, offering customized block storage solutions and unified offerings to enable faster results for VMs and applications in a reliable and secure manner. ONTAP incorporates advanced data reduction and movement techniques to minimize the data center footprint, while ensuring enterprise-level availability to keep critical workloads online. Additionally, the AWS, Azure and Google support NetApp-powered external storage to enhance vSAN storage in VMware cloud-based clusters as part of their VMware-in-the-Cloud offerings. Overall, NetApp's superior capabilities make it a more effective choice for VMware Cloud Foundation deployments.

Documentation resources

For detailed information on NetApp offerings for VMware Cloud Foundation, refer to the following:

VMware Cloud Foundation Documentation

- [VMware Cloud Foundation Documentation](#)

Four (4) part blog series on VCF with NetApp

- [NetApp and VMware Cloud Foundation made easy Part 1: Getting started](#)
- [NetApp and VMware Cloud Foundation made easy Part 2: VCF and ONTAP principal storage](#)
- [NetApp and VMware Cloud Foundation made easy Part 3: VCF and Element principal storage](#)
- [NetApp and VMware Cloud Foundation made easy - Part 4: ONTAP Tools for VMware and supplemental storage](#)

VMware Cloud Foundation with NetApp All-Flash SAN Arrays

- [VCF with NetApp ASA arrays, Introduction and Technology Overview](#)
- [Use ONTAP with FC as principal storage for management domains](#)
- [Use ONTAP with FC as principal storage for VI workload domains domains](#)
- [Use Ontap Tools to deploy iSCSI datastores in a VCF management domain](#)
- [Use Ontap Tools to deploy FC datastores in a VCF management domain](#)
- [Use Ontap Tools to deploy vVols \(iSCSI\) datastores in a VI workload domain](#)
- [Configure NVMe over TCP datastores for use in a VI workload domain](#)
- [Deploy and use the SnapCenter Plug-in for VMware vSphere to protect and restore VMs in a VI workload domain](#)
- [Deploy and use the SnapCenter Plug-in for VMware vSphere to protect and restore VMs in a VI workload](#)

domain (NVMe/TCP datastores)

VMware Cloud Foundation with NetApp All-Flash AFF Arrays

- VCF with NetApp AFF arrays, Introduction and Technology Overview
- Use ONTAP with NFS as principal storage for management domains
- Use ONTAP with NFS as principal storage for VI workload domains
- Use ONTAP Tools to deploy vVols (NFS) datastores in a VI workload domain

NetApp FlexPod solutions for VMware Cloud Foundation

- Expanding FlexPod hybrid cloud with VMware Cloud Foundation
- FlexPod as a Workload Domain for VMware Cloud Foundation
- FlexPod as a Workload Domain for VMware Cloud Foundation Design Guide

Design options with VMware Cloud Foundation and ONTAP

You can start fresh with VCF 9 or reuse existing deployments to create a Private Cloud environment using VCF 9 and ONTAP. Learn about popular design blueprints for VCF 9 and how NetApp products add value.

Storage options

VMware Cloud Foundation with ONTAP supports a variety of storage configurations to meet different performance, scalability, and availability requirements. The following tables summarize principal and supplemental storage options available for your environment.

Table 1. Principal storage options

Product Family	VMFS on FC	NFSv3
ASA A-Series and C-Series	Yes	No
AFF A-Series and C-Series	Yes	Yes
FAS	Yes	Yes

Table 2. Supplemental storage options

Product Family	VMFS on FC	VMFS on iSCSI	VMFS on NVMe-oF	NFSv3	NFSv4.1
ASA A-Series and C-Series	Yes	Yes	Yes	No	No
AFF A-Series and C-Series	Yes	Yes	Yes	Yes	Yes
FAS	Yes	Yes	Yes	Yes	Yes

Blueprints

The following blueprints illustrate common deployment models for VMware Cloud Foundation and ONTAP in various site and resource scenarios.

VCF fleet in a single site with minimal footprint

This design blueprint is for deploying Management and Workload components in a Single vSphere Cluster with minimal resources. It supports VMFS and NFSv3 Principal Datastores and a simple deployment option with a two-node configuration. If you plan to use VCF Automation with the All Apps Organization model, you need a second cluster to deploy vSphere Supervisor and NSX Edge nodes.

To minimize resource consumption, use an existing ONTAP tools instance if possible. If unavailable, a single node with a Small profile is suitable. The SnapCenter Plug-in for VMware vSphere protects virtual machines and Datastores using native snapshots and replication to another ONTAP storage array.

If you lack resources to explore VCF, many Cloud Providers offer VCF as a service, and ONTAP is available as a first-party service from cloud providers.

For more details on this design, refer to the [Broadcom Technical Documentation on VCF Fleet in a Single Site with Minimal Footprint](#).

VCF fleet in a single site

This design blueprint is for customers with a single Primary Datacenter relying on application High Availability. Typically, it involves a single VCF environment. You can use ASA for block workloads and AFF for file/unified workloads.

Content Repository shares VM templates and container registries across VCF Domains. When hosted on FlexGroup Volume, FlexCache feature is available for subscription datastore.

Hosting VMs on FlexCache Datastore is not supported.

A single instance of ONTAP tools in HA mode can manage all vCenters in the VCF Fleet. Refer to the [Configuration Limits of ONTAP tools](#) for more info. ONTAP tools integrate with VCF SSO and VCF OPS smart grouping for multi-vCenter access in the same UI.

VCF Supplemental Datastore with ONTAP Tools

You must deploy the SnapCenter Plug-in on each vCenter instance for VM and Datastore protection.

Storage policy-based Management is used with vSphere Supervisor to host control VMs of VKS. Tags are centrally managed at VCF Ops. NetApp Trident CSI is used with VKS for application backup protection using native array features. When you use vSphere CSI, persistent volume details appear on VCF Automation.

For more details on this blueprint, refer to the [Broadcom Technical Documentation on VCF Fleet in a Single Site](#).

VCF fleet with multiple sites in a single region

This design is for customers providing cloud-like services with higher availability by spreading workloads across different fault domains.

For VMFS datastores, SnapMirror active sync provides an active-active storage unit for use with vSphere Metro Storage Cluster. Uniform access mode offers transparent storage failover, while Non-Uniform access mode requires VM restart on fault domain failure.

For NFS datastores, ONTAP MetroCluster with vSphere Metro Storage Cluster ensures high availability. A mediator avoids split-brain scenarios and can now be hosted on NetApp Console.

VM placement rules control VMs within the same fault domain for Management Domain components.

ONTAP tools provide a UI to set up SnapMirror active sync relationships. Storage Systems of both fault domains must be registered in ONTAP tools and SnapCenter Plug-in for VMware vSphere.

You can implement 3-2-1 backup policies using NetApp Backup and Recovery for VMs via SnapMirror and SnapMirror to Cloud. You can perform restores from any of the three locations.

Trident Protect or NetApp Backup and Recovery for Kubernetes protect VKS Cluster Applications.

For more info, check the [Broadcom Technical Documentation on VCF Fleet with Multiple Sites in a Single Region](#).

VCF fleet with multiple sites across multiple regions

This design is for customers spread globally, providing services in close proximity and disaster recovery solutions.

You can manage Disaster Recovery for VMs with VMware Live Site Recovery or NetApp Disaster Recovery. ONTAP tools offer the SRA (Storage Replication Adapter) to orchestrate storage operations with ONTAP.

Product Family	SnapMirror active sync	MetroCluster
ASA A-Series and C-Series	Yes	Yes
AFF A-Series and C-Series	Yes	Yes
FAS	No	Yes

ONTAP tools provide a UI for datastore replication setup. NetApp Console can also be used for replication between storage arrays. SnapCenter Plug-in for VMware vSphere utilizes existing SnapMirror relationships for SnapShots.

For more info, check the [Broadcom Technical Documentation on VCF Fleet with Multiple Sites Across Multiple Regions](#).

VCF fleet with multiple sites in a single region plus additional regions

This design addresses both availability and disaster recovery of VMs and VKS applications.

ASA, AFF, and FAS support this design option.

You can use ONTAP tools or NetApp Console to set up the replication relationship.

For more information, see the [Broadcom Technical Documentation on VCF Fleet with Multiple Sites in a Single Region plus Additional Regions](#).

Set up private cloud environments with VMware Cloud Foundation and ONTAP

Deploy, converge, or upgrade VMware Cloud Foundation 9 environments with ONTAP. Learn how to set up new VCF 9.0 environments, converge existing vCenter instances and ONTAP datastores, and upgrade earlier VCF deployments.

Deploy a new VCF 9 instance

Use this workflow to deploy a clean VMware Cloud Foundation (VCF) 9.0 environment. After deployment, you can migrate workloads or begin provisioning applications and provide infrastructure services.

For high-level steps, see the [Build Journey – Install a new VMware Cloud Foundation deployment](#).

Steps

1. Follow the [Broadcom VCF 9 deployment steps](#).
2. In the deployment preparation step, complete the tasks for your principal storage option.

VMFS on FC

1. Collect the WWPNs for all ESXi hosts. You can run `esxcli storage san fc list`, use the ESXi Host Client, or use PowerCLI.
2. Configure zoning. See [Recommended FC zoning configurations for ONTAP systems](#).

Use the WWPNs of the SVM logical interfaces (LIFs), not the physical adapter WWPNs.

3. Create a LUN and map it to the hosts by WWPN using System Manager, the ONTAP CLI, or the API.
4. Rescan the storage adapter on ESXi and create the VMFS datastore.

NFSv3

1. Create a VMkernel interface on one ESXi host.
2. Ensure the [SVM has NFS enabled](#) and [vStorage over NFS is enabled](#).
3. Create a volume and export it with a policy that allows the ESXi hosts.
4. Adjust permissions as needed.
5. Deploy the ONTAP NFS VAAI VIB and include it in the vLCM image. For example: `esxcli software vib install -d /NetAppNasPlugin2.0.1.zip`. (Download the ZIP from the NetApp Support Site.)
6. Mount the NFS volume on the host where you created the VMkernel interface. For example: `esxcli storage nfs add -c 4 -H 192.168.122.210 -s /use1_m01_nfs01 -v use1-m01-cl01-nfs01`.

The nConnect session count is per host. Update other hosts after deployment as needed.

3. At the end of **Verify deployment summary and review next steps** in the **Deploy VCF Fleet** phase, complete the following:

- a. Deploy ONTAP tools
 - [Download ONTAP tools 10.x](#) from the NetApp Support Site.
 - Create DNS records for ONTAP tools Manager, node(s), and the virtual IP used for internal communication.
 - Deploy the OVA to the management vCenter Server.
 - Register the management domain [vCenter](#) with ONTAP tools Manager.
 - [Add the storage backend](#) using the vSphere Client UI.
 - [Create a supplemental datastore](#) (include one for the content registry).
 - Create the content registry if you plan an HA deployment.
 - [Enable HA](#) in ONTAP tools Manager.
- b. Deploy the SnapCenter Plug-in
 - [Deploy the SnapCenter Plug-in for VMware vSphere](#).
 - [Add the storage backend](#).

- [Create backup policies.](#)
- [Create resource groups.](#)

c. Deploy the NetApp Console agent

- [Review what you can do without a Console agent.](#)
- [Agent deployment modes.](#)

d. Use NetApp Backup and Recovery

- [Protect VM workloads.](#)
- [Protect VKS workloads.](#)

4. After you import vCenter as a workload domain in the VCF instance, complete the following:

- a. Register ONTAP tools
 - [Register the workload domain vCenter with ONTAP tools Manager.](#)
 - [Add the storage backend using the vSphere Client UI.](#)
 - [Create a supplemental datastore.](#)
- b. Deploy the SnapCenter Plug-in for VMware vSphere
 - [Deploy the SnapCenter Plug-in for VMware vSphere.](#)
 - [Add the storage backend.](#)
 - [Create backup policies.](#)
 - [Create resource groups.](#)
- c. Use NetApp Backup and Recovery
 - [Protect VM workloads.](#)
 - [Protect VKS workloads.](#)

You can reuse these steps whenever you create a new workload domain.

Converge existing components into VCF 9

You may already have some components of the VCF fleet and prefer to reuse them. When you reuse a vCenter instance, datastores are frequently provisioned with ONTAP tools, which can serve as the principal storage for VCF.

Prerequisites

- Confirm existing vCenter instances are functional.
- Verify ONTAP-provisioned datastores are available.
- Ensure access to the [Interoperability Matrix](#).

Steps

1. Review the [supported scenarios to converge to VCF](#).
2. Converge a vCenter instance with ONTAP-provisioned datastores as principal storage.
3. Verify supported versions using the [Interoperability Matrix](#).
4. Upgrade [ONTAP tools](#) if required.
5. Upgrade the [SnapCenter Plugin for VMware vSphere](#) if required.

Upgrade an existing VCF environment to VCF 9

Upgrade an earlier VCF deployment to version 9.0 using the standard upgrade process. The outcome is a VCF environment running version 9.0 with upgraded management and workload domains.

Prerequisites

- Back up the management domain and workload domains.
- Verify compatibility of ONTAP tools and SnapCenter Plug-in with VCF 9.0. Follow the [Interoperability Matrix](#) to [upgrade ONTAP tools](#) and [SnapCenter Plugin for VMware vSphere](#) that are supported for VCF 9.

Steps

1. Upgrade the VCF management domain. See [Upgrade VCF Management Domain to VCF 9](#) for instructions.
2. Upgrade any VCF 5.x workload domains. See [Upgrade VCF 5.x Workload Domain to VCF 9](#) for instructions.

Implementing Disaster Recovery with NetApp Disaster Recovery

VCF disaster recovery solution for NFS datastore with NetApp SnapMirror and NetApp Disaster Recovery

Block-level replication from a production site to a disaster recovery (DR) site offers a resilient and cost-effective strategy for protecting workloads against site outages and data corruption events, including ransomware attacks. NetApp SnapMirror replication enables VMware VCF 9 workload domains running on on-premises ONTAP systems—using either NFS or VMFS datastores—to be replicated to a secondary ONTAP system located in a designated recovery datacenter where VMware is also deployed.

For more information, see the following [NetApp Disaster Recovery documentation](#).

This section outlines the configuration of NetApp Disaster Recovery to establish DR for on-premises VMware virtual machines.

The setup includes:

- Creating a NetApp Console account and deploying an agent.
- Adding ONTAP arrays to the NetApp Console to systems under Management to facilitate communication between VMware vCenter and ONTAP storage.
- Configuring replication between sites using SnapMirror.
- Setting up and testing a recovery plan to validate failover readiness.

NetApp Disaster Recovery, integrated within the NetApp Console, enables organizations to seamlessly discover their on-premises VMware vCenters and ONTAP storage systems. Once discovered, administrators can define resource groupings, create disaster recovery plans, associate them with the appropriate resources, and initiate or test failover and fallback operations.

NetApp SnapMirror provides efficient block-level replication, ensuring that the DR site remains synchronized with the production environment through incremental updates. This enables a Recovery Point Objective (RPO) as low as five minutes.

NetApp Disaster Recovery also supports non-disruptive disaster recovery testing. Leveraging ONTAP's FlexClone technology, it creates space-efficient, temporary copies of the NFS datastore from the most recent replicated Snapshot—without impacting production workloads or incurring additional storage costs. After

testing, the environment can be easily torn down, preserving the integrity of the replicated data.

In the event of an actual failover, NetApp Console orchestrates the recovery process, automatically bringing up protected virtual machines at the designated DR site with minimal user intervention. When the primary site is restored, the service reverses the SnapMirror relationship and replicates any changes back to the original site, enabling a smooth and controlled failback.

All these capabilities are delivered at a significantly lower cost compared to traditional disaster recovery solutions.

Getting started

To get started with NetApp Disaster Recovery, use NetApp Console and then access the service.

1. Log in to NetApp Console.
2. From the NetApp Console left navigation, select Protection > Disaster Recovery.
3. The NetApp Disaster Recovery Dashboard appears.

Before configuring the disaster recovery plan, ensure the following [pre-requisites](#) are met:

- The Console agent is set up in NetApp Console.
- The agent instance have connectivity to the source and destination workload domain vCenter and storage systems.
- NetApp Data ONTAP cluster to provide storage NFS or VMFS datastores.
- On-premises NetApp storage systems hosting NFS or VMFS datastores for VMware are added in NetApp Console.
- DNS resolution should be in place when using DNS names. Otherwise, use IP addresses for the vCenter.
- SnapMirror replication is configured for the designated NFS or VMFS based datastore volumes.
- Make sure that the environment has supported versions of vCenter Server and ESXi servers.

Once the connectivity is established between the source and destination sites, proceed with configuration steps, which should take couple of clicks and about 3 to 5 minutes.

Note: NetApp recommends deploying the Console agent in the destination site or in a third site, so that the agent can communicate through the network with source and destination resources.

In this demonstration, the workload domains are configured with ONTAP NFS storage. The steps in terms of workflow remains the same for VMFS based datastores.

NetApp Console

Organization: NetAppDRTesting | Project: Engineering

Free trial (29 days left) - View details

Sites (2)

Replication plans (1)

Activity (Last 12 hours)

View all jobs

2 Running | 0 Down | 0 Issue

1 Ready | 0 Failed

1 Resource groups | 1 Protected VMs | 3 Unprotected VMs

View

1 Failovers | 1 Failbacks | 0 Test failovers | 0 Migrations

1m ago: Backup reconciliation for plan SiteA_SP

1m ago: Discovery of resources in host 192.168.0.31

1m ago: Discovery of resources in host 192.168.0.32

1m ago: Fallback for replication plan 'SiteA_SP'

5m ago: Discovery of resources in host 192.168.0.32

NetApp Disaster Recovery configuration

The first step in preparing for disaster recovery is to discover and add the source vCenter and storage resources to NetApp Disaster Recovery.

Open NetApp Console and select Protection > Disaster Recovery from left navigation. Select Sites and then choose Add. Enter a name for the new source site and its locations. Repeat the step to add the destination site and location.

Add site

A site is a collection of vCenter servers, either on-premises or in the cloud.

Site

SiteA

Location

On-prem

Add

Cancel

Add the following platforms:

- Source workload domain vCenter
- Destination workload domain vCenter.

Once the vCenters are added, automated discovery is triggered.

Configuring storage replication between source site array and destination site array

SnapMirror provides data replication in a NetApp environment. Built on NetApp Snapshot® technology, SnapMirror replication is extremely efficient because it replicates only the blocks that have been changed or added since the previous update. SnapMirror is easily configured by using either NetApp OnCommand® System Manager or the ONTAP CLI. NetApp Disaster Recovery also creates the SnapMirror relationship provided cluster and SVM peering is configured beforehand.

For cases in which the primary storage is not completely lost, SnapMirror provides an efficient means of resynchronizing the primary and DR sites. SnapMirror can resynchronize the two sites, transferring only changed or new data back to the primary site from the DR site by simply reversing the SnapMirror relationships. This means replication plans in NetApp Disaster Recovery can be resynchronized in either direction after a failover without recopying the entire volume. If a relationship is resynchronized in the reverse direction, only new data that was written since the last successful synchronization of the Snapshot copy is sent back to the destination.

 If SnapMirror relationship is already configured for the volume via CLI or System Manager, NetApp Disaster Recovery picks up the relationship and continues with the rest of the workflow operations.

How to setup replication relationships for NetApp Disaster Recovery

The underlying process to create SnapMirror replication remains the same for any given application. The process can be manual or automated. The easiest way is to leverage NetApp Disaster Recovery which will automate the replication workflow provided the following two criteria are met:

- Source and destination clusters have a peer relationship.
- Source SVM and destination SVM have a peer relationship.

NetApp Console also provides an alternate option to configure SnapMirror replication by using simple drag & drop of the source ONTAP system in the environment onto the destination to trigger the wizard that guides through the rest of the process.

What can NetApp Disaster Recovery do for you?

After the source and destination sites are added, NetApp Disaster Recovery performs automatic deep discovery and displays the VMs along with associated metadata. NetApp Disaster Recovery also automatically detects the networks and port groups used by the VMs and populates them.

The screenshot shows the NetApp Disaster Recovery Console interface. On the left, a navigation sidebar lists 'Disaster Recovery', 'Dashboard', 'Sites' (which is selected and highlighted in blue), 'Replication plans', 'Resource groups', and 'Job monitoring'. The main content area is titled 'Sites (2)' and displays two sites: 'SiteA' and 'SiteB'. SiteA is located at 192.168.0.31 and is marked as 'Healthy'. It has 3 VMs, 3 Datastores, and 0 Resource groups, all associated with the 'Engineering' Agent. SiteB is located at 192.168.0.32 and is also marked as 'Healthy'. It has 1 VM, 3 Datastores, and 0 Resource groups, also associated with the 'Engineering' Agent. A search bar and an 'Add' button are located at the top right of the site list.

After the sites have been added, configure the replication plan by selecting the source and destination vCenter platforms and pick the resource groups to be included in the plan, along with the grouping of how applications should be restored and powered on and mapping of clusters and networks. To define the recovery plan, navigate to the **Replication plans** tab and click **Add**.

In this step, the VMs can be grouped into resource groups. NetApp Disaster Recovery resource groups allow you to group a set of dependent VMs into logical groups that contain their boot orders and boot delays that can be executed upon recovery. Resource groups can be during the creation of the replication plan or by using the Resource group tab on the left navigation.

First, name the replication plan and select the source vCenter and destination vCenter.

The screenshot shows the 'Add replication plan' wizard, step 1: vCenter servers. The left sidebar shows 'Replication plans' is selected. The main area is titled 'vCenter servers' with the sub-instruction 'Provide the plan name and select the source and target vCenter servers.' A red box highlights the 'Replication plan name' input field, which contains 'SiteA_SP'. Another red box highlights the 'Source vCenter' and 'Target vCenter' selection dropdowns, both set to '192.168.0.31' and '192.168.0.32' respectively. A 'Replicate' button is positioned between the two vCenter boxes. Navigation buttons 'Cancel' and 'Next' are at the bottom.

The next step is to choose whether you are creating a replication plan with Resource groups, virtual machines

or datastores. Select an existing resource group and if no resource groups are created, then the wizard helps to group the required virtual machines (basically create functional resource groups) based on the recovery objectives. This also helps define the operation sequence of how application virtual machines should be restored.

Resource group allows to set boot order using the drag and drop functionality. It can be used to easily modify the order in which the VMs would be powered on during the recovery process.

Once the resource groups are created via replication plan, the next step is to create the mapping to recover virtual machines and applications in the event of a disaster. In this step, specify how the resources from the source environment map to the destination. This includes compute resources, virtual networks, IP customization, pre- and post-scripts, boot delays, application consistency and so on. For detailed information, refer to [Create a replication plan](#). As mentioned in the prerequisites, SnapMirror replication can be configured beforehand or DRaaS can configure it using the RPO and retention count specified during creation of the replication plan.

Note: By default, the same mapping parameters are used for both test and failover operations. To set different mappings for test environment, select the Test mapping option after unchecking the checkbox “Use same mappings for failover and test mappings”. Once the resource mapping is complete, click Next.

Disaster Recovery Add replication plan vCenter servers Applications Resource mapping Review

Dashboard Failover mappings Test mappings

Sites

Replication plans

Resource groups

Job monitoring

Compute resources Mapped

Virtual networks Mapped

Virtual machines Mapped

Datastores Mapped

Previous Next

Once done, review the created mappings and then click on Add plan.

Disaster Recovery Add replication plan vCenter servers Applications Resource mapping Review

Dashboard 192.168.0.31 SiteA 192.168.0.32 SiteB

Sites

Replication plans

Resource groups

Job monitoring

Plan details Failover mapping Virtual machines

	Source	Target
Datastores	nfs1	nfs1 Export policy : default Preferred NFS LIF : 192.168.0.141
Compute resource	Datacenter1 : Cluster1	Datacenter : Datacenter2 Cluster : Cluster2
Virtual networks	VM Network	VM Network

Previous Add plan

VMs from different volumes and SVMs can be included in a replication plan. Depending on the VM placement (be it on same volume or separate volume within the same SVM, separate volumes on different SVMs), NetApp Disaster Recovery creates a Consistency Group Snapshot.

NetApp Console - Disaster Recovery

Replication plans (1)

Name	Compliance status	Plan status	Protected site	Resource groups	Failover site
SiteA_SP	Healthy	Ready	SiteA	SiteA_SP_ResourceGroup1	SiteB

As soon as the plan is created, a series of validations are triggered and SnapMirror replication and schedules are configured as per the selection.

NetApp Console - Disaster Recovery

Last 12 hours

Jobs (9)

ID	Status	Workload	Name	Start time	End time	Action
018d8b44-c951-4113-a91c-	Success	Compliance	Compliance check for replication plan 'SiteA_SP'	11/04/2025, 06:44:33 PM	11/04/2025, 06:44:36 PM	
d79b74c1-c4ea-4473-bf22-	Success	Compliance	Initialize Compliance of SiteA_SP for every 180 mi...	11/04/2025, 06:44:32 PM	11/04/2025, 06:44:33 PM	
bfc453ac-83f7-4669-a821-9	Success	DRCleanupSecondary	Initialize DRCleanupSecondaryBackups of Cleanu...	11/04/2025, 06:44:30 PM	11/04/2025, 06:44:31 PM	
b654a09f-6b1a-41d0-9885-	Success	DRReplicationPlan	Replication plan modification for 'SiteA_SP'	11/04/2025, 06:44:28 PM	11/04/2025, 06:44:31 PM	
85e8e7d7-67eb-4e48-88ca-	Success	Discovery	Discovery of resources in host 192.168.0.32	11/04/2025, 06:34:37 PM	11/04/2025, 06:34:44 PM	

NetApp Disaster Recovery consists of the following workflows:

- Test failover (including periodic automated simulations)
- Cleanup failover test
- Failover:
 - Planned migration (extend the usecase for one time failover)
 - Disaster recovery
- Failback

NetApp Disaster Recovery Console screenshot showing a replication plan for SiteA_SP. The 'Test failover' option in the context menu is highlighted with a red box.

Replication plans (1)

Name	Compliance status	Plan status	Protected site	Resource groups	Failover site
SiteA_SP	Healthy	Ready	SiteA	SiteA_SP_ResourceGroup1	SiteB

Context menu options (Test failover highlighted):

- View plan details
- Run compliance check
- Refresh resources
- Protect resources
- Test failover**
- Clean up test failover
- Fail over
- Fail back
- Migrate
- Edit schedules
- Take snapshot now

Test failover

Test failover in NetApp Disaster Recovery is an operational procedure that allows VMware administrators to fully validate their recovery plans without disrupting their production environments.

NetApp Disaster Recovery Console screenshot showing a replication plan for SiteA_SP. The 'Test failover' option in the context menu is highlighted with a red box.

Replication plans (1)

Name	Compliance status	Plan status	Protected site	Resource groups	Failover site
SiteA_SP	Healthy	Ready	SiteA	SiteA_SP_ResourceGroup1	SiteB

Context menu options (Test failover highlighted):

- View plan details
- Run compliance check
- Refresh resources
- Protect resources
- Test failover**
- Clean up test failover
- Fail over
- Fail back
- Migrate
- Edit schedules
- Take snapshot now

NetApp Disaster Recovery incorporates the ability to select the snapshot as an optional capability in the test failover operation. This capability allows the VMware administrator to verify that any changes that were recently made in the environment are replicated to the destination site and thus are present during the test. Such changes include patches to the VM guest operating system.

When the VMware administrator runs a test failover operation, NetApp Disaster Recovery automates the following tasks:

- Triggering SnapMirror relationships to update storage at the destination site with any recent changes that were made at the production site.
- Creating NetApp FlexClone volumes of the FlexVol volumes on the DR storage array.
- Connecting the datastores in the FlexClone volumes to the ESXi hosts at the DR site.
- Connecting the VM network adapters to the test network specified during the mapping.
- Reconfiguring the VM guest operating system network settings as defined for the network at the DR site.
- Executing any custom commands that have been stored in the replication plan.
- Powering on the VMs in the order that is defined in the replication plan.

Name	Status	Start time	End time	ID
Test failover for replication plan 'SiteA_SP'	Completed	11/18/2025, 06:09:55 PM	11/18/2025, 06:12:46 PM	87ca8b8c-2c89-4bc1-8271-d16ec1924e0d
Prerequisite Checks	Completed	11/18/2025, 06:09:55 PM	11/18/2025, 06:09:56 PM	748c5d89-1d0d-49fd-8fe9-e...
Launch ondemand snapshot	Completed	11/18/2025, 06:09:56 PM	11/18/2025, 06:09:57 PM	7aae807a-754e-4521-8471-...
Tracking ondemand snapshot	Completed	11/18/2025, 06:09:57 PM	11/18/2025, 06:10:57 PM	1b6510df-3bcf-486c-87a9-...
Create Clone Volume(s)	Completed	11/18/2025, 06:10:58 PM	11/18/2025, 06:11:33 PM	0fc95ee6-aa80-4d77-acdc-...
Datastore Mount	Completed	11/18/2025, 06:11:33 PM	11/18/2025, 06:11:36 PM	3505dc8d-061e-4a79-bc60-...
Register Virtual Machine(s)	Completed	11/18/2025, 06:11:36 PM	11/18/2025, 06:11:37 PM	bcf808bc-24ce-4307-acec-8...

Cleanup failover test Operation

The cleanup failover test operation occurs after the replication plan test has been completed and the VMware

administrator responds to the cleanup prompt.

The screenshot shows the NetApp Disaster Recovery Console interface. The left sidebar has 'Replication plans' selected. The main area displays a table for 'Replication plans (1)'. The single row shows a plan named 'SiteA_SP' with a 'Healthy' compliance status and a 'Test failover' plan status. The 'Protected site' is 'SiteA' and the 'Resource groups' are 'SiteA_SP_ResourceGroup1'. The 'Failover site' is 'SiteB'. A context menu is open for the 'SiteA_SP' plan, with the 'Clean up test failover' option highlighted.

This action will reset the virtual machines (VMs) and the status of the replication plan to the ready state. When the VMware administrator performs a recovery operation, NetApp Disaster Recovery completes the following process:

1. It powers off each recovered VM in the FlexClone copy that was used for testing.
2. It deletes the FlexClone volume that was used to present the recovered VMs during the test.

Planned Migration and Fail over

NetApp Disaster Recovery has two methods for performing a real failover: planned migration and fail over. The first method, planned migration, incorporates VM shutdown and storage replication synchronization into the process to recover or effectively move the VMs to the destination site. Planned migration requires access to the source site. The second method, failover, is a planned/unplanned failover in which the VMs are recovered at the destination site from the last storage replication interval that was able to complete. Depending on the RPO that was designed into the solution, some amount of data loss can be expected in the DR scenario.

The screenshot shows the NetApp Disaster Recovery Console interface, similar to the previous one but with a different plan status. The 'SiteA_SP' plan is now in a 'Ready' status. The context menu for this plan has the 'Test failover' option highlighted with a red box.

When the VMware administrator performs a failover operation, NetApp Disaster Recovery automates the following tasks:

- Break and fail over the NetApp SnapMirror relationships.
- Connect the replicated datastores to the ESXi hosts at the DR site.
- Connect the VM network adapters to the appropriate destination site network.
- Reconfigure the VM guest operating system network settings as defined for the network at the destination site.
- Execute any custom commands (if any) that have been stored in the replication plan.
- Power on the VMs in the order that was defined in the replication plan.

Failback

A failback is an optional procedure that restores the original configuration of the source and destination sites after a recovery.

The screenshot shows the NetApp Disaster Recovery Console interface. On the left, a sidebar lists options: Disaster Recovery, Dashboard, Sites, Replication plans (selected), Resource groups, and Job monitoring. The main area is titled 'Replication plans (1)'. A table displays a single plan: SiteA_SP, which is healthy and failed over. It is protected by SiteA and belongs to SiteA_SP_ResourceGroup1, with SiteB as the failover site. A context menu is open over the plan, with the 'Fail back' option highlighted.

VMware administrators can configure and run a failback procedure when they are ready to restore services to the original source site.

NetApp Disaster Recovery replicates (resyncs) any changes back to the original source virtual machine before reversing the replication direction.

This process starts from a relationship that has completed failing over to a target and involves the following steps:

- Power off and unregister the virtual machines and volumes on the destination site are unmounted.

The screenshot shows the vSphere Client interface. The left sidebar shows a tree view with 'vc2.demo.netapp.com' selected. The main pane displays 'vCenter Details' with version 8.0.3, build 24322831, and last updated on Dec 19, 2024, 4:46 PM. It also shows 1 Cluster, 1 Host, and 2 VMs. To the right, there is a 'Capacity and Usage' section showing CPU, Memory, and Storage usage. At the bottom, a 'Recent Tasks' table is shown, with the first three rows highlighted with a red box. The table columns include Task Name, Target, Status, Details, Initiator, Queued For, Start Time, Completion Time, and Server.

Task Name	Target	Status	Details	Initiator	Queued For	Start Time	Completion Time	Server
Remove datastore	nfs1	Completed		DEMO.LOCAL\Administrator	5 ms	11/18/2025, 7:56:12 PM	11/18/2025, 7:56:13 PM	vc2.demo.netapp.com
Unregister virtual machine	Linux1	Completed		DEMO.LOCAL\Administrator	9 ms	11/18/2025, 7:56:12 PM	11/18/2025, 7:56:12 PM	vc2.demo.netapp.com
Initiate guest OS shutdown	Linux1	Completed		DEMO.LOCAL\Administrator	12 ms	11/18/2025, 7:53:14 PM	11/18/2025, 7:53:14 PM	vc2.demo.netapp.com

- Break the SnapMirror relationship on the original source is broken to make it read/write.
- Resynchronize the SnapMirror relationship to reverse the replication.
- Mount the volume on the source, power on and register the source virtual machines.

Task Name	Target	Status	Details	Initiator	Queued For	Start Time	Completion Time	Server
Power On virtual machine	Linux1	Completed	Powering on the new Virtual Machine	DEMO.LOCAL\Administrator	5 ms	11/18/2025, 7:55:07 PM	11/18/2025, 7:55:08 PM	vc1.demo.netapp.com
Reconfigure virtual machine	Linux1	Completed		DEMO.LOCAL\Administrator	7 ms	11/18/2025, 7:55:05 PM	11/18/2025, 7:55:06 PM	vc1.demo.netapp.com

For more details about accessing and configuring NetApp Disaster Recovery, see the [Learn about NetApp Disaster Recovery for VMware](#).

Monitoring and Dashboard

From NetApp Disaster Recovery or the ONTAP CLI, you can monitor the replication health status for the appropriate datastore volumes, and the status of a failover or test failover can be tracked via Job Monitoring.

ID	Status	Workload	Name	Start time	End time	Action
da2efd87-674c-4013-b00a-4	Success	Reconciliation	Backup reconciliation for plan SiteA_SP	11/18/2025, 07:59:25 PM	11/18/2025, 07:59:28 PM	
34d261a2-371a-4a82-9f61-4	Success	Discovery	Discovery of resources in host 192.168.0.31	11/18/2025, 07:58:25 PM	11/18/2025, 07:58:32 PM	
569fb8ea-fcfd-44b8-8f40-4	Success	Discovery	Discovery of resources in host 192.168.0.32	11/18/2025, 07:58:25 PM	11/18/2025, 07:58:31 PM	
b68e14b0-e11d-4656-bbdc-4	Success	DRBackupRetention	Backup retention for plan SiteA_SP	11/18/2025, 07:54:20 PM	11/18/2025, 07:54:21 PM	

If a job is currently in progress or queued, and you wish to stop it, there is an option to cancel it.

With the NetApp Disaster Recovery dashboard, confidently evaluate the status of disaster recovery sites and replication plans. This enables administrators to swiftly identify healthy, disconnected, or degraded sites and plans.

The screenshot shows the NetApp Disaster Recovery Console dashboard. The left sidebar has a 'Dashboard' tab selected, along with 'Sites', 'Replication plans', 'Resource groups', and 'Job monitoring'. The main area is divided into several sections: 'Sites (2)' with 'View sites' link, 'Replication plans (1)' with 'View replication plan' link, 'Activity (Last 12 hours)' with 'View all jobs' link, and various counters for Resource groups, Protected VMs, Unprotected VMs, Failovers, Failbacks, Test failovers, and Migrations. A prominent 'Free trial (29 days left) - View details' button is at the top right.

This provides a powerful solution to handle a tailored and customized disaster recovery plan. Failover can be done as planned failover or failover with a click of a button when disaster occurs and decision is made to activate the DR site.

Convert existing vSphere clusters to VCF

Learn about converting a vSphere environment with existing datastores to a VCF management domain

Converting a vSphere environment with existing Fibre Channel or NFS datastores on ONTAP involves integrating the current infrastructure into a modern private cloud architecture.

Solution overview

This solution demonstrates how existing FC or NFS datastores in vSphere become principal storage when the cluster is converted to a VCF management domain.

This process benefits from the robustness and flexibility of ONTAP storage to ensure seamless data access and management. After a VCF management domain is established through the conversion process, administrators can efficiently import additional vSphere environments, including those using both FC and NFS datastores, into the VCF ecosystem.

This integration not only enhances resource usage but also simplifies the management of private cloud infrastructure, ensuring a smooth transition with minimal disruption to existing workloads.

Architecture overview

The architecture of ONTAP tools integrates seamlessly with VMware environments, leveraging a modular and scalable framework that includes the ONTAP tools services, vSphere plug-in, and REST APIs to enable efficient storage management, automation, and data protection.

ONTAP tools for VMware vSphere can be installed in either HA or non-HA configurations.

Supported solutions for converting a vSphere environment

Refer to the following solutions for the technical details to convert a vCenter instance.

- Convert a vCenter instance to the VCF management domain (NFS datastore)
- Convert vCenter instance to the VCF management domain (FC datastore)

Additional information

- For video demos of these solutions, refer to [VMware datastore provisioning with ONTAP](#).
- For an overview of the conversion process, refer to the [Convert a vSphere environment to a management domain or Import a vSphere environment as a VI workload domain in VMware Cloud Foundation](#).
- For information on configuring ONTAP storage systems, refer to [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to [VMware Cloud Foundation documentation](#).
- For supported storage and other considerations to convert or import vSphere to VCF 5.2, refer to [Considerations before converting or importing existing vSphere environments into VMware Cloud Foundation](#).

Deployment workflow for converting vCenter server instances to VCF management domains with NFS datastores

Convert an existing vSphere 8 cluster with NetApp ONTAP NFS datastores to a VMware

Cloud Foundation management domain. You'll review configuration requirements, deploy ONTAP tools and provision NFS datastores, and use the VCF Import Tool to validate and convert the cluster.

For an overview of the conversion process, refer to the VMware documentation: [Convert a vSphere environment to a management domain](#) or [Import a vSphere environment as a VI workload domain in VMware Cloud Foundation](#).

1

[Review the configuration requirements](#)

Review the key requirements for converting vCenter server instances to VCF management domains using NFS datastores.

2

[Deploy ONTAP tools and provision an NFS datastore](#)

Deploy ONTAP tools for VMware vSphere and provision an NFS datastore.

3

[Convert vSphere cluster to VCF management domain](#)

Use the VCF Import Tool to validate and convert the vSphere 8 to the VCF management domain.

Deployment workflow for converting vCenter server instances to VCF management domains with Fibre Channel datastores

Convert an existing vSphere 8 cluster with NetApp ONTAP Fibre Channel (FC) datastores to a VMware Cloud Foundation management domain. You'll review configuration requirements, deploy ONTAP tools and provision FC datastores, and use the VCF Import Tool to validate and convert the cluster.

For an overview of the conversion process, refer to the VMware documentation: [Convert a vSphere environment to a management domain](#) or [Import a vSphere environment as a VI workload domain in VMware Cloud Foundation](#).

1

[Review the configuration requirements](#)

Review the key requirements for converting vCenter server instances to VCF management domains using FC datastores.

2

[Deploy ONTAP tools and provision a FC datastore](#)

Deploy ONTAP tools for VMware vSphere and provision a FC datastore.

3

[Convert vSphere cluster to VCF management domain](#)

Use the VCF Import Tool to validate and convert the vSphere 8 cluster to the VCF management domain.

Provision VCF with principal storage

Provision a VCF environment with ONTAP as the principal storage solution

NetApp ONTAP storage is an ideal primary storage solution for VMware Cloud Foundation (VCF) management and Virtual Infrastructure (VI) workload domains. ONTAP delivers high performance, scalability, advanced data management, and seamless integration to improve operational efficiency and data protection.

Please refer to the following solutions for the technical details of provisioning a VCF environment in the appropriate domain and with the appropriate protocol.

- [Management Domain with FC](#)
- [Management Domain with NFS](#)
- [Virtual Infrastructure Workload Domain with FC](#)
- [Virtual Infrastructure Workload Domain with NFS](#)

Use an FC-based VMFS datastore on ONTAP as principal storage for VCF management domain

In this use case we outline the procedure to use an existing FC-based VMFS datastore on ONTAP as the primary storage for VMware Cloud Foundation (VCF) management domains. This procedure summarizes the required components, configurations, and deployment steps.

Introduction

Where appropriate we will refer to external documentation for the steps that must be performed in VCF's SDDC Manager, and reference those steps that are specific to the storage configuration portion.

For information on converting an existing FC-based vSphere environment with ONTAP, refer to [Convert vSphere Environment \(FC datastore\) to VCF Management Domain](#).

VCF release 5.2 introduced the capability to convert an existing vSphere 8 environment to a VCF management domain or import as VCF VI workload domains. Prior to this release, VMware vSAN was the only option for principal storage for the VCF management domain.

This solution is applicable for ONTAP platforms supporting FC storage including NetApp ASA, AFF and FAS.

Prerequisites

The following components and configurations are used in this scenario:

- NetApp storage system with a storage virtual machine (SVM) configured to allow FC traffic.
- Logical interfaces (LIF) have been created on the FC fabric that is to carry FC traffic and is associated with the SVM.
- Zoning has been configured to use single initiator-target zoning on FC switches for host HBAs and storage

targets.

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Deployment Steps

Management Domain - Default Cluster

FC Principal storage on the initial cluster is only supported with VCF brownfield import tool. If VCF is deployed with Cloud Builder tool (prior to release version 5.2.x), only vSAN is supported.

For more information on using an existing vSphere environment, refer to [converting existing vSphere environment to management domain](#) for more info.

Management Domain - Additional Cluster

The additional vSphere cluster on management domain can be deployed with following options:

- Have additional cluster in vSphere environment and use the VCF brownfield import tool to convert the vSphere environment to Management domain. [ONTAP tools for VMware vSphere System Manager](#) or [ONTAP API](#) can be used to deploy the VMFS datastore to vSphere cluster.
- Use SDDC API to deploy additional cluster. The vSphere hosts should have the VMFS datastore configured. Use [System Manager](#) or [ONTAP API](#) to deploy LUN to vSphere hosts.
- Use SDDC Manager UI to deploy additional cluster. But this option only creates VSAN datastore till version 5.2.x.

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Use an NFS datastore on ONTAP as principal storage for VCF management domain

In this use case we outline the procedure to use an existing NFS datastore on ONTAP as the primary storage for VMware Cloud Foundation (VCF) management domains. This procedure summarizes the required components, configuration steps, and deployment process.

Introduction

Where appropriate we will refer to external documentation for the steps that must be performed in VCF's SDDC Manager, and reference those steps that are specific to the storage configuration portion.

For information on converting an existing NFS-based vSphere environment with ONTAP, refer to [Convert vSphere Environment \(NFS datastore\) to VCF Management Domain](#).

VCF release 5.2 introduced the the capability to convert an existing vSphere 8 environment to a VCF management domain or import as VCF VI workload domains. Prior to this release, VMware vSAN was the only option for principal storage for the VCF management domain.

This solution is applicable for ONTAP platforms supporting NFS storage including NetApp AFF and FAS.

Prerequisites

The following components and configurations are used in this scenario:

- NetApp storage system with a storage virtual machine (SVM) configured to allow NFS traffic.
- Logical interface (LIF) has been created on the IP network that is to carry NFS traffic and is associated with the SVM.
- A vSphere 8 cluster with 4 x ESXi hosts and a vCenter appliance colocated on the cluster.
- Distributed port group configured for vMotion and NFS storage traffic on the VLANs or network segments established for this purpose.
- Download software required for the VCF conversion.

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Deployment Steps

Management Domain - Default Cluster

NFS Principal storage on the initial cluster is only supported with VCF brownfield import tool. If VCF is deployed with Cloud Builder tool (till version 5.2.x), only VSAN is supported.

For more information on using an existing vSphere environment, refer to [converting existing vSphere environment to management domain](#) for more info.

Management Domain - Additional Cluster

The additional vSphere cluster on management domain can be deployed with following options:

- Have additional cluster in vSphere environment and use the VCF brownfield import tool to convert the vSphere environment to Management domain. [ONTAP tools for VMware vSphere System Manager](#) or [ONTAP API](#) can be used to deploy the NFS datastore to vSphere cluster.
- Use SDDC API to deploy additional cluster. The vSphere hosts should have the NFS datastore configured. Use [System Manager](#) or [ONTAP API](#) to deploy LUN to vSphere hosts.
- Use SDDC Manager UI to deploy additional cluster. But this option only creates vSAN datastore with releases prior to 5.2.x.

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Use an FC-based VMFS datastore on ONTAP as principal storage for a VI workload domain

In this use case we outline the procedure to set up a Fibre Channel (FC) VMFS datastore

on ONTAP as the primary storage solution for a VMware Cloud Foundation (VCF) Virtual Infrastructure (VI) workload domain. This procedure summarizes the required components, configuration steps, and deployment process.

Benefits of Fibre Channel

High Performance: FC provides high-speed data transfer rates, making it ideal for applications requiring fast and reliable access to large amounts of data.

Low Latency: Very low latency, which is crucial for performance-sensitive applications like databases and virtualized environments.

Reliability: FC networks are known for their robustness and reliability, with features like built-in redundancy and error correction.

Dedicated Bandwidth: FC provides dedicated bandwidth for storage traffic, reducing the risk of network congestion.

For more information on using Fibre Channel with NetApp storage systems, refer to [SAN Provisioning with FC](#).

Scenario Overview

This scenario covers the following high level steps:

- Create a storage virtual machine (SVM) with logical interfaces (LIFs) for FC traffic.
- Collect WWPN information of hosts to be deployed and create corresponding initiator groups on the ONTAP storage system.
- Create an FC volume on the ONTAP storage system.
- Map initiator groups to create FC volume
- Utilize single initiator-target zoning on FC switches. Create one zone for each initiator (single initiator zone).
 - For each zone, include a target that is the ONTAP FC logical interface (WWPN) for the SVMs. There should be at least two logical interfaces per node per SVM. Do not use the WWPN of the physical ports.
- Create a Network Pool for vMotion traffic in SDDC Manager.
- Commission hosts in VCF for use in a VI Workload Domain.
- Deploy a VI Workload Domain in VCF using an FC datastore as principal storage.

This solution is applicable for ONTAP platforms supporting NFS storage including NetApp AFF and FAS.

Prerequisites

The following components and configurations are used in this scenario:

- An ONTAP AFF or ASA storage system with FC ports connected to FC switches.
- SVM created with FC lifs.
- vSphere with FC HBAs connected to FC switches.

- Single initiator-target zoning is configured on FC switches.

NetApp recommends multipath for FC LUNs.

Deployment Steps

Management Domain - Default Cluster

FC Principal storage on initial cluster is only supported with the VCF brownfield import tool. If VCF is deployed with the cloudbuilder tool (till version 5.2.x), only VSAN is supported. Refer [converting existing vSphere environment to management domain](#) for more info.

Management Domain - Additional Cluster

The additional vSphere cluster on management domain can be deployed with following options:

- * Have additional cluster in vSphere environment and use the VCF brownfield import tool to convert the vSphere environment to Management domain. [ONTAP tools for VMware vSphere](#), [System Manager](#) or [ONTAP API](#) can be used to deploy the VMFS datastore to vSphere cluster.
- * Use SDDC API to deploy additional cluster. The vSphere hosts should have the VMFS datastore configured. Use [System Manager](#) or [ONTAP API](#) to deploy LUN to vSphere hosts.
- * Use SDDC Manager UI to deploy additional cluster. But this option only creates VSAN datastore till version 5.2.x.

VI Workload Domain - Default Cluster

After the management domain is up and running, VI Workload domain can be created:

- Using SDDC Manager UI. The vSphere hosts should have the VMFS datastore configured. Use System Manager or ONTAP API to deploy LUN to vSphere hosts.
- Import an existing vSphere environment as new VI workload domain. ONTAP tools for VMware vSphere, System Manager or ONTAP API can be used to deploy the VMFS datastore to vSphere cluster.

VI Workload Domain - Additional Cluster

Once VI workload is up and running, additional clusters can be deployed with VMFS on FC LUN using the following options.

- Additional clusters in vSphere environment imported using VCF brownfield import tool. ONTAP tools for VMware vSphere, System Manager or ONTAP API can be used to deploy the VMFS datastore to vSphere cluster.
- Using SDDC Manager UI or API to deploy additional cluster. The vSphere hosts should have the VMFS datastore configured. Use System Manager or ONTAP API to deploy LUN to vSphere hosts.

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Use an NFS datastore on ONTAP as principal storage for a VI workload domain

In this use case we outline the procedure to configure an NFS datastore on ONTAP as the primary storage solution for a VMware Cloud Foundation (VCF) Virtual Infrastructure

(VI) workload domain. This procedure summarizes the required components, configuration steps, and deployment process.

Benefits of NFS

Simplicity and Ease of Use: NFS is straightforward to set up and manage, making it an excellent choice for environments that require quick and easy file sharing.

Scalability: ONTAP's architecture allows NFS to scale efficiently, supporting growing data needs without significant changes to the infrastructure.

Flexibility: NFS supports a wide range of applications and workloads, making it versatile for various use cases, including virtualized environments.

For more information, refer to the [NFS v3 Reference Guide for vSphere 8](#).

For more information on using Fibre Channel with NetApp storage systems, refer to [NFS v3 Reference Guide for vSphere 8](#).

Scenario Overview

This scenario covers the following high level steps:

- Create a storage virtual machine (SVM) with logical interface (LIFs) for NFS traffic
- Verify networking for the ONTAP storage virtual machine (SVM) and that a logical interface (LIF) is present to carry NFS traffic.
- Create an export policy to allow the ESXi hosts access to the NFS volume.
- Create an NFS volume on the ONTAP storage system.
- Create a Network Pool for NFS and vMotion traffic in SDDC Manager.
- Commission hosts in VCF for use in a VI Workload Domain.
- Deploy a VI Workload Domain in VCF using an NFS datastore as principal storage.
- Install NetApp NFS Plug-in for VMware VAAI

This solution is applicable for ONTAP platforms supporting NFS storage including NetApp AFF and FAS.

Prerequisites

The following components and configurations are used in this scenario:

- NetApp AFF storage system with a storage virtual machine (SVM) configured to allow NFS traffic.
- Logical interface (LIF) has been created on the IP network that is to carry NFS traffic and is associated with the SVM.
- VCF management domain deployment is complete and the SDDC Manager interface is accessible.
- 4 x ESXi hosts configured for communication on the VCF management network.
- IP addresses reserved for vMotion and NFS storage traffic on the VLAN or network segment established for this purpose.

When deploying a VI Workload Domain, VCF validates connectivity to the NFS Server. This is done using the management adapter on the ESXi hosts before any additional vmkernel adapter is added with the NFS IP address. Therefore, it is necessary to ensure that either 1) the management network is routable to the NFS Server, or 2) a LIF for the management network has been added to the SVM hosting the NFS datastore volume, to ensure that the validation can proceed.

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

For more information on using NFS with vSphere clusters, refer to the [NFS v3 Reference Guide for vSphere 8](#).

Deployment Steps

To deploy a VI Workload Domain with an NFS datastore as principal storage, complete the following steps:

Verify networking for ONTAP SVM

Verify that the required logical interfaces have been established for the network that will carry NFS traffic between the ONTAP storage cluster and VI Workload Domain.

1. From ONTAP System Manager navigate to **Storage VMs** in the left-hand menu and click on the SVM to be used for NFS traffic. On the **Overview** tab, under **NETWORK IP INTERFACES**, click on the numeric to the right of **NFS**. In the list verify that the required LIF IP addresses are listed.

The screenshot shows the ONTAP System Manager interface. The left sidebar is collapsed. The main area shows the 'Storage VMs' list with the following entries:

Name
EHC_iSCSI
<input checked="" type="checkbox"/> EHC_NFS
HMC_187
HMC_3510
HMC_iSCSI_3510
infra_svm_a300
JS_EHC_iSCSI
OTVtest
svm0
Temp_3510_N1
zoneb

On the right, the 'EHC_NFS' SVM is selected. The 'Overview' tab is active. A callout box highlights the 'NETWORK IP INTERFACES' section for the 'NFS' interface. The IP addresses listed are:

IP Address
172.21.253.117
172.21.253.118
172.21.253.116
172.21.253.112
172.21.253.113
172.21.118.163
172.21.118.164

Alternately, verify the LIFs associated with an SVM from the ONTAP CLI with the following command:

```
network interface show -vserver <SVM_NAME>
```

1. Verify that the ESXi hosts can communicate to the ONTAP NFS Server. Log into the ESXi host via SSH and ping the SVM LIF:

```
vmkping <IP Address>
```


When deploying a VI Workload Domain, VCF validates connectivity to the NFS Server. This is done using the management adapter on the ESXi hosts before any additional vmkernel adapter is added with the NFS IP address. Therefore, it is necessary to ensure that either 1) the management network is routable to the NFS Server, or 2) a LIF for the management network has been added to the SVM hosting the NFS datastore volume, to ensure that the validation can proceed.

Create Export Policy for sharing NFS volume

Create an export policy in ONTAP System Manager to define access control for NFS volumes.

1. In ONTAP System Manager click on **Storage VMs** in the left-hand menu and select an SVM from the list.
2. On the **Settings** tab locate **Export Policies** and click on the arrow to access.

The screenshot shows the ONTAP System Manager interface. The left sidebar is titled 'ONTAP System Manager' and includes sections for DASHBOARD, INSIGHTS, STORAGE (with 'Storage VMs' selected), NVMe Namespaces, Shares, Buckets, Qtrees, Quotas, and NETWORK. The main content area is titled 'Storage VMs' and shows a list of SVMs. A table lists SVMs with columns for 'Name' and 'Status'. The 'EHC_NFS' SVM is selected and highlighted with a blue border. To the right of the list, there are tabs for 'Overview', 'Settings' (which is selected), 'SnapMirror (Local or Remote)', and 'File System'. Below the tabs, a 'Pinned' section displays 'Export Policies'. A tooltip for the 'Settings' tab shows the path: 'EHC_NFS > All Storage VMs > Settings > Export Policies'. The 'Export Policies' section shows a list of policies: 'default' (41 Rules), 'JetStream_NFS_v02' (0.0.0/0 for Any), and 'JetStream_NFS_v03' (0.0.0/0 for Any). A hand cursor is hovering over the 'JetStream_NFS_v02' policy.

3. In the **New export policy** window add a name for the policy, click on the **Add new rules** button and then on the **+Add** button to begin adding a new rule.

New export policy

NAME

WKLD_DM01

Copy rules from existing policy

STORAGE VM

svm0

EXPORT POLICY

default

RULES

No data

 Add

 Add New Rules

Save

Cancel

4. Fill in the IP Addresses, IP address range, or network that you wish to include in the rule. Uncheck the **SMB/Cifs** and **FlexCache** boxes and make selections for the access details below. Selecting the **UNIX** boxes is sufficient for ESXi host access.

New Rule

CLIENT SPECIFICATION

172.21.166.0/24

ACCESS PROTOCOLS

- SMB/CIFS
- FlexCache
- NFS
- NFSv3
- NFSv4

ACCESS DETAILS

Type	Read-only Access	Read/Write Access	Superuser Access
All	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
All (As anonymous user) i	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
UNIX	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Kerberos 5	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Kerberos 5i	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Kerberos 5p	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
NTLM	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Cancel

Save

When deploying a VI Workload Domain, VCF validates connectivity to the NFS Server. This is done using the management adapter on the ESXi hosts before any additional vmkernel adapter is added with the NFS IP address. Therefore, it is necessary to ensure that the export policy includes the VCF management network in order to allow the validation to proceed.

5. Once all rules have been entered click on the **Save** button to save the new Export Policy.
6. Alternately, you can create export policies and rules in the ONTAP CLI. Refer to the steps for creating an export policy and adding rules in the ONTAP documentation.
 - Use the ONTAP CLI to [Create an export policy](#).
 - Use the ONTAP CLI to [Add a rule to an export policy](#).

Create NFS volume

Create an NFS volume on the ONTAP storage system to be used as a datastore in the Workload Domain deployment.

1. From ONTAP System Manager navigate to **Storage > Volumes** in the left-hand menu and click on **+Add** to create a new volume.

2. Add a name for the volume, fill out the desired capacity and selection the storage VM that will host the volume. Click on **More Options** to continue.

Add Volume

X

NAME

CAPACITY

STORAGE VM

Export via NFS

[More Options](#)

[Cancel](#)

[Save](#)

3. Under Access Permissions, select the Export Policy which includes the VCF management network or IP address and NFS network IP addresses that will be used for both validation of the NFS Server and NFS traffic.

Access Permissions

Export via NFS

GRANT ACCESS TO HOST

default

JetStream_NFS_v04

Clients : 0.0.0.0/0 | Access protocols : Any

NFSmountTest01

3 rules

NFSmountTestReno01

Clients : 0.0.0.0/0 | Access protocols : Any

PerfTestVols

Clients : 172.21.253.0/24 | Access protocols : NFSv3, NFSv4, NFS

TestEnv_VPN

Clients : 172.21.254.0/24 | Access protocols : Any

VCF_WKLD

2 rules

WKLD_DM01

2 rules

Wkld01_NFS

Clients : 172.21.252.205, 172.21.252.206, 172.21.252.207, 172.21.2

+

When deploying a VI Workload Domain, VCF validates connectivity to the NFS Server. This is done using the management adapter on the ESXi hosts before any additional vmkernel adapter is added with the NFS IP address. Therefore, it is necessary to ensure that either 1) the management network is routable to the NFS Server, or 2) a LIF for the management network has been added to the SVM hosting the NFS datastore volume, to ensure that the validation can proceed.

4. Alternately, ONTAP Volumes can be created in the ONTAP CLI. For more information refer to the [lun create](#) command in the ONTAP commands documentation.

Create Network Pool in SDDC Manager

ANetwork Pool must be created in SDDC Manager before commissioning the ESXi hosts, as preparation for deploying them in a VI Workload Domain. The Network Pool must include the network information and IP address range(s) for VMkernel adapters to be used for communication with the NFS server.

1. From the SDDC Manager web interface navigate to **Network Settings** in the left-hand menu and click on the **+ Create Network Pool** button.

2. Fill out a name for the Network Pool, select the check box for NFS and fill out all networking details. Repeat this for the vMotion network information.

The screenshot shows the 'Network Settings' page in the vSphere Cloud Foundation interface. The left sidebar is a navigation menu with sections like Dashboard, Solutions, Inventory, Workload Domains, Hosts, Lifecycle Management, Administration, Network Settings, Storage Settings, Licensing, Single Sign On, Proxy Settings, Online Depot, Composable Infrastructure, VMware Aria Suite, Backup, VMware CEP, Security, Password Management, Certificate Authority, and Developer Center. The 'Network Settings' section is currently selected. The main content area is titled 'Create Network Pool' and includes tabs for 'Network Pool' (selected), 'DNS Configuration', and 'NTP Configuration'. A note at the top says 'Ensure that all required networks are selected based on their usage for workload domains.' Below this, a 'Network Pool Name' field is set to 'NFS_NP01'. Under 'Network Type', 'VSAN' and 'NFS' are selected, while 'iSCSI' and 'vMotion' are not. The 'NFS Network Information' section contains fields for VLAN ID (3974), MTU (9000), Network (172.21.118.0), Subnet Mask (255.255.255.0), and Default Gateway (172.21.118.1). The 'vMotion Network Information' section contains fields for VLAN ID (3423), MTU (9000), Network (172.21.167.0), Subnet Mask (255.255.255.0), and Default Gateway (172.21.167.1). Both sections have 'Included IP Address Ranges' tables. The NFS table has one entry: '172.21.118.145' To '172.21.118.148' with a 'REMOVE' button. The vMotion table has one entry: '172.21.167.121' To '172.21.167.124' with a 'REMOVE' button. Below these tables are 'ADD' buttons. At the bottom are 'CANCEL' and 'SAVE' buttons.

3. Click the **Save** button to complete creating the Network Pool.

Commission Hosts

Before ESXi hosts can be deployed as a workload domain they must be added to the SDDC Manager inventory. This involves providing the required information, passing validation and starting the commissioning process.

For more information see [Commission Hosts](#) in the VCF Administration Guide.

1. From the SDDC Manager interface navigate to **Hosts** in the left-hand menu and click on the **Commission Hosts** button.

2. The first page is a prerequisite checklist. Double-check all prerequisites and select all checkboxes to proceed.

Checklist

Commissioning a host adds it to the VMware Cloud Foundation inventory. The host you want to commission must meet the checklist criterion below.

- Select All**
- Host for vSAN/vSAN ESA workload domain should be vSAN/vSAN ESA compliant and certified per the VMware Hardware Compatibility Guide. BIOS, HBA, SSD, HDD, etc. must match the VMware Hardware Compatibility Guide.
- Host has a standard switch with two NIC ports with a minimum 10 Gbps speed.
- Host has the drivers and firmware versions specified in the VMware Compatibility Guide.
- Host has ESXi installed on it. The host must be preinstalled with supported versions (8.0.2-22380479).
- Host is configured with DNS server for forward and reverse lookup and FQDN.
- Hostname should be same as the FQDN.
- Management IP is configured to first NIC port.
- Ensure that the host has a standard switch and the default uplinks with 10Gb speed are configured starting with traditional numbering (e.g., vmnic0) and increasing sequentially.
- Host hardware health status is healthy without any errors.
- All disk partitions on HDD / SSD are deleted.
- Ensure required network pool is created and available before host commissioning.
- Ensure hosts to be used for VSAN workload domain are associated with VSAN enabled network pool.
- Ensure hosts to be used for NFS workload domain are associated with NFS enabled network pool.
- Ensure hosts to be used for VMFS on FC workload domain are associated with NFS or VMOTION only enabled network pool.
- Ensure hosts to be used for vVol FC workload domain are associated with NFS or VMOTION only enabled network pool.
- Ensure hosts to be used for vVol NFS workload domain are associated with NFS and VMOTION only enabled network pool.
- Ensure hosts to be used for vVol iSCSI workload domain are associated with iSCSI and VMOTION only enabled network pool.
- For hosts with a DPU device, enable SR-IOV in the BIOS and in the vSphere Client (if required by your DPU vendor).

CANCEL

PROCEED

3. In the **Host Addition and Validation** window fill out the **Host FQDN**, **Storage Type**, The **Network Pool** name that includes the vMotion and NFS storage IP addresses to be used for the workload domain, and the credentials to access the ESXi host. Click on **Add** to add the host to the group of hosts to be validated.

Host Addition and Validation

Add Hosts

You can either choose to add host one at a time or download [JSON](#) template and perform bulk commission.

Add new Import

Host FQDN: vcf-wkld-esx02.sddc.netapp.com

Storage Type: vSAN NFS VMFS on FC vVol

Network Pool Name: [NFS_NP01](#)

User Name: root

Password: [REVEAL](#)

ADD

Hosts Added

Hosts added successfully. Add more or confirm fingerprint and validate host

REMOVE	Toggle	Confirm all Finger Prints	i	VALIDATE ALL	
<input checked="" type="checkbox"/>	FQDN	Network Pool	IP Address	Confirm FingerPrint	Validation Status
<input checked="" type="checkbox"/>	vcf-wkld-esx01.sddc.netapp.com	NFS_NP01	172.21.166.135	SHA256:CKbsinfEOG+Hz/lpFUoFDI2tLuYFZ47WicVDp6vEQM	Not Validated
1 hosts					

[CANCEL](#) [NEXT](#)

4. Once all hosts to be validated have been added, click on the **Validate All** button to continue.
5. Assuming all hosts are validated, click on **Next** to continue.

Hosts Added

 Host Validated Successfully.

REMOVE

Confirm all Finger Prints

VALIDATE ALL

<input checked="" type="checkbox"/>	FQDN	Network Pool	IP Address	Confirm FingerPrint	Validation Status
<input checked="" type="checkbox"/>	vcf-wkld-esx04.sddc.netapp.com	NFS_NP01	172.21.166.138	SHA256:9Kg+9nQaE4SQkOMsQPON/k5gZB9zyKN+6CBPmXsvLBc	Valid
<input checked="" type="checkbox"/>	vcf-wkld-esx03.sddc.netapp.com	NFS_NP01	172.21.166.137	SHA256:nPX4/mei/2zmLJHfmPwbk6zhapoUxV2lOwZDPFHZ+zo	Valid
<input checked="" type="checkbox"/>	vcf-wkld-esx02.sddc.netapp.com	NFS_NP01	172.21.166.136	SHA256:AMhyR60OpTQ1YYq0DjhqVbj/M/GvrQaqUy7Ce+M4IWY	Valid
<input checked="" type="checkbox"/>	vcf-wkld-esx01.sddc.netapp.com	NFS_NP01	172.21.166.135	SHA256:CKbsinfEOG+l+z/lpFUoFDI2tLuYFZ47WicVDp6vEQM	Valid

4 items

CANCEL

NEXT

6. Review the list of hosts to be commissioned and click on the **Commission** button to start the process. Monitor the commissioning process from the Task pane in SDDC manager.

Commission Hosts

1 Host Addition and Validation

2 Review

Review

Skip failed hosts during commissioning On

Validated Host(s)	
vcf-wkld-esx04.sddc.netapp.com	Network Pool Name: NFS_NP01 IP Address: 172.21.166.138 Storage Type: NFS
vcf-wkld-esx03.sddc.netapp.com	Network Pool Name: NFS_NP01 IP Address: 172.21.166.137 Storage Type: NFS
vcf-wkld-esx02.sddc.netapp.com	Network Pool Name: NFS_NP01 IP Address: 172.21.166.136 Storage Type: NFS
vcf-wkld-esx01.sddc.netapp.com	Network Pool Name: NFS_NP01 IP Address: 172.21.166.135 Storage Type: NFS

[CANCEL](#) [BACK](#) [COMMISSION](#)

Deploy VI Workload Domain

Deploying VI workload domains is accomplished using the VCF Cloud Manager interface. Only the steps related to the storage configuration will be presented here.

For step-by-step instructions on deploying a VI workload domain refer to [Deploy a VI Workload Domain Using the SDDC Manager UI](#).

1. From the SDDC Manager Dashboard click on **+ Workload Domain** in the upper right hand corner to create a new Workload Domain.

The screenshot shows the VMware Cloud Foundation SDDC Manager Dashboard. The left sidebar has a 'Workload Domains' section with a 'Hosts' option highlighted. The main area displays '0 Solutions' and '1 Workload Domains'. The 'Workload Domains' section shows 'Management Domain' and 'VI Domain'. Below this is a 'Host Type and Usage' section with 'Host Types' including 'Hybrid Host' and 'All Flash Host'. To the right, there is a 'CPU, Memory, Storage Usage' section with a CPU chart showing 10.16 GHz Total, 15.43 GHz Used, and 84.73 GHz Free. Below it is a 'Memory' chart showing 311.98 GB Total, 122.22 GB Used, and 189.76 GB Free. A 'Recent tasks' sidebar on the right lists tasks from 3/4/24 and 2/22/24.

2. In the VI Configuration wizard fill out the sections for **General Info, Cluster, Compute, Networking, and Host Selection** as required.

For information on filling out the information required in the VI Configuration wizard refer to [Deploy a VI Workload Domain Using the SDDC Manager UI](#).

+

VI Configuration

1 General Info

2 Cluster

3 Compute

4 Networking

5 Host Selection

6 NFS Storage

7 Switch Configuration

8 License

9 Review

1. In the NFS Storage section fill out the Datastore Name, the folder mount point of the NFS volume and the IP address of the ONTAP NFS storage VM LIF.

VI Configuration	NFS Storage
1 General Info	NFS Share Details
2 Cluster	Datastore Name (i) <input type="text" value="VCF_WKLD_01"/>
3 Compute	Folder (i) <input type="text" value="/VCF_WKLD_01"/>
4 Networking	NFS Server IP Address (i) <input type="text" value="172.21.118.163"/>
5 Host Selection	
6 NFS Storage	

2. In the VI Configuration wizard complete the Switch Configuration and License steps, and then click on **Finish** to start the Workload Domain creation process.

3. Monitor the process and resolve any validation issues that arise during the process.

Install NetApp NFS Plug-in for VMware VAAI

The NetApp NFS Plug-in for VMware VAAI integrates the VMware Virtual Disk Libraries installed on the ESXi host and provides higher performance cloning operations that finish faster. This is a recommended procedure when using ONTAP storage systems with VMware vSphere.

For step-by-step instructions on deploying the NetApp NFS Plug-in for VMware VAAI following the instructions at [Install NetApp NFS Plug-in for VMware VAAI](#).

Video demo for this solution

[NFS Datastores as Principal Storage for VCF Workload Domains](#)

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Expand VCF with supplemental storage

Learn about expanding storage for a VCF environment using supplemental storage

VMware Cloud Foundation (VCF) supports a wide range of supplemental storage options to expand storage on VCF management domains and Virtual Infrastructure (VI) workload domains.

NetApp's ONTAP tools for VMware vSphere provide an efficient solution for this expansion by integrating NetApp storage seamlessly into the VCF environment.

ONTAP tools simplifies the setup and management of datastores, allowing administrators to provision and manage storage directly from the vSphere Client. ONTAP's advanced features, such as snapshots, cloning, and data protection, enhance storage performance, efficiency, and scalability within the VCF environment.

Supported protocols for expanding storage

VCF environments can be expanded using several storage protocols, each offering unique benefits and use cases.

You can use the following protocols to expand storage in VCF management domains and VI workload domains. Choose the best option for your environment to seamlessly integrate supplemental storage into your VCF deployment.

iSCSI

Block-based protocol that uses standard Ethernet networks. Ideal for environments that require high performance, flexibility, and cost-effective scaling.

iSCSI is widely used for VMFS datastores and supports advanced ONTAP features, such as snapshots and cloning.

- **High Performance:** Offers high performance to deliver fast, efficient data transfer rates and low latency. Ideal for demanding enterprise applications and virtualized environments.
- **Ease of Management:** Simplifies storage management by using familiar IP-based tools and protocols.
- **Cost Effective:** Uses existing Ethernet infrastructure, reducing the need for specialized hardware and allowing organizations to achieve reliable and scalable storage solutions.

For more information on using iSCSI with NetApp storage systems, refer to [SAN Provisioning with iSCSI](#).

Fibre Channel (FC)

High-speed, low-latency protocol that uses dedicated FC networks. FC is preferred for mission-critical workloads that demand reliability, dedicated bandwidth, and robust error correction. It is commonly used for VMFS datastores in enterprise environments.

- **High Performance:** FC provides high-speed data transfer rates, making it ideal for applications requiring fast and reliable access to large amounts of data.
- **Low Latency:** Very low latency, which is crucial for performance-sensitive applications like databases and virtualized environments.
- **Reliability:** FC networks are known for their robustness and reliability, with features like built-in redundancy and error correction.

- **Dedicated Bandwidth:** FC provides dedicated bandwidth for storage traffic, reducing the risk of network congestion.

For more information on using Fibre Channel with NetApp storage systems, refer to [SAN Provisioning with FC](#).

NFS (Network File System)

File-based protocol that enables easy sharing and management of files across hosts. NFS is simple to set up and scales efficiently, making it suitable for virtualized workloads and environments that require flexible file access.

NFS datastores are supported by ONTAP and vSphere for both management and workload domains.

- **Simplicity and ease of use:** NFS is straightforward to set up and manage, making it an excellent choice for environments that require quick and easy file sharing.
- **Scalability:** ONTAP's architecture allows NFS to scale efficiently, supporting growing data needs without significant changes to the infrastructure.
- **Flexibility:** NFS supports a wide range of applications and workloads, making it versatile for various use cases, including virtualized environments.

For more information, refer to the [NFS v3 Reference Guide for vSphere 8](#).

NVMe/TCP

Modern protocol that delivers high performance and low latency over standard Ethernet networks using TCP/IP. NVMe/TCP is ideal for demanding applications and large-scale data operations, providing scalability and cost efficiency without requiring specialized hardware.

- **High Performance:** Delivers exceptional performance with low latency and high data transfer rates. This is crucial for demanding applications and large-scale data operations.
- **Scalability:** Supports scalable configurations, allowing IT administrators to expand their infrastructure seamlessly as data requirements grow.
- **Cost Effective:** Runs over standard Ethernet switches and is encapsulated inside TCP datagrams. No special equipment required to implement.

For more information on the benefits of NVMe, refer to [What is NVME?](#).

Use cases for adding supplemental storage

The following use cases demonstrate how to add supplemental storage to VCF management domains and Virtual Infrastructure (VI) workload domains using different protocols and configurations.

- [Management Domain with iSCSI](#)
- [Management Domain with FC](#)
- [Virtual Infrastructure Workload Domain with vVols \(iSCSI\)](#)
- [Virtual Infrastructure Workload Domain with vVols \(NFS\)](#)
- [Virtual Infrastructure Workload Domain with NVMe/TCP](#)
- [Virtual Infrastructure Workload Domain with FC](#)

Expand management domains with iSCSI

Deployment workflow for adding an iSCSI datastore as supplemental storage in a VCF management domain

Get started with adding an iSCSI datastore as supplemental storage for a VMware Cloud Foundation (VCF) management domain. You'll set up a Storage Virtual Machine (SVM) with logical interfaces (LIFs) for iSCSI, configure iSCSI networking on ESXi hosts, deploy ONTAP tools for VMware vSphere, and create a VMFS datastore.

1

Review the deployment requirements

Review the requirements for adding iSCSI datastores as supplemental storage to VCF management domain.

2

Create the SVM and LIFs

Create an SVM with multiple LIFs for iSCSI traffic.

3

Configure networking

Set up networking for iSCSI on ESXi hosts.

4

Configure storage

Deploy and use ONTAP tools to configure storage.

Deployment requirements for adding an iSCSI datastore to a VCF management domain

Review the requirements for adding iSCSI datastores as supplemental storage to a VMware Cloud Foundation (VCF) management domain.

Infrastructure requirements

Make sure the following components and configurations are in place.

- An ONTAP AFF or ASA storage system with physical data ports on Ethernet switches dedicated to storage traffic.
- VCF management domain deployment is complete and the vSphere client is accessible.

Recommended iSCSI network design

You should configure fully redundant network designs for iSCSI. The following diagram shows an example of a redundant configuration, providing fault tolerance for storage systems, switches, networks adapters and host systems. Refer to the NetApp [SAN configuration reference](#) for additional information.

For multipathing and failover across multiple paths, create a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in iSCSI configurations.

 In situations where multiple VMkernel adapters are configured on the same IP network, it is recommended to use software iSCSI port binding on the ESXi hosts to ensure that load balancing across the adapters occurs. Refer to KB article [Considerations for using software iSCSI port binding in ESX/ESXi](#).

What's next?

After reviewing the deployment requirements, [create the SVM and LIFs](#).

Create SVM and LIFs for iSCSI datastores in a VCF management domain

Create a Storage Virtual Machine (SVM) with multiple Logical Interfaces (LIFs) to provide iSCSI connectivity for VMware Cloud Foundation management domains. You'll configure the SVM with iSCSI protocol support and set up multiple LIFs across separate Ethernet networks to enable multipathing and failover for optimal performance and availability.

To add new LIFs to an existing SVM, refer to the ONTAP documentation: [Create ONTAP LIFs](#).

Steps

1. From ONTAP System Manager navigate to **Storage VMs** in the left-hand menu and click **+ Add** to start.

Show example

The screenshot shows the ONTAP System Manager interface. The left sidebar has a 'Storage' section with various options: Overview, Volumes, LUNs, Consistency Groups, NVMe Namespaces, Shares, Buckets, Qtrees, Quotas, Storage VMs (which is selected and highlighted in blue), and Tiers. The main content area is titled 'Storage VMs' and features a large blue button with a white plus sign and the text '+ Add'. Below this button is a table with a single column labeled 'Name'. The table lists several Storage VM names: EHC_iSCSI, EHC, HMC_187, HMC_3510, HMC_iSCSI_3510, infra_svm_a300, JS_EHC_iSCSI, and OTVtest. Each name is preceded by a small checkbox.

2. In the **Add Storage VM** wizard, provide a **Name** for the SVM, select the **IP Space** and then, under **Access Protocol**, click the **iSCSI** tab and check the box to **Enable iSCSI**.

Show example

Add Storage VM

STORAGE VM NAME

IPSPACE

Default

Access Protocol

SMB/CIFS, NFS, S3 iSCSI FC NVMe

Enable iSCSI

3. In the **Network Interface** section fill in the **IP address**, **Subnet Mask**, and **Broadcast Domain and Port** for the first LIF. For subsequent LIFs, you can either use individual settings or enable the checkbox to use common settings across all remaining LIFs.

For multipathing and failover across multiple paths, create a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in iSCSI configurations.

Show example

NETWORK INTERFACE

ntaphci-a300-01

IP ADDRESS	SUBNET MASK	GATEWAY	BROADCAST DOMAIN AND PORT
172.21.118.179	24	Add optional gateway	NFS_iSCSI

Use the same subnet mask, gateway, and broadcast domain for all of the following interfaces

IP ADDRESS	PORT
172.21.119.179	a0a-3375

ntaphci-a300-02

IP ADDRESS	PORT
172.21.118.180	a0a-3374

IP ADDRESS	PORT
172.21.119.180	a0a-3375

4. Choose whether to enable the Storage VM Administration account (for multi-tenancy environments) and then click **Save** to create the SVM.

Show example

Storage VM Administration

Manage administrator account

Save

Cancel

What's next?

After you create the SVM and LIFs, configure networking for iSCSI on ESXi hosts.

Configure networking for iSCSI on ESXi hosts in a VCF management domain

Configure iSCSI networking on ESXi hosts in VMware Cloud Foundation management domains to enable connectivity to ONTAP storage systems. You'll create distributed port groups with VLAN separation, configure uplink teaming for redundancy, and set up VMkernel adapters on each ESXi host to establish dedicated iSCSI paths for failover capabilities.

Perform these steps on the VCF management domain cluster using the vSphere client.

Step 1: Create distributed port groups for iSCSI traffic

Complete the following steps to create a new distributed port group for each iSCSI network:

Steps

1. From the vSphere client , navigate to **Inventory > Networking** for the workload domain. Navigate to the existing Distributed Switch and choose the action to create a new **Distributed Port Group**....

Show example

2. In the **New Distributed Port Group** wizard, fill in a name for the new port group and then click **Next** to continue.
3. On the **Configure settings** page, fill out all settings. If VLANs are being used be sure to provide the correct VLAN ID. Click **Next** to continue.

Show example

New Distributed Port Group

Configure settings

Set general properties of the new port group.

Port binding: Static binding

Port allocation: Elastic (1)

Number of ports: 8

Network resource pool: (default)

VLAN

VLAN type: VLAN

VLAN ID: 3374

Advanced

Customize default policies configuration

CANCEL BACK NEXT

4. On the **Ready to complete** page, review the changes and click **Finish** to create the new distributed port group.
5. Repeat this process to create a distributed port group for the second iSCSI network being used and ensure you have input the correct **VLAN ID**.
6. Once both port groups have been created, navigate to the first port group and select the action to **Edit settings....**

Show example

The screenshot shows the vSphere Client interface. In the left navigation pane, under the 'Datacenter' section, 'vcf-m01-vc01.sddc.netapp.com' is expanded, showing 'vcf-m01-dc01'. Under 'vcf-wkld-vc01.sddc.netapp.com', 'vcf-wkld-01-DC' is expanded, showing 'vcf-wkld-01-IT-INF-WKLD-01-vds-01'. This port group is also expanded, showing 'vcf-wkld-01-iscsi-a'. A context menu is open on 'vcf-wkld-01-iscsi-a', with the 'Edit Settings...' option highlighted and a hand cursor pointing at it. The right pane displays 'Distributed Port Group Details' for 'vcf-wkld-01-iscsi-a'. The details include: Port binding (Static binding), Port allocation (Elastic), VLAN ID (3374), Distributed switch (vcf-wkld-01-IT-INF-WKLD-01-vds-01), and Network protocol profile (--). The 'vcf-wkld-01-iscsi-a' port group is highlighted in the list.

7. On **Distributed Port Group - Edit Settings** page, navigate to **Teaming and failover** in the left-hand menu and click **uplink2** to move it down to **Unused uplinks**.

Show example

The screenshot shows the 'Distributed Port Group - Edit Settings' dialog for 'vcf-wkld-01-iscsi-a'. The left sidebar shows tabs: General, Advanced, VLAN, Security, Traffic shaping, **Teaming and failover** (selected), Monitoring, and Miscellaneous. The 'Teaming and failover' tab contains sections for Load balancing, Network failure detection, Notify switches, and Fallback. Below these is the 'Failover order' section. Under 'Active uplinks', 'uplink1' is listed. Under 'Unused uplinks', 'uplink2' is listed. A hand cursor is pointing at 'uplink2' in the 'Active uplinks' list. Another hand cursor is pointing at 'uplink2' in the 'Unused uplinks' list. At the bottom right are 'CANCEL' and 'OK' buttons, with 'OK' highlighted by a blue box.

8. Repeat this step for the second iSCSI port group. However, this time move **uplink1** down to **Unused uplinks**.

Show example

Distributed Port Group - Edit Settings | vcf-wkld-01-iscsi-b

General Advanced VLAN Security Traffic shaping Teaming and failover Monitoring Miscellaneous

Load balancing Network failure detection Notify switches Fallback

Route based on originating virtual port ▾ Link status only ▾ Yes ▾ Yes ▾

Failover order ⓘ

MOVE UP MOVE DOWN

Active uplinks

Standby uplinks

Unused uplinks

uplink2

uplink1

Step 2: Create VMkernel adapters on each ESXi host

Create VMkernel adapters on each ESXi host in the management domain.

Steps

1. From the vSphere client navigate to one of the ESXi hosts in the workload domain inventory. From the **Configure** tab select **VMkernel adapters** and click **Add Networking...** to start.

Show example

vSphere Client Search in all environments

vcf-wkld-esx01.sddc.netapp.com ACTIONS

vcf-m01-vc01.sddc.netapp.com

vcf-m01-dc01

vcf-wkld-vc01.sddc.netapp.com

vcf-wkld-01-DC

IT-INF-WKLD-01

vcf-wkld-esx01.sddc.netapp.com

vcf-wkld-esx02.sddc.netapp.com

vcf-wkld-esx03.sddc.netapp.com

vcf-wkld-esx04.sddc.netapp.com

vcf-w01-otv9

Summary Monitor Configure Permissions VMs Datastores Networks Updates

Storage

Storage Adapters

Storage Devices

Host Cache Configuration

Protocol Endpoints

I/O Filters

Networking

Virtual switches

VMkernel adapters

Physical adapters

TCP/IP configuration

Network Label

		Network Label
...	»	vmk0 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-mgmt
...	»	vmk1 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-vmotion
...	»	vmk2 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nfs
...	»	vmk10 --

ADD NETWORKING... REFRESH

2. On the **Select connection type** window choose **VMkernel Network Adapter** and click **Next** to continue.

Show example

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select connection type

Select a connection type to create.

VMkernel Network Adapter

The VMkernel TCP/IP stack handles traffic for ESXi services such as vSphere vMotion, iSCSI, NFS, FCoE, Fault Tolerance, vSAN, host management and etc.

Virtual Machine Port Group for a Standard Switch

A port group handles the virtual machine traffic on standard switch.

Physical Network Adapter

A physical network adapter handles the network traffic to other hosts on the network.

3. On the **Select target device** page, choose one of the distributed port groups for iSCSI that was created previously.

Show example

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select target device

Select a target device for the new connection.

Select an existing network

Select an existing standard switch

New standard switch

Quick Filter

Name	NSX Port Group ID	Distributed Switch
vcf-wkld-01-iscsi-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-iscsi-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-mgmt	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-nfs	--	vcf-wkld-01-IT-INF-WKLD-01-vds-02
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-vmotion	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01

Manage Columns 5 items

Packages

CANCEL BACK NEXT

4. On the **Port properties** page, keep the defaults and click **Next** to continue.

Show example

The screenshot shows the 'Port properties' configuration dialog as part of the 'Add Networking' wizard. The left sidebar lists steps 1 through 5. Step 3, 'Port properties', is selected and highlighted in dark blue. The main panel shows the following configuration:

- Network label:** vcf-wkld-01-iscsi-a (vcf-wkld-01-1T-INF-WKLD-01-vds-01)
- MTU:** Get MTU from switch (dropdown set to 9000)
- TCP/IP stack:** Default (dropdown)
- Available services:** A list of checkboxes for various services, with 'vMotion' checked and others like 'vSphere Replication NFC' and 'NVMe over RDMA' beingunchecked.

5. On the **IPv4 settings** page, fill in the **IP address**, **Subnet mask**, and provide a new Gateway IP address (only if required). Click **Next** to continue.

Show example

The screenshot shows the 'IPv4 settings' configuration dialog as part of the 'Add Networking' wizard. The left sidebar lists steps 1 through 5. Step 4, 'IPv4 settings', is selected and highlighted in dark blue. The main panel shows the following configuration:

- Obtain IPv4 settings automatically:** Unchecked
- Use static IPv4 settings:** Checked
- IPv4 address:** 172.21.118.127
- Subnet mask:** 255.255.255.0
- Default gateway:** Override default gateway for this adapter (unchecked, with 172.21.166.1 listed)
- DNS server addresses:** 10.61.185.231

6. Review the your selections on the **Ready to complete** page and click **Finish** to create the VMkernel adapter.

Show example

The screenshot shows the 'Add Networking' wizard in vSphere. The left sidebar lists steps: 1. Select connection type, 2. Select target device, 3. Port properties, 4. IPv4 settings, and 5. Ready to complete. Step 5 is highlighted. The main pane shows 'Ready to complete' with the message 'Review your selections before finishing the wizard'. It details the configuration for a selected target device (vcf-wkld-01-iscsi-a) and lists various port properties and IPv4 settings. At the bottom right are 'CANCEL', 'BACK', and 'FINISH' buttons, with a cursor icon pointing to the 'FINISH' button.

Setting	Value
Distributed port group	vcf-wkld-01-iscsi-a
Distributed switch	vcf-wkld-01-IT-INF-WKLD-01-vds-01
New port group	vcf-wkld-01-iscsi-a (vcf-wkld-01-IT-INF-WKLD-01-vds-01)
MTU	9000
vMotion	Disabled
Provisioning	Disabled
Fault Tolerance logging	Disabled
Management	Disabled
vSphere Replication	Disabled
vSphere Replication NFC	Disabled
vSAN	Disabled
vSAN Witness	Disabled
vSphere Backup NFC	Disabled
NVMe over TCP	Disabled
NVMe over RDMA	Disabled
IPv4 address	172.21.118.127 (static)
Subnet mask	255.255.255.0

7. Repeat this process to create a VMkernel adapter for the second iSCSI network.

What's next?

After you configure networking for iSCSI on all ESXi hosts in the workload domain, [configure storage for iSCSI on ESXi hosts](#).

Configure iSCSI storage in a VCF management domain using ONTAP tools

Set up supplemental iSCSI storage to expand VMware Cloud Foundation management domains. You'll deploy ONTAP tools, configure an iSCSI datastore on the management domain, and migrate management VMs to the new datastore.

Perform the following steps on the VCF management domain cluster using the vSphere client.

Step 1: Deploy ONTAP tools for VMware vSphere

ONTAP tools for VMware vSphere (OTV) is deployed as a VM appliance and provides an integrated vCenter UI for managing ONTAP storage.

Steps

1. Obtain the ONTAP tools OVA image from the [NetApp Support site](#) and download it to a local folder.

2. Log into the vCenter appliance for the VCF management domain.
3. From the vCenter appliance interface right-click the management cluster and select **Deploy OVF Template...**

Show example

The screenshot shows the vSphere Client interface. In the left navigation pane, under the 'vcf-m01-vc01.sddc.netapp.com' tree, the 'vcf-m01-cl01' cluster is selected. A context menu is open over the cluster, with the 'Deploy OVF Template...' option highlighted and a hand cursor icon pointing at it. The menu also includes options like 'Add Hosts...', 'New Virtual Machine...', 'New Resource Pool...', and 'New vApp'.

4. In the **Deploy OVF Template** wizard, click the **Local file** radio button and select the ONTAP tools OVA file you downloaded in the previous step.

Show example

The screenshot shows the 'Deploy OVF Template' wizard. The current step is '1 Select an OVF template'. The 'Local file' radio button is selected, and a file named 'netapp-ontap-tools-for-vmware-vsphere-9.13-9554.ova' is listed in the 'UPLOAD FILES' section. The 'Select an OVF template' step also includes instructions to 'Select an OVF template from remote URL or local file system' and a text input field for a URL.

5. For steps 2 through 5 of the wizard, select a name and folder for the VM, select the compute resource,

review the details, and accept the license agreement.

6. For the storage location of the configuration and disk files, select the vSAN datastore of the VCF management domain cluster.

Show example

Deploy OVF Template

Select storage

Select the storage for the configuration and disk files

Encrypt this virtual machine (i)

Select virtual disk format As defined in the VM storage policy

VM Storage Policy Datastore Default

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free
vcf-m01-cl01-ds-vs SAN01	--	999.97 GB	7.17 TB	225.72 GB
vcf-m01-esx01-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx02-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx03-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx04-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB

Manage Columns

Items per page: 10 | 5 items

7. On the **Select network** page, select the network used for management traffic.

Show example

Deploy OVF Template

Select networks

Select a destination network for each source network.

Source Network	Destination Network
nat	vcf-m01-cl01-vds01-pg-vs SAN

Manage Columns

vcf-m01-cl01-vds01-pg-vs SAN

SDDC-DPortGroup-VM-Mgmt

Browse ...

IP Allocation Settings

IP allocation: Static - Manual

IP protocol: IPv4

8. On the **Customize template** page, enter all required information:

- Password to be used for administrative access to ONTAP tools.
- NTP server IP address.
- ONTAP tools maintenance account password.
- ONTAP tools Derby DB password.
- Do not check the box to **Enable VMware Cloud Foundation (VCF)**. VCF mode is not required for deploying supplemental storage.

- FQDN or IP address of the vCenter appliance for the **VI Workload Domain**
- Credentials for the vCenter appliance of the **VI Workload Domain**
- Required network properties.

9. Click **Next** to continue.

Show example

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Customize the deployment properties of this software solution.

ⓘ 2 properties have invalid values X

System Configuration	4 settings
Application User Password (*)	Password <input type="password"/> ••••••• ⓘ
	Confirm Password <input type="password"/> ••••••• ⓘ
NTP Servers	A comma-separated list of hostnames or IP addresses of NTP Servers. If left blank, VMware tools based time synchronization will be used. 172.21.166.1
Maintenance User Password (*)	Password to assign to maint user account.
	Password <input type="password"/> ••••••• ⓘ
	Confirm Password <input type="password"/> ••••••• ⓘ

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Configure vCenter or Enable VCF

3 settings

Enable VMware Cloud Foundation (VCF)	vCenter server and user details are ignored when VCF is enabled. <input type="checkbox"/>
vCenter Server Address (*)	Specify the IP address/hostname of an existing vCenter to register to. cf-wkld-vc01.sddc.netapp.com
Port (*)	Specify the HTTPS port of an existing vCenter to register to. 443
Username (*)	Specify the username of an existing vCenter to register to. administrator@vsphere.local
Password (*)	Specify the password of an existing vCenter to register to.
	Password <input type="password"/> ••••••• ⓘ
	Confirm Password <input type="password"/> ••••••• ⓘ

Network Properties **8 settings**

Host Name	Specify the hostname for the appliance. (Leave blank if DHCP is desired) vcf-w01-otv9
IP Address	Specify the IP address for the appliance. (Leave blank if DHCP is desired)

CANCEL BACK NEXT

10. Review all information on the **Ready to complete** page and then click **Finish** to begin deploying the ONTAP tools appliance.

Step 2: Add a storage system

Perform the following steps to add a storage system using ONTAP tools.

Steps

1. In the vSphere client navigate to the main menu and select **NetApp ONTAP tools**.

Show example

2. Once in **ONTAP tools**, from the Getting Started page (or from **Storage Systems**), click **Add** to add a new storage system.

Show example

ONTAP tools for VMware vSphere

Getting Started Traditional Dashboard vVols Dashboard

ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware environments using NetApp storage systems.

Next Steps

- View Dashboard**
View and monitor the datastores in ONTAP tools for VMware vSphere.
- Settings**
Configure administrative settings such as credentials, alarm thresholds.

Add Storage System

Add storage systems to ONTAP tools for VMware vSphere.

Provision Datastore

Create traditional or vVols datastores.

What's new?

September 4, 2023

- Qualified and supported with ONTAP 9.13.1
- Supports and interoperates with VMware vSphere 8.x releases
- Includes newer enhanced SCPs that efficiently map workloads to the newer All SAN Array platforms through policy based management

Resources

- ONTAP tools for VMware vSphere Documentation Resources
- RBAC User Creator for Data ONTAP
- ONTAP tools for VMware vSphere REST API Documentation

3. Provide the IP address and credentials of the ONTAP storage system and click **Add**.

Show example

Add Storage System

 Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server

Name or IP address:

Username:

Password:

Port:

Advanced options >

CANCEL

SAVE & ADD MORE

ADD

4. Click **Yes** to authorize the cluster certificate and add the storage system.

Show example

Add Storage System

Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server vcf-m01-vc01.sddc.netapp.com

Authorize Cluster Certificate

Host 172.16.9.25 has identified itself with a self-signed certificate.

[Show certificate](#)

Do you want to trust this certificate?

Optional: Migrate management VMs to the iSCSI datastore

In cases where you prefer to use ONTAP storage to protect the VCF management VMs, use vMotion to migrate the VMs to the newly created iSCSI datastore.

Steps

1. From the vSphere Client navigate to the management domain cluster and click the **VMs** tab.
2. Select the VMs to be migrated to the iSCSI datastore, right click and select **Migrate...**

Show example

The screenshot shows the vSphere Client interface. On the left, a navigation tree displays a folder structure under 'vcf-m01-vc01.sddc.netapp.com'. The 'vcf-m01-cl01' folder is expanded, showing sub-items like 'vcf-m01-esx01.sddc.netapp.com' through 'vcf-wkld-vc01'. The main content area shows a table of virtual machines. A context menu is open over the 'vcf-m01-cl01' VM, with the 'Migrate...' option highlighted. The table lists various VMs with their names, states, and resource details.

Name	State	Status	Provisioned Space	Used Space	Host CPU	Host Mem
vcf-m01-nx01a	Powered On	Normal	616.52 GB	97.88 GB	5 GHz	31.63 GB
vcf-m01	Actions - 8 Objects	Normal	106.33 GB	19.33 GB	2.52 GHz	6.77 GB
vcf-m01-otv9	Power	Normal	1.79 TB	237.82 GB	344 MHz	15.98 GB
vcf-m01-sddcm01	Guest OS	Normal	1.16 TB	143.81 GB	757 MHz	13.98 GB
vcf-m01-vc01	Snapshots	Normal	600.35 GB	90.61 GB	7.99 GHz	48.11 GB
vcf-w01-nx01	vcf-w01	Normal	600.39 GB	94.6 GB	6.06 GHz	48.1 GB
vcf-w01-nx02	VM Policies	Normal	600.45 GB	95.14 GB	7.16 GHz	48.14 GB
vcf-w01-nx03	Template	Normal	1.82 TB	126.69 GB	780 MHz	28.02 GB
vcf-wkld-vc01	Compatibility	Normal				

3. In the **Virtual Machines - Migrate** wizard, select **Change storage only** as the migration type and click **Next** to continue.

Show example

The screenshot shows the 'Select a migration type' step of the migration wizard. On the left, a sidebar shows the progress: '1 Select a migration type' (highlighted in dark blue), '2 Select storage' (light blue), and '3 Ready to complete' (light blue). The main content area is titled 'Select a migration type' and contains the following options:

- Change compute resource only**
Migrate the virtual machines to another host or cluster.
- Change storage only**
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.
- Change both compute resource and storage**
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.
- Cross vCenter Server export**
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

4. On the **Select storage** page, select the iSCSI datastore and select **Next** to continue.

Show example

8 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE CONFIGURE PER DISK

Select virtual disk format Same format as source

VM Storage Policy Datastore Default

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free	...
mgmt_01_iscsi	--	3 TB	1.46 GB	3 TB	...
vcf-m01-cl01-ds-vsang01	--	999.97 GB	7.28 TB	52.38 GB	...

Manage Columns

Items per page: 10 2 items

Compatibility

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

5. Review the selections and click **Finish** to start the migration.
6. The relocation status can be viewed from the **Recent Tasks** pane.

Show example

Recent Tasks	Alarms		
Task Name	Target	Status	Details
Relocate virtual machine	vcf-w01-nsx03	<div style="width: 38%;">38%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-wkld-vc01	<div style="width: 42%;">42%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-m01-otv9	<div style="width: 36%;">36%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-m01-nsx01a	<div style="width: 49%;">49%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-w01-nsx02	<div style="width: 47%;">47%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-m01-sddcm01	<div style="width: 39%;">39%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-w01-nsx01	<div style="width: 42%;">42%</div>	Migrating Virtual Machine active state
Relocate virtual machine	vcf-m01-vc01	<div style="width: 44%;">44%</div>	Migrating Virtual Machine active state

Additional information

- For information on configuring ONTAP storage systems, refer to [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to [VMware Cloud Foundation documentation](#).
- For information on using VMFS iSCSI datastores with VMware, refer to [vSphere VMFS datastore - iSCSI storage backend with ONTAP](#).
- For video demos of this solution, refer to [VMware datastore provisioning](#).

Add an FC-based VMFS datastore as supplemental storage for a management domain using ONTAP tools for VMware vSphere

In this use case we outline how to configure a VMFS datastore over Fibre Channel (FC) as supplemental storage for the VMware Cloud Foundation (VCF) management domain. This procedure summarizes the steps to deploy ONTAP tools on the management domain, add a storage backend, and provision the datastore.

Before you begin

Make sure the following components and configurations are in place.

- An ONTAP storage system with FC ports connected to FC switches.
- SVM created with FC LIFs.
- vSphere with FC HBAs connected to FC switches.
- Single initiator-target zoning is configured on FC switches.

- Use SVM FC logical interface in zone configuration rather than physical FC ports on ONTAP systems.
- Use multipath for FC LUNs.

Steps

1. Deploy ONTAP tools on the management domain by following the instructions in the ONTAP tools for VMware vSphere documentation: [Deploy ONTAP tools on management domain](#).

The ONTAP tools for VMware vSphere appliance is deployed as a small-sized single node with core services to support NFS and VMFS datastores.

2. Add a storage backend using the vSphere client interface by following the instructions in the ONTAP tools for VMware vSphere documentation: [Define Storage backend using vSphere client interface](#).

Adding a storage backend enables you to onboard an ONTAP cluster.

3. Provision VMFS on FC by following the instructions in the ONTAP tools for VMware vSphere documentation: [Provision VMFS on FC](#).

Additional information

- For information about configuring ONTAP storage systems, refer to [ONTAP 9 documentation](#).
- For information about configuring VCF, refer to the [VMware Cloud Foundation documentation](#).
- For information about configuring Fibre Channel on ONTAP storage systems, refer to the ONTAP 9 documentation [SAN storage management](#).
- For more information about using VMFS with ONTAP storage systems, refer to the [Deployment guide for VMFS](#).
- For video demos of this solution, refer to [VMware datastore provisioning](#).

Expand VI workload domains with vVols iSCSI

Deployment workflow for adding an iSCSI vVols datastore as supplemental storage in a VI workload domain

Get started with configuring a iSCSI vVols datastore as supplemental storage in a VMware Cloud Foundation (VCF) Virtual Infrastructure (VI) workload domain. You'll create the SVM and LIFs, set up iSCSI networking, deploy ONTAP tools for VMware vSphere, and configure storage.

1

[Review the deployment requirements](#)

Review the requirements to deploy iSCSI vVols in a VMware Cloud Foundation VI workload domain.

2

[Create the SVM and LIFs](#)

Create an SVM with multiple LIFs for iSCSI traffic.

3

Configure networking

Set up networking for iSCSI on ESXi hosts.

4

Configure storage

Deploy and use ONTAP tools to configure storage.

Deployment requirements for iSCSI vVols in a VI workload domain

Review the recommended network design and infrastructure requirements to deploy iSCSI vVols in a VMware Cloud Foundation VI workload domain. You need a fully configured ONTAP AFF or ASA storage system, a completed VCF management domain, and an existing VI workload domain.

Infrastructure requirements

Make sure the following components and configurations are in place.

- An ONTAP AFF or ASA storage system with physical data ports on Ethernet switches dedicated to storage traffic.
- The VCF management domain deployment is complete and the vSphere client is accessible.
- A VI workload domain has been previously deployed.

Recommended iSCSI network design

You should configure fully redundant network designs for iSCSI. The following diagram illustrates an example of a redundant configuration. It provides fault tolerance for storage systems, switches, networks adapters, and host systems. For additional information, refer to the NetApp [SAN configuration reference](#).

For multipathing and failover across multiple paths, create a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in iSCSI configurations.

In situations where multiple VMkernel adapters are configured on the same IP network, use software iSCSI port binding on the ESXi hosts to ensure that load balancing across the adapters occurs. Refer to KB article [Considerations for using software iSCSI port binding in ESX/ESXi](#).

What's next?

After reviewing the deployment requirements, [create the SVM and LIFs](#).

Create SVM and LIFs for iSCSI vVols datastores in a VCF VI workload domain

Create a Storage Virtual Machine (SVM) and multiple logical interfaces (LIFs) on an ONTAP system to support iSCSI traffic for vVols datastores in a VMware Cloud Foundation VI workload domain. You'll add a new SVM, enable iSCSI, configure LIFs, and optionally enable the Storage VM Administration account.

To add new LIFs to an existing SVM, refer to the ONTAP documentation: [Create ONTAP LIFs](#).

Steps

1. From ONTAP System Manager navigate to **Storage VMs** in the left-hand menu and click **+ Add** to start.

Show example

The screenshot shows the ONTAP System Manager interface. The left sidebar has a 'Storage' section with various options: Overview, Volumes, LUNs, Consistency Groups, NVMe Namespaces, Shares, Buckets, Qtrees, Quotas, Storage VMs (which is selected and highlighted in blue), and Tiers. The main content area is titled 'Storage VMs' and features a large blue button with a white plus sign and the text '+ Add'. Below this button is a table with a single column labeled 'Name'. The table lists several Storage VM names: EHC_iSCSI, EHC, HMC_187, HMC_3510, HMC_iSCSI_3510, infra_svm_a300, JS_EHC_iSCSI, and OTVtest. Each name is preceded by a small checkbox.

2. In the **Add Storage VM** wizard, provide a **Name** for the SVM, select the **IP Space** and then, under **Access Protocol**, click the **iSCSI** tab and check the box to **Enable iSCSI**.

Show example

Add Storage VM

STORAGE VM NAME

IPSPACE

Default

Access Protocol

SMB/CIFS, NFS, S3 iSCSI FC NVMe

Enable iSCSI

3. In the **Network Interface** section fill in the **IP address**, **Subnet Mask**, and **Broadcast Domain and Port** for the first LIF. For subsequent LIFs, you can either use individual settings or enable the checkbox to use common settings across all remaining LIFs.

For multipathing and failover across multiple paths, create a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in iSCSI configurations.

Show example

NETWORK INTERFACE

ntaphci-a300-01

IP ADDRESS	SUBNET MASK	GATEWAY	BROADCAST DOMAIN AND PORT
172.21.118.179	24	Add optional gateway	NFS_iSCSI

Use the same subnet mask, gateway, and broadcast domain for all of the following interfaces

IP ADDRESS	PORT
172.21.119.179	a0a-3375

ntaphci-a300-02

IP ADDRESS	PORT
172.21.118.180	a0a-3374

IP ADDRESS	PORT
172.21.119.180	a0a-3375

4. Choose whether to enable the Storage VM Administration account (for multi-tenancy environments) and then click **Save** to create the SVM.

Show example

Storage VM Administration

Manage administrator account

Save

Cancel

What's next?

After you create the SVM and LIFs, configure networking for iSCSI on ESXi hosts.

Configure networking for iSCSI on ESXi hosts in a VCF VI workload domain

Configure networking for iSCSI storage on ESXi hosts in a VI workload domain. You'll create distributed port groups for iSCSI traffic and set up VMkernel adapters using the vSphere client to enable reliable connectivity and multipathing.

Use the vSphere client with vCenter Single Sign-On to perform these steps on the VI Workload Domain cluster. The same vSphere client manages both the management and workload domains.

Step 1: Create distributed port groups for iSCSI traffic

Complete the following steps to create a new distributed port group for each iSCSI network.

Steps

1. From the vSphere client , navigate to **Inventory > Networking** for the workload domain. Navigate to the existing Distributed Switch and choose the action to create a new **Distributed Port Group**....

Show example

2. In the **New Distributed Port Group** wizard, fill in a name for the new port group and then click **Next** to continue.
3. On the **Configure settings** page, fill out all settings. If VLANs are being used be sure to provide the correct VLAN ID. Click **Next** to continue.

Show example

New Distributed Port Group

Configure settings

Set general properties of the new port group.

Port binding: Static binding

Port allocation: Elastic (1)

Number of ports: 8

Network resource pool: (default)

VLAN

VLAN type: VLAN

VLAN ID: 3374

Advanced

Customize default policies configuration

CANCEL BACK NEXT

4. On the **Ready to complete** page, review the changes and click **Finish** to create the new distributed port group.
5. Repeat this process to create a distributed port group for the second iSCSI network being used and ensure you have input the correct **VLAN ID**.
6. Once both port groups have been created, navigate to the first port group and select the action to **Edit settings....**

Show example

The screenshot shows the vSphere Client interface. In the left navigation pane, under the 'Datacenter' section, 'vcf-m01-vc01.sddc.netapp.com' is expanded, showing 'vcf-m01-dc01'. Under 'vcf-wkld-vc01.sddc.netapp.com', 'vcf-wkld-01-DC' is expanded, showing 'vcf-wkld-01-IT-INF-WKLD-01-vds-01'. This vds is expanded, showing 'vcf-wkld-01-iscsi-a'. A context menu is open on 'vcf-wkld-01-iscsi-a', with the 'Edit Settings...' option highlighted and a hand cursor pointing at it. The right pane displays 'Distributed Port Group Details' for 'vcf-wkld-01-iscsi-a'. The details include: Port binding (Static binding), Port allocation (Elastic), VLAN ID (3374), Distributed switch (vcf-wkld-01-IT-INF-WKLD-01-vds-01), and Network protocol profile (--). The 'vcf-wkld-01-iscsi-a' icon is shown with a blue light effect.

7. On **Distributed Port Group - Edit Settings** page, navigate to **Teaming and failover** in the left-hand menu and click **uplink2** to move it down to **Unused uplinks**.

Show example

The screenshot shows the 'Distributed Port Group - Edit Settings' dialog for 'vcf-wkld-01-iscsi-a'. The left sidebar shows tabs: General, Advanced, VLAN, Security, Traffic shaping, **Teaming and failover** (selected), Monitoring, and Miscellaneous. The 'Teaming and failover' tab contains sections for Load balancing, Network failure detection, Notify switches, and Fallback. Below these is the 'Failover order' section. Under 'Active uplinks', 'uplink1' is listed. Under 'Standby uplinks', 'uplink2' is listed. Under 'Unused uplinks', 'uplink2' is listed. A hand cursor is pointing at 'uplink2' in the 'Active uplinks' list. Another hand cursor is pointing at 'uplink2' in the 'Unused uplinks' list. At the bottom right are 'CANCEL' and 'OK' buttons, with 'OK' highlighted with a blue box.

8. Repeat this step for the second iSCSI port group. However, this time move **uplink1** down to **Unused uplinks**.

Show example

Distributed Port Group - Edit Settings vcf-wkld-01-iscsi-b		
General	Load balancing	Route based on originating virtual port
Advanced	Network failure detection	Link status only
VLAN	Notify switches	Yes
Security	Fallback	Yes
Traffic shaping		
Teaming and failover		
Monitoring	Failover order ⓘ	
Miscellaneous	Active uplinks	MOVE UP MOVE DOWN
	uplink2	
	Standby uplinks	
	Unused uplinks	uplink1

Step 2: Create VMkernel adapters on each ESXi host

Perform the following steps on each ESXi host in the workload domain using the vSphere client.

Steps

1. From the vSphere client navigate to one of the ESXi hosts in the workload domain inventory. From the **Configure** tab select **VMkernel adapters** and click **Add Networking...** to start.

Show example

The screenshot shows the vSphere Client interface. The left sidebar displays a tree view of vCenter hosts and datastores. The main pane shows the configuration for a specific virtual machine, `vcf-wkld-esx01.sddc.netapp.com`. The `Configure` tab is selected. In the `Networking` section, the `VMkernel adapters` tab is selected. A table lists five VMkernel adapters: `vmk0`, `vmk1`, `vmk2`, `vmk10`, and an unnamed adapter. The `vmk0` adapter is associated with the `vcf-wkld-01-IT-INF-WKLD-01-vd-s-01-pg-mgmt` network label. A large hand cursor is hovering over the `ADD NETWORKING...` button.

		Network Label
...	»	vcf-wkld-01-IT-INF-WKLD-01-vd-s-01-pg-mgmt
...	»	vcf-wkld-01-IT-INF-WKLD-01-vd-s-01-pg-vmotion
...	»	vcf-wkld-01-IT-INF-WKLD-01-vd-s-01-pg-nfs
...	»	--

2. On the **Select connection type** window choose **VMkernel Network Adapter** and click **Next** to continue.

Show example

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select connection type

Select a connection type to create.

VMkernel Network Adapter

The VMkernel TCP/IP stack handles traffic for ESXi services such as vSphere vMotion, iSCSI, NFS, FCoE, Fault Tolerance, vSAN, host management and etc.

Virtual Machine Port Group for a Standard Switch

A port group handles the virtual machine traffic on standard switch.

Physical Network Adapter

A physical network adapter handles the network traffic to other hosts on the network.

3. On the **Select target device** page, choose one of the distributed port groups for iSCSI that was created previously.

Show example

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select target device

Select a target device for the new connection.

Select an existing network

Select an existing standard switch

New standard switch

Quick Filter

Name	NSX Port Group ID	Distributed Switch
vcf-wkld-01-iscsi-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-iscsi-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01	--	vcf-wkld-01-IT-INF-WKLD-01-vds-02
vcf-wkld-01-IT-INF-WKLD-01-vds-01	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01

Manage Columns 5 items

Packages

CANCEL BACK NEXT

4. On the **Port properties** page, keep the defaults and click **Next** to continue.

Show example

The screenshot shows the 'Port properties' configuration dialog as part of the 'Add Networking' wizard. The left sidebar lists steps 1 through 5. Step 3, 'Port properties', is selected and highlighted in dark blue. The main panel shows the following configuration:

- Network label:** vcf-wkld-01-iscsi-a (vcf-wkld-01-T-INF-WKLD-01-vds-01)
- MTU:** Get MTU from switch (dropdown set to 9000)
- TCP/IP stack:** Default (dropdown)
- Available services:** A list of checkboxes for various services, with 'vMotion' checked and others like 'vSphere Replication NFC' and 'NVMe over RDMA' beingunchecked.

5. On the **IPv4 settings** page, fill in the **IP address**, **Subnet mask**, and provide a new Gateway IP address (only if required). Click **Next** to continue.

Show example

The screenshot shows the 'IPv4 settings' configuration dialog as part of the 'Add Networking' wizard. The left sidebar lists steps 1 through 5. Step 4, 'IPv4 settings', is selected and highlighted in dark blue. The main panel shows the following configuration:

- Obtain IPv4 settings automatically:** Unchecked
- Use static IPv4 settings:** Checked
- IPv4 address:** 172.21.118.127
- Subnet mask:** 255.255.255.0
- Default gateway:** Override default gateway for this adapter (unchecked, with 172.21.166.1 listed)
- DNS server addresses:** 10.61.185.231

6. Review the your selections on the **Ready to complete** page and click **Finish** to create the VMkernel adapter.

Show example

Add Networking

Ready to complete

Review your selections before finishing the wizard

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select target device

Distributed port group	vcf-wkld-01-iscsi-a
Distributed switch	vcf-wkld-01-IT-INF-WKLD-01-vds-01

Port properties

New port group	vcf-wkld-01-iscsi-a (vcf-wkld-01-IT-INF-WKLD-01-vds-01)
MTU	9000
vMotion	Disabled
Provisioning	Disabled
Fault Tolerance logging	Disabled
Management	Disabled
vSphere Replication	Disabled
vSphere Replication NFC	Disabled
vSAN	Disabled
vSAN Witness	Disabled
vSphere Backup NFC	Disabled
NVMe over TCP	Disabled
NVMe over RDMA	Disabled

IPv4 settings

IPv4 address	172.21.118.127 (static)
Subnet mask	255.255.255.0

CANCEL BACK FINISH

7. Repeat this process to create a VMkernel adapter for the second iSCSI network.

What's next?

After you configure networking for iSCSI on all ESXi hosts in the workload domain, [configure storage for iSCSI vVols](#).

Configure iSCSI vVols storage in a VCF VI workload domain using ONTAP tools

Configure iSCSI vVols storage in a VI workload domain using ONTAP tools. You'll deploy ONTAP tools for VMware vSphere, register a storage system, create a storage capability profile, and provision a vVols datastore in the vSphere client.

Step 1: Deploy ONTAP tools for VMware vSphere

For VI workload domains, ONTAP tools is installed to the VCF Management Cluster but registered with the vCenter associated with the VI workload domain.

ONTAP tools for VMware vSphere is deployed as a VM appliance and provides an integrated vCenter UI for managing ONTAP storage.

Steps

1. Obtain the ONTAP tools OVA image from the [NetApp Support site](#) and download it to a local folder.

2. Log into the vCenter appliance for the VCF management domain.
3. From the vCenter appliance interface right-click the management cluster and select **Deploy OVF Template...**

Show example

4. In the **Deploy OVF Template** wizard, click the **Local file** radio button and select the ONTAP tools OVA file you downloaded in the previous step.

Show example

5. For steps 2 through 5 of the wizard, select a name and folder for the VM, select the compute resource,

review the details, and accept the license agreement.

6. For the storage location of the configuration and disk files, select the vSAN datastore of the VCF management domain cluster.

Show example

Deploy OVF Template

Select storage

Select the storage for the configuration and disk files

Encrypt this virtual machine (i)

Select virtual disk format As defined in the VM storage policy

VM Storage Policy Datastore Default

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free
vcf-m01-cl01-ds-vs SAN01	--	999.97 GB	7.17 TB	225.72 GB
vcf-m01-esx01-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx02-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx03-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB
vcf-m01-esx04-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB

Manage Columns

Items per page: 10 | 5 items

7. On the **Select network** page, select the network used for management traffic.

Show example

Deploy OVF Template

Select networks

Select a destination network for each source network.

Source Network	Destination Network
nat	vcf-m01-cl01-vds01-pg-vs SAN

Manage Columns

vcf-m01-cl01-vds01-pg-vs SAN

SDDC-DPortGroup-VM-Mgmt

Browse ...

IP Allocation Settings

IP allocation: Static - Manual

IP protocol: IPv4

8. On the **Customize template** page, enter all required information:

- Password to be used for administrative access to ONTAP tools.
- NTP server IP address.
- ONTAP tools maintenance account password.
- ONTAP tools Derby DB password.
- Do not check the box to **Enable VMware Cloud Foundation (VCF)**. VCF mode is not required for deploying supplemental storage.

- FQDN or IP address of the vCenter appliance for the **VI Workload Domain**
- Credentials for the vCenter appliance of the **VI Workload Domain**
- Required network properties.

9. Click **Next** to continue.

Show example

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Customize the deployment properties of this software solution.

ⓘ 2 properties have invalid values X

System Configuration 4 settings

Application User Password (*) Password: ... ⓘ

Confirm Password ... ⓘ

NTP Servers A comma-separated list of hostnames or IP addresses of NTP Servers. If left blank, VMware tools based time synchronization will be used.
172.21.166.1

Maintenance User Password (*) Password to assign to maint user account.

Password: ... ⓘ

Confirm Password: ... ⓘ

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Configure vCenter or Enable VCF 5 settings

Enable VMware Cloud Foundation (VCF) vCenter server and user details are ignored when VCF is enabled.

vCenter Server Address (*) Specify the IP address/hostname of an existing vCenter to register to.
cf-wkld-vc01.sddc.netapp.com

Port (*) Specify the HTTPS port of an existing vCenter to register to.
443

Username (*) Specify the username of an existing vCenter to register to.
administrator@vsphere.local

Password (*) Specify the password of an existing vCenter to register to.

Password: ... ⓘ

Confirm Password: ... ⓘ

Network Properties 8 settings

Host Name Specify the hostname for the appliance. (Leave blank if DHCP is desired)
vcf-w01-otv9

IP Address Specify the IP address for the appliance. (Leave blank if DHCP is desired)

CANCEL BACK NEXT

10. Review all information on the **Ready to complete** page and then click **Finish** to begin deploying the ONTAP tools appliance.

Step 2: Add a storage system

Perform the following steps to add a storage system using ONTAP tools.

vVol requires ONTAP cluster credentials rather than SVM credentials. For more information, refer to the ONTAP tools for VMware vSphere documentation: [Add storage systems](#).

Steps

1. In the vSphere client navigate to the main menu and select **NetApp ONTAP tools**.

[Show example](#)

2. Once in **ONTAP tools**, from the Getting Started page (or from **Storage Systems**), click **Add** to add a new storage system.

Show example

The screenshot shows the vSphere Client interface with the following details:

- Header:** vSphere Client, Search in all environments, and a user icon.
- Page Title:** NetApp ONTAP tools INSTANCE 172.21.166.139:8443
- Left Sidebar:**
 - Overview** (selected)
 - Storage Systems
 - Storage capability profile
 - Storage Mapping
 - Settings
 - Reports** (expanded)
 - Datastore Report
 - Virtual Machine Report
 - vVols Datastore Report
 - vVols Virtual Machine Report
 - Log Integrity Report
- Content Area:**
 - ONTAP tools for VMware vSphere**
 - Getting Started** (selected), Traditional Dashboard, vVols Dashboard
 - Text: ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware environments using NetApp storage systems.
 - Next Steps** section:
 - View Dashboard** (clock icon): View and monitor the datastores in ONTAP tools for VMware vSphere.
 - Settings** (gear icon): Configure administrative settings such as credentials, alarm thresholds.
 - Add Storage System** and **Provision Datastore** buttons.
 - Add storage systems to ONTAP tools for VMware vSphere.** and **Create traditional or vVols datastores.**
 - What's new?** (September 4, 2023)
 - Qualified and supported with ONTAP 9.13.1
 - Supports and interoperates with VMware vSphere 8.x releases
 - Includes newer enhanced SCPs that efficiently map workloads to the newer All SAN Array platforms through policy based management
 - Resources** section:
 - ONTAP tools for VMware vSphere Documentation Resources
 - RBAC User Creator for Data ONTAP
 - ONTAP tools for VMware vSphere REST API Documentation

3. Provide the IP address and credentials of the ONTAP storage system and click **Add**.

Show example

Add Storage System

 Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server

Name or IP address:

Username:

Password:

Port:

Advanced options >

CANCEL

SAVE & ADD MORE

ADD

4. Click **Yes** to authorize the cluster certificate and add the storage system.

Show example

Add Storage System

Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server vcf-m01-vc01.sddc.netapp.com

Authorize Cluster Certificate

Host 172.16.9.25 has identified itself with a self-signed certificate.

[Show certificate](#)

Do you want to trust this certificate?

Step 3: Create a storage capability profile in ONTAP tools

Storage capability profiles describe the features provided by a storage array or storage system. They include quality of service definitions and are used to select storage systems that meet the parameters defined in the profile. One of the provided profiles can be used or new ones can be created.

Steps

1. In ONTAP tools, select **Storage capability profile** from the left-hand menu and then press **Create**.

Show example

NetApp ONTAP tools INSTANCE 172.21.166.149:8443

Storage Capability Profiles

CREATE

Overview

Storage Systems

Storage capability profile

Name

2. In the **Create Storage Capability profile** wizard, provide a name and description of the profile and click **Next**.

Show example

Create Storage Capability Profile

General

Specify a name and description for the storage capability profile. ?

Name: Gold_AsA_iSCSI

Description:

1 General

2 Platform

3 Protocol

4 Performance

5 Storage attributes

6 Summary

CANCEL NEXT

3. Select the platform type and to specify the storage system is to be an All-Flash SAN Array set **Asymmetric** to false.

Show example

Create Storage Capability Profile

1 General

2 Platform

3 Protocol

4 Performance

5 Storage attributes

6 Summary

Platform

Platform: Performance

Asymmetric:

CANCEL BACK NEXT

4. Select your choice of protocol or select **Any** to allow all possible protocols.
5. Click **Next** to continue.

Show example

Create Storage Capability Profile

1 General

2 Platform

3 Protocol

4 Performance

5 Storage attributes

6 Summary

Protocol

Protocol: Any

Any

FCP

iSCSI

NVMe/FC

CANCEL BACK NEXT

6. The **performance** page allows setting of quality of service in form of minimum and maximum IOPs allowed.

Show example

Create Storage Capability Profile

1 General
2 Platform
3 Protocol
4 Performance
5 Storage attributes
6 Summary

Performance

None (i)
 QoS policy group (i)

Min IOPS:

Max IOPS:

Unlimited

CANCEL **BACK** **NEXT**

7. Complete the **storage attributes** page by selecting storage efficiency, space reservation, encryption and any tiering policy as needed.

Show example

Create Storage Capability Profile

1 General
2 Platform
3 Protocol
4 Performance
5 Storage attributes
6 Summary

Storage attributes

Deduplication: Yes (v)

Compression: Yes (v)

Space reserve: Thin (v)

Encryption: No (v)

Tiering policy (FabricPool): None (v)

CANCEL **BACK** **NEXT**

8. Review the summary and click **Finish** to create the profile.

Show example

Name:	ASA_Gold_iSCSI
Description:	N/A
Platform:	Performance
Asymmetric:	No
Protocol:	Any
Max IOPS:	6000 IOPS
Space reserve:	Thin
Deduplication:	Yes
Compression:	Yes
Encryption:	Yes
Tiering policy (FabricPool):	None

CANCEL **BACK** **FINISH**

Step 4: Create a vVols datastore in ONTAP tools

To create a vVols datastore in ONTAP tools complete the following steps.

Steps

1. In ONTAP tools, select **Overview** and from the **Getting Started** tab click **Provision** to start the wizard.

Show example

NetApp ONTAP tools INSTANCE 172.21.166.149:8443

Overview

Storage Systems

Storage capability profile

Storage Mapping

Settings

Reports

- Datastore Report
- Virtual Machine Report
- vVols Datastore Report
- vVols Virtual Machine Report
- Log Integrity Report

ONTAP tools for VMware vSphere

Getting Started Traditional Dashboard vVols Dashboard

ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware env

Add Storage System

Provision Datastore

Add storage systems to ONTAP tools for VMware vSphere.

Create traditional or vVols datastores.

ADD **PROVISION**

2. On the **General** page of the New Datastore wizard, select the vSphere datacenter or cluster destination.

3. Select **vVols** as the datastore type, enter a name for the datastore, and select **iSCSI** as the protocol.
4. Click **Next** to continue.

Show example

New Datastore

General

Specify the details of the datastore to provision. ?

Provisioning destination: BROWSE

Type: NFS VMFS vVols

Name:

Description:

Protocol: NFS iSCSI FC / FCoE NVMe/FC

CANCEL **NEXT**

5. On the **Storage system** page, select a storage capability profile, the storage system, and the VM.
6. Click **Next** to continue.

Show example

New Datastore

Storage system

Specify the storage capability profiles and the storage system you want to use.

Storage capability profiles:

Storage system:

Storage VM:

CANCEL **BACK** **NEXT**

7. On the **Storage attributes** page, select to create a new volume for the datastore and enter the storage attributes of the volume you want to create.
8. Click **Add** to create the volume and then **Next** to continue.

Show example

New Datastore

1 General

2 Storage system

3 Storage attributes

4 Summary

Storage attributes

Specify the storage details for provisioning the datastore.

Volumes: Create new volumes Select volumes

Create new volumes

Name	Size	Storage Capability Profile	Aggregate

FlexVol volumes are not added.

Name	Size(GB)	Storage capability profile	Aggregates	Space reserve
f_wkld_02_vvols	3000	ASA_Gold_iSCSI	EHC Aggr02 - (27053.3 GE)	Thin

ADD

CANCEL BACK NEXT

9. Review the summary and click **Finish** to start the vVol datastore creation process.

Show example

New Datastore

1 General

2 Storage system

3 Storage attributes

4 Summary

Summary

Datastore type: vVols

Protocol: iSCSI

Storage capability profile: ASA_Gold_iSCSI

Storage system details

Storage system: ntaphci-a300e9u25

SVM: VCF_iSCSI

Storage attributes

New FlexVol Name	New FlexVol Size	Aggregate	Storage Capability Profile
vcf_wkld_02_vvols	3000 GB	EHC Aggr02	ASA_Gold_iSCSI

Click 'Finish' to provision this datastore.

CANCEL BACK FINISH

Additional information

- For information on configuring ONTAP storage systems, refer to [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to [VMware Cloud Foundation documentation](#).
- For information on using VMFS iSCSI datastores with VMware, refer to [vSphere VMFS datastore - iSCSI storage backend with ONTAP](#).
- For video demos of this solution, refer to [VMware datastore provisioning](#).

Expand VI workload domains with vVols NFS

Deployment workflow for adding NFS vVols datastores as supplemental storage in a VI workload domain

Get started with adding NFS vVols datastores as supplemental storage in a VI workload domains using ONTAP tools for VMware vSphere. You'll review the deployment requirements, deploy ONTAP tools for VMware vSphere, configure the SVM with logical interfaces, and configure storage.

1

Review the deployment requirements

Review the requirements to deploy NFS vVols in a VMware Cloud Foundation management domain.

2

Create the SVM and LIFs

Create an SVM with multiple LIFs for NFS traffic.

3

Configure networking

Set up networking for NFS on ESXi hosts.

4

Configure storage

Deploy and use ONTAP tools to configure storage.

Deployment requirements for adding NFS vVols in a VI workload domain

Review the recommended network design and infrastructure requirements to deploy NFS vVols in a VMware Cloud Foundation VI workload domain. You need a fully configured ONTAP AFF or ASA storage system, a completed VCF management domain, and an existing VI workload domain.

Infrastructure requirements

Make sure the following components and configurations are in place.

- An ONTAP AFF or FAS storage system with physical data ports on Ethernet switches dedicated to storage traffic.
- VCF management domain deployment is complete and the vSphere client is accessible.
- A VI workload domain has been previously deployed.

Recommended NFS network design

Configure redundant network designs for NFS to provide fault tolerance for storage systems, switches, networks adapters and host systems. It's common to deploy NFS with a single subnet or multiple subnets depending on the architectural requirements.

Additional information

- For detailed information specific to VMware vSphere, refer to [Best Practices For Running NFS with VMware vSphere](#).
- For network guidance on using ONTAP with VMware vSphere refer to the [Network configuration - NFS](#) section of the NetApp enterprise applications documentation.

This documentation demonstrates the process of creating a new SVM and specifying the IP address information to create multiple LIFs for NFS traffic. To add new LIFs to an existing SVM refer to [Create a LIF \(network interface\)](#).

- For complete information on using NFS with vSphere clusters, refer to the [NFS v3 Reference Guide for vSphere 8](#).

What's next?

After reviewing the requirements, [create the SVM and LIFs](#).

Create SVM and LIFs for NFS vVols datastores in a VCF VI workload domain

Create a Storage Virtual Machine (SVM) and multiple logical interfaces (LIFs) on an ONTAP system to support NFS traffic for vVols datastores in a VMware Cloud Foundation VI workload domain.

To add new LIFs to an existing SVM, refer to the ONTAP documentation: [Create ONTAP LIFs](#).

Steps

- In ONTAP System Manager, navigate to **Storage VMs** in the left-hand menu and click on **+ Add** to start.

Show example

The screenshot shows the ONTAP System Manager interface. The left sidebar is titled 'STORAGE' and includes options: Overview, Volumes, LUNs, Consistency Groups, NVMe Namespaces, Shares, Buckets, Qtrees, Quotas, Storage VMs (which is selected and highlighted in blue), and Tiers. The main content area is titled 'Storage VMs' and features a 'Name' column with the following list of SVMs: EHC_iSCSI, EHC, HMC_187, HMC_3510, HMC_iSCSI_3510, infra_svm_a300, JS_EHC_iSCSI, and OTVtest. A blue button labeled '+ Add' is located at the top of the list.

2. In the **Add Storage VM** wizard, provide a **Name** for the SVM, select the **IP Space** and then, under **Access Protocol**, click the **SMB/CIFS, NFS, S3** tab and check the box to **Enable NFS**.

Show example

Add Storage VM

STORAGE VM NAME

IPSPACE

Access Protocol

SMB/CIFS, NFS, S3

[iSCSI](#) [FC](#) [NVMe](#)

[Enable SMB/CIFS](#)

[Enable NFS](#)

[Allow NFS client access](#)

⚠ [Add at least one rule to allow NFS clients to access volumes in this storage VM.](#) [?](#)

EXPORT POLICY

Default

[Enable S3](#)

DEFAULT LANGUAGE [?](#)

You don't need to check the **Allow NFS client access** checkbox. ONTAP tools for VMware vSphere will be used to automate the datastore deployment process, which includes providing client access for the ESXi hosts.

3. In the **Network Interface** section, fill in the **IP address**, **Subnet Mask**, and **Broadcast Domain and Port** for the first LIF. For subsequent LIFs, you can either use individual settings or enable the checkbox to use common settings across all remaining LIFs.

[Show example](#)

NETWORK INTERFACE

Use multiple network interfaces when client traffic is high.

ntaphci-a300-01

SUBNET

Without a subnet

IP ADDRESS: 172.21.118.119

SUBNET MASK: 24

GATEWAY: [Add optional gateway](#)

BROADCAST DOMAIN AND PORT: NFS_iSCSI

Use the same subnet mask, gateway, and broadcast domain for all of the following interfaces

ntaphci-a300-02

SUBNET

Without a subnet

IP ADDRESS: 172.21.118.120

PORT: a0a-3374

4. Choose whether to enable the Storage VM Administration account (for multi-tenancy environments) and click **Save** to create the SVM.

[Show example](#)

Storage VM Administration

Manage administrator account

Save **Cancel**

What's next?

After creating the SVM and LIFs, [configure networking for NFS on ESXi hosts](#).

Configure networking for NFS on ESXi hosts in a VCF VI workload domain

Configure NFS networking on ESXi hosts in VMware Cloud Foundation management domains to enable connectivity to ONTAP storage systems. You'll create distributed port

groups with VLAN separation, configure uplink teaming for redundancy, and set up VMkernel adapters on each ESXi host to establish dedicated NFS paths for failover capabilities.

Perform the following steps on the VI Workload Domain cluster using the vSphere client. In this case vCenter Single Sign-On is being used so the vSphere client is common across the management and workload domains.

Step 1: Create a distributed port group for NFS traffic

Complete the following steps to create a new distributed port group for the network to carry NFS traffic.

Steps

1. From the vSphere client , navigate to **Inventory > Networking** for the workload domain. Navigate to the existing Distributed Switch and choose the action to create **New Distributed Port Group....**

Show example

2. In the **New Distributed Port Group** wizard, fill in a name for the new port group and click **Next** to continue.
3. On the **Configure settings** page, fill out all settings. If VLANs are being used be sure to provide the correct VLAN ID. Click **Next** to continue.

Show example

New Distributed Port Group

Configure settings

Set general properties of the new port group.

Port binding: Static binding

Port allocation: Elastic (1)

Number of ports: 8

Network resource pool: (default)

VLAN

VLAN type: VLAN

VLAN ID: 3374

Advanced

Customize default policies configuration

CANCEL BACK NEXT

4. On the **Ready to complete** page, review the changes and click **Finish** to create the new distributed port group.
5. Once the port group has been created, navigate to the port group and select the action to **Edit settings...**

Show example

The screenshot shows the vSphere Client interface. The left sidebar lists various network configurations. The main pane displays the 'Distributed Port Group Details' for 'vcf-wkld-01-nfs'. The right pane shows a summary of port binding, allocation, VLAN ID, and distributed switch. A context menu is open over the 'vcf-wkld-01-nfs' entry, with 'Edit Settings...' highlighted by a blue box. Other options in the menu include 'Actions - vcf-wkld-01-nfs', 'Export Configuration...', and 'Virtual machines'.

6. On the **Distributed Port Group - Edit Settings** page, navigate to **Teaming and failover** in the left-hand menu. Enable teaming for the uplinks to be used for NFS traffic by ensuring they are together in the **Active uplinks** area. Move any unused uplinks down to **Unused uplinks**.

Show example

Distributed Port Group - Edit Settings | vcf-wkld-01-nfs

General Advanced VLAN Security Traffic shaping **Teaming and failover** Monitoring Miscellaneous

Load balancing Route based on originating virtual port

Network failure detection Link status only

Notify switches Yes

Fallback Yes

Failover order ⓘ

MOVE UP MOVE DOWN

Active uplinks

- uplink2
- uplink1

Standby uplinks

Unused uplinks

7. Repeat this process for each ESXi host in the cluster.

Step 2: Create a VMkernel adapter on each ESXi host

Create a VMkernel adapter on each ESXi host in the workload domain.

Steps

1. From the vSphere client navigate to one of the ESXi hosts in the workload domain inventory. From the **Configure** tab select **VMkernel adapters** and click **Add Networking...** to start.

Show example

vSphere Client Search in all environments

vcf-wkld-esx01.sddc.netapp.com ACTIONS

Summary Monitor Configure Permissions VMs Datastores Networks Updates

Storage Storage Adapters Storage Devices Host Cache Configuration Protocol Endpoints I/O Filters

Networking Virtual switches **VMkernel adapters**

VMkernel adapters

ADD NETWORKING... REFRESH

		Network Label
⋮	⇒	vmk0 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-mgmt
⋮	⇒	vmk1 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-motion
⋮	⇒	vmk2 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nfs
⋮	⇒	vmk10 --

2. On the **Select connection type** window, choose **VMkernel Network Adapter** and click **Next** to continue.

Show example

3. On the **Select target device** page, choose one of the distributed port groups for NFS that was created previously.

Show example

Name	NSX Port Group ID	Distributed Switch
vcf-wkld-01-iscsi-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-iscsi-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-mgmt	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-nfs	--	vcf-wkld-01-IT-INF-WKLD-01-vds-02
vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-vmotion	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-nfs	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-nvme-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
vcf-wkld-01-nvme-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01

4. On the **Port properties** page, keep the defaults (no enabled services) and click **Next** to continue.
5. On the **IPv4 settings** page, fill in the **IP address**, **Subnet mask**, and provide a new gateway IP address (only if required). Click **Next** to continue.

Show example

IPv4 settings

Specify VMkernel IPv4 settings.

Obtain IPv4 settings automatically

Use static IPv4 settings

IPv4 address 172.21.118.145

Subnet mask 255.255.255.0

Default gateway Override default gateway for this adapter
172.21.166.1

DNS server addresses 10.61.185.231

CANCEL **BACK** **NEXT**

6. Review your selections on the **Ready to complete** page and click **Finish** to create the VMkernel adapter.

Show example

Ready to complete

Review your selections before finishing the wizard

Select target device

Distributed port group	vcf-wkld-01-nfs
Distributed switch	vcf-wkld-01-IT-INF-WKLD-01-vds-01

Port properties

New port group	vcf-wkld-01-nfs (vcf-wkld-01-IT-INF-WKLD-01-vds-01)
MTU	9000
vMotion	Disabled
Provisioning	Disabled
Fault Tolerance logging	Disabled
Management	Disabled
vSphere Replication	Disabled
vsphere Replication NFC	Disabled
vsAN	Disabled
vsAN Witness	Disabled
vSphere Backup NFC	Disabled
NVMe over TCP	Disabled

CANCEL **BACK** **FINISH**

What's next?

After you configure networking for NFS on all ESXi hosts in the workload domain, [configure storage for NFS vVols](#).

Configure NFS vVols storage in a VCF VI workload domain using ONTAP tools

Configure NFS vVols storage in a VI workload domain. After you deploy ONTAP tools for VMware vSphere, you'll use the vSphere client interface to add the storage system, create a storage capability profile, and provision a vVols datastore.

Step 1: Deploy ONTAP tools for VMware vSphere

For VI workload domains, ONTAP tools is installed to the VCF Management Cluster but registered with the vCenter associated with the VI workload domain.

ONTAP tools for VMware vSphere is deployed as a VM appliance and provides an integrated vCenter UI for managing ONTAP storage.

Steps

1. Obtain the ONTAP tools OVA image from the [NetApp Support site](#) and download it to a local folder.
2. Log into the vCenter appliance for the VCF management domain.
3. From the vCenter appliance interface right-click the management cluster and select **Deploy OVF Template...**

Show example

The screenshot shows the vSphere Client interface. In the left navigation pane, a cluster named 'vcf-m01-vc01.sddc.netapp.com' is selected, with its datacenter 'vcf-m01-dc01' and cluster 'vcf-m01-cl01' further expanded. A context menu is open over the cluster name 'vcf-m01-cl01', listing several actions: 'Actions - vcf-m01-cl01', 'Add Hosts...', 'New Virtual Machine...', 'New Resource Pool...', 'Deploy OVF Template...', and 'New vApp'. The 'Deploy OVF Template...' option is highlighted with a mouse cursor. The right pane displays 'Cluster Details' for the selected cluster.

4. In the **Deploy OVF Template** wizard, click the **Local file** radio button and select the ONTAP tools OVA file you downloaded in the previous step.

Show example

The screenshot shows the 'Deploy OVF Template' wizard. The first step, 'Select an OVF template', is active. It displays a list of steps: 1. Select an OVF template (which is highlighted in dark grey), 2. Select a name and folder, 3. Select a compute resource, 4. Review details, 5. Select storage, and 6. Ready to complete. To the right of the steps, there is a 'Select an OVF template' panel with instructions: 'Select an OVF template from remote URL or local file system. Enter a URL to download and install the OVF package from the Internet, or browse to a location accessible from your computer, such as a local hard drive, a network share, or a CD/DVD drive.' Below this, there are two radio buttons: 'URL' (unchecked) and 'Local file' (checked). A text input field shows the URL 'http://remoteserver-address/filetodeploy.ovf|.ova'. Below the URL input is a 'UPLOAD FILES' button, which has the file 'netapp-ontap-tools-for-vmware-vsphere-9.13-9554.ova' listed next to it.

5. For steps 2 through 5 of the wizard, select a name and folder for the VM, select the compute resource, review the details, and accept the license agreement.
6. For the storage location of the configuration and disk files, select the vSAN datastore of the VCF management domain cluster.

Show example

Deploy OVF Template

- Select an OVF template
- Select a name and folder
- Select a compute resource
- Review details
- License agreements
- Select storage**
- Select networks
- Customize template
- Ready to complete

Select storage

Select the storage for the configuration and disk files

Encrypt this virtual machine ⓘ

Select virtual disk format ⓘ As defined in the VM storage policy

VM Storage Policy ⓘ Datastore Default

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free	Total
vcf-m01-cl01-ds-vsanc01	--	999.97 GB	7.17 TB	225.72 GB	7.17 TB
vcf-m01-esx01-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	25.75 GB
vcf-m01-esx02-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	25.75 GB
vcf-m01-esx03-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	25.75 GB
vcf-m01-esx04-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	25.75 GB

Manage Columns

Items per page 10 5 items

- On the **Select network** page, select the network used for management traffic.

Show example

Deploy OVF Template

- Select an OVF template
- Select a name and folder
- Select a compute resource
- Review details
- License agreements
- Select storage
- Select networks**

Select networks

Select a destination network for each source network.

Source Network	Destination Network
nat	vcf-m01-cl01-vds01-pg-vsanc01

Manage Columns

1 item

IP Allocation Settings

IP allocation: Static - Manual

IP protocol: IPv4

- On the **Customize template** page, enter all required information:
 - >Password to be used for administrative access to ONTAP tools.
 - NTP server IP address.
 - ONTAP tools maintenance account password.
 - ONTAP tools Derby DB password.
 - Do not check the box to **Enable VMware Cloud Foundation (VCF)**. VCF mode is not required for deploying supplemental storage.
 - FQDN or IP address of the vCenter appliance for the **VI Workload Domain**
 - Credentials for the vCenter appliance of the **VI Workload Domain**
 - Required network properties.

9. Click **Next** to continue.

Show example

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Customize the deployment properties of this software solution.

ⓘ 2 properties have invalid values X

System Configuration 4 settings

Application User Password (*) Password to assign to the administrator account. For security reasons, it is recommended to use a password that is of eight to thirty characters and contains a minimum of one upper, one lower, one digit, and one special character.

>Password ... ⓘ

Confirm Password ... ⓘ

NTP Servers A comma-separated list of hostnames or IP addresses of NTP Servers. If left blank, VMware tools based time synchronization will be used.

172.21.166.1

Maintenance User Password (*) Password to assign to maint user account.

Password ... ⓘ

Confirm Password ... ⓘ

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Configure vCenter or Enable VCF 5 settings

Enable VMware Cloud Foundation (VCF) vCenter server and user details are ignored when VCF is enabled.

vCenter Server Address (*) Specify the IP address/hostname of an existing vCenter to register to.

cf-wkld-vc01.sddc.netapp.com

Port (*) Specify the HTTPS port of an existing vCenter to register to.

443

Username (*) Specify the username of an existing vCenter to register to.

administrator@vsphere.local

Password (*) Specify the password of an existing vCenter to register to.

Password ... ⓘ

Confirm Password ... ⓘ

Network Properties 8 settings

Host Name Specify the hostname for the appliance. (Leave blank if DHCP is desired)

vcf-w01-otv9

IP Address Specify the IP address for the appliance. (Leave blank if DHCP is desired)

CANCEL BACK NEXT

124

10. Review all information on the **Ready to complete** page and then click **Finish** to begin deploying the ONTAP tools appliance.

Step 2: Add a storage system

Perform the following steps to add a storage system using ONTAP tools.

vVol requires ONTAP cluster credentials rather than SVM credentials. For more information, refer to the ONTAP tools for VMware vSphere documentation: [Add storage systems](#).

Steps

1. In the vSphere client navigate to the main menu and select **NetApp ONTAP tools**.

Show example

2. Once in **ONTAP tools**, from the Getting Started page (or from **Storage Systems**), click **Add** to add a new storage system.

Show example

The screenshot shows the vSphere Client interface with the following details:

- Header:** vSphere Client, Search in all environments, and a user icon.
- Page Title:** NetApp ONTAP tools INSTANCE 172.21.166.139:8443
- Left Sidebar:**
 - Overview** (selected)
 - Storage Systems
 - Storage capability profile
 - Storage Mapping
 - Settings
 - Reports** (expanded)
 - Datastore Report
 - Virtual Machine Report
 - vVols Datastore Report
 - vVols Virtual Machine Report
 - Log Integrity Report
- Content Area:**
 - ONTAP tools for VMware vSphere**
 - Getting Started** (selected), Traditional Dashboard, vVols Dashboard
 - Description: ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware environments using NetApp storage systems.
 - Next Steps**:
 - View Dashboard** (clock icon): View and monitor the datastores in ONTAP tools for VMware vSphere.
 - Settings** (gear icon): Configure administrative settings such as credentials, alarm thresholds.
 - Add Storage System** (button with a plus sign): Add storage systems to ONTAP tools for VMware vSphere.
 - Provision Datastore** (button with a plus sign): Create traditional or vVols datastores.
 - What's new?** (September 4, 2023):
 - Qualified and supported with ONTAP 9.13.1
 - Supports and interoperates with VMware vSphere 8.x releases
 - Includes newer enhanced SCPs that efficiently map workloads to the newer All SAN Array platforms through policy based management
 - Resources**:
 - ONTAP tools for VMware vSphere Documentation Resources
 - RBAC User Creator for Data ONTAP
 - ONTAP tools for VMware vSphere REST API Documentation

3. Provide the IP address and credentials of the ONTAP storage system and click **Add**.

Show example

Add Storage System

 Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server

Name or IP address:

Username:

Password:

Port:

Advanced options >

CANCEL

SAVE & ADD MORE

ADD

4. Click **Yes** to authorize the cluster certificate and add the storage system.

Show example

Add Storage System

ⓘ Any communication between ONTAP tools plug-in and the storage system should be mutually authenticated.

vCenter server vcf-m01-vc01.sddc.netapp.com

Authorize Cluster Certificate

Host 172.16.9.25 has identified itself with a self-signed certificate.

[Show certificate](#)

Do you want to trust this certificate?

Step 3: Create an NFS datastore in ONTAP tools

Complete the following steps to deploy an ONTAP datastore running on NFS. Use ONTAP tools.

Steps

1. In ONTAP tools select **Overview** and from the **Getting Started** tab click on **Provision** to start the wizard.

Show example

NetApp ONTAP tools INSTANCE 172.21.166.149:8443

Overview

Storage Systems

Storage capability profile

Storage Mapping

Settings

Reports

- Datastore Report
- Virtual Machine Report
- vVols Datastore Report
- vVols Virtual Machine Report
- Log Integrity Report

ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware environments.

ONTAP tools for VMware vSphere

Getting Started Traditional Dashboard vVols Dashboard

Add Storage System

Provision Datastore

Add storage systems to ONTAP tools for VMware vSphere.

Create traditional or vVols datastores.

ADD

PROVISION

2. On the **General** page of the New Datastore wizard, select the vSphere datacenter or cluster destination.
3. Select **NFS** as the datastore type, enter a name for the datastore, and select the protocol.
4. Choose whether to use FlexGroup volumes and whether to use a storage capability file for provisioning.
5. Click **Next** to continue.

Selecting to **Distribute datastore data across the cluster** will create the underlying volume as a FlexGroup volume, which precludes the use of Storage Capability Profiles. Refer to [Supported and unsupported configurations for FlexGroup volumes](#) for more information on using FlexGroup Volumes.

Show example

New Datastore

1 General

2 Storage system

3 Storage attributes

4 Summary

General

Specify the details of the datastore to provision. [?](#)

Provisioning destination: vcf-wkld-01-DC [BROWSE](#)

Type: NFS VMFS vVols

Name: VCF_WKLD_05_NFS

Size: 2 TB

Protocol: NFS 3 NFS 4.1

Distribute datastore data across the ONTAP cluster.

Use storage capability profile for provisioning

Advanced options >

CANCEL NEXT

6. On the **Storage system** page, select the select a storage capability profile, the storage system, and the SVM. Click **Next** to continue.

Show example

New Datastore

1 General

2 Storage system

3 Storage attributes

4 Summary

Storage system

Specify the storage capability profiles and the storage system you want to use.

Storage capability profile: Platinum_AFF_A

Storage system: ntaphci-a300e9u25 (172.16.9.25)

Storage VM: VCF_NFS

7. On the **Storage attributes** page, select the aggregate to use and then click **Next** to continue.

Show example

New Datastore

1 General

2 Storage system

3 Storage attributes

4 Summary

Storage attributes

Specify the storage details for provisioning the datastore.

Aggregate: EHCAggr02 - (25350.17 GB Free)

Volumes: Automatically creates a new volume.

Advanced options >

8. Review the **Summary** and click **Finish** to begin creating the NFS datastore.

Show example

1 General	vCenter server:	vcf-wkld-vc01.sddc.netapp.com
2 Storage system	Provisioning destination:	vcf-wkld-01-DC
3 Storage attributes	Datastore name:	VCF_WKLD_05_NFS
4 Summary	Datastore size:	2 TB
	Datastore type:	NFS
	Protocol:	NFS 3
	Datastore cluster:	None
	Storage capability profile:	Platinum_AFF_A

Storage system details

Storage system:	ntaphci-a300e9u25
SVM:	VCF_NFS

Storage attributes

Aggr:	FHC_Aar02
-------	-----------

Buttons: CANCEL, BACK, FINISH

Step 4: Create a vVols datastore in ONTAP tools

To create a vVols datastore in ONTAP tools, complete the following steps.

Steps

1. In ONTAP tools, select **Overview** and from the **Getting Started** tab, click **Provision** to start the wizard.

Show example

ONTAP tools for VMware vSphere

Getting Started Traditional Dashboard vVols Dashboard

ONTAP tools for VMware vSphere is a vCenter Server plug-in that provides end-to-end lifecycle management for virtual machines in VMware environments.

Add Storage System **Provision Datastore**

Add storage systems to ONTAP tools for VMware vSphere. Create traditional or vVols datastores.

PROVISION

2. On the **General** page of the New Datastore wizard, select the vSphere datacenter or cluster destination.
3. Select **vVols** as the datastore type, enter a name for the datastore, and select **NFS** as the protocol.

4. Click **Next** to continue.

Show example

New Datastore

- 1 General**
- 2 Storage system
- 3 Storage attributes
- 4 Summary

General

Specify the details of the datastore to provision. [?](#)

Provisioning destination: [BROWSE](#)

Type: NFS VMFS vVols

Name:

Description:

Protocol: NFS iSCSI FC / FCoE NVMe/FC

[CANCEL](#) [NEXT](#)

5. On the **Storage system** page, select a storage capability profile, the storage system, and the SVM.
6. Click **Next** to continue.

Show example

New Datastore

- 1 General**
- 2 Storage system**
- 3 Storage attributes
- 4 Summary

Storage system

Specify the storage capability profiles and the storage system you want to use.

Storage capability profile:

Storage system:

Storage VM:

7. On the **Storage attributes** page, select **Create a new volumes** and enter the storage attributes of the volume to be created.

Show example

Name	Size(GB) (i)	Storage capability profile	Aggregates	Space reserve
vcf_wkld_06_vv	2000	Platinum_AFF_A	EHCAggr02 - (25404 GB) (i)	Thin

[ADD](#)

8. Click **Add** to create the volume and then **Next** to continue.

Show example

New Datastore

1 General
2 Storage system
3 Storage attributes
4 Summary

Storage attributes
Specify the storage details for provisioning the datastore.

Volumes: Create new volumes Select volumes

Create new volumes

Name	Size	Storage Capability Profile	Aggregate
vcf_wkld_06_vvols	2000 GB	Platinum_AFF_A	EHCAggr02

1 - 1 of 1 item

Name Size(GB) ⓘ Storage capability profile Aggregates Space reserve

Platinum_AFF_A EHCAggr02 - (25407.15 G) Thin

ADD

Default storage capability profile: Platinum_AFF_A

CANCEL **BACK** **NEXT**

9. Review the **Summary** page and click **Finish** to start the vVol datastore creation process.

Show example

New Datastore

1 General
2 Storage system
3 Storage attributes
4 Summary

Summary

General

vCenter server: vcf-wkld-vc01.sddc.netapp.com
Provisioning destination: vcf-wkld-01-DC
Datastore name: VCF_WKLD_06_VVOLS_NFS
Datastore type: vVols
Protocol: NFS
Storage capability profile: Platinum_AFF_A

Storage system details

Storage system: ntaphci-a300e9u25
SVM: EHC_NFS

Storage attributes

New FlexVol Name	New FlexVol Size	Aggregate	Storage Capability Profile
------------------	------------------	-----------	----------------------------

CANCEL **BACK** **FINISH**

Additional information

- For information on configuring ONTAP storage systems, refer to the [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to the [VMware Cloud Foundation documentation](#).
- For information on deploying and using ONTAP tools in multiple vCenter environments, refer to the [Requirements for registering ONTAP tools in multiple vCenter server environments](#).

- For video demos of this solution, refer to [VMware datastore provisioning](#).

Expand VI workload domains with NVMe/TCP

Deployment workflow for adding vVols NVMe datastores as supplemental storage in a VI workload domain

Get started with adding NVMe/TCP vVols datastores as supplemental storage for a VMware Cloud Foundation (VCF) Virtual Infrastructure (VI) workload domain. You'll review the deployment requirements, set up an NVMe/TCP-enabled SVMs and LIFs, configure ESXi host networking, and deploy the NVMe/TCP datastore.

1

[Review the deployment requirements](#)

Review the requirements to deploy NVMe/TCP datastore in a VMware Cloud Foundation VI workload domain.

2

[Create the SVM and LIFs and the NVMe namespace](#)

Create a storage virtual machine with logical interfaces and the NVMe namespace for NVMe/TCP traffic.

3

[Configure networking](#)

Create distributed port groups and vmkernel adapters on the ESXi hosts for the VI workload domain.

4

[Configure storage](#)

Deploy the NVMe/TCP datastore.

Deployment requirements for NVMe vVols in a VI workload domain

Review the recommended network design and infrastructure requirements to deploy NVMe vVols in a VMware Cloud Foundation VI workload domain. You need a fully configured ONTAP AFF or ASA storage system, a deployed VCF management domain, and an existing VI workload domain.

Infrastructure requirements

- An ONTAP AFF or ASA storage system with physical data ports on Ethernet switches dedicated to storage traffic.
- VCF management domain deployment is complete and the vSphere client is accessible.
- A VI workload domain has been previously deployed.

Recommended NVMe/TCP network design

NetApp recommends fully redundant network designs for NVMe/TCP. The following diagram illustrates an example of a redundant configuration, providing fault tolerance for storage systems, switches, networks adapters and host systems.

For multipathing and failover across multiple paths, configure a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in NVMe/TCP configurations.

What's next?

After reviewing the deployment requirements, [create the SVM and LIFs](#).

Create SVM and LIFs and the NVMe namespace for NVMe/TCP vVols datastores in a VCF VI workload domain

Create a Storage Virtual Machine (SVM) with multiple Logical Interfaces (LIFs) to provide NVMe connectivity for VMware Cloud Foundation workload domains. This procedure summarizes setting up an NVMe/TCP-enabled SVM and LIFs and creating the NVMe namespaces.

Step 1: Create the SVMs and LIFs

Complete the following steps to create an SVM with multiple LIFs for NVMe/TCP traffic.

To add new LIFs to an existing SVM, refer to the ONTAP documentation: [Create ONTAP LIFs](#).

Steps

1. From ONTAP System Manager, navigate to **Storage VMs** in the left-hand menu and click **+ Add**.

Show example

The screenshot shows the ONTAP System Manager interface. The left sidebar is titled 'STORAGE' and includes options: Overview, Volumes, LUNs, Consistency Groups, NVMe Namespaces, Shares, Buckets, Qtrees, Quotas, Storage VMs (which is selected and highlighted in blue), and Tiers. The main content area is titled 'Storage VMs' and features a large blue button with a white plus sign and the text '+ Add'. Below this button is a table with a single column labeled 'Name', containing the following list of Storage VMs:

Name
EHC_iSCSI
EHC
HMC_187
HMC_3510
HMC_iSCSI_3510
infra_svm_a300
JS_EHC_iSCSI
OTVtest

2. In the **Add Storage VM** wizard, enter a **Name** for the SVM, select the **IP Space** and then, under **Access Protocol**, click the **NVMe** tab and check the box to **Enable NVMe/TCP**.

Show example

Add Storage VM

STORAGE VM NAME

IPSPACE

Default

Access Protocol

SMB/CIFS, NFS, S3 iSCSI FC NVMe

Enable NVMe/FC

Enable NVMe/TCP

3. In the **Network Interface** section, enter the **IP address**, **Subnet Mask**, and **Broadcast Domain and Port** for the first LIF. For subsequent LIFs, you can either use individual settings or enable the checkbox to use common settings across all remaining LIFs.

For multipathing and failover across multiple paths, create a minimum of two LIFs per storage node in separate Ethernet networks for all SVMs in NVMe/TCP configurations.

4. Choose whether to enable the Storage VM Administration account (for multi-tenancy environments) and click **Save** to create the SVM.

Show example

Storage VM Administration

Manage administrator account

Save [Cancel](#)

Step 2: Create the NVMe Namespace

NVMe namespaces are analogous to LUNs for iSCSI or FC. You must create the NVMe Namespace before a

VMFS datastore can be deployed from the vSphere Client.

To create the NVMe namespace, get the NVMe Qualified Name (NQN) from each ESXi host in the cluster. ONTAP uses the NQN to provide access control for the namespace.

Steps

1. Open an SSH session with an ESXi host in the cluster to obtain its NQN. Use the following command from the CLI:

```
esxcli nvme info get
```

An output similar to the following example should be displayed:

```
Host NQN: nqn.2014-08.com.netapp.sddc:nvme:vcf-wkld-esx01
```

2. Record the NQN for each ESXi host in the cluster.
3. From ONTAP System Manager, navigate to **NVMe Namespaces** in the left-hand menu and click **+ Add** to start.

[Show example](#)

4. On the **Add NVMe Namespace** page, fill in a name prefix, the number of namespaces to create, the size of the namespace, and the host operating system that will be accessing the namespace.
5. In the **Host NQN** section, create a comma separated list of the NQN's previously collected from the ESXi hosts that will be accessing the namespaces.

6. Click **More Options** to configure additional items, such as the snapshot protection policy.
7. Finally, click **Save** to create the NVMe Namespace.

Show example

What's next?

After creating the SVM and LIFs, [configure networking for NVMe/TCP \(NVMe/TCP\) vVols](#).

Configure networking for NVMe/TCP on ESXi hosts in a VCF VI workload domain

Configure networking for NVMe over TCP (NVMe/TCP) storage on ESXi hosts in a VI workload domain. You'll create distributed port groups for NVMe traffic, set up VMkernel adapters on each ESXi host, and add an NVMe/TCP adapter to enable reliable connectivity and multipathing.

Perform the following steps on the VI workload domain cluster using the vSphere client. In this case vCenter Single Sign-On is being used so the vSphere client is common to both the management and workload domains.

Step 1: Create distributed port groups for NVME/TCP traffic

Complete the following steps to create a new distributed port group for each NVMe/TCP network.

Steps

1. From the vSphere client , navigate to **Inventory > Networking** for the workload domain. Navigate to the existing Distributed Switch and choose the action to create **New Distributed Port Group....**

Show example

2. In the **New Distributed Port Group** wizard, fill in a name for the new port group and click **Next** to continue.
3. On the **Configure settings** page, fill out all settings. If VLANs are being used be sure to provide the correct VLAN ID. Click **Next** to continue.

Show example

New Distributed Port Group

Configure settings

Set general properties of the new port group.

Port binding: Static binding

Port allocation: Elastic (1)

Number of ports: 8

Network resource pool: (default)

VLAN

VLAN type: VLAN

VLAN ID: 3374

Advanced

Customize default policies configuration

CANCEL BACK NEXT

4. On the **Ready to complete** page, review the changes and click **Finish** to create the new distributed port group.
5. Repeat this process to create a distributed port group for the second NVMe/TCP network being used and ensure you have input the correct **VLAN ID**.
6. When both port groups have been created, navigate to the first port group and select the action to **Edit settings....**

Show example

The screenshot shows the vSphere Client interface. The left sidebar lists various hosts and datacenters. The main pane shows the 'vcf-wkld-01-nvme-a' distributed port group. The 'Actions' menu is open over this port group, with the 'Edit Settings...' option highlighted. The right pane displays the 'Distributed Port Group Details' for the selected port group, including settings like Port binding (Static), Port allocation (Elastic), VLAN ID (3374), and Distributed switch (vc WKLD).

Setting	Value
Port binding	Static
Port allocation	Elastic
VLAN ID	3374
Distributed switch	vc WKLD
Network protocol profile	--
Network resource pool	--
Hosts	4
Virtual machines	0

7. On the **Distributed Port Group - Edit Settings** page, navigate to **Teaming and failover** in the left-hand menu and click **uplink2** to move it down to **Unused uplinks**.

Show example

Distributed Port Group - Edit Settings | vcf-wkld-01-nvme-a

General	Load balancing	Route based on originating virtual port
Advanced	Network failure detection	Link status only
VLAN	Notify switches	Yes
Security	Fallback	Yes
Traffic shaping		
Teaming and failover		
Monitoring	Failover order ⓘ	
Miscellaneous	MOVE UP MOVE DOWN	
	Active uplinks	
	uplink1	
	Standby uplinks	
	Unused uplinks	
	uplink2	

8. Repeat this step for the second NVMe/TCP port group. This time, move **uplink1** down to **Unused uplinks**.

Show example

Distributed Port Group - Edit Settings | vcf-wkld-01-nvme-b

General	Load balancing	Route based on originating virtual port
Advanced	Network failure detection	Link status only
VLAN	Notify switches	Yes
Security		
Traffic shaping		
Teaming and failover	Failback	Yes
Monitoring	Failover order ①	
Miscellaneous	MOVE UP MOVE DOWN	
	Active uplinks	
	uplink2	
	Standby uplinks	
	Unused uplinks	
	uplink1	

Step 2: Create the VMkernel adapters on each ESXi host

Create the VMkernel adapters on each ESXi host in the workload domain.

Steps

1. From the vSphere client, navigate to one of the ESXi hosts in the workload domain inventory. From the **Configure** tab select **VMkernel adapters** and click **Add Networking...** to start.

Show example

vSphere Client Search in all environments

vcf-wkld-esx01.sddc.netapp.com ACTIONS

Summary	Monitor	Configure	Permissions	VMs	Datastores	Networks	Updates															
Storage																						
Storage Adapters																						
Storage Devices																						
Host Cache Configuration																						
Protocol Endpoints																						
I/O Filters																						
Networking																						
Virtual switches																						
VMkernel adapters																						
ADD NETWORKING... REFRESH																						
<table border="1"><thead><tr><th></th><th></th><th>Network Label</th></tr></thead><tbody><tr><td>...</td><td>»</td><td>vmk0 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nmgt</td></tr><tr><td>...</td><td>»</td><td>vmk1 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-vmotion</td></tr><tr><td>...</td><td>»</td><td>vmk2 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nfs</td></tr><tr><td>...</td><td>»</td><td>vmk10 --</td></tr></tbody></table>										Network Label	...	»	vmk0 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nmgt	...	»	vmk1 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-vmotion	...	»	vmk2 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nfs	...	»	vmk10 --
		Network Label																				
...	»	vmk0 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nmgt																				
...	»	vmk1 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-vmotion																				
...	»	vmk2 vcf-wkld-01-IT-INF-WKLD-01-vd s-01-pg-nfs																				
...	»	vmk10 --																				

2. On the **Select connection type** window, choose **VMkernel Network Adapter** and click **Next** to continue.

Show example

Add Networking

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select connection type

Select a connection type to create.

VMkernel Network Adapter

The VMkernel TCP/IP stack handles traffic for ESXi services such as vSphere vMotion, iSCSI, NFS, FCoE, Fault Tolerance, vSAN, host management and etc.

Virtual Machine Port Group for a Standard Switch

A port group handles the virtual machine traffic on standard switch.

Physical Network Adapter

A physical network adapter handles the network traffic to other hosts on the network.

3. On the **Select target device** page, choose one of the distributed port groups for iSCSI that was created previously.

Show example

Add Networking

1 Select connection type

2 Select target device

3 Port properties

4 IPv4 settings

5 Ready to complete

Select target device

Select a target device for the new connection.

Select an existing network

Select an existing standard switch

New standard switch

Quick Filter

	Name	NSX Port Group ID	Distributed Switch
<input type="radio"/>	vcf-wkld-01-iscsi-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
<input type="radio"/>	vcf-wkld-01-iscsi-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
<input type="radio"/>	vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-mgmt	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
<input type="radio"/>	vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-nfs	--	vcf-wkld-01-IT-INF-WKLD-01-vds-02
<input type="radio"/>	vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-vmotion	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
<input checked="" type="radio"/>	vcf-wkld-01-nvme-a	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01
<input type="radio"/>	vcf-wkld-01-nvme-b	--	vcf-wkld-01-IT-INF-WKLD-01-vds-01

Manage Columns 7 items

Packages

CANCEL BACK NEXT

4. On the **Port properties** page, click the box for **NVMe/TCP** and click **Next** to continue.

Show example

Port properties

Specify VMkernel port settings.

Network label: vcf-wkld-01-nvme-a (vcf-wkld-01-IT-INF-WKLD-01-vds-01)

MTU: Get MTU from switch 9000

TCP/IP stack: Default

Available services

Enabled services:

- vMotion
- Provisioning
- Fault Tolerance logging
- Management
- vSphere Replication
- vSphere Replication NFC
- vSAN
- vSAN Witness
- vSphere Backup NFC
- NVMe over TCP

CANCEL BACK NEXT

5. On the **IPv4 settings** page, fill in the **IP address** and **Subnet mask** and provide a new gateway IP address (only if required). Click **Next** to continue.

Show example

IPv4 settings

Specify VMkernel IPv4 settings.

Obtain IPv4 settings automatically

Use static IPv4 settings

IPv4 address: 172.21.118.191

Subnet mask: 255.255.255.0

Default gateway: Override default gateway for this adapter
172.21.166.1

DNS server addresses: 10.61.185.231

CANCEL BACK NEXT

6. Review your selections on the **Ready to complete** page and click **Finish** to create the VMkernel adapter.

Show example

The screenshot shows the 'Add Networking' wizard in the vSphere Client. The left sidebar lists steps 1 through 5. Step 5, 'Ready to complete', is highlighted with a dark background. The main pane displays configuration details for a new port group:

Setting	Value
Distributed port group	vcf-wkld-01-nvme-a
Distributed switch	vcf-wkld-01-IT-INF-WKLD-01-vds-01
New port group	vcf-wkld-01-nvme-a (vcf-wkld-01-IT-INF-WKLD-01-vds-01)
MTU	9000
vMotion	Disabled
Provisioning	Disabled
Fault Tolerance logging	Disabled
Management	Disabled
vSphere Replication	Disabled
vSphere Replication NFC	Disabled
vSAN	Disabled
vSAN Witness	Disabled
vSphere Backup NFC	Disabled
NVMe over TCP	Enabled
NVMe over RDMA	Disabled
IPv4 address	172.21.118.191 (static)
Subnet mask	255.255.255.0

At the bottom right, there are 'CANCEL', 'BACK', and 'FINISH' buttons. The 'FINISH' button is highlighted with a green background and a white mouse cursor is positioned over it.

7. Repeat this process to create a VMkernel adapter for the second iSCSI network.

Step 3: Add NVMe/TCP adapter

Each ESXi host in the workload domain cluster must have an NVMe/TCP software adapter installed for every established NVMe/TCP network dedicated to storage traffic.

To install NVMe/TCP adapters and discover the NVMe controllers, complete the following steps.

1. In the vSphere client, navigate to one of the ESXi hosts in the workload domain cluster. From the **Configure** tab, click **Storage Adapters** in the menu.
2. From the **Add Software Adapter** drop-down menu, select **Add NVMe over TCP adapter**.

Show example

The screenshot shows the vSphere Client interface. The left sidebar shows a tree structure of hosts and datastores. The main pane is titled 'vcf-wkld-esx01.sddc.netapp.com' and has a 'Configure' tab selected. Under 'Storage Adapters', a context menu is open over an adapter, with a hand cursor pointing at the 'Add NVMe over TCP adapter' option.

3. In the **Add Software NVMe over TCP adapter** window, access the **Physical Network Adapter** drop-down menu and select the correct physical network adapter on which to enable the NVMe adapter.

Show example

The screenshot shows the 'Add Software NVMe over TCP adapter' dialog box. The title bar says 'vcf-wkld-esx01.sddc.netapp.com'. The main area says 'Enable software NVMe adapter on the selected physical network adapter.' A dropdown menu labeled 'Physical Network Adapter' is open, showing options: 'vmnic1/nvmlxnet3', 'vmnic1/nvmlxnet3', 'vmnic2/nvmlxnet3', and 'vmnic3/nvmlxnet3'. A hand cursor is pointing at the dropdown menu. The 'OK' button is visible at the bottom right.

4. Repeat this process for the second network assigned to NVMe/TCP traffic, assigning the correct physical adapter.
5. Select one of the newly installed NVMe/TCP adapters. On the **Controllers** tab, select **Add Controller**.

Show example

The screenshot shows the vSphere Client interface for managing storage adapters. The host selected is `vcf-wkld-esx01.sddc.netapp.com`. The 'Storage' tab is selected, and the 'Storage Adapters' section is displayed. The table lists the following adapters:

Adapter	Model	Type
vmhba65	iSCSI Software Adapter	iSCSI
vmhba1	PIIX4 for 430TX/440BX/MX IDE Controller	Block SCSI
vmhba64	PIIX4 for 430TX/440BX/MX IDE Controller	Block SCSI
vmhba0	PVSCSI SCSI Controller	SCSI
vmhba68	VMware NVMe over TCP Storage Adapter	NVME over TCP
vmhba69	VMware NVMe over TCP Storage Adapter	NVME over TCP

Below the table, there is an 'ADD CONTROLLER' section with a 'Name' field and a 'Discover Controllers' button. A hand cursor is hovering over the 'Name' field.

6. In the **Add controller** window, select the **Automatically** tab and complete the following steps.
 - a. Enter an IP address for one of the SVM logical interfaces on the same network as the physical adapter assigned to this NVMe/TCP adapter.
 - b. Click the **Discover Controllers** button.
 - c. From the list of discovered controllers, click the checkbox for the two controllers with network addresses aligned with this NVMe/TCP adapter.
7. Click **OK** to add the selected controllers.

Show example

8. After a few seconds you should see the NVMe namespace appear on the Devices tab.

Show example

The screenshot shows the vSphere Client interface. At the top, there is a navigation bar with tabs: ADD SOFTWARE ADAPTER, REFRESH, RESCAN STORAGE, RESCAN ADAPTER, and REMOVE. Below the navigation bar is a table titled 'Storage Adapters' with the following data:

Adapter	Model	Type	Status	Identifier	Targets	Devices	Paths
vmhba65	iSCSI Software Adapter	iSCSI	Online	iscsi_vmk(iqn.1998-01.com.vmware:vcf-wkld-esx01.sddc.net/app.com:794177624:65)	4	2	8
vmhba1	PIIX4 for 430TX/440BX/MX IDE Controller	Block SCSI	Unknown	--	1	1	1
vmhba64	PIIX4 for 430TX/440BX/MX IDE Controller	Block SCSI	Unknown	--	0	0	0
vmhba0	PVSCSI SCSI Controller	SCSI	Unknown	--	3	3	3
vmhba68	VMware NVMe over TCP Storage Adapter	NVME over TCP	Online	--	1	1	1
vmhba69	VMware NVMe over TCP Storage Adapter	NVME over TCP	Online	--	0	0	0

Below the table are buttons for 'Manage Columns' and 'Export'. There are also tabs for Properties, Devices, Paths, Namespaces, and Controllers, with 'Devices' currently selected. A 'REFRESH' button is visible. The 'Devices' table below shows the following data:

Name	LUN	Type	Capacity	Datastore	Operational State	Hardware Acceleration	Drive Type	Transport
NVMe TCP Disk (uuid:929a6a9045764784 9146e09d6e55b076)	0	disk	3.00 TB	Not Consumed	Attached	Supported	Flash	TCPTRAN RT

9. Repeat this procedure to create an NVMe/TCP adapter for the second network established for NVMe/TCP traffic.

What's next?

After configuring networking, [configure storage for NVMe vVols](#).

Configure NVMe/TCP vVols storage in a VCF VI workload domain

Configure NVMe/TCP vVols storage in a VMware Cloud Foundation VI workload domain. You'll deploy ONTAP tools, register a storage system, create a storage capability profile, and provision a vVols datastore in the vSphere client.

Steps

1. In the vSphere client, navigate to one of the ESXi hosts in the workload domain cluster. From the **Actions** menu select **Storage > New Datastore**....

Show example

The screenshot shows the vSphere Client interface. On the left, a tree view shows a hierarchy of hosts and datacenters. The main pane displays 'Host Details' for 'vcf-wkld-esx01.sddc.netapp.com'. The 'Actions' menu on the right is open, with 'Storage' selected. A hand cursor is hovering over the 'New Datastore...' option.

2. In the **New Datastore** wizard, select **VMFS** as the type. Click **Next** to continue.
3. On the **Name and device selection** page, provide a name for the datastore and select the NVMe namespace from the list of available devices.

Show example

The screenshot shows the 'New Datastore' wizard, Step 2: Name and device selection. The 'Name' field is set to 'VCF_WKLD_04_NVMe'. A table lists available devices:

Name	LUN	Capacity	Hardware Acceleration	Drive Type	Sector Format	Cl	V	Si
NVMe TCP Disk (uuid:929a6a90457647849146e09d6e550076)	0	3.00 TB	Supported	Flash	512e	N	V	N
Local VMware Disk (naa.6000c29f83dcf1e42d230340d1b66036)	0	4.00 GB	Not supported	Flash	512n	N	V	N
Local VMware Disk (naa.6000c291464644a835bc23d384813ac0)	0	75.00 GB	Not supported	Flash	512n	N	V	N

At the bottom, there are 'Manage Columns' and 'Export' buttons, and a note indicating '3 items'. The 'NEXT >' button is highlighted with a hand cursor.

4. On the **VMFS version** page, select the version of VMFS for the datastore.
5. On the **Partition configuration** page, make any desired changes to the default partition scheme. Click **Next** to continue.

Show example

New Datastore

Partition configuration

Review the disk layout and specify partition configuration details.

Partition Configuration: Use all available partitions

Datastore Size: 3072 GB

Block size: 1 MB

Space Reclamation Granularity: 1 MB

Space Reclamation Priority: Low

Empty: 3.0 TB

Free Space: 3TB
Usage on selected partition: 3TB

NEXT

6. On the **Ready to complete** page, review the summary and click **Finish** to create the datastore.
7. Navigate to the new datastore in inventory and click the **Hosts** tab. If configured correctly, all ESXi hosts in the cluster should be listed and have access to the new datastore.

Show example

Name	State	Status	Cluster	Consumed CPU %	Consumed Memory %	HA State	Uptime
vcf-wkld-esx01.sddc.netapp.co	Connected	Normal	IT-INF-WKLD-0	15%	13%	Connected (Secondary)	19 days
vcf-wkld-esx02.sddc.netapp.co	Connected	Normal	IT-INF-WKLD-0	9%	15%	Running (Primary)	19 days
vcf-wkld-esx03.sddc.netapp.co	Connected	Normal	IT-INF-WKLD-0	9%	21%	Connected (Secondary)	19 days
vcf-wkld-esx04.sddc.netapp.co	Connected	Normal	IT-INF-WKLD-0	11%	4%	Connected (Secondary)	19 days

Additional information

- For more information on configuring SAN for redundancy, refer to the [NetApp SAN configuration reference](#).
- For additional information on NVMe design considerations for ONTAP storage systems, refer to [NVMe configuration, support and limitations](#).
- For information on configuring ONTAP storage systems, refer to the [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to the [VMware Cloud Foundation documentation](#).

Add an FC-based VMFS datastore as supplemental storage to a VI workload domains

In this use case we outline the procedure to configure a VMFS datastore using Fiber Channel (FC) as supplemental storage for a VMware Cloud Foundation (VCF) Virtual Infrastructure (VI) workload domain. This procedure summarizes deploying ONTAP Tools for VMware vSphere, registering the VI workload vCenter server, defining the storage backend, and provisioning the FC datastore.

Before you begin

Make sure the following components and configurations are in place.

- An ONTAP AFF or ASA storage system with FC ports connected to FC switches.
- SVM created with FC LIFs.
- vSphere with FC HBAs connected to FC switches.
- Single initiator-target zoning is configured on FC switches.

- Use SVM FC logical interface in zone configuration rather than physical FC ports on ONTAP systems.
- Use multipath for FC LUNs.

Steps

1. Register the VI workload vCenter by following the instructions in the ONTAP tools for VMware vSphere documentation:

[Register VI workload vCenter](#).

Registering the VI workload vCenter enables the vCenter plugin.

2. Add a storage backend using the vSphere client interface by following the instructions in the ONTAP tools for VMware vSphere documentation: [Define Storage backend using vSphere client interface](#).

Adding a storage backend enables you to onboard an ONTAP cluster.

3. Provision VMFS on Fibre Channel (FC) by following the instructions in the ONTAP tools for VMware vSphere documentation: [Provision VMFS on FC](#).

Additional information

- For information on configuring ONTAP storage systems, refer to the [ONTAP 9 documentation](#).
- For information on configuring VCF, refer to the [VMware Cloud Foundation documentation](#).

- For information on configuring Fibre Channel on ONTAP storage systems, refer to the [SAN storage management](#) in the ONTAP 9 documentation.
- For information on using VMFS with ONTAP storage systems, refer to the [Deployment guide for VMFS](#).
- For video demos of this solution, refer to [VMware datastore provisioning](#).

Protect VCF with SnapCenter

Learn about protecting VCF workload domains with SnapCenter plug-in for VMware vSphere

Learn about the NetApp solutions you can use to protect VMware Cloud Foundation (VCF) workloads with SnapCenter Plug-in for VMware vSphere. This plug-in simplifies backup and recovery, ensuring application-consistent backups, and optimizing storage with NetApp's efficiency technologies.

It supports automated workflows, and scalable operations while providing seamless integration with the vSphere client. With SnapMirror replication providing secondary backup on-premises or to the cloud, it offers robust data protection and operational efficiency in virtualized environments.

Please refer to the following solutions for more details.

- [Protect VCF Workload Domain](#)
- [Protect VCF Multiple Workload Domains](#)
- [Protect VCF Workload Domain with NVMe](#)

Protect a VCF workload domain with SnapCenter plug-in for VMware vSphere

In this use case we outline the procedure to use the SnapCenter plug-in for VMware vSphere to back up and restore VMs and datastores in a VMware Cloud Foundation (VCF) workload domain. This procedure summarizes deploying SnapCenter plug-in for VMware vSphere, adding storage systems, creating backup policies, and performing restores of VMs and files.

iSCSI is used as the storage protocol for the VMFS datastore in this solution.

Scenario Overview

This scenario covers the following high level steps:

- Deploy the SnapCenter Plug-in for VMware vSphere (SCV) on the VI workload domain.
- Add storage systems to SCV.
- Create backup policies in SCV.
- Create Resource Groups in SCV.
- Use SCV to backup datastores or specific VMs.
- Use SCV to restores VMs to an alternate location in the cluster.
- Use SCV to restores files to a windows file system.

Prerequisites

This scenario requires the following components and configurations:

- An ONTAP ASA storage system with iSCSI VMFS datastores allocated to the workload domain cluster.
- A secondary ONTAP storage system configured to receive secondary backups using SnapMirror.
- VCF management domain deployment is complete and the vSphere client is accessible.
- A VI workload domain has been previously deployed.
- Virtual machines are present on the cluster SCV is designated to protect.

For information on configuring iSCSI VMFS datastores as supplemental storage refer to [iSCSI as supplemental storage for Management Domains using ONTAP Tools for VMware](#) in this documentation. The process for using OTV to deploy datastores is identical for management and workload domains.

In addition to replicating backups taken with SCV to secondary storage, offsite copies of data can be made to object storage on one of the three (3) leading cloud providers using NetApp Backup and Recovery for VMs. For more information refer to this offering [NetApp Backup and Recovery Documentation](#).

Deployment Steps

To deploy the SnapCenter Plug-in and use it to create backups, and restore VMs and datastores, complete the following steps:

Deploy and use SCV to protect data in a VI workload domain

Complete the following steps to deploy, configure, and use SCV to protect data in a VI workload domain:

Deploy the SnapCenter Plug-in for VMware vSphere

The SnapCenter Plug-in is hosted on the VCF management domain but registered to the vCenter for the VI workload domain. One SCV instance is required for each vCenter instance and, keep in mind that, a Workload domain can include multiple clusters managed by a single vCenter instance.

Complete the following steps from the vCenter client to deploy SCV to the VI workload domain:

1. Download the OVA file for the SCV deployment from the download area of the NetApp support site [HERE](#).
2. From the management domain vCenter Client, select to **Deploy OVF Template....**

3. In the **Deploy OVF Template** wizard, click on the **Local file** radio button and then select to upload the previously downloaded OVF template. Click on **Next** to continue.

Deploy OVF Template

1 Select an OVF template

2 Select a name and folder

3 Select a compute resource

4 Review details

5 Select storage

6 Ready to complete

Select an OVF template

Select an OVF template from remote URL or local file system

Enter a URL to download and install the OVF package from the internet, or browse to a location accessible from your computer, such as a local hard drive, a network share, or a CD/DVD drive.

URL

<http://https://remoteserver-address/filetodeploy.ovf> .ova

Local file

UPLOAD FILES scv-5.0P2-240310_1514.ova

- On the **Select name and folder** page, provide a name for the SCV data broker VM and a folder on the management domain. Click on **Next** to continue.
- On the **Select a compute resource** page, select the management domain cluster or specific ESXi host within the cluster to install the VM to.
- Review information pertaining to the OVF template on the **Review details** page and agree to the licensing terms on the **Licensing agreements** page.
- On the **Select storage** page choose the datastore which the VM will be installed to and select the **virtual disk format** and **VM Storage Policy**. In this solution, the VM will be installed on an iSCSI VMFS datastore located on an ONTAP storage system, as previously deployed in a separate section of this documentation. Click on **Next** to continue.

Deploy OVF Template

1 Select an OVF template

2 Select a name and folder

3 Select a compute resource

4 Review details

5 License agreements

6 Select storage

7 Select networks

8 Customize template

9 Ready to complete

Select storage

Select the storage for the configuration and disk files

Encrypt this virtual machine [\(i\)](#)

Select virtual disk format [Thin Provision](#)

VM Storage Policy [Datastore Default](#)

Disable Storage DRS for this virtual machine

	Name	Storage Compatibility	Capacity	Provisioned	Free	
<input checked="" type="radio"/>	mgmt_01_iscsi	--	3 TB	3.71 TB	2.5 TB	
<input type="radio"/>	vcf-m01-cl01-ds-vs01	--	999.97 GB	49.16 GB	957.54 GB	
<input type="radio"/>	vcf-m01-esx01-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	
<input type="radio"/>	vcf-m01-esx02-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	
<input type="radio"/>	vcf-m01-esx03-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	
<input type="radio"/>	vcf-m01-esx04-esx-install-datastore	--	25.75 GB	4.56 GB	21.19 GB	

Compatibility

 Compatibility checks succeeded.

CANCEL

BACK

NEXT

8. On the **Select network** page, select the management network that is able to communicate with the workload domain vCenter appliance and both the primary and secondary ONTAP storage systems.

9. On the **Customize template** page fill out all information required for the deployment:

- FQDN or IP, and credentials for the workload domain vCenter appliance.
- Credentials for the SCV administrative account.
- Credentials for the SCV maintenance account.
- IPv4 Network Properties details (IPv6 can also be used).
- Date and Time settings.

Click on **Next** to continue.

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

Customize the deployment properties of this software solution.

1. Register to existing vCenter		4 settings
1.1 vCenter Name(FQDN) or IP Address	cf-wkld-vc01.sddc.netapp.com	
1.2 vCenter username	administrator@vcf.local	
1.3 vCenter password	Password	*****
	Confirm Password	*****
1.4 vCenter port	443	
2. Create SCV Credentials		2 settings
2.1 Username	admin	
2.2 Password	Password	*****
	Confirm Password	*****
3. System Configuration		1 settings

Deploy OVF Template

- 1 Select an OVF template
- 2 Select a name and folder
- 3 Select a compute resource
- 4 Review details
- 5 License agreements
- 6 Select storage
- 7 Select networks
- 8 Customize template**
- 9 Ready to complete

Customize template

4.2 Setup IPv4 Network Properties		6 settings
4.2.1 IPv4 Address	IP address for the appliance. (Leave blank if DHCP is desired) 172.21.166.148	
4.2.2 IPv4 Netmask	Subnet to use on the deployed network. (Leave blank if DHCP is desired) 255.255.255.0	
4.2.3 IPv4 Gateway	Gateway on the deployed network. (Leave blank if DHCP is desired) 172.21.166.1	
4.2.4 IPv4 Primary DNS	Primary DNS server's IP address. (Leave blank if DHCP is desired) 10.61.185.231	
4.2.5 IPv4 Secondary DNS	Secondary DNS server's IP address. (optional - Leave blank if DHCP is desired) 10.61.186.231	
4.2.6 IPv4 Search Domains (optional)	Comma separated list of search domain names to use when resolving host names. (Leave blank if DHCP is desired) netapp.com,sddc.netapp.com	
4.3 Setup IPv6 Network Properties		6 settings
4.3.1 IPv6 Address	IP address for the appliance. (Leave blank if DHCP is desired)	
4.3.2 IPv6 PrefixLen	Prefix length to use on the deployed network. (Leave blank if DHCP is desired)	

10. Finally, on the **Ready to complete page**, review all settings and click on Finish to start the deployment.

Add Storage Systems to SCV

Once the SnapCenter Plug-in is installed complete the following steps to add storage systems to SCV:

1. SCV can be accessed from the main menu in the vSphere Client.

2. At the top of the SCV UI interface, select the correct SCV instance that matches the vSphere cluster to be protected.

vSphere Client

Search in all environments

SnapCenter Plug-in for VMware vSphere INSTANCE 172.21.166.148:8080

Dashboard

Settings

Dashboard

3. Navigate to **Storage Systems** in the left-hand menu and click on **Add** to get started.

vSphere Client

Search in all environments

SnapCenter Plug-in for VMware vSphere INSTANCE 172.21.166.148:8080

Dashboard

Settings

Resource Groups

Policies

Storage Systems

Guest File Restore

Storage Systems

Name	Display Name

Add

Edit

Delete

Export

4. On the **Add Storage System** form, fill in the IP address and credentials of the ONTAP storage system to be added, and click on **Add** to complete the action.

Add Storage System

×

Storage System	172.16.9.25
Authentication Method	<input checked="" type="radio"/> Credentials <input type="radio"/> Certificate
Username	admin
Password	*****
Protocol	HTTPS
Port	443
Timeout	60 Seconds
<input type="checkbox"/> Preferred IP	Preferred IP

Event Management System(EMS) & AutoSupport Setting

- Log Snapcenter server events to syslog
- Send AutoSupport Notification for failed operation to storage system

CANCEL

ADD

5. Repeat this procedure for any additional storage systems to be managed, including any systems to be used as secondary backup targets.

Configure backup policies in SCV

For more information on creating SCV backup policies refer to [Create backup policies for VMs and datastores](#).

Complete the following steps to create a new backup policy:

1. From the left-hand menu select **Policies** and click on **Create** to begin.

2. On the **New Backup Policy** form, provide a **Name** and **Description** for the policy, the **Frequency** at which the backups will take place, and the **Retention** period which specifies how long the backup is retained.

Locking Period enables the ONTAP SnapLock feature to create tamper proof snapshots and allows configuration of the locking period.

For **Replication** Select to update the underlying SnapMirror or SnapVault relationships for the ONTAP storage volume.

SnapMirror and SnapVault replication are similar in that they both utilize ONTAP SnapMirror technology to asynchronously replicate storage volumes to a secondary storage system for increased protection and security. For SnapMirror relationships, the retention schedule specified in the SCV backup policy will govern retention for both the primary and secondary volume. With SnapVault relationships, a separate retention schedule can be established on the secondary storage system for longer term or differing retention schedules. In this case the snapshot label is specified in the SCV backup policy and in the policy associated with the secondary volume, to identify which volumes to apply the independent retention schedule to.

Choose any additional advanced options and click on **Add** to create the policy.

New Backup Policy

X

Name	Daily_Snapmirror		
Description	description		
Frequency	Daily		
Locking Period	<input type="checkbox"/> Enable Snapshot Locking <small>i</small>		
Retention	Days to keep	<input type="button" value="▼"/>	15 <input type="button" value="▲"/> <small>i</small>
Replication	<input checked="" type="checkbox"/> Update SnapMirror after backup <small>i</small> <input type="checkbox"/> Update SnapVault after backup <small>i</small>		
	Snapshot label <input type="text"/>		
Advanced <small>▼</small>	<input type="checkbox"/> VM consistency <small>i</small> <input type="checkbox"/> Include datastores with independent disks		
Scripts <small>i</small>	<input type="text" value="Enter script path"/>		

CANCEL

ADD

Create resource groups in SCV

For more information on creating SCV Resource Groups refer to [Create resource groups](#).

Complete the following steps to create a new resource group:

1. From the left-hand menu select **Resource Groups** and click on **Create** to begin.

2. On the **General info & notification** page, provide a name for for the resource group, notification settings, and any additional options for the naming of the snapshots.
3. On the **Resource** page select the datastores and VM's to be protected in the resource group. Click on **Next** to continue.

Even when only specific VMs are selected, the entire datastore is always backed up. This is because ONTAP takes snapshots of the volume hosting the datastore. However, note that selecting only specific VMs for backup limits the ability to restore to only those VMs.

Create Resource Group

1. General info & notification

Scope: Virtual Machines

2. Resource

Parent entity: VCF_WKLD_03_iSCSI

3. Spanning disks

4. Policies

5. Schedules

6. Summary

Available entities

- OracleSrv_01
- OracleSrv_02
- OracleSrv_03
- OracleSrv_04

Selected entities

- SQLSRV-01
- SQLSRV-02
- SQLSRV-03
- SQLSRV-04

Enter available entity name

BACK NEXT FINISH CANCEL

4. On the **Spanning disks** page select the option for how to handle VMs with VMDK's that span multiple datastores. Click on **Next** to continue.

Create Resource Group

1. General info & notification

Always exclude all spanning datastores

2. Resource

3. Spanning disks

4. Policies

5. Schedules

6. Summary

Always include all spanning datastores

All datastores spanned by all included VMs are included in this backup

Manually select the spanning datastores to be included ?

You will need to modify the list every time new VMs are added

There are no spanned entities in the selected virtual entities list.

BACK

NEXT

FINISH

CANCEL

5. On the **Policies** page select a previously created policy or multiple policies that will be used with this resource group. Click on **Next** to continue.

Create Resource Group

✓ 1. General info & notification

✓ 2. Resource

3. Spanning disks

4. Policies

5. Schedules

6. Summary

• Create

BACK

NEXT

FINISH

CANCEL

6. On the **Schedules** page establish for when the backup will run by configuring the recurrence and time of day. Click on **Next** to continue.

Create Resource Group

✓ 1. General info & notification

✓ 2. Resource

✓ 3. Spanning disks

✓ 4. Policies

5. Schedules

6. Summary

Daily_Snapmi...	Type	Daily	
Every	1	Day(s)	
Starting	04/04/2024	calendar icon	
At	04	45	PM

BACK **NEXT** **FINISH** **CANCEL**

7. Finally review the **Summary** and click on **Finish** to create the resource group.

Create Resource Group

1. General info & notification

2. Resource

3. Spanning disks

4. Policies

5. Schedules

6. Summary

Name	SQL_Servers						
Description							
Send email	Never						
Latest Snapshot name	None <small>?</small>						
Custom snapshot format	None <small>?</small>						
Entities	SQLSRV-01, SQLSRV-02, SQLSRV-03, SQLSRV-04						
Spanning	False						
Policies	<table><thead><tr><th>Name</th><th>Frequency</th><th>Snapshot Locking Period</th></tr></thead><tbody><tr><td>Daily_Snapmir...</td><td>Daily</td><td>-</td></tr></tbody></table>	Name	Frequency	Snapshot Locking Period	Daily_Snapmir...	Daily	-
Name	Frequency	Snapshot Locking Period					
Daily_Snapmir...	Daily	-					

BACK NEXT FINISH CANCEL

8. With the resource group created click on the **Run Now** button to run the first backup.

vSphere Client Search in all environments

SnapCenter Plug-in for VMware vSphere INSTANCE 172.21.166.148:8080

Dashboard Settings **Resource Groups** Policies Storage Systems Guest File Restore >

Resource Groups

Run Now

Name	Description	Policy
SQL_Servers		Daily...

9. Navigate to the **Dashboard** and, under **Recent Job Activities** click on the number next to **Job ID** to open the job monitor and view the progress of the running job.

Use SCV to restore VMs, VMDKs and files

The SnapCenter Plug-in allows restores of VMs, VMDKs, files, and folders from primary or secondary backups.

VMs can be restored to the original host, or to an alternate host in the same vCenter Server, or to an alternate ESXi host managed by the same vCenter or any vCenter in linked mode.

vVol VMs can be restored to the original host.

VMDKs in traditional VMs can be restored to either the original or to an alternate datastore.

VMDKs in vVol VMs can be restored to the original datastore.

Individual files and folders in a guest file restore session can be restored, which attaches a backup copy of a virtual disk and then restores the selected files or folders.

Complete the following steps to restore VMs, VMDKs or individual folders.

Restore VMs using SnapCenter Plug-in

Complete the following steps to restore a VM with SCV:

1. Navigate to the VM to be restored in the vSphere client, right click and navigate to **SnapCenter Plug-in for VMware vSphere**. Select **Restore** from the sub-menu.

vSphere Client Search in all environments

OracleSrv_04

Summary Monitor Configure Permissions

Guest OS

Actions - OracleSrv_04

- Power
- Guest OS
- Snapshots
- Open Remote Console
- Migrate...
- Clone
- Fault Tolerance
- VM Policies
- Template
- Compatibility
- Export System Logs...
- Edit Settings...
- Move to folder...
- Rename...
- Edit Notes...
- Tags & Custom Attributes
- Add Permission...
- Alarms
- Remove from Inventory
- Delete from Disk
- VSAN
- NetApp ONTAP tools

Virtual Mac

4 CPU(s), 22 MHz used

32 GB, 0 GB memory active

100 GB | Thin Provision (of 2) VCF_WKLD_03_iSCSI

vcf-wkld-01-IT-INF-WKLD-01-vc (connected) | 00:50:56:83:02:ff

Disconnected

ESXi 7.0 U2 and later (VM vers

Create Resource Group

Add to Resource Group

Attach Virtual Disk(s)

Detach Virtual Disk(s)

Restore

File Restore

Recent Tasks

Task Name

Manage Columns Run

SnapCenter Plug-in for VMware vSphere

An alternative is to navigate to the datastore in inventory and then under the **Configure** tab go to **SnapCenter Plug-in for VMware vSphere > Backups**. From the chosen backup, select the VMs to be restored.

2. In the **Restore** wizard select the backup to be used. Click on **Next** to continue.

3. On the **Select scope** page fill out all required fields:

- **Restore scope** - Select to restore the entire virtual machine.
- **Restart VM** - Choose whether to start the VM after the restore.
- **Restore Location** - Choose to restore to the original location or to an alternate location. When choosing alternate location select the options from each of the fields:
 - **Destination vCenter Server** - local vCenter or alternate vCenter in linked mode
 - **Destination ESXi host**
 - **Network**
 - **VM name after restore**
 - **Select datastore:**

Click on **Next** to continue.

4. On the **Select location** page, choose to restore the VM from the primary or secondary ONTAP storage system. Click on **Next** to continue.

Restore

✓ 1. Select backup

✓ 2. Select scope

3. Select location

4. Summary

Destination datastore	Locations
VCF_WKLD_03_iSCSI	(Primary) VCF_iSCSI:VCF_WKLD_03_iSCSI
	(Primary) VCF_iSCSI:VCF_WKLD_03_iSCSI
	(Secondary) svm_iscsi:VCF_WKLD_03_iSCSI_dest

5. Finally, review the **Summary** and click on **Finish** to start the restore job.

Restore

✓ 1. Select backup

✓ 2. Select scope

✓ 3. Select location

4. Summary

Virtual machine to be restored	OracleSrv_04
Backup name	VCF_WKLD_iSCI_Datastore_04-04-2024_16.50.00.0940
Restart virtual machine	No
Restore Location	Alternate Location
Destination vCenter Server	172.21.166.143
ESXi host to be used to mount the backup	vcf-wkld-esx04.sddc.netapp.com
VM Network	vcf-wkld-01-IT-INF-WKLD-01-vds-01-pg-mgmt
Destination datastore	VCF_WKLD_03_iSCSI
VM name after restore	OracleSrv_04_restored

Change IP address of the newly created VM after restore operation to avoid IP conflict.

BACK

NEXT

FINISH

CANCEL

6. The restore job progress can be monitored from the **Recent Tasks** pane in the vSphere Client and from the job monitor in SCV.

☰ vSphere Client Search in all environments

SnapCenter Plug-in for VMware vSphere INSTANCE 172.21.166.148:8080

Dashboard

- Settings
- Resource Groups
- Policies
- Storage Systems
- Guest File Restore

RECENT JOB ACTIVITIES

- Restore Running [Job ID:18] VCF_WKLD_ISCI_Datastore_04-04-20... 1 min ago
- Backup Successful [Job ID:15] VCF_WKLD_ISCI_Datastore 8 min ago
- Backup Successful [Job ID:12] VCF_WKLD_ISCI_Datastore 13 min ago
- Backup Successful [Job ID:9] SQL_Servers 13 min ago
- Backup Successful [Job ID:6] SQL_Servers 19 min ago

CONFIGURATION

- 11 Virtual Machines
- 6 Datastores
- 14 SVMs
- 2 Resource Groups
- 2 Backup Policies

Job Details : 18

Restoring backup with name: VCF_WKLD_ISCI_Datastore_04-04-2024_16.50.00.0940

Preparing for Restore: Retrieving Backup metadata from Repository.

Pre Restore

Restore

Running, Start Time: 04/04/2024 04:58:24 PM.

Recent Tasks

Task Name	Target	Status	Details	Initiator	Queued For	Start Time
NetApp Mount Datastore	vcf-wkld-esx04.sdd c.netapp.com	35%	Mount operation completed successfully.	VCF.LOCAL\Administrator	6 ms	04/04/2024, 4:58:27 PM
NetApp Restore	vcf-wkld-esx04.sdd c.netapp.com	2%	Restore operation started.	VCF.LOCAL\Administrator	10 ms	04/04/2024, 4:58:27 PM

[Manage Columns](#) [Running](#) [More Tasks](#)

Restore VMDKs using SnapCenter Plug-in

ONTAP Tools allows full restore of VMDK's to their original location or the ability to attach a VMDK as a new disk to a host system. In this scenario a VMDK will be attached to a Windows host in order to access the file system.

To attach a VMDK from a backup, complete the following steps:

1. In the vSphere Client navigate to a VM and, from the **Actions** menu, select **SnapCenter Plug-in for VMware vSphere > Attach Virtual Disk(s)**.

2. In the **Attach Virtual Disk(s)** wizard, select the backup instance to be used and the particular VMDK to be attached.

Attach Virtual Disk(s)

X

Click here to attach to alternate VM

Backup

(This list shows primary backups. [1](#) Click here to modify the filter to display primary and secondary backups.)

Search for Backups

Name	Backup Time	Mounted	Policy	VMware Snapshot
VCF_WKLD_iSCSI_Datastore_04-17-2024_09.50.01.0218	4/17/2024 9:50:01 AM	No	Hourly_Snapmirror	No
VCF_WKLD_iSCSI_Datastore_04-17-2024_08.50.01.0223	4/17/2024 8:50:01 AM	No	Hourly_Snapmirror	No
VCF_WKLD_iSCSI_Datastore_04-17-2024_07.50.01.0204	4/17/2024 7:50:00 AM	No	Hourly_Snapmirror	No
VCF_WKLD_iSCSI_Datastore_04-17-2024_06.50.01.0194	4/17/2024 6:50:00 AM	No	Hourly_Snapmirror	No
VCF_WKLD_iSCSI_Datastore_04-17-2024_05.50.01.0245	4/17/2024 5:50:01 AM	No	Hourly_Snapmirror	No
VCF_WKLD_iSCSI_Datastore_04-17-2024_04.50.01.0231	4/17/2024 4:50:01 AM	No	Hourly_Snapmirror	No

Select disks

<input type="checkbox"/> Virtual disk	Location
<input type="checkbox"/> [VCF_WKLD_03_iSCSI] SQLSRV-01/SQLSRV-01.vmdk	Primary:VCF_iSCSI:VCF_WKLD_03_iSCSI:VCF_WKLD_iSCSI_Datastore_04-17-2024_09.50.01.C
<input checked="" type="checkbox"/> [VCF_WKLD_03_iSCSI] SQLSRV-01/SQLSRV-01_1.v...	Primary:VCF_iSCSI:VCF_WKLD_03_iSCSI:VCF_WKLD_iSCSI_Datastore_04-17-2024_09.50.01.C

2

3

CANCEL

ATTACH

Filter options can be used to locate backups and to display backups from both primary and secondary storage systems.

Attach Virtual Disk(s)

X

Click here to attach to alternate VM

Backup

(This list shows primary backups.)

Search for Backups

1

Time range 04/17/2024
 Hour Minute Second

To Hour Minute Second

VMware snapshot

Mounted

Location

3. After selecting all options, click on the **Attach** button to begin the restore process and attached the VMDK to the host.
4. Once the attach procedure is complete the disk can be accessed from the OS of the host system. In this case SCV attached the disk with its NTFS file system to the E: drive of our Windows SQL Server and the SQL database files on the file system are accessible through File Explorer.

Guest File System Restore using SnapCenter Plug-in

ONTAP Tools features guest file system restores from a VMDK on Windows Server OSes. This is performed centrally from the SnapCenter Plug-in interface.

For detailed information refer to [Restore guest files and folders](#) at the SCV documentation site.

To perform a guest file system restore for a Windows system, complete the following steps:

1. The first step is to create Run As credentials to provide access to the Windows host system. In the vSphere Client navigate to the CSV plug-in interface and click on **Guest File Restore** in the main menu.

2. Under **Run As Credentials** click on the + icon to open the **Run As Credentials** window.
3. Fill in a name for the credentials record, an administrator username and password for the Windows system, and then click on the **Select VM** button to select an optional Proxy VM to be used for the restore.

Run As Credentials

Run As Name	Administrator	
Username	administrator	
Password	*****	
Authentication Mode	Windows	
VM Name	<input type="text"/>	

 Select VM

CANCEL **SAVE**

4. On the Proxy VM page provide a name for the VM and locate it by searching by ESXi host or by name. Once selected, click on **Save**.

Proxy VM

VM Name

SQLSRV-01

Search by ESXi Host

ESXi Host

vcf-wkld-esx04.sddc.netapp.com

Virtual Machine

SQLSRV-01

Search by Virtual Machine name

CANCEL

SAVE

5. Click on **Save** again in the **Run As Credentials** window to complete saving the record.
6. Next, navigate to a VM in the inventory. From the **Actions** menu, or by right-clicking on the VM, select **SnapCenter Plug-in for VMware vSphere > Guest File Restore**.

7. On the **Restore Scope** page of the **Guest File Restore** wizard, select the backup to restore from, the particular VMDK, and the location (primary or secondary) to restore the VMDK from. Click on **Next** to continue.

Guest File Restore

X

1. Restore Scope

2. Guest Details

3. Summary

Backup Name	Start Time	End Time
SQL_Servers_04-16-2024_13.52.3...	4/16/2024 1:52:34 PM	4/16/2024 1:52:40 PM
VCF_WKLD_iSCSI_Datastore_04-1...	4/16/2024 1:50:01 PM	4/16/2024 1:50:08 PM

VMDK

[VCF_WKLD_03_iSCSI] SQLSRV-01/SQLSRV-01.vmdk
[VCF_WKLD_03_iSCSI] SQLSRV-01/SQLSRV-01_1.vmdk

Locations

Primary:VCF_iSCSI:VCF_WKLD_03_iSCSI:SQL_Servers_04-16-2024_13.52.34.0329
Secondary:svm_iscsi:VCF_WKLD_03_iSCSI_dest:SQL_Servers_04-16-2024_13.52.34.0329

BACK NEXT FINISH CANCEL

Storage VCF_WKLD_03_iSCSI

8. On the **Guest Details** page, select to use **Guest VM** or **Use Guest File Restore proxy VM** for the restore. Also, fill out email notification settings here if desired. Click on **Next** to continue.

Guest File Restore

X

1. Restore Scope

2. Guest Details

3. Summary

Use Guest VM

Guest File Restore operation will attach disk to guest VM

Run As Name	Username	Authentication Mode
Administrator	administrator	WINDOWS

Use Guest File Restore proxy VM

Send email notification

Email send from:

Email send to:

Email subject:

Guest File Restore

BACK

NEXT

FINISH

CANCEL

9. Finally, review the **Summary** page and click on **Finish** to begin the Guest File System Restore session.

10. Back in the SnapCenter Plug-in interface, navigate to **Guest File Restore** again and view the running session under **Guest Session Monitor**. Click on the icon under **Browse Files** to continue.

The screenshot shows the SnapCenter Guest File Restore interface. On the left, there's a sidebar with options like Dashboard, Settings, Resource Groups, Policies, Storage Systems, and Guest File Restore (which is selected). The main area has tabs for Guest File Restore and Guest Configuration. Below that is the Guest Session Monitor section. It shows a table with columns: Backup Name, Source VM, Disk Path, Guest Mount Path, Time To Expire, and Browse Files. One row is visible: SQL_Servers_04-16-2024_13.52.34.0329, SQLSRV-01, [VCF_WKLD_03_iSCSI](sc-202404161419... E:\), 23h58m, and a 'Browse Files' button. Below the table are sections for Run As Credentials and Proxy Credentials, each with a dropdown arrow.

11. In the **Guest File Browse** wizard select the folder or files to restore and the file system location to restore them to. Finally, click on **Restore** to start the **Restore** process.

Guest File Browse

X

Select File(s)/Folder(s) to Restore

E:\MSSQL 2019

	Name	Size
<input type="checkbox"/>	📁 MSSQL15.MSSQLSERVER	
<input type="checkbox"/>		
<input type="checkbox"/>		
<input type="checkbox"/>		

Selected 0 Files / 1 Directory

Name	Path	Size	Delete
MSSQL 2019	E:\MSSQL 2019		<input type="button" value="Delete"/>
			<input type="button" value="Up"/>
			<input type="button" value="Down"/>
			<input type="button" value="Delete"/>

Select Restore Location

^

Select address family for UNC path:

IPv4

IPv6

Either Files to Restore or Restore Location is not selected!

Select Restore Location

Select address family for UNC path:

IPv4

IPv6

Restore to path

\\172.21.166.16\c\$

Provide UNC path to the guest where files will be restored. eg: \\10.60.136.65\c\$

Run As Credentials while triggering the Guest File Restore workflow will be used to connect to the UNC path

If original file(s) exist:

Always overwrite

Always skip

Disconnect Guest Session after successful restore

CANCEL

RESTORE

12. The restore job can be monitored from the vSphere Client task pane.

Additional information

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on using the SnapCenter Plug-in for VMware vSphere refer to the [SnapCenter Plug-in for VMware vSphere documentation](#).

Protect a VCF management and workload domains using SnapCenter plug-in for VMware vSphere

Use SnapCenter Plug-in for VMware vSphere to protect multiple VCF domains. This procedure includes setting up the plug-in for each domain, configuring backup policies and performing restore operations.

VMware Cloud Foundation (VCF) workload domains enable organizations to logically separate resources into different domains to group different workloads, enhance security and fault tolerance.

Introduction

Domains can scale independently, meet specific compliances and provide multitenancy. Data Protection for VMware Cloud Foundation (VCF) is a critical aspect to ensure the availability, integrity, and recoverability of data across the management domain and workload domains. NetApp SnapCenter Plug-in for VMware vSphere (SCV) is a powerful tool that integrates NetApp's data protection capabilities into VMware environments. It simplifies backup, restore, and cloning of VMware vSphere virtual machines (VMs) hosted on NetApp storage.

This document provides deployment steps on how to protect VCF multiple domains with SCV.

Audience

Solution architects or storage administrators ensuring data protection and disaster recovery for VMware VCF workload domains.

Architecture Overview

SCV is deployed as a Linux virtual appliance using an OVA file to provide fast, space-efficient, crash-consistent, and VM-consistent backup and restore operations for VMs, datastores, and files and folders. SCV uses a remote plug-in architecture. There were multiple SCVs deployed and hosted on VCF management domain vCenter. SCV and VCF domain is one to one relationship thus VCF management domain and each workload domain requires one SCV.

Data that is on ONTAP FAS, AFF, or All SAN Array (ASA) primary systems and replicated to ONTAP FAS, AFF, or ASA secondary systems. SCV also works with SnapCenter Server to support application-based backup and restore operations in VMware environments for SnapCenter application-specific plug-ins. For more information check, [SnapCenter Plug-in for VMware vSphere documentation](#).

The 3-2-1 backup rule is a data protection strategy that involves making three copies of data, storing them on two different types of media, and keeping one copy off-site. NetApp Backup and Recovery is a cloud based tool for data management that provides a single control plane for a wide range of backup and recovery operations across both on-premises and cloud environments. For more details, check [NetApp Backup and Recovery Documentation](#).

Deploy a VCF with Management Domain and Multiple Workload Domains

A VCF workload domain is a group ESXi hosts with one or more vSphere clusters, provisioned by SDDC Manager and application ready. In a VCF example below, one management domain and two workload domains were deployed. For more details on how to deploy VCF with NetApp storage, check [NetApp VCF deployment documentation](#).

SCV Deployment, Configuration and Restoration Steps

Based the number of workload domains and plus the management domain, multiple SCVs need to be deployed. With two workload domains and one management domain, the example below shows three SCVs are deployed on VCF management domain vCenter.

vSphere Client Search in all environments

vcf-m01-vc02.sddc.netapp.com

 DataCenter

 Cluster01

 vcf-m01-esx01.sddc.netapp.com

 vcf-m01-esx02.sddc.netapp.com

 vcf-m01-esx03.sddc.netapp.com

 vcf-m01-esx04.sddc.netapp.com

 Cluster01-mgmt-001

 vcf-m01-nsx01a

 vcf-m01-nsx01b

 vcf-m01-nsx01c

 vcf-m01-sddc01

 vcf-m01-vc02

 vcf-m01wk-vc02

 vcf-w01-nsx01

 vcf-w01-nsx02

 vcf-w01-nsx03

 vcf-w02-nsx01

 vcf-w02-nsx02

 vcf-w02-nsx03

 vcf-wkld-vc01

vcf-mgmt-sc

 vcf-wkld-sc01

 vcf-wkld-sc02

Deploy SCV for management domain and each workload domain

1. Download the Open Virtual Appliance (OVA).
2. Log in with the vSphere Client to the vCenter Server. Navigate to Administration > Certificates > Certificate Management. Add Trusted Root Certificates and install each certificate in the certs folder. Once the certificates are installed, OVA can be verified and deployed.
3. Log in to the VCF workload domain vCenter and deploy OVF Template to start the VMware deploy wizard.

4. Power on OVA to start SCV and then click Install VMware tools.
5. Generate the MFA token from the OVA console, system configuration menu.

```

System Configuration Menu:

 1 ) Reboot virtual machine
 2 ) Shut down virtual machine
 3 ) Change 'maint' user password
 4 ) Change time zone
 5 ) Change NTP server
 6 ) Enable SSH access
 7 ) Increase jail disk size (/jail)
 8 ) Upgrade
 9 ) Install VMware Tools
10 ) Generate MFA Token

  b ) Back
  x ) Exit

Enter your choice: 10

Generating MFA Token... Your MFA Token is : 435164

Press ENTER to continue.-

```

6. Log in to the SCV management GUI with the admin username and password set at the time of deployment and the MFA token generated using the maintenance console.
<https://<appliance-IP-address>:8080> to access the management GUI.

NetApp SnapCenter Plug-in for VMware vSphere

Configuration

vCenter [Edit](#)

Name (FQDN) or IP	vcf-wkld-vc01.sddc.netapp.com	Port	443
Username	administrator@vsphere.local		
Password	*****		

Plug-in Details

Service	<input checked="" type="checkbox"/> Enabled
SSH	<input checked="" type="checkbox"/> Enabled
Status	<input checked="" type="checkbox"/> Connected

Configure SCV

To backup or restore VMs, first add the storage clusters or VMs hosting the datastores, then create backup policies for retention and frequency, and set up a resource group to protect the resources.

Getting Started with SnapCenter Plug-in for VMware vSphere

1. Log in to vCenter web client and click Menu in the toolbar and select SnapCenter Plug-in for VMware vSphere and Add a storage. In the left navigator pane of the SCV plug-in, click Storage Systems and then select Add option. On the Add Storage System dialog box, enter the basic SVM or cluster information, and select Add. Enter NetApp storage IP address and login.
2. To create a new backup policy, in the left navigator pane of the SCV plug-in, click Policies, and select New Policy. On the New Backup Policy page, enter the policy configuration information, and click Add.

New Backup Policy

X

Name	wkld01
Description	description
Frequency	Daily
Locking Period	<input checked="" type="checkbox"/> Enable Snapshot Locking <small>?</small> 1 Days
Retention	Days to keep 7 <small>?</small>
Replication	<input type="checkbox"/> Update SnapMirror after backup <small>?</small> <input type="checkbox"/> Update SnapVault after backup <small>?</small>
Snapshot label	

[Advanced >](#)

CANCEL

ADD

3. In the left navigator pane of the SCV plug-in, click Resource Groups, and then select Create. Enter the required information on each page of the Create Resource Group wizard, select VMs and datastores to be included in the resource group, and then select the backup policies to be applied to the resource group and specify the backup schedule.

Create Resource Group

X

✓ 1. General info & notification

✓ 2. Resource

✓ 3. Spanning disks

✓ 4. Policies

✓ 5. Schedules

✓ 6. Summary

Name	wkld01RG			
Description				
Send email	Never			
Latest Snapshot name	None <small>?</small>			
Custom snapshot format	None <small>?</small>			
Entities	wkld01			
Spanning	True			
Policies	Name	Frequency	Snapshot Locking Period	
	wkld01	Daily	1 Day	

BACK

NEXT

FINISH

CANCEL

Restore VM and files or folders backup

VMs, VMDKs, files, and folders from backups can be restored. VM can be restored to the original host or an alternate host in the same vCenter Server, or to an alternate ESXi host managed by the same vCenter. You can mount a traditional datastore from a backup if you want to access files in the backup. You can either mount the backup to the same ESXi host where the backup was created or to an alternate ESXi host that has the same type of VM and host configurations. You can mount a datastore multiple times on a host. Individual files and folders can also be restored in a guest file restore session, which attaches a backup copy of a virtual disk and then restores the selected files or folders. Files and folders can also be restored.

VM Restore Steps

1. In the VMware vSphere client GUI, click Menu in the toolbar and select VMs and Templates from the drop-down list, right click a VM, and select SnapCenter Plug-in for VMware vSphere in the drop-down list, and then select Restore in the secondary drop-down list to start the wizard.
2. In the Restore wizard, select the backup Snapshot that you want to restore and select Entire virtual machine in the Restore scope field, select the restore location, and then enter the destination information where the backup should be mounted. On the Select Location page, select the location for the restored datastore. Review the Summary page and click Finish.

3. Monitor the operation progress by clicking Recent Tasks at the bottom of the screen.

Datastore Restore Steps

1. Right-click a datastore and select SnapCenter Plug-in for VMware vSphere > Mount Backup.
2. On the Mount Datastore page, select a backup and a backup location (primary or secondary), and then click Mount.

Mount Datastore

X

ESXi host name

vcf-wkld-esx05.sddc.netapp.com

Backup

Search for Backups

(This list shows primary backups. You can modify the filter to display primary and secondary backups.)

Name	Backup Time	Mounted	Policy	VMware Snapshot
wkld02_recent	2/9/2025 8:00:01 PM	No	wkld02	Yes
RG-Datastore_02-09-202...	2/9/2025 6:56:01 PM	No	wkld02	Yes
wkld02_02-08-2025_20.0...	2/8/2025 8:00:01 PM	No	wkld02	Yes
RG-Datastore_02-08-202...	2/8/2025 6:56:01 PM	No	wkld02	Yes
wkld02_02-07-2025_20.0...	2/7/2025 8:00:01 PM	No	wkld02	Yes
RG-Datastore_02-07-202...	2/7/2025 6:56:01 PM	No	wkld02	Yes
wkld02_02-06-2025_20.0...	2/6/2025 8:00:01 PM	No	wkld02	Yes

Backup location

Backup type	Location
Primary	172.21.118.118:vcf_md_wkld02:wkld02_recent

CANCEL

MOUNT

Files and Folders Restore Steps

1. When you a virtual attach disk for guest file or folder restore operations, the target VM for the attach must have credentials configured before you restore. From SnapCenter Plug-in for VMware vSphere under plug-ins, select Guest File Restore and Run As Credentials section, enter the User credentials. For Username, you must enter "Administrator".

2. Right-click on the VM from the vSphere client and select SnapCenter Plug-in for VMware vSphere > Guest File Restore. On the Restore Scope page, specify Backup Name, VMDK virtual disk and Location – primary or secondary. Click Summary to confirm.

Backup Name	wkld02_recent
VMDK	[wkld02] New Virtual Machine/New Virtual Machine-000001.vmdk
Location	Primary:172.21.118.118:vcf_md_wkld02:wkld02_recent

⚠️ Attach operation will start when you click the Finish button. You can monitor the progress in the Recent Tasks tab and perform a restore operation from the Guest File Restore page listed under SnapCenter Plug-in for VMware vSphere.

BACK NEXT FINISH CANCEL

NetApp SnapCenter for VCP multi-domain centralizes data protection, efficiently reduces the time and storage space required for backups using NetApp snapshots, supports large-scale VMware environments with robust backup and replication features and allows granular recovery of entire VMs, specific VMDKs, or individual files.

Video Demo for Protect VCF Multiple Domains with SCV

[Protect VMware VCF multiple domains with NetApp SCV](#)

Protect VCF workload domains with NVMe over TCP storage and SnapCenter plug-in for VMware vSphere

Use SnapCenter Plug-in for VMware vSphere to protect VCF workload domains with NVMe. This procedure includes setting up the plug-in, configuring NVMe over TCP for optimal performance, and performing backup, restore, or cloning operations.

NVMe (Non-Volatile Memory Express) over TCP is a cutting-edge network protocol that facilitates high-speed data transfer between VMware Cloud Foundation ESXi servers and NetApp storage, including All Flash FAS (AFF) and All SAN Array (ASA).

Introduction

Leveraging NVMe over TCP provides low latency and high throughput for demanding workloads. The integration of NVMe over TCP with NetApp SnapCenter Plug-in for VMware vSphere (SCV) offers a powerful combination for efficient data management, enhancing backup, restore, and cloning operations within VMware environments.

Benefits of NVMe over TCP

- **High Performance:** Delivers exceptional performance with low latency and high data transfer rates. This is crucial for demanding applications and large-scale data operations.
- **Scalability:** Supports scalable configurations, allowing IT administrators to expand their infrastructure seamlessly as data requirements grow.
- **Efficiency:** Enables faster backup and restore operations, reducing downtime and improving overall system availability.

This document provides steps on deploying and managing SCV in VMware Cloud Foundation (VCF) environments, with a focus on leveraging NVMe over TCP for optimal performance.

Audience

Solution architects or storage administrators ensuring data protection and disaster recovery for VMware VCF workload domains.

Architecture overview

SCV is a powerful tool designed to facilitate fast, space-efficient, crash-consistent, and VM-consistent backup and restore operations for VMs, datastores, and files and folders in VMware environments. SCV is deployed as a Linux virtual appliance using an OVA file and leverages a remote plug-in architecture.

SCV deployment architecture

- **Virtual Appliance Deployment:** SCV is deployed as a Linux virtual appliance using an OVA file. This deployment method ensures a streamlined and efficient setup process.
- **Remote Plug-in Architecture:** SCV uses a remote plug-in architecture, allowing for scalability and flexibility in managing multiple instances.
- **One-to-One Relationship:** Each VCF domain requires a dedicated SCV instance, ensuring isolated and

efficient backup and restore operations.

With ONTAP 9.10.1 and later versions, NetApp AFF and ASA support NVMe over TCP. Data that is on AFF, or ASA primary systems and can replicate to ONTAP AFF, or ASA secondary systems. SCV also works with SnapCenter Server to support application-based backup and restore operations in VMware environments for SnapCenter application-specific plug-ins. For more information check, [SnapCenter Plug-in for VMware vSphere documentation](#) and [Protect Workloads with SnapCenter](#)

The 3-2-1 backup rule is a data protection strategy that involves making three copies of data, storing them on two different types of media, and keeping one copy off-site. NetApp Backup and Recovery is a cloud based tool for data management that provides a single control plane for a wide range of backup and recovery operations across both on-premises and cloud environments. For more details, check [NetApp Backup and Recovery Documentation](#).

SCV for VCF on NVMe deployment steps

The [ONTAP tools for VMware vSphere](#) (OTV) provides a powerful and efficient solution for managing NetApp storage in VMware environments. By integrating directly with the vCenter Server, OTV simplifies storage management, enhances data protection, and optimizes performance. While optional, deploying OTV can significantly improve the management capabilities and overall efficiency of VMware environments.

- [Create a NVMe/TCP storage for VCF workload domains](#)
- [Configure NetApp SnapCenter for VMware vSphere \(SCV\)](#)

Restore VM, datastore, virtual disk and files or folders

SCV provides comprehensive backup and restore capabilities for VMware environments. For VMFS environments, SCV uses clone and mount operations in conjunction with Storage VMotion to perform restore operations. This ensures efficient and seamless restoration of data. For more details check [how the restore operations are performed](#).

- VM restore

You can restore the VM to its original host within the same vCenter Server or to an alternate ESXi host managed by the same vCenter Server.

1. Right click a VM and select SnapCenter Plug-in for VMware vSphere in the drop-down list, and then select Restore in the secondary drop-down list to start the wizard.
2. In the Restore wizard, select the backup Snapshot that you want to restore and select Entire virtual machine in the Restore scope field, select the restore location, and then enter the destination information where the backup should be mounted. On the Select Location page, select the location for the restored datastore. Review the Summary page and click Finish.

- Mount a datastore

You can mount a traditional datastore from a backup if you want to access files in the backup. You can either mount the backup to the same ESXi host where the backup was created or to an alternate ESXi host that has the same type of VM and host configurations. You can mount a datastore multiple times on a host.

1. Right-click a datastore and select select SnapCenter Plug-in for VMware vSphere > Mount Backup.
2. On the Mount Datastore page, select a backup and a backup location (primary or secondary), and then click Mount.

Mount Datastore

X

ESXi host name

Backup Search icon Filter icon

(This list shows primary backups. You can modify the filter to display primary and secondary backups.)

Name	Backup Time	Mounted	Policy	VMware Snapshot
VCF-NVMe_02-19-2025_...	2/19/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-18-2025_...	2/18/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-17-2025_...	2/17/2025 6:57:01 PM	Yes	wkld01	No
VCF-NVMe_02-16-2025_...	2/16/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-15-2025_...	2/15/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-14-2025_...	2/14/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-13-2025_...	2/13/2025 6:57:01 PM	No	wkld01	No

CANCEL
MOUNT

- Attach a virtual disk

You can attach one or more VMDKs from a backup to the parent VM, or to an alternate VM on the same ESXi host, or to an alternate VM on an alternate ESXi host managed by the same vCenter or a different vCenter in linked mode.

1. Right click a VM, select SnapCenter Plug-in for VMware vSphere > Attach virtual disk(s).
2. On the Attach Virtual Disk window, select a backup and select one or more disks you want to attach and the location you want to attach from (primary or secondary). By default, the selected virtual disks are attached to the parent VM. To attach the selected virtual disks to an alternate VM in the same ESXi host, select Click here to attach to alternate VM and specify the alternate VM. Click Attach.

Attach Virtual Disk(s)

Backup

(This list shows primary backups. You can modify the filter to display primary and secondary backups.)

Name	Backup Time	Mounted	Policy	VMware Snapshot
VCF-NVMe_02-17-2025_18...	2/17/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-16-2025_18...	2/16/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-15-2025_18...	2/15/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-14-2025_18...	2/14/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-13-2025_18...	2/13/2025 6:57:01 PM	No	wkld01	No
VCF-NVMe_02-12-2025_19...	2/12/2025 7:13:55 PM	No	wkld01	No

Select disks

<input type="checkbox"/> Virtual disk	Location
<input checked="" type="checkbox"/> [VCF_NVMe_DS] Win2022NVMe/Win2022NVMe.vmdk	Primary:VCF_NVMe:VCF_WKLD_DS:VCF-NVMe_02-17-2025_18.57.02.0697
<input type="checkbox"/>	

CANCEL **ATTACH**

- Files and folders restore steps

Individual files and folders can be restored in a guest file restore session, which attaches a backup copy of a virtual disk and then restores the selected files or folders. Files and folders can also be restored. More details check [SnapCenter file and folder restore](#).

1. When you a virtual attach disk for guest file or folder restore operations, the target VM for the attach must have credentials configured before you restore. From SnapCenter Plug-in for VMware vSphere under plug-ins, select Guest File Restore and Run As Credentials section, enter the User credentials. For Username, you must enter "Administrator".

vSphere Client Search in all environments

SnapCenter Plug-in for VMware vSphere INSTANCE 172.21.166.71:8144

Dashboard Guest File Restore

Settings Resource Groups Policies Storage Systems Guest File Restore >

Guest Session Monitor

Backup Name	Source VM	Disk Path	Guest Mount Path	Time To Expire	Browse Files
wkld02_recent	win2022	\wkld02\sc-20250127151327...	E:\F1\G1	23h 47m	<input type="button"/>

Run As Credentials

Run As Name	Username	Authentication Mode
administrator	administrator	WINDOWS

Proxy Credentials

- Right-click on the VM from the vSphere client and select SnapCenter Plug-in for VMware vSphere > Guest File Restore. On the Restore Scope page, specify Backup Name, VMDK virtual disk and Location – primary or secondary. Click Summary to confirm.

Monitor and report

SCV provides robust monitoring and reporting capabilities to help administrators manage backup and restore operations efficiently.

You can view status information, monitor jobs, download job logs, access reports, for more details check [SnapCenter plug-in for VMware vSphere Monitor and Report](#).

By harnessing the power of NVMe over TCP and NetApp SnapCenter Plug-in for VMware vSphere, organizations can achieve high-performance data protection and disaster recovery for VMware Cloud Foundation workload domains. This approach ensures rapid, reliable backup and restore operations, minimizing downtime and safeguarding critical data.

Protect workloads with vSphere Metro Storage Cluster

Learn about integrating ONTAP high availability with VMware vSphere Metro Storage Cluster (vMSC)

Learn about the NetApp solutions you can use to integrate NetApp ONTAP high availability with VMware vSphere Metro Storage Cluster (vMSC). This provides a robust solutions for VMware Cloud Foundation (VCF) management and VI workload domains.

This combination ensures continuous data availability, seamless failover, and disaster recovery across geographically dispersed sites, enhancing resilience and operational continuity for critical workloads. SnapMirror active sync, enables business services to continue operating even through a complete site failure, supporting applications to fail over transparently using a secondary copy. There is no manual intervention or custom scripting required to trigger a failover with SnapMirror active sync.

Please refer to the following solutions for more details.

- [Stretch Cluster for Management Domain using SnapMirror active sync](#)
- [Stretch Cluster for Management Domain using MetroCluster](#)
- [Stretch Cluster for VI Workload Domain using SnapMirror active sync](#)
- [Stretch Cluster for VI Workload Domain using MetroCluster](#)

Configure a stretch cluster for a VCF management domain using MetroCluster

In this use case we outline the procedure to configure a stretch cluster for the VMware Cloud Foundation (VCF) management domain using ONTAP MetroCluster with NFS as the primary datastore. This procedure includes deploying vSphere hosts and vCenter Server, provisioning NFS datastores, validating the cluster with the VCF Import Tool, configuring NSX settings, and converting the environment into a VCF management domain.

Introduction

In this solution we will demonstrate how to implement Stretched VCF Management Domain with NFS as Principal Datastore using ONTAP MetroCluster.

Scenario Overview

This scenario covers the following high level steps:

- Deploy vSphere hosts and vCenter server.
- Provision NFS datastore to vSphere hosts.
- Deploy the SDDC Manager in the vSphere cluster.
- Use the VCF Import Tool to validate the vSphere cluster.
- Configure a JSON file for create an NSX during the VCF conversion.
- Use the VCF Import Tool to convert the vSphere 8 environment to VCF management domain.

Prerequisites

This scenario requires the following components and configurations:

- Supported ONTAP MetroCluster configuration
- Storage virtual machine (SVM) configured to allow NFS traffic.
- Logical interface (LIF) has been created on the IP network that is to carry NFS traffic and is associated with the SVM.
- A vSphere 8 cluster with 4 x ESXi hosts connected to network switch.
- Download software required for the VCF conversion.

Here is the sample screenshot from System Manager showing MetroCluster configuration.

MetroCluster

 MetroCluster systems are healthy

and here is the SVM Network interfaces from both fault domains.

[Network interfaces](#) [Subnets](#)

[+ Add](#)

Name	Status	Storage VM	IPspace	Address	Current node
		ch-svm			
lif_ch-svm-mcc02_8775		ch-svm-mcc02-mc	Default	10.192.164.230	tme-mcc-site1a
lif_ch-svm-mcc01_3118		ch-svm-mcc01	Default	10.192.164.225	tme-mcc-site1a
lif_ch-svm-mcc02_9778		ch-svm-mcc02-mc	Default	10.192.164.231	tme-mcc-site1b
lif_ch-svm-mcc01_6783		ch-svm-mcc01	Default	10.192.164.226	tme-mcc-site1b

Network interfaces

Subnets

+ Add

Name	Status	Storage VM	IPspace	Address	Current node	↑
<input type="text"/>		<input type="text"/> ch-svm				
lif_ch-svm-mcc01_3118		ch-svm-mcc01-mc	Default	10.192.164.225	tme-mcc-site2a	
lif_ch-svm-mcc02_8775		ch-svm-mcc02	Default	10.192.164.230	tme-mcc-site2a	
lif_ch-svm-mcc01_6783		ch-svm-mcc01-mc	Default	10.192.164.226	tme-mcc-site2b	
lif_ch-svm-mcc02_9778		ch-svm-mcc02	Default	10.192.164.231	tme-mcc-site2b	

[NOTE] SVM will be active on one of the fault domains in MetroCluster.

NetApp ONTAP System Manager | tme-mcc-site1ab

Storage VMs

Name	State	Subtype	Configured protocols	IPspace	Maximum capacity	Protection
ch-svm-mcc01	Running	Sync_source	NFS, SMB/CIFS	Default	The maximum capacity is disabled	
ch-svm-mcc02-mc	Stopped	Sync_destination		Default	n/a	

NetApp ONTAP System Manager | tme-mcc-site2ab

Storage VMs

Name	State	Subtype	Configured protocols	IPspace	Maximum capacity	Protection
ch-svm-mcc01-mc	Stopped	Sync_destination		Default	n/a	
ch-svm-mcc02	Running	Sync_source	NFS, SMB/CIFS	Default	The maximum capacity is disabled	

Refer [vMSC with MetroCluster](#).

For supported storage and other considerations for converting or importing vSphere to VCF 5.2, refer to [Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation](#).

Before creating vSphere Cluster that will be converted to VCF Management Domain, refer [NSX consideration on vSphere Cluster](#)

For required software refer to [Download Software for Converting or Importing Existing vSphere Environments](#).

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Deployment Steps

To deploy VCF Stretched Management Domain with NFS as Principal Datastore,

Complete the following steps:

- Deploy vSphere hosts and vCenter.
- Create vSphere Cluster.
- Provision NFS datastore.
- Copy the VCF Import Tool to the vCenter appliance.
- Run a pre-check on the vCenter appliance using the VCF Import Tool.
- Deploy the SDDC manager VM on the vCenter cluster.
- Create a JSON file for an NSX cluster to be deployed during the conversion process.
- Upload the required software to the SDDC manager.
- Convert the vSphere cluster into VCF Management Domain.

For an overview of the conversion process, refer to [Convert a vSphere Environment to a Management Domain or Import a vSphere Environment as a VI Workload Domain in VMware Cloud Foundation](#).

Deploy vSphere hosts and vCenter

Deploy vSphere on hosts using ISO downloaded from Broadcom support portal or use existing deployment option for vSphere host.

Mount NFS Datastore to host VMs

In this step, We create the NFS volume and mount it as Datastore to host VMs.

1. Using System Manager, Create a volume and attach to export policy that includes the IP subnet of the vSphere host.

Add volume

Name
NFS01

Add as a cache for a remote volume (FlexCache)
Simplifies file distribution, reduces WAN latency, and lowers WAN bandwidth costs.

Storage and optimization

Capacity
1024 GiB

Performance service level
Extreme

Not sure? [Get help selecting type](#)

Optimization options

Distribute volume data across the cluster (FlexGroup) [?](#)

Advanced capacity balancing
ONTAP distributes file data to maintain balance as files grow.

Access permissions

Export via NFS

GRANT ACCESS TO HOST
default

Create a new export policy, or select an existing export policy.

2. SSH to vSphere host and mount the NFS Datastore.

```
[root@SiteA-vs01:~] esxcli storage nfs add -c 4 -H 10.192.164.225 -s /NFS01 -v NFS01
[root@SiteA-vs01:~] esxcli storage nfs list
Volume Name  Host          Share  Vmknic  Accessible  Mounted  Connections  Read-Only  isPE  Hardware Acceleration
-----      -----
NFS01       10.192.164.225 /NFS01  None     true      true      4          false  false  Not Supported
[root@SiteA-vs01:~]
```

[NOTE] If hardware acceleration is shown as not supported, ensure latest NFS VAAI component (downloaded from NetApp Support portal) is installed on the vSphere host

```
[root@MCCA01:/tmp] esxcli software component apply -d /tmp/NetAppNasPlugin2.0.1.zip
Installation Result
  Message: Operation finished successfully.
  Components Installed: NetApp-NetAppNasPlugin_2.0.1-16
  Components Removed:
  Components Skipped:
  Reboot Required: false
  DPU Results:
[root@MCCA01:/tmp] /etc/init.d/vaai-nasd start
ESX VAAI-NAS Daemon started.
```

and vStorage is enabled on the SVM that hosts the volume.

```
tme-mcc-site1ab::>* vserver nfs modify -vserver ch-svm-mcc01 -vstorage enabled
```

3. Repeat above steps for additional datastore need and ensure the hardware acceleration is supported.

Volume Name	Host	Share	Vmknic	Accessible	Mounted	Connections	Read-Only	isPE	Hardware Acceleration
NFS02	10.192.164.230	/NFS02	None	true	true	4	false	false	Supported
NFS01	10.192.164.225	/NFS01	None	true	true	4	false	false	Supported

Deploy vCenter on NFS Datastore. Ensure SSH and Bash shell is enabled on vCenter appliance.

Create vSphere Cluster

1. Login to vSphere web client, Create the DataCenter and vSphere Cluster by adding one of the host where NFS VAAI is deployed. We opted to Manage all hosts in the cluster with single image option.
[TIP] Do not select Manage configuration at cluster level.
For additional details, refer [NSX consideration on vSphere Cluster](#). For vMSC best practices with ONTAP MetroCluster, check [vMSC Design and Implementation Guidelines](#)
2. Add other vSphere hosts to Cluster.
3. Create Distributed Switch and add the port groups.
4. [Migrate networking from standard vSwitch to distributed switch](#).

Convert vSphere environment to VCF Management Domain

The following section covers the steps to deploy the SDDC manager and convert the vSphere 8 cluster to a VCF 5.2 management domain. Where appropriate, VMware documentation will be referred to for additional detail.

The VCF Import Tool, from VMware by Broadcom is a utility that is used on both the vCenter appliance and SDDC manager to validate configurations and provide conversion and import services for vSphere and VCF environments.

For more information, refer to [VCF Import Tool Options and Parameters](#).

Copy and extract VCF Import Tool

The VCF Import Tool is used on the vCenter appliance to validate that the vSphere cluster is in a healthy state for the VCF conversion or import process.

Complete the following steps:

1. Follow the steps at [Copy the VCF Import Tool to the Target vCenter Appliance](#) at VMware Docs to copy the VCF Import Tool to the correct location.
2. Extract the bundle using the following command:

```
tar -xvf vcf-brownfield-import-<buildnumber>.tar.gz
```

Validate the vCenter appliance

Use the VCF Import tool to validate the vCenter appliance before the conversion.

1. Follow the steps at [Run a Pre-check on the Target vCenter Before Conversion](#) to run the validation.
2. The following output shows that the vCenter appliance has passed the pre-check.

```
root@mcc-vc01: ~/vcf-brownfield-import-5.2.1.2-24494579/vcf-brownfield-toolset # python3 vcf_brownfield.py precheck --vcenter mcc-vc01.sddc.netapp.com --sso-user administrator@vsphere.local
[2025-03-20 23:02:02.518] [INFO] vcf_brownfield: Brownfield Import main version: 5.2.1.2-24494579
[2025-03-20 23:02:02.521] [INFO] vcf_brownfield: Please make sure you are always using the latest version of the scripts
Enter vCenter SSO password:
[2025-03-20 23:02:05.971] [INFO] vc_precheck: Starting VCF Brownfield precheck script version 1.0.0...
[2025-03-20 23:02:06.089] [INFO] vc_precheck: Connected to vCenter mcc-vc01.sddc.netapp.com in 0.12 seconds
[2025-03-20 23:02:06.092] [INFO] vc_precheck: Running pre-checks for vCenter mcc-vc01.sddc.netapp.com...
[2025-03-20 23:02:06.092] [INFO] vc_precheck: [1/10] VC BOM version check... PASS
[2025-03-20 23:02:06.135] [INFO] vc_precheck: [2/10] vSAN stretched cluster check... PASS
[2025-03-20 23:02:06.156] [INFO] vc_precheck: [3/10] Supported storage available check... PASS
[2025-03-20 23:02:06.170] [INFO] vc_precheck: [4/10] vCenter VM location check... PASS
[2025-03-20 23:02:06.424] [INFO] vc_precheck: [5/10] VxRail® registration check... PASS
[2025-03-20 23:02:06.444] [INFO] vc_precheck: [6/10] vCenter TSM registration check... PASS
[2025-03-20 23:02:06.638] [INFO] vc_precheck: [7/10] Standalone host check... PASS
[2025-03-20 23:02:06.638] [INFO] vc_precheck: [8/10] All cluster hosts connected to vDS check... PASS
[2025-03-20 23:02:10.246] [INFO] vc_precheck: [9/10] ELM ring topology check... PASS
[2025-03-20 23:02:10.879] [INFO] vc_precheck: [10/10] HCIP import check... PASS
[2025-03-20 23:02:10.880] [INFO] vc_precheck: All pre-checks passed!
[2025-03-20 23:02:10.881] [INFO] vc_precheck: Pre-checks for vCenter mcc-vc01.sddc.netapp.com completed in 4.79 seconds
root@mcc-vc01: ~/vcf-brownfield-import-5.2.1.2-24494579/vcf-brownfield-toolset #
```

Deploy the SDDC Manager

The SDDC manager must be colocated on the vSphere cluster that will be converted to a VCF management domain.

Follow the deployment instructions at [VMware Docs](#) to complete the deployment.

Refer to [Deploy the SDDC Manager Appliance on the Target vCenter](#).

Create a JSON file for NSX deployment

To deploy NSX Manager while importing or converting a vSphere environment into VMware Cloud Foundation, create an NSX deployment specification. NSX deployment requires a minimum of 3 hosts.

When deploying an NSX Manager cluster in a convert or import operation, NSX VLAN backed segment is used. For details on the limitations of NSX-VLAN backed segment, refer to the section "Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation. For information about NSX-VLAN networking limitations, refer to [Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation](#).

The following is an example of a JSON file for NSX deployment:

```
{  
  "deploy_without_license_keys": true,  
  "form_factor": "small",  
  "admin_password": "*****",  
  "install_bundle_path": "/nfs/vmware/vcf/nfs-mount/bundle/bundle-  
133764.zip",  
  "cluster_ip": "10.61.185.114",  
  "cluster_fqdn": "mcc-nsx.sddc.netapp.com",  
  "manager_specs": [  
    {  
      "fqdn": "mcc-nsxa.sddc.netapp.com",  
      "name": "mcc-nsxa",  
      "ip_address": "10.61.185.111",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    },  
    {  
      "fqdn": "mcc-nsxb.sddc.netapp.com",  
      "name": "mcc-nsxb",  
      "ip_address": "10.61.185.112",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    },  
    {  
      "fqdn": "mcc-nsxc.sddc.netapp.com",  
      "name": "mcc-nsxc",  
      "ip_address": "10.61.185.113",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    }]  
}
```

Copy the JSON file to vcf user home folder on the SDDC Manager.

Upload software to SDDC Manager

Copy the VCF Import Tool to home folder of vcf user and the NSX deployment bundle to /nfs/vmware/vcf/nfs-mount/bundle/ folder on the SDDC Manager.

See [Upload the Required Software to the SDDC Manager Appliance](#) for detailed instructions.

Detailed Check on vCenter before conversion

Before you perform a management domain convert operation or a VI workload domain import operation, you must perform a detailed check to ensure that the existing vSphere environment's configuration is supported for convert or import.

- . SSH to the SDDC Manager appliance as user vcf.
- . Navigate to the directory where you copied the VCF Import Tool.
- . Run the following command to check that the vSphere environment can be converted

```
python3 vcf_brownfield.py check --vcenter '<vcenter-fqdn>' --sso-user
'<sso-user>' --sso-password '*****' --local-admin-password
'*****' --accept-trust
```

Convert vSphere cluster to VCF management domain

The VCF Import Tool is used to conduct the conversion process.

The following command is run to convert the vSphere cluster to a VCF management domain and deploy the NSX cluster:

```
python3 vcf_brownfield.py convert --vcenter '<vcenter-fqdn>' --sso-user
'<sso-user>' --sso-password '*****' --vcenter-root-password '*****'
--local-admin-password '*****' --backup-password
'*****' --domain-name '<Mgmt-domain-name>' --accept-trust
--nsx-deployment-spec-path /home/vcf/nsx.json
```

When multiple Datastores are available on vSphere host, it prompts which Datastore that needs to be considered as Primary Datastore on which NSX VMs will be deployed by default.

```
[2025-03-24 19:29:00,394] [INFO] vcenter_connection: Connecting to mcc-vc01.sddc.netapp.com as administrator@vsphere.local
[2025-03-24 19:29:00,583] [INFO] discover_domain: =====
[2025-03-24 19:29:00,583] [INFO] discover_domain: Starting inventory payload generation for vCenter: mcc-vc01.sddc.netapp.com, as domain of type: MANAGEMENT
[2025-03-24 19:29:00,586] [INFO] discover_domain: [1/5] Starting discovery of PSC and vCenter configuration data from vCenter: mcc-vc01.sddc.netapp.com
[2025-03-24 19:29:00,596] [INFO] discover_domain: [1/5] Completed discovery of PSC and vCenter configuration data from vCenter: mcc-vc01.sddc.netapp.com in 0.01s
[2025-03-24 19:29:00,596] [INFO] discover_domain: =====
[2025-03-24 19:29:00,596] [INFO] discover_domain: [2/5] Starting discovery of clusters in vCenter: mcc-vc01.sddc.netapp.com
[2025-03-24 19:29:00,613] [INFO] discover_domain: [2/5] Completed discovery of 1 clusters in vCenter: mcc-vc01.sddc.netapp.com in 24.58s
Please select a primary datastore for cluster VMSC:
1) NFS01
2) NFS02
Choose a number: 1
[2025-03-24 19:29:25,192] [INFO] discover_domain: >>>> [1/1] Discovered cluster: VMSC in 24.58s
[2025-03-24 19:29:25,193] [INFO] discover_domain: [2/5] Completed discovery of 1 clusters in vCenter: mcc-vc01.sddc.netapp.com in 24.6s
[2025-03-24 19:29:25,193] [INFO] discover_domain: =====
```

For complete instructions, refer to [VCF Convert Procedure](#).

NSX VMs will be deployed to vCenter.

The screenshot shows the vSphere Client interface. On the left, the navigation tree displays a hierarchy: a folder icon, a network icon, a datacenter icon, and a cluster icon. Under the cluster icon, there is a folder named 'mcc-vc01.sddc.netapp.com'. Inside this folder, there are two entries: 'RTP' and 'vMSC'. The 'vMSC' entry is expanded, showing five hosts: 'mcca01.sddc.netapp.com', 'mcca02.sddc.netapp.com', 'mccb01.sddc.netapp.com', 'mccb02.sddc.netapp.com', and 'vMSC-mgmt-001'. The 'vMSC-mgmt-001' entry is expanded, showing four hosts: 'mcc-nsxa', 'mcc-nsxb', 'mcc-nsxc', 'mcc-vc01', and 'mcc-vcf01'. On the right, the main content area is titled 'vMSC' and shows the 'Summary' tab selected. A 'Cluster Details' box is present, showing the following statistics: 'Total Processors: 32' and 'Total vMotion Migrations: 5'. There are also two small icons representing these metrics.

SDDC Manager shows the Management domain created with the name that was provided and NFS as Datastore.

Capacity Utilization across Domains

Domain	Type	CPU Usage	Memory Usage	vSAN Storage Usage	NFS Storage Usage	VMFS on FC Storage Usage	vVol Storage Usage	Configuration Status	Cluster	Hosts	Updates Available
MCC-Mgt	MANAGED	8%	8%	-	57%	-	-	ACTIVE	1 Cluster	4	Up-to-date

On Inspecting the cluster, it provides the information of NFS Datastore.

Resource Usage

CPU	24.61 GHz	used of 73.44 GHz (48.83 GHz free)
Memory	89.68 GB	used of 511.98 GB (422.3 GB free)

Storage

NFS	Used 1.73 TB / 3 TB (Free 1.27 TB)
Datastore Name	NFS01
Server	10.192.164.225
Folder	/NFS01
Datastore Name	NFS02
Server	10.192.164.230
Folder	/NFS02

Add licensing to VCF

After completing the conversion, licensing must be added to the environment.

1. Log in to the SDDC Manager UI.
2. Navigate to **Administration > Licensing** in the navigation pane.
3. Click on **+ License Key**.
4. Choose a product from the drop-down menu.
5. Enter the license key.
6. Provide a description for the license.
7. Click **Add**.
8. Repeat these steps for each license.

Configure a stretch cluster for a VI workload domain using MetroCluster

In this use case we outline the procedure to configure stretched VCF VI workload domain with NFS as principal datastore using ONTAP MetroCluster. This procedure includes deploying vSphere hosts and vCenter Server, provisioning NFS datastores, validating the vSphere cluster, configuring NSX during the VCF conversion, and importing the vSphere environment into an existing VCF Management Domain.

The Workloads on VCF is protected by vSphere Metro Storage Cluster (vMSC). ONTAP MetroCluster with either FC or IP deployment is typically utilized to provide fault tolerance of VMFS and NFS Datastores.

Introduction

In this solution we will demonstrate how to implement Stretched VCF VI Workload Domain with NFS as Principal Datastore using ONTAP MetroCluster. The VI Workload Domain can be deployed using SDDC Manager or import an existing vSphere environment as VI Workload Domain.

Scenario Overview

This scenario covers the following high level steps:

- Deploy vSphere hosts and vCenter server.
- Provision NFS datastore to vSphere hosts.
- Use the VCF Import Tool to validate the vSphere cluster.
- Configure a JSON file for create an NSX during the VCF conversion.
- Use the VCF Import Tool to import the vSphere 8 environment as VCF VI Workload domain to an existing VCF Management Domain.

Prerequisites

This scenario requires the following components and configurations:

- Supported ONTAP MetroCluster configuration
- Storage virtual machine (SVM) configured to allow NFS traffic.
- Logical interface (LIF) has been created on the IP network that is to carry NFS traffic and is associated with the SVM.
- A vSphere 8 cluster with 4 x ESXi hosts connected to network switch.
- Download software required for the VCF conversion.

Here is the sample screenshot from System Manager showing MetroCluster configuration.

and here is the SVM Network interfaces from both fault domains.

Network interfaces Subnets

+ Add

Name	Status	Storage VM	IPspace	Address	Current node
<input type="text"/>	<input type="button"/>	<input type="text"/> ch-svm	<input type="text"/>	<input type="text"/>	<input type="text"/>
lif_ch-svm-mcc02_8775	!	ch-svm-mcc02-mc	Default	10.192.164.230	tme-mcc-site1a
lif_ch-svm-mcc01_3118	✓	ch-svm-mcc01	Default	10.192.164.225	tme-mcc-site1a
lif_ch-svm-mcc02_9778	!	ch-svm-mcc02-mc	Default	10.192.164.231	tme-mcc-site1b
lif_ch-svm-mcc01_6783	✓	ch-svm-mcc01	Default	10.192.164.226	tme-mcc-site1b

Network interfaces Subnets

+ Add

Name	Status	Storage VM	IPspace	Address	Current node
<input type="text"/>	<input type="button"/>	<input type="text"/> ch-svm	<input type="text"/>	<input type="text"/>	<input type="text"/>
lif_ch-svm-mcc01_3118	!	ch-svm-mcc01-mc	Default	10.192.164.225	tme-mcc-site2a
lif_ch-svm-mcc02_8775	✓	ch-svm-mcc02	Default	10.192.164.230	tme-mcc-site2a
lif_ch-svm-mcc01_6783	!	ch-svm-mcc01-mc	Default	10.192.164.226	tme-mcc-site2b
lif_ch-svm-mcc02_9778	✓	ch-svm-mcc02	Default	10.192.164.231	tme-mcc-site2b

[NOTE] SVM will be active on one of the fault domains in MetroCluster.

NetApp ONTAP System Manager | tme-mcc-site1ab

Storage VMs

+ Add

Name	State	Subtype	Configured protocols	IPspace	Maximum capacity ?	Protection
ch-svm-mcc01	Running	Sync_source	NFS, SMB/CIFS	Default	The maximum capacity is disabled	<input type="radio"/>
ch-svm-mcc02-mc	Stopped	Sync_destination		Default	n/a	<input type="radio"/>

NetApp ONTAP System Manager | tme-mcc-site2ab

Storage VMs

+ Add

Name	State	Subtype	Configured protocols	IPspace	Maximum capacity ?	Protection
ch-svm-mcc01-mc	Stopped	Sync_destination		Default	n/a	<input type="radio"/>
ch-svm-mcc02	Running	Sync_source	NFS, SMB/CIFS	Default	The maximum capacity is disabled	<input type="radio"/>

Refer vMSC with MetroCluster.

For supported storage and other considerations for converting or importing vSphere to VCF 5.2, refer to [Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation](#).

Before creating vSphere Cluster that will be converted to VCF Management Domain, refer [NSX consideration on vSphere Cluster](#)

For required software refer to [Download Software for Converting or Importing Existing vSphere Environments](#).

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Deployment Steps

To deploy VCF Stretched Management Domain with NFS as Principal Datastore,

Complete the following steps:

- Deploy vSphere hosts and vCenter.
- Create vSphere Cluster.
- Provision NFS datastore.
- Copy the VCF Import Tool to the vCenter appliance.
- Run a precheck on the vCenter appliance using the VCF Import Tool.
- Create a JSON file for an NSX cluster to be deployed during the import process.
- Upload the required software to the SDDC manager.
- Convert the vSphere cluster into VCF VI Workload Domain.

For an overview of the conversion process, refer to [Convert a vSphere Environment to a Management Domain or Import a vSphere Environment as a VI Workload Domain in VMware Cloud Foundation](#).

Deploy vSphere hosts and vCenter

Deploy vSphere on hosts using ISO downloaded from Broadcom support portal or use existing deployment option for vSphere host.

Mount NFS Datastore to host VMs

In this step, We create the NFS volume and mount it as Datastore to host VMs.

1. Using System Manager, Create a volume and attach to export policy that includes the IP subnet of the vSphere host.

Add volume

Name:

Add as a cache for a remote volume (FlexCache)
Simplifies file distribution, reduces WAN latency, and lowers WAN bandwidth costs.

Storage and optimization

Capacity: GiB

Performance service level:

Optimization options: Distribute volume data across the cluster (FlexGroup) [?](#)

Access permissions

Export via NFS

GRANT ACCESS TO HOST:

Create a new export policy, or select an existing export policy.

Rule index	Clients	Access protocols	Read-only rule	Read/write rule
9	0.0.0.0/0	NFSv3, NFSv4, SMB/CIFS, NFS	Any	Any

2. SSH to vSphere host and mount the NFS Datastore.

```
esxcli storage nfs add -c 4 -H 10.192.164.225 -s /WLD01_DS01 -v DS01
esxcli storage nfs add -c 4 -H 10.192.164.230 -s /WLD01_DS02 -v DS02
esxcli storage nfs list
```

[NOTE] If hardware acceleration is shown as not supported, ensure latest NFS VAAI component (downloaded from NetApp Support portal) is installed on the vSphere host

```
[root@MCCA01:/tmp] esxcli software component apply -d /tmp/NetAppNasPlugin2.0.1.zip
Installation Result
  Message: Operation finished successfully.
  Components Installed: NetApp-NetAppNasPlugin_2.0.1-16
  Components Removed:
  Components Skipped:
  Reboot Required: false
  DPU Results:
[root@MCCA01:/tmp] /etc/init.d/vaai-nasd start
ESX VAAI-NAS Daemon started.
```

and vStorage is enabled on the SVM that hosts the volume.

```
tme-mcc-site1ab::*> vserver nfs modify -vserver ch-svm-mcc01 -vstorage enabled
```

. Repeat above steps for additional datastore need and ensure the hardware acceleration is supported.

```
[root@SiteA-vs01:~] esxcli storage nfs list
Volume Name Host Share Vmnic Accessible Mounted Connections Read-Only isPE Hardware Acceleration
-----
```

Volume Name	Host	Share	Vmnic	Accessible	Mounted	Connections	Read-Only	isPE	Hardware Acceleration
DS02	10.192.164.230	/WLD01_DS02	None	true	true	4	false	false	Supported
DS01	10.192.164.225	/WLD01_DS01	None	true	true	4	false	false	Supported

```
[root@SiteA-vs01:~] -
```

Deploy vCenter on NFS Datastore. Ensure SSH and Bash shell is enabled on vCenter appliance.

The screenshot shows the vSphere Client interface. The left sidebar shows a tree structure of hosts: mcc-vc02.sddc.netapp.com, RTP, Stretch Cluster, sitea-vs01.sddc.netapp.com, sitea-vs02.sddc.netapp.com, siteb-vs01.sddc.netapp.com, and siteb-vs02.sddc.netapp.com. siteb-vs02.sddc.netapp.com is selected and highlighted. The main pane displays the host details for siteb-vs02.sddc.netapp.com. The host icon is a blue server. The host details table includes the following information:

Host Details	Value
Hypervisor:	VMware ESXi, 8.0.3, 24280767
Model:	
Processor Type:	Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
Logical Processors:	12
NICs:	2
Virtual Machines:	1
State:	Connected
Uptime:	19 hours

Create vSphere Cluster

1. Login to vSphere webclient, Create the DataCenter and vSphere Cluster by adding one of the host where NFS VAAI is deployed. We opted to Manage all hosts in the cluster with single image option.
[TIP] Do not select Manage configuration at cluster level.
For additional details, refer [NSX consideration on vSphere Cluster](#). For vMSC best practices with ONTAP MetroCluster, check [vMSC Design and Implementation Guidelines](#)
2. Add other vSphere hosts to Cluster.
3. Create Distributed Switch and add the port groups.
4. [Migrate networking from standard vSwitch to distributed switch](#).

Convert vSphere environment to VCF VI Workload Domain

The following section covers the steps to deploy the SDDC manager and convert the vSphere 8 cluster to a VCF 5.2 management domain. Where appropriate, VMware documentation will be referred to for additional detail.

The VCF Import Tool, from VMware by Broadcom is a utility that is used on both the vCenter appliance and SDDC manager to validate configurations and provide conversion and import services for vSphere and VCF environments.

For more information, refer to [VCF Import Tool Options and Parameters](#).

Copy and extract VCF Import Tool

The VCF Import Tool is used on the vCenter appliance to validate that the vSphere cluster is in a healthy state for the VCF conversion or import process.

Complete the following steps:

1. Follow the steps at [Copy the VCF Import Tool to the Target vCenter Appliance](#) at VMware Docs to copy the VCF Import Tool to the correct location.
2. Extract the bundle using the following command:

```
tar -xvf vcf-brownfield-import-<buildnumber>.tar.gz
```

Validate the vCenter appliance

Use the VCF Import tool to validate the vCenter appliance before the import as VI Workload Domain.

1. Follow the steps at [Run a Precheck on the Target vCenter Before Conversion](#) to run the validation.

Create a JSON file for NSX deployment

To deploy NSX Manager while importing or converting a vSphere environment into VMware Cloud Foundation, create an NSX deployment specification. NSX deployment requires a minimum of 3 hosts.

When deploying an NSX Manager cluster in a convert or import operation, NSX VLAN backed segment is used. For details on the limitations of NSX-VLAN backed segment, refer to the section "Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation. For information about NSX-VLAN networking limitations, refer to [Considerations Before Converting or Importing Existing vSphere Environments into VMware Cloud Foundation](#).

The following is an example of a JSON file for NSX deployment:

```
{  
  "deploy_without_license_keys": true,  
  "form_factor": "small",  
  "admin_password": "*****",  
  "install_bundle_path": "/nfs/vmware/vcf/nfs-mount/bundle/bundle-  
133764.zip",  
  "cluster_ip": "10.61.185.105",  
  "cluster_fqdn": "mcc-wld01-nsx.sddc.netapp.com",  
  "manager_specs": [  
    {  
      "fqdn": "mcc-wld01-nsxa.sddc.netapp.com",  
      "name": "mcc-wld01-nsxa",  
      "ip_address": "10.61.185.106",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    },  
    {  
      "fqdn": "mcc-wld01-nsxb.sddc.netapp.com",  
      "name": "mcc-wld01-nsxb",  
      "ip_address": "10.61.185.107",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    },  
    {  
      "fqdn": "mcc-wld01-nsxc.sddc.netapp.com",  
      "name": "mcc-wld01-nsxc",  
      "ip_address": "10.61.185.108",  
      "gateway": "10.61.185.1",  
      "subnet_mask": "255.255.255.0"  
    }]  
}
```

Copy the JSON file to vcf user home folder on the SDDC Manager.

Upload software to SDDC Manager

Copy the VCF Import Tool to home folder of vcf user and the NSX deployment bundle to /nfs/vmware/vcf/nfs-mount/bundle/ folder on the SDDC Manager.

See [Upload the Required Software to the SDDC Manager Appliance](#) for detailed instructions.

Detailed Check on vCenter before conversion

Before you perform a management domain convert operation or a VI workload domain import operation, you must perform a detailed check to ensure that the existing vSphere environment's configuration is supported for convert or import.

- . SSH to the SDDC Manager appliance as user vcf.
- . Navigate to the directory where you copied the VCF Import Tool.
- . Run the following command to check that the vSphere environment can be converted

```
python3 vcf_brownfield.py check --vcenter '<vcenter-fqdn>' --sso-user '<sso-user>' --sso-password '*****' --local-admin-password '*****' --accept-trust
```

```
[root@vc01 vcf] -> ./cd vcf-brownfield-import-5.2.1.2-24404579/vcf-brownfield-toolset/
[vcf@vc01 vcf] -> ./vcf-brownfield-import-5.2.1.2-24404579/vcf-brownfield-toolset ./vcf_brownfield.py check
[2025-03-23 17:40:44,979] [INFO] vcf_brownfield: Brownfield Import main version: 5.2.1.2-24404579
[2025-03-23 17:40:44,980] [INFO] vcf_brownfield: Please make sure you are always using the latest version of the scripts
usage: vcf_brownfield.py check [-h] --vcenter VCFENTERPRISE --vcenter-username VCFUSER --vcenter-password VCFPASSWORD [-l --skip-nsx-deployment-checks] [-a --accept-trust]
[2025-03-23 17:40:44,981] [INFO] vcf_brownfield: The following arguments are required: --vcenter, --vcenter-username, --vcenter-password
[vcf@vc01 vcf] -> ./vcf-brownfield-import-5.2.1.2-24404579/vcf-brownfield-toolset ./python vcf_brownfield.py check --vcenter mvc-vc02.sddc.netapp.com --sso-user administrator@sphere.local --sso-password '*****' --local-admin-password '*****' --accept-trust
[2025-03-23 17:41:46,491] [INFO] vcf_brownfield: Brownfield Import main version: 5.2.1.2-24404579
[2025-03-23 17:41:46,492] [INFO] vcf_brownfield: Please make sure you are always using the latest version of the scripts
[2025-03-23 17:41:46,580] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:46,601] [INFO] request_helper: Response status from SDDC Manager token generation: 200
[2025-03-23 17:41:46,941] [INFO] request_helper: Response status from retrieving domain: 200
[2025-03-23 17:41:46,942] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:46,953] [INFO] request_helper: Response status from retrieving domain: 200
[2025-03-23 17:41:47,016] [INFO] sddc_manager_helper: Retrieving SDDC Manager controller info
[2025-03-23 17:41:47,017] [INFO] sddc_manager_helper: Using cached SDDC Manager token header
[2025-03-23 17:41:47,019] [INFO] request_helper: Response status from SDDC Manager controller info retrieval: 200
[2025-03-23 17:41:47,511] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:47,541] [INFO] request_helper: Response status from SDDC Manager token generation: 200
[2025-03-23 17:41:47,592] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:47,661] [INFO] request_helper: Response status from SDDC Manager token generation: 200
[2025-03-23 17:41:47,988] [INFO] request_helper: Response status from retrieving domain: 200
[2025-03-23 17:41:48,000] [INFO] sddc_manager_helper: Using cached SDDC Manager token header
[2025-03-23 17:41:48,114] [INFO] request_helper: Response status from retrieving domain: 200
[2025-03-23 17:41:48,115] [INFO] sddc_manager_helper: Retrieving SDDC Manager trusted certificates
[2025-03-23 17:41:48,155] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:48,177] [INFO] request_helper: Response status from SDDC Manager token generation: 200
[2025-03-23 17:41:48,180] [INFO] request_helper: Response status from retrieving trusted certificates: 200
[2025-03-23 17:41:48,410] [INFO] vcenter: Retrieved server mvc-vc02.sddc.netapp.com thumbprint (SHA256): 94:F3:C7:05:DF:FF:E6:C9:68:86:59:92:3C:B7:7D:15:85:68:3B:A1:FD:27:2B:5E:60:85:FA:D5:82:AE:3C:46
[2025-03-23 17:41:48,419] [WARNING] trust_vcenter: Auto accept trust is turned ON.
[2025-03-23 17:41:48,419] [INFO] vcenter_rest_apl_helper: Generating session to vcenter: mvc-vc02.sddc.netapp.com
[2025-03-23 17:41:48,420] [INFO] request_helper: Response status from vcenter session generation: 200
[2025-03-23 17:41:48,531] [INFO] vcenter: Retrieved trusted root CA chain ID's of vcenter: mvc-vc02.sddc.netapp.com
[2025-03-23 17:41:535] [INFO] request_helper: Response status from vcenter trusted root CA chain IDs retrieval: 200
[2025-03-23 17:41:535] [INFO] vcenter: Retrieved trusted root CA chain with id: 0CA840066A8CC841D51ADACE98BEE7F85CA9B7F of vcenter: mvc-vc02.sddc.netapp.com
[2025-03-23 17:41:59,073] [INFO] request_helper: Response status from vcenter trusted root CA chain retrieval: 200
[2025-03-23 17:41:59,073] [INFO] sddc_manager_helper: Generating SDDC Manager public API token
[2025-03-23 17:41:59,474] [INFO] sddc_manager_helper: Generating SDDC Manager trusted certificates
[2025-03-23 17:41:59,949] [INFO] request_helper: Response status from SDDC Manager token generation: 200
[2025-03-23 17:41:59,978] [INFO] request_helper: Response status from retrieving trusted certificates: 200
[2025-03-23 17:41:59,985] [INFO] sddc_manager_certificate_util: Adding new trusted certificate for alias: 9ca049066a8cc841d51adace98b087f85ca9b7f with thumbprint: DA:6F:94:90:09:83:66:6E:E7:CD:60:49:5C:98:2E:03:EA:AB:57:EO:BB:EC:03:5C:3C:46
[2025-03-23 17:41:59,985] [INFO] sddc_manager_certificate_util: Adding new trusted certificate for alias: mvc-vc02.sddc.netapp.com with thumbprint: 94:F3:C7:05:DF:FF:E6:C9:68:86:59:92:3C:B7:7D:15:85:68:3B:A1:FD:27:2B:5E:60:85:FA:D5:82:AE
[2025-03-23 17:41:59,985] [INFO] sddc_manager_helper: Importing trusted certificates to SDDC Manager trust store
[2025-03-23 17:41:59,985] [INFO] request_helper: Response status from certificates import: 200
[2025-03-23 17:41:59,985] [INFO] sddc_manager_helper: Certificate import from certificate: 9ca049066a8cc841d51adace98b087f85ca9b7f
[2025-03-23 17:41:59,985] [INFO] sddc_manager_helper: Certificate import from certificate: mvc-vc02.sddc.netapp.com
[2025-03-23 17:41:59,985] [INFO] sddc_manager_helper: Certificate import from certificate: 94:F3:C7:05:DF:FF:E6:C9:68:86:59:92:3C:B7:7D:15:85:68:3B:A1:FD:27:2B:5E:60:85:FA:D5:82:AE
```

Convert vSphere cluster to VCF VI Workload domain

The VCF Import Tool is used to conduct the conversion process.

The following command is run to convert the vSphere cluster to a VCF management domain and deploy the NSX cluster:

```
python3 vcf_brownfield.py import --vcenter '<vcenter-fqdn>' --sso-user
'<sso-user>' --sso-password '*****' --vcenter-root-password '*****'
--local-admin-password '*****' --backup-password
'*****' --domain-name '<Mgmt-domain-name>' --accept-trust
--nsx-deployment-spec-path /home/vcf/nsx.json
```

Even multiple Datastores are available on vSphere host, there is no need to prompt which Datastore that needs to be considered as Primary Datastore.

For complete instructions, refer to [VCF Convert Procedure](#).

NSX VMs will be deployed to vCenter.

Host Details

Host	Processor Type	Logical Processors	NICs	Virtual Machines	State	Uptime
siteb-vs02.sddc.netapp.com	Intel(R) Xeon(R) Gold 5120 C PU @ 2.20GHz	12	2	2	Connected	20 hours

SDDC Manager shows the VI Workload domain created with the name that was provided and NFS as Datastore.

Workload Domains

Capacity Utilization across Domains

Domain	Type	CPU Usage	Memory Usage	vSAN Storage Usage	NFS Storage Usage	VHFS on FC Storage Usage	vVol Storage Usage	Configuration Status	Cluster	Hosts	Updates Available
MCC-Mg	MAN...	36%	18%	-	58%	-	-	ACTIVE	1 Cluster	4	✓ Up-to-date
WLDD01	Vi	13%	6%	-	2%	-	-	ACTIVE	1 Cluster	4	✓ Up-to-date

Show Or Hide Column

2 domains

On Inspecting the cluster, it provides the information of NFS Datastores.

BACK TO WLDD01

Stretch Cluster

ACTIVE

Summary Network Hosts

Resource Usage

CPU	Memory
13.16 GHz used of 104.4 GHz (91.24 GHz free)	28.69 GB used of 511.99 GB (483.3 GB free)

Tags

vcl_IMPORTED **NCF Imported Cluster**

ASSIGN

Storage

NFS

Used 0.02 TB / 0.98 TB (Free 0.96 TB)

Datastore Name	Server	Folder
D502	10.192.164.230	/WLDD01_D502
D501	10.192.164.225	/WLDD01_D501

Add licensing to VCF

After completing the conversion, licensing must be added to the environment.

1. Log in to the SDDC Manager UI.
2. Navigate to **Administration > Licensing** in the navigation pane.
3. Click on **+ License Key**.
4. Choose a product from the drop-down menu.
5. Enter the license key.
6. Provide a description for the license.
7. Click **Add**.
8. Repeat these steps for each license.

Configure a stretch cluster for a VCF management domain using SnapMirror Active Sync

In this use case we outline the procedure to use ONTAP tools for VMware vSphere to configure a stretch cluster for a VCF management domain. This procedure includes deploying vSphere hosts and vCenter Server, installing ONTAP tools, protecting datastores with SnapMirror Active Sync, migrating VMs to protected datastores, and configuring supplemental storage.

Scenario Overview

The stretch cluster solution can be implemented on default cluster or on additional cluster in VCF management or workload domains. VMFS on FC is supported on both principal datastore and supplemental datastores.

VMFS on iSCSI is only supported with supplemental datastores. Refer IMT for support of VMFS on NVMe-oF with SnapMirror active sync.

VMFS with FC

Principal storage on Management Domain

With VCF 5.2 onwards management domain can be deployed without VSAN using the VCF import Tool. The convert option of VCF import tool allows [an existing vCenter deployment into a management domain](#). All the clusters in vCenter will become part of management domain.

1. Deploy vSphere hosts
2. Deploy vCenter server on local datastore (vCenter needs to co-exist on vSphere hosts that will be converted into management domain)
3. Deploy ONTAP tools for VMware vSphere
4. Deploy SnapCenter Plugin for VMware vSphere (optional)
5. Create datastore (FC zone configuration should be in place)
6. Protect the vSphere cluster
7. Migrate VMs to newly created datastore

Whenever the cluster is expanded or shrunk, need to update the Host Cluster relationship on ONTAP tools for the cluster to indicate the changes made to source or target.

Supplemental storage on Management Domain

Once the management domain is up and running, additional datastores can be created using ONTAP tools which will trigger the consistency group expansion.

If a vSphere cluster is protected, all the datastores in the cluster will be protected.

If VCF environment is deployed with Cloud Builder tool, to create the supplemental storage with iSCSI, deploy ONTAP tools to create the iSCSI datastore and protect the vSphere cluster.

Whenever the cluster is expanded or shrank, need to update the Host Cluster relationship on ONTAP tools for the cluster to indicate the changes made to source or target.

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation 5.2 Documentation](#).

Video demo for this solution

[Stretch cluster for VCF with ONTAP tools](#)

Configure a stretch cluster for a VI workload domain using SnapMirror Active Sync

In this use case we outline the procedure to configure a stretch cluster for a Virtual Infrastructure (VI) workload domain using SnapMirror Active Sync with ONTAP tools for VMware vSphere. This procedure includes creating a VCF Workload Domain with VMFS on Fibre Channel, registering the vCenter with ONTAP tools, registering storage systems, and protecting the vSphere cluster.

Region (VCF Instance)

Scenario Overview

The datastores on VCF Workload domain can be protected with SnapMirror active sync to provide stretch cluster solution. The protection is enabled at vSphere cluster level and all ONTAP block datastores in the cluster will be protected.

Principal storage on Workload Domain

Workload domain can be created either importing using the VCF import tool or deploy using the SDDC manager. Deploying with SDDC manager will provide more networking options than importing an existing environment.

1. Create Workload domain with VMFS on FC
2. [Register workload domain vCenter to ONTAP tools manager to deploy vCenter plugin](#)
3. [Register storage systems on ONTAP tools](#)
4. [Protect the vSphere cluster](#)

Whenever the cluster is expanded or shrunk, need to update the Host Cluster relationship on ONTAP tools for the cluster to indicate the changes made to source or target.

Supplemental storage on Workload Domain

Once the workload domain is up and running, additional datastores can be created using ONTAP tools which will trigger the consistency group expansion.

If a vSphere cluster is protected, all the datastores in the cluster will be protected.

Additional information

For information on configuring ONTAP storage systems refer to the [ONTAP 9 Documentation](#) center.

For information on configuring VCF refer to [VMware Cloud Foundation Documentation](#).

Video demo for this solution

[Stretch cluster for VCF with ONTAP tools](#)

Migrate VMs from VMware vSphere to ONTAP datastores

VMware vSphere environments can significantly benefit from migrating virtual machines to NetApp ONTAP-backed datastores. Whether you're moving from vSAN, third-party storage systems, or upgrading your existing infrastructure, explore various vMotion scenarios and migration strategies to seamlessly transition your VMs to ONTAP datastores. This ensures business continuity while leveraging ONTAP's enterprise-class storage features.

VMware vSphere by Broadcom supports VMFS, NFS, and vVol datastores for hosting virtual machines. Customers have the option to create those datastores with hyper converged infrastructures or with centralized shared storage systems.

Customers often see the value with hosting on ONTAP based storage systems to provide space efficient snapshots and clones of Virtual machines, flexibility to choose various deployment models across the datacenters and clouds, operational efficiency with monitoring and alerting tools, security, governance and optional compliance tools to inspect VM data, and so on.

VMs hosted on ONTAP datastores can be protected using SnapCenter Plugin for VMware vSphere (SCV). SCV creates storage based snapshots and also replicates to remote ONTAP storage system. Restores can be performed either from Primary or Secondary storage systems.

Customers has flexibility to choose Cloud Insights or Aria Operations or combination of both or other third party tools that use ONTAP api to troubleshoot, performance monitoring, reporting and alert notification features.

Customers can easily provision datastore using ONTAP Tools vCenter Plug-in or its API and VMs can be migrated to ONTAP datastores even while it is powered on.

Some VMs which are deployed with external management tool like VCF Automation, vSphere Supervisor (or other Kubernetes flavors) are usually depends on VM storage policy. If migrating between the datastores within same VM storage policy, it should be of less impact for the applications. Check with Application owners to properly migrate those VMs to new datastore. vSphere 8 introduced [vSphere vMotion Notifications for Latency Sensitive Applications](#) to prepare applications for vMotion.

Network Requirements

VM migration with vMotion

It is assumed that dual storage network is already in place for the ONTAP datastore to provide connectivity, fault tolerance and performance boost.

Migration of VMs across the vSphere hosts are also handled by the VMKernel interface of the vSphere host. For hot migration (powered on VMs), VMKernel interface with vMotion enabled service is used and for cold migration (powered off VMs), VMKernel interface with Provisioning service enabled is consumed to move the data. If no valid interface was found, it will use the management interface to move the data which may not be desirable for certain use cases.

Device	Network Label	Switch	IP Address	TCP/IP Stack	Enabled Services
vmk0	Mgmt 181	DSwitch	10.61.181.213	Default	Management
vmk1	vSAN 3376	DSwitch	172.21.120.103	Default	vSAN
vmk2	vMotion 3373	DSwitch	172.21.17.113	Default	vMotion +2
vmk3	iSCSI A - 1172	DSwitch	10.63.172.91	Default	--
vmk4	iSCSI B - 1172	DSwitch	10.63.172.92	Default	--
vmk5	Data A - 3374	DSwitch	172.21.118.123	Default	--
vmk6	VLAN 3418	DSwitch	172.21.162.103	Default	Provisioning

When you edit the VMKernel interface, here is the option to enable the required services.

Enabled services	
<input checked="" type="checkbox"/> vMotion	<input type="checkbox"/> vSphere Replication NFC
<input type="checkbox"/> Provisioning	<input type="checkbox"/> vSAN
<input checked="" type="checkbox"/> Fault Tolerance logging	<input type="checkbox"/> vSAN Witness
<input type="checkbox"/> Management	<input type="checkbox"/> vSphere Backup NFC
<input type="checkbox"/> vSphere Replication	<input type="checkbox"/> NVMe over TCP

Ensure at least two high-speed active uplink nics are available for the portgroup used by vMotion and Provisioning VMkernel interfaces.

VM Migration Scenarios

vMotion is often used to migrate the VMs irrespective of its power state. Additional considerations and migration procedure for specific scenarios is available below.

Understand [VM Conditions and Limitation of vSphere vMotion](#) before proceeding with any VM migration options.

Migration of VMs from specific vSphere Datastore

Follow the procedure below to migrate VMs to new Datastore using UI.

1. With vSphere Web Client, select the Datastore from the storage inventory and click on VMs tab.

2. Select the VMs that needs to be migrated and right click to select Migrate option.

3. Choose option to change storage only, Click Next

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Select a migration type

Change the virtual machines' compute resource, storage, or both.

Change compute resource only
Migrate the virtual machines to another host or cluster.

Change storage only
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.

Change both compute resource and storage
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.

Cross vCenter Server export
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

CANCEL NEXT

4. Select the desired VM Storage Policy and pick the datastore that is compatible. Click Next.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE **CONFIGURE PER DISK**

Select virtual disk format **Thin Provision**

VM Storage Policy **NetApp Storage**

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free
ASA_VVOLS_1	Compatible	1.95 TB	34.38 GB	1.95 TB
DemoDS	Incompatible	800 GB	7.23 GB	792.77 GB
destination	Incompatible	250 GB	31.8 MB	249.97 GB
DRaaSTest	Incompatible	1 TB	201.13 GB	880.86 GB
E13A400_ISCSI	Incompatible	2 TB	858.66 GB	1.85 TB

Manage Columns

Items per page: 5 | 1 - 5 of 14 items | < | > | 1 / 3 |

Compatibility

✓ Compatibility checks succeeded.

CANCEL **BACK** **NEXT**

5. Review and click on Finish.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Ready to complete

Verify that the information is correct and click Finish to start the migration.

Migration Type	Change storage. Leave VM on the original compute resource
Virtual Machine	Migrating 4 VMs
Storage	ASA_VVOLS_1
VM storage policy	NetApp Storage
Disk Format	Thin Provision

CANCEL **BACK** **FINISH**

To migrate VMs using PowerCLI, here is the sample script.

```

#Authenticate to vCenter
Connect-VIServer -server vcsa.sddc.netapp.local -force

# Get all VMs with filter applied for a specific datastore
$vm = Get-DataStore 'vSanDatastore' | Get-VM Har*

#Gather VM Disk info
$vmdisk = $vm | Get-HardDisk

#Gather the desired Storage Policy to set for the VMs. Policy should be
available with valid datastores.
$storagepolicy = Get-SPBMStoragePolicy 'NetApp Storage'

#set VM Storage Policy for VM config and its data disks.
$vm, $vmdisk | Get-SPBMEntityConfiguration | Set-
SPBMEntityConfiguration -StoragePolicy $storagepolicy

#Migrate VMs to Datastore specified by Policy
$vm | Move-VM -Datastore (Get-SPBMCompatibleStorage -StoragePolicy
$storagepolicy)

#Ensure VM Storage Policy remains compliant.
$vm, $vmdisk | Get-SPBMEntityConfiguration

```

Migration of VMs in same vSphere cluster

Follow the procedure below to migrate VMs to new Datastore using UI.

1. With vSphere Web Client, select the Cluster from the Host and Cluster inventory and click on VMs tab.

The screenshot shows the vSphere Web Client interface. The top navigation bar includes 'vSphere Client' and a search bar. Below the navigation is a toolbar with icons for Home, Hosts, Clusters, Datastores, Networks, and Updates. The main content area is titled 'vcf-m01-cl01' with an 'ACTIONS' button. Below this are tabs for Summary, Monitor, Configure, Permissions, Hosts, VMs (which is selected and highlighted in blue), Datastores, Networks, and Updates. A 'Virtual Machines' sub-tab is also selected. On the left, a tree view shows the cluster structure: 'vcf-m01-vc01.sddc.netapp.com' with 'vcf-m01-dc01' and 'vcf-m01-cl01' expanded. The 'vcf-m01-cl01' node is selected. At the bottom, there are 'Quick Filter' and 'Enter value' fields.

2. Select the VMs that needs to be migrated and right click to select Migrate option.

The screenshot shows the 'Actions' menu for four selected objects. The menu items are: Power, Guest OS, Snapshots, Migrate..., VM Policies, and Template. The 'Migrate...' option is highlighted with a blue box. The left pane shows a list of selected VMs: 'gke-admin-ws-1-28-repeat', 'gke-admin-ws-asv', 'hammerdb-01', 'hammerdb-02', 'hammerdb-03', and 'hammerdb-04'. The right pane shows the total size of each VM: 32.78 GB, 46.51 GB, 16.31 GB, 15.55 GB, 15.44 GB, and 18.41 GB respectively.

3. Choose option to change storage only, Click Next

The screenshot shows the 'Select a migration type' step of the migration wizard. On the left, a sidebar lists steps: 1. Select a migration type (which is highlighted in dark blue), 2. Select storage, and 3. Ready to complete. The main area is titled 'Select a migration type' with the sub-instruction 'Change the virtual machines' compute resource, storage, or both.' Below this are four radio button options:

- Change compute resource only
Migrate the virtual machines to another host or cluster.
- Change storage only
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.
- Change both compute resource and storage
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.
- Cross vCenter Server export
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

At the bottom right are 'CANCEL' and 'NEXT' buttons.

4. Select the desired VM Storage Policy and pick the datastore that is compatible. Click Next.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE **CONFIGURE PER DISK**

Select virtual disk format: Thin Provision

VM Storage Policy: NetApp Storage

Disable Storage DRS for this virtual machine

Name	Storage Compatibility	Capacity	Provisioned	Free
ASA_VVOLS_1	Compatible	1.95 TB	34.38 GB	1.95 TB
DemoDS	Incompatible	800 GB	7.23 GB	792.77 GB
destination	Incompatible	250 GB	31.8 MB	249.97 GB
DRaaSTest	Incompatible	1 TB	201.13 GB	880.86 GB
E13A400_ISCSI	Incompatible	2 TB	858.66 GB	1.85 TB

Manage Columns

Items per page: 5 | 1 - 5 of 14 items | < | > | 1 / 3 |

Compatibility

✓ Compatibility checks succeeded.

CANCEL **BACK** **NEXT**

5. Review and click on Finish.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Ready to complete

Verify that the information is correct and click Finish to start the migration.

Migration Type	Change storage. Leave VM on the original compute resource
Virtual Machine	Migrating 4 VMs
Storage	ASA_VVOLS_1
VM storage policy	NetApp Storage
Disk Format	Thin Provision

CANCEL **BACK** **FINISH**

To migrate VMs using PowerCLI, here is the sample script.

```

#Authenticate to vCenter
Connect-VIServer -server vcsa.sddc.netapp.local -force

# Get all VMs with filter applied for a specific cluster
$vm = Get-Cluster 'vcf-m01-c101' | Get-VM Aria*

#Gather VM Disk info
$vmdisk = $vm | Get-HardDisk

#Gather the desired Storage Policy to set for the VMs. Policy should be
available with valid datastores.
$storagepolicy = Get-SPBMStoragePolicy 'NetApp Storage'

#set VM Storage Policy for VM config and its data disks.
$vm, $vmdisk | Get-SPBMEntityConfiguration | Set-
SPBMEntityConfiguration -StoragePolicy $storagepolicy

#Migrate VMs to Datastore specified by Policy
$vm | Move-VM -Datastore (Get-SPBMCompatibleStorage -StoragePolicy
$storagepolicy)

#Ensure VM Storage Policy remains compliant.
$vm, $vmdisk | Get-SPBMEntityConfiguration

```


When Datastore Cluster is in use with fully automated storage DRS (Dynamic Resource Scheduling) and both (source & target) datastores are of same type (VMFS/NFS/vVol), Keep both datastores in same storage cluster and migrate VMs from source datastore by enabling maintenance mode on the source. Experience will be similar to how compute hosts are handled for maintenance.

Migration of VMs across multiple vSphere clusters

Refer [CPU Compatibility and vSphere Enhanced vMotion Compatibility](#) when source and target hosts are of different CPU family or model.

Follow the procedure below to migrate VMs to new Datastore using UI.

1. With vSphere Web Client, select the Cluster from the Host and Cluster inventory and click on VMs tab.

2. Select the VMs that needs to be migrated and right click to select Migrate option.

3. Choose option to change compute resource and storage, Click Next

4 Virtual Machines - Migrate

1 Select a migration type

- 2 Select a compute resource
- 3 Select storage
- 4 Select networks
- 5 Select vMotion priority
- 6 Ready to complete

Select a migration type

Change the virtual machines' compute resource, storage, or both.

- Change compute resource only
Migrate the virtual machines to another host or cluster.
- Change storage only
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.
- Change both compute resource and storage
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.
- Cross vCenter Server export
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

CANCEL

NEXT

4. Navigate and pick the right cluster to migrate.

4 Virtual Machines - Migrate

1 Select a migration type

- 2 Select a compute resource
- 3 Select storage
- 4 Select networks
- 5 Select vMotion priority
- 6 Ready to complete

Select a compute resource

Select a cluster, host, vApp or resource pool to run the virtual machines.

- vcf-m01-vc01.sddc.netapp.com
 - vcf-m01-dc01
- vcf-wkld-vc01.sddc.netapp.com
 - vcf-wkld-01-DC
 - IT-INF-WKLD-01

Compatibility

- Compatibility checks succeeded.

CANCEL

BACK

NEXT

5. Select the desired VM Storage Policy and pick the datastore that is compatible. Click Next.

X

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE **CONFIGURE PER DISK**

Select virtual disk format **Thin Provision** VM Storage Policy **NFS**

Name	Storage Compatibility	Capacity	Provisioned	Free
VCF_WKLD_01	Compatible	5 TB	5.91 GB	5 TB
VCF_WKLD_02_VVOLS	Incompatible	2.93 TB	18 MB	2.93 TB
VCF_WKLD_03_ISCSI	Incompatible	3 TB	858.61 GB	2.85 TB
vcf-wkld-esx01-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB
vcf-wkld-esx02-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB
vcf-wkld-esx03-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB

Manage Columns

Items per page: 10 7 items

Compatibility

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

6. Pick the VM folder to place the target VMs.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

Select folder

Select the destination virtual machine folder for the virtual machine migration.

Select location for the virtual machine migration.

- vcf-wkld-01-DC
- Discovered virtual machine**
- vCLS

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

7. Select the target port group.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

[ADVANCED >>](#)

Select networks

Select destination networks for the virtual machine migration.

Migrate VM networking by selecting a new destination network for all VM network adapters attached to the same source network.

Source Network	Used By	Destination Network
SDDC-DPortGroup-VM-Mgmt	4 VMs / 4 Network adapters	vcf-wkld-01-IT-INF-WKLD-01-vds-0

1 item

Compatibility

✓ Compatibility checks succeeded.

CANCEL [BACK](#) [NEXT](#)

8. Review and click on Finish.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Ready to complete

Verify that the information is correct and click Finish to start the migration.

Migration Type	Change storage, Leave VM on the original compute resource
Virtual Machine	Migrating 4 VMs
Storage	ASA_VVOLS_1
VM storage policy	NetApp Storage
Disk Format	Thin Provision

CANCEL [BACK](#) [FINISH](#)

To migrate VMs using PowerCLI, here is the sample script.

```

#Authenticate to vCenter
Connect-VIServer -server vcsa.sddc.netapp.local -force

# Get all VMs with filter applied for a specific cluster
$vm = Get-Cluster 'vcf-m01-c101' | Get-VM Aria*

#Gather VM Disk info
$vmdisk = $vm | Get-HardDisk

#Gather the desired Storage Policy to set for the VMs. Policy should be
available with valid datastores.
$storagepolicy = Get-SPBMStoragePolicy 'NetApp Storage'

#set VM Storage Policy for VM config and its data disks.
$vm, $vmdisk | Get-SPBMEntityConfiguration | Set-
SPBMEntityConfiguration -StoragePolicy $storagepolicy

#Migrate VMs to another cluster and Datastore specified by Policy
$vm | Move-VM -Destination (Get-Cluster 'Target Cluster') -Datastore
(Get-SPBMCompatibleStorage -StoragePolicy $storagepolicy)

#When Portgroup is specific to each cluster, replace the above command
with
$vm | Move-VM -Destination (Get-Cluster 'Target Cluster') -Datastore
(Get-SPBMCompatibleStorage -StoragePolicy $storagepolicy) -PortGroup
(Get-VirtualPortGroup 'VLAN 101')

#Ensure VM Storage Policy remains compliant.
$vm, $vmdisk | Get-SPBMEntityConfiguration

```

Migration of VMs across vCenter servers in same SSO domain

Follow the procedure below to migrate VMs to new vCenter server which is listed on same vSphere Client UI.

For additional requirements like source and target vCenter versions,etc., check [vSphere documentation on requirements for vMotion between vCenter server instances](#)

1. With vSphere Web Client, select the Cluster from the Host and Cluster inventory and click on VMs tab.

2. Select the VMs that needs to be migrated and right click to select Migrate option.

3. Choose option to change compute resource and storage, Click Next

4 Virtual Machines - Migrate

1 Select a migration type

- 2 Select a compute resource
- 3 Select storage
- 4 Select networks
- 5 Select vMotion priority
- 6 Ready to complete

Select a migration type

Change the virtual machines' compute resource, storage, or both.

- Change compute resource only
Migrate the virtual machines to another host or cluster.
- Change storage only
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.
- Change both compute resource and storage
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.
- Cross vCenter Server export
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

CANCEL

NEXT

4. Select the target cluster in target vCenter server.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

- 3 Select storage
- 4 Select networks
- 5 Select vMotion priority
- 6 Ready to complete

Select a compute resource

Select a cluster, host, vApp or resource pool to run the virtual machines.

- vcf-m01-vc01.sddc.netapp.com
 - vcf-m01-dc01
- vcf-wkld-vc01.sddc.netapp.com
 - vcf-wkld-01-DC
 - IT-INF-WKLD-01

Compatibility

- Compatibility checks succeeded.

CANCEL

BACK

NEXT

5. Select the desired VM Storage Policy and pick the datastore that is compatible. Click Next.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE **CONFIGURE PER DISK**

Select virtual disk format **Thin Provision** VM Storage Policy **NFS**

Name	Storage Compatibility	Capacity	Provisioned	Free
VCF_WKLD_01	Compatible	5 TB	5.91 GB	5 TB
VCF_WKLD_02_VVOLS	Incompatible	2.93 TB	18 MB	2.93 TB
VCF_WKLD_03_ISCSI	Incompatible	3 TB	858.61 GB	2.85 TB
vcf-wkld-esx01-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB
vcf-wkld-esx02-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB
vcf-wkld-esx03-esx-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB

Manage Columns

Items per page: 10 7 items

Compatibility

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

6. Pick the VM folder to place the target VMs.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

Select folder

Select the destination virtual machine folder for the virtual machine migration.

Select location for the virtual machine migration.

- vcf-wkld-01-DC
- Discovered virtual machine**
- vCLS

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

7. Select the target port group.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select a compute resource

3 Select storage

4 Select folder

5 Select networks

6 Select vMotion priority

7 Ready to complete

[ADVANCED >>](#)

Select networks

Select destination networks for the virtual machine migration.

Migrate VM networking by selecting a new destination network for all VM network adapters attached to the same source network.

Source Network	Used By	Destination Network
SDDC-DPortGroup-VM-Mgmt	4 VMs / 4 Network adapters	vcf-wkld-01-IT-INF-WKLD-01-vds-0

1 item

Compatibility

✓ Compatibility checks succeeded.

CANCEL [BACK](#) [NEXT](#)

8. Review the migration options and click Finish.

4 Virtual Machines - Migrate

1 Select a migration type

2 Select storage

3 Ready to complete

Ready to complete

Verify that the information is correct and click Finish to start the migration.

Migration Type	Change storage, Leave VM on the original compute resource
Virtual Machine	Migrating 4 VMs
Storage	ASA_VVOLS_1
VM storage policy	NetApp Storage
Disk Format	Thin Provision

CANCEL [BACK](#) [FINISH](#)

To migrate VMs using PowerCLI, here is the sample script.

```

#Authenticate to Source vCenter
$sourcevc = Connect-VIServer -server vcsa01.sddc.netapp.local -force
$targetvc = Connect-VIServer -server vcsa02.sddc.netapp.local -force

# Get all VMs with filter applied for a specific cluster
$vm = Get-Cluster 'vcf-m01-c101' -server $sourcevc | Get-VM Win*

#Gather the desired Storage Policy to set for the VMs. Policy should be
available with valid datastores.
$storagepolicy = Get-SPBMStoragePolicy 'iSCSI' -server $targetvc

#Migrate VMs to target vCenter
$vm | Move-VM -Destination (Get-Cluster 'Target Cluster' -server
$targetvc) -Datastore (Get-SPBMCompatibleStorage -StoragePolicy
$storagepolicy -server $targetvc) -PortGroup (Get-VirtualPortGroup
'VLAN 101' -server $targetvc)

$targetvm = Get-Cluster 'Target Cluster' -server $targetvc | Get-VM
Win*

#Gather VM Disk info
$targetvmdisk = $targetvm | Get-HardDisk

#set VM Storage Policy for VM config and its data disks.
$targetvm, $targetvmdisk | Get-SPBMEntityConfiguration | Set-
SPBMEntityConfiguration -StoragePolicy $storagepolicy

#Ensure VM Storage Policy remains compliant.
$targetvm, $targetvmdisk | Get-SPBMEntityConfiguration

```

Migration of VMs across vCenter servers in different SSO domain

This scenario assumes the communication exists between the vCenter servers. Otherwise check the across datacenter location scenario listed below. For prerequisites, check [vSphere documentation on Advanced Cross vCenter vMotion](#)

Follow the procedure below to migrate VMs to different vCenter server using UI.

1. With vSphere Web Client, select the source vCenter server and click on VMs tab.

2. Select the VMs that needs to be migrated and right click to select Migrate option.

3. Choose option Cross vCenter Server export, Click Next

4 Virtual Machines - Migrate

1 Select a migration type

- 2 Select a target vCenter Server
- 3 Select a compute resource
- 4 Select storage
- 5 Select networks
- 6 Select vMotion priority
- 7 Ready to complete

Select a migration type

Change the virtual machines' compute resource, storage, or both.

Change compute resource only
Migrate the virtual machines to another host or cluster.

Change storage only
Migrate the virtual machines' storage to a compatible datastore or datastore cluster.

Change both compute resource and storage
Migrate the virtual machines to a specific host or cluster and their storage to a specific datastore or datastore cluster.

Cross vCenter Server export
Migrate the virtual machines to a vCenter Server not linked to the current SSO domain.

Keep VMs on the source vCenter Server (performs a VM clone operation).

CANCEL **NEXT**

VM can also be imported from the target vCenter server. For that procedure, check [Import or Clone a Virtual Machine with Advanced Cross vCenter vMotion](#)

4. Provide vCenter credential details and click Login.

Migrate | SQLSRV-05

1 Select a migration type

2 Select a target vCenter Server

- 3 Select a compute resource
- 4 Select storage
- 5 Select networks
- 6 Ready to complete

Select a target vCenter Server

Export Virtual Machines to the selected target vCenter Server.

SAVED VCENTER SERVERS **NEW VCENTER SERVER**

vCenter Server address: vcf-wkld-vc01.sddc.netapp.com
vCenter Server FQDN or IP address

Username: administrator@vcf.local
example@domain.local

Password: Save vCenter Server address [?](#)

LOGIN

CANCEL **BACK** **NEXT**

5. Confirm and Accept the SSL certificate thumbprint of vCenter server

Security Alert

X

Unable to verify the authenticity of the external vCenter Server.

The SHA1 thumbprint of the vCenter Server certificate is:

17:42:0C:EB:82:1E:A9:86:F1:E0:70:93:AD:EB:8C:0F:27:41:F1:30

Connect anyway?

Click Yes if you trust the vCenter Server.

Click No to cancel connecting to the vCenter Server.

NO

YES

6. Expand target vCenter and select the target compute cluster.

Migrate | SQLSRV-05

- 1 Select a migration type
- 2 Select a target vCenter Server
- 3 Select a compute resource**
- 4 Select storage
- 5 Select networks
- 6 Ready to complete

Select a compute resource

Select a cluster, host, vApp or resource pool to run the virtual machines.

VM ORIGIN

- vcf-wkld-vc01.sddc.netapp.com
- vcf-wkld-01-DC
- IT-INF-WKLD-01**

Compatibility

✓ Compatibility checks succeeded.

CANCEL

BACK

NEXT

7. Select the target datastore based on the VM Storage Policy.

Migrate | SQLSRV-05

- 1 Select a migration type
- 2 Select a target vCenter Server
- 3 Select a compute resource
- 4 Select storage**
- 5 Select folder
- 6 Select networks
- 7 Ready to complete

Select storage

Select the destination storage for the virtual machine migration.

BATCH CONFIGURE **CONFIGURE PER DISK**

Select virtual disk format: Thin Provision

VM Storage Policy: NFS

Name	Storage Compatibility	Capacity	Provisioned	Free
VCF_WKLD_01	Compatible	5 TB	5.93 GB	5 TB
VCF_WKLD_02_VVOLS	Incompatible	2.93 TB	24 MB	2.93 TB
VCF_WKLD_03_ISCSI	Incompatible	3 TB	1.35 TB	2.59 TB
vcf-wkld-esx01-esx5x-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB
vcf-wkld-esx02-esx5x-install-datastore	Incompatible	25.75 GB	3.68 GB	22.07 GB

Manage Columns

Items per page: 10 | 7 items

Compatibility:

✓ Compatibility checks succeeded.

CANCEL **BACK** **NEXT**

8. Select the target VM folder.

Migrate | SQLSRV-05

- 1 Select a migration type
- 2 Select a target vCenter Server
- 3 Select a compute resource
- 4 Select storage
- 5 Select folder**
- 6 Select networks
- 7 Ready to complete

Select folder

Select the destination virtual machine folder for the virtual machine migration.

VM ORIGIN

Select location for the virtual machine migration.

- vcf-wkld-01-DC
- Discovered virtual machine
- Oracle
- SQL Server**
- vCLS

✓ Compatibility checks succeeded.

CANCEL **BACK** **NEXT**

9. Pick the VM portgroup for each network interface card mapping.

Migrate | SQLSRV-05

- Select a migration type
- Select a target vCenter Server
- Select a compute resource
- Select storage
- Select folder
- Select networks**
- Ready to complete

Select networks

Select destination networks for the virtual machine migration.

VM ORIGIN 1

Migrate VM networking by selecting a new destination network for all VM network adapters attached to the same source network.

Source Network	Used By	Destination Network
» Mgmt 181	1 VMs / 1 Network adapters	vcf-wkld-01-IT-INF-WKLD-01-vds-01-p
» Data A - 3374	1 VMs / 1 Network adapters	vcf-wkld-01-iscsi-a
» Data B - 3375	1 VMs / 1 Network adapters	vcf-wkld-01-iscsi-b

3 items

ADVANCED >

Compatibility

✓ Compatibility checks succeeded.

CANCEL BACK NEXT

10. Review and click Finish to start the vMotion across the vCenter servers.

Migrate | SQLSRV-05

- Select a migration type
- Select a target vCenter Server
- Select a compute resource
- Select storage
- Select folder
- Select networks
- Ready to complete**

Ready to complete

Verify that the information is correct and click Finish to start the migration.

VM ORIGIN 1

Migration Type	Change compute resource and storage
Virtual Machine	SQLSRV-05
vCenter	vcf-wkld-vc01.sddc.netapp.com
Folder	SQL Server
Cluster	IT-INF-WKLD-01
Networks	Virtual network adapters from 3 networks will be reassigned to new destination networks
Storage	VCF_WKLD_01
VM storage policy	NFS
Disk Format	Thin Provision

CANCEL BACK FINISH

To migrate VMs using PowerCLI, here is the sample script.

```

#Authenticate to Source vCenter
$sourcevc = Connect-VIServer -server vcsa01.sddc.netapp.local -force
$targetvc = Connect-VIServer -server vcsa02.sddc.netapp.local -force

# Get all VMs with filter applied for a specific cluster
$vm = Get-Cluster 'Source Cluster' -server $sourcevc | Get-VM Win*

#Gather the desired Storage Policy to set for the VMs. Policy should be
available with valid datastores.
$storagepolicy = Get-SPBMStoragePolicy 'iSCSI' -server $targetvc

#Migrate VMs to target vCenter
$vm | Move-VM -Destination (Get-Cluster 'Target Cluster' -server
$targetvc) -Datastore (Get-SPBMCompatibleStorage -StoragePolicy
$storagepolicy -server $targetvc) -PortGroup (Get-VirtualPortGroup
'VLAN 101' -server $targetvc)

$targetvm = Get-Cluster 'Target Cluster' -server $targetvc | Get-VM
Win*

#Gather VM Disk info
$targetvmdisk = $targetvm | Get-HardDisk

#set VM Storage Policy for VM config and its data disks.
$targetvm, $targetvmdisk | Get-SPBMEntityConfiguration | Set-
SPBMEntityConfiguration -StoragePolicy $storagepolicy

#Ensure VM Storage Policy remains compliant.
$targetvm, $targetvmdisk | Get-SPBMEntityConfiguration

```

Migration of VMs across datacenter locations

- When Layer 2 traffic is stretched across datacenters either by using NSX Federation or other options, follow the procedure for migrating VMs across vCenter servers.
- HCX provides various [migration types](#) including Replication Assisted vMotion across the datacenters to move VM without any downtime.
- [Site Recovery Manager \(SRM\)](#) is typically meant for Disaster Recovery purposes and also often used for planned migration utilizing storage array based replication.
- Continuous Data Protection (CDP) products use [vSphere API for IO \(VAIO\)](#) to intercept the data and send a copy to remote location for near zero RPO solution.
- Backup and Recovery products can also be utilized. But often results in longer RTO.
- [NetApp Disaster Recovery](#) utilizes storage array based replication and automates certain tasks to recover the VMs at target site.

Migration of VMs in hybrid cloud environment

- Configure Hybrid Linked Mode and follow the procedure of [Migration of VMs across vCenter servers in same SSO domain](#)
- HCX provides various [migration types](#) including Replication Assisted vMotion across the datacenters to move VM while it is powered on.
 - TR 4942: Migrate Workloads to FSx ONTAP datastore using VMware HCX
 - TR-4940: Migrate workloads to Azure NetApp Files datastore using VMware HCX - Quickstart guide
 - Migrate workloads to Google Cloud NetApp Volumes datastore on Google Cloud VMware Engine using VMware HCX - Quickstart guide
- [NetApp Disaster Recovery](#) utilizes storage array based replication and automates certain tasks to recover the VMs at target site.
- With supported Continuous Data Protection (CDP) products that use [vSphere API for IO \(VAIO\)](#) to intercept the data and send a copy to remote location for near zero RPO solution.

When the source VM resides on block vVol datastore, it can be replicated with SnapMirror to Amazon FSx ONTAP or Cloud Volumes ONTAP (CVO) at other supported cloud providers and consume as iSCSI volume with cloud native VMs.

VM Template Migration Scenarios

VM Templates can be managed by vCenter Server or by a content library. Distribution of VM templates, OVF and OVA templates, other types of files are handled by publishing it in local content library and remote content libraries can subscribe to it.

- VM templates stored on vCenter inventory can be converted to VM and use the VM migration options.
- OVF and OVA templates, other types of files stored on content library can be cloned to other content libraries.
- Content library VM Templates can be hosted on any datastore and needs to be added into new content library.

Migration of VM templates hosted on datastore

1. In vSphere Web Client, right click on the VM template under VM and Templates folder view and select option to convert to VM.

The screenshot shows the vSphere Web Client interface. On the left, the navigation tree displays categories like RTP, SQL Server, Tanzu, and Templates. Under Templates, several VM templates are listed: ESXi-8.0-U1a, vdbench template, win10-template (selected), win2019 template, and win2022-template. The 'win10-template' item is highlighted with a dark blue background. On the right, the 'win10-template' details page is shown. The 'Actions' menu is open, and the 'Convert to Virtual Machine...' option is highlighted with a blue oval. The 'VM Template Details' section shows the following information:

Guest OS	Microsoft Windows
VMware Tools	Not running, version:123
DNS Name (1)	DESKTOP-HGNBVPL
IP Addresses	
Encryption	Not encrypted

Below the details, the 'Actions' menu lists other options: New VM from This Template..., Convert to Virtual Machine..., Clone to Template..., Clone to Library..., Move to folder..., Rename..., Edit Notes..., Tags & Custom Attributes, Add Permission..., Alarms, Remove from Inventory, Delete from Disk, vSAN, and NetApp ONTAP tools.

2. Once it is converted as VM, follow the VM migration options.

Clone of Content Library items

1. In vSphere Web Client, select Content Libraries

vSphere Client

Search in all en

Home

Shortcuts

Inventory

Content Libraries

Workload Management

Global Inventory Lists

Policies and Profiles

Auto Deploy

Hybrid Cloud Services

Developer Center

Administration

Tasks

Events

Tags & Custom Attributes

Lifecycle Manager

SnapCenter Plug-in for VMware vSphere

NetApp ONTAP tools

Cloud Provider Services

NSX

VMware Aria Operations Configuration

Skyline Health Diagnostics

2. Select the content library in which the item you like to clone

3. Right click on the item and click on Clone Item ..

The screenshot shows the vSphere Client interface with the 'CL01' content library selected. A context menu is open over an item named 'NetApp ONTAP-9.12.1.5'. The 'Clone Item...' option is highlighted with a blue oval.

If using action menu, make sure correct target object is listed to perform action.

4. Select the target content library and click on OK.

The screenshot shows the 'Clone Library Item' dialog box. The target content library 'CL02' is selected in the list. The 'OK' button is highlighted with a blue oval.

5. Validate the item is available on target content library.

Here is the sample PowerCLI script to copy the content library items from content library CL01 to CL02.

```
#Authenticate to vCenter Server(s)
$sourcevc = Connect-VIServer -server 'vcenter01.domain' -force
$targetvc = Connect-VIServer -server 'vcenter02.domain' -force

#Copy content library items from source vCenter content library CL01 to
target vCenter content library CL02.
Get-ContentLibraryItem -ContentLibrary (Get-ContentLibrary 'CL01' -Server
$sourcevc) | Where-Object { $_.ItemType -ne 'vm-template' } | Copy-
ContentLibraryItem -ContentLibrary (Get-ContentLibrary 'CL02' -Server
$targetvc)
```

Adding VM as Templates in Content Library

1. In vSphere Web Client, select the VM and right click to choose Clone as Template in Library

When VM template is selected to clone in library, it can only store it as OVF & OVA template and not as VM template.

2. Confirm Template type is selected as VM Template and follow answering the wizard to complete the operation.

SQLSRV-01 - Clone Virtual Machine To Template

1 Basic information

2 Location

3 Select a compute resource

4 Select storage

5 Ready to complete

Basic information

Template type VM Template

Name: SQLSRV-01

Notes:

Select a folder for the template

vcsa-hc.sddc.netapp.com

Datacenter

CANCEL **NEXT**

For additional details on VM templates on content library, check [vSphere VM administration guide](#)

Use Cases

Migration from third party storage systems (including vSAN) to ONTAP datastores.

- Based on where the ONTAP datastore is provisioned, pick the VM migration options from above.

Migration from previous version to latest version of vSphere.

- If in-place upgrade is not possible, can bring up new environment and use the migration options above.

In Cross vCenter migration option, import from target if export option is not available on source. For that procedure, check [Import or Clone a Virtual Machine with Advanced Cross vCenter vMotion](#)

X

Migration to VCF Workload Domain.

- Migrate VMs from each vSphere Cluster to target workload domain.

To allow network communication with existing VMs on other clusters on source vCenter, either extend NSX segment by adding the source vcenter vSphere hosts to transport zone or use L2 bridge on edge to allow L2 communication in VLAN. Check NSX documentation of [Configure an Edge VM for Bridging](#)

Additional Resources

- [vSphere Virtual Machine Migration](#)
- [Migrating Virtual Machines with vSphere vMotion](#)
- [Tier-0 Gateway Configurations in NSX Federation](#)
- [HCX 4.8 User Guide](#)
- [VMware Live Recovery Documentation](#)
- [NetApp Disaster Recovery for VMware](#)

Autonomous Ransomware Protection for NFS Storage

Detecting ransomware as early as possible is crucial in preventing its spread and avoiding costly downtime. An effective ransomware detection strategy must incorporate multiple layers of protection at ESXi host and guest VM levels. While multiple security measures are implemented to create a comprehensive defense against ransomware attacks, ONTAP enables adding more layers of protection to the overall defense approach. To name a few capabilities, it starts with Snapshots, Autonomous Ransomware Protection, tamper-proof snapshots and so on.

Let's look at how the above-mentioned capabilities work with VMware to protect and recover the data against ransomware. To protect vSphere and guest VMs against attacks, it is essential to take several measures including segmenting, utilizing EDR/XDR/SIEM for endpoints and installing security updates and adhering to the appropriate hardening guidelines. Each virtual machine residing on a datastore also hosts a standard operating system. Ensure enterprise server anti-malware product suites are installed and regularly updated on them which is an essential component of multi-layered ransomware protection strategy. Along with this, enable Autonomous Ransomware Protection (ARP) on the NFS volume powering the datastore. ARP leverages built-in onbox ML that looks at volume workload activity plus data entropy to automatically detect ransomware. ARP is configurable through the ONTAP built-in management interface or system Manager and is enabled on a per-volume basis.

i With the new NetApp ARP/AI, which is currently in tech preview, there is no need for a learning mode. Instead, it can go straight to active mode with its AI-powered ransomware detection capability.

i With ONTAP One, all these feature sets are completely free. Access NetApp's robust suite of data protection, security and all the features that ONTAP offers without worrying about licensing barriers.

Once in active mode, it starts looking for the abnormal volume activity that might potentially be ransomware. If abnormal activity is detected, an automatic Snapshot copy is immediately taken, which provides a restoration point as close as possible to the file infection. ARP can detect changes in VM specific file extensions on an NFS volume located outside of the VM when a new extension is added to the encrypted volume or a file's extension is modified.

ONTAP System Manager

DASHBOARD

INSIGHTS

STORAGE

Overview

Volumes

LLNs

NVMe namespaces

Consistency groups

Shares

Quotas

Storage VMs

Tiers

NETWORK

EVENTS & JOBS

PROTECTION

HOSTS

CLUSTER

Volumes

+ Add **Delete** **Protect** **More**

Src_NFS_DS04 All Volumes

Overview Snapshot copies SnapMirror Back up to cloud **Security** File system Quota Reports

Anti-ransomware

Enabled in active mode

Pause anti-ransomware Event severity settings

Volume's workload characteristics

Learned statistics LARGEST PERCENT OF HIGH ENTROPY DATA

Surge statistics LARGEST PERCENT OF HIGH ENTROPY DATA

Configure workload characteristics

HIGHEST RATE OF FILE CREATION 16 files/minute

HIGHEST RATE OF FILE CREATION

If a ransomware attack targets the virtual machine (VM) and alter files within the VM without making changes outside the VM, the Advanced Ransomware Protection (ARP) will still detect the threat if the default entropy of the VM is low, for example, for file types like .txt, .docx, or .mp4 files. Even though ARP creates a protective snapshot in this scenario, it does not generate a threat alert because the file extensions outside of the VM have not been tampered with. In such scenarios, the initial layers of defense would identify the anomaly, however ARP helps in creating a snapshot based on the entropy.

For detailed information, refer to "ARP and Virtual machines" section in [ARP usecases and considerations](#).

Moving from files to backup data, ransomware attacks are now increasingly targeting backups and snapshot recovery points by trying to delete them before starting to encrypt files. However, with ONTAP, this can be prevented by creating tamper-proof snapshots on primary or secondary systems with [NetApp Snapshot copy locking](#).

vSphere Client

Search in all environments

Administrator@HM01.LOCAL

Snapshot Plugin for VMware vSphere: INSTANCE 172.21.64.1

Policies

Create Edit Remove

Pol_NFSDS04

description

Daily

Enable Snapshot Locking

Days to keep

Update SnapMirror after backup

Update SnapVault after backup

Snapshot label

Warning for ONTAP 9.12.1 and below version

CANCEL UPDATE

Recent Tasks

Task Name Target Status

Remove snapshot (B) NFS-Demo1_VMDK Complete

Revert snapshot (B) NFS-Demo1_VMDK Complete

Register virtual machine (B) VCSA8.0.0 Complete

Completion Time

2 ms 08/10/2024, 3:36:56 A M

4 ms 08/10/2024, 3:36:55 A M

7 ms 08/10/2024, 3:36:54 A M

10 ms 08/10/2024, 3:36:53 A M

These Snapshot copies can't be deleted or changed by ransomware attackers or rogue administrators, so they're available even after an attack. If the datastore or specific virtual machines are affected, SnapCenter can recover virtual machine data in seconds, minimizing organization's downtime.

The above demonstrates how ONTAP storage adds an additional layer to the existing techniques, enhancing futureproofing of the environment.

For additional information, view guidance for [NetApp solutions for ransomware](#).

Now if all these needs to be orchestrated and integrated with SIEM tools, then an offtap service like NetApp Ransomware Resilience can be used. It is a service designed to safeguard data from ransomware. This service offers protection for application-based workloads such as Oracle, MySQL, VM datastores, and file shares on on-premises NFS storage.

In this example, NFS datastore "Src_NFS_DS04" is protected using NetApp Ransomware Resilience.

The steps outlined below are with BlueXP. The workflow is similar with the NetApp Console.

NetApp BlueXP

Ransomware protection

Dashboard Protection Alerts Recovery Reports

Free trial (55 days left) - view details

Workloads (10)

Manage protection strategies

Workload	Type	Connector	Importance	Protection st...	Detection sta...	Detection pol...	Snapshot an...	Backup destina...	Actions
Src_nfs_ds02	VM datastore	GISABXPConn	Critical	Protected	Learning mode	rps-policy-primary	SnapCenter for VMw...	netapp-backup-add...	<button>Edit protection</button>
Drasa_src_test_3130	VM file share	GISABXPConn	Standard	At risk	None	None	None	n/a	<button>Protect</button>
Nfsd02arp_804	VM file share	GISABXPConn	Standard	Protected	Active	rps-policy-primary	None	netapp-backup-add...	<button>Edit protection</button>
Drasa_src_7027	VM file share	GISABXPConn	Standard	At risk	None	None	None	netapp-backup-add...	<button>Protect</button>
Src_nfs_vol01_7948	VM file share	GISABXPConn	Standard	At risk	None	None	None	netapp-backup-add...	<button>Protect</button>
Src_nfs_ds03	VM datastore	GISABXPConn	Standard	At risk	None	None	SnapCenter for VMw...	netapp-backup-add...	<button>Protect</button>
Src_nfs_ds04	VM datastore	GISABXPConn	Standard	Protected	Active	rps-policy-primary	SnapCenter for VMw...	netapp-backup-add...	<button>Edit protection</button>
Src_nfs_ds04	File share	GISABXPConn	Critical	Protected	Active	rps-policy-primary	BlueXP backup and ...	netapp-backup-ba3...	<button>Edit protection</button>
Testvol_1787	File share	GISABXPConn	Standard	Protected	Learning mode	rps-policy-primary	None	netapp-backup-ba3...	<button>Edit protection</button>
Nfsarpdemo02_1419	File share	GISABXPConn	Standard	Protected	Active	rps-policy-primary	None	netapp-backup-add...	<button>Edit protection</button>

NetApp BlueXP

Ransomware protection

Dashboard Protection Alerts Reports

Protected Protection health **0** Alerts

Not marked for recovery Recovery

Standard Importance

Protected

Protection

VM datastore

Storage

These policies managed by SnapCenter for VMware will not be modified by applying a detection policy to this workload.

Pol_NFSDS04 Snapshot policy

1 Year Daily LTR Backup policy

Location: urn:scv:scvmUI:Resou...
vCenter server: vvcasb-01.hmcidc.local
Connector: GISABXPConn

Cluster id: add38d26-348c-11ef-8...
Working Env name: NTAP915_src
Storage VM name: svm_NFS
Volume name: Src_NFS_DS04
Used size: 29 GiB

Datastore protected and No Alerts reported

For detailed information on to configure NetApp Ransomware Resilience, refer to [Setup NetApp Ransomware Resilience](#) and [Configure NetApp Ransomware Resilience settings](#).

It's time to walk through this with an example. In this walkthrough, the datastore "Src_NFS_DS04" is affected.

VM Disk files under Ransomware Attack and VM affected

File browser interface showing a list of files and folders. The 'NFS_DemoB_VM01' folder is selected. The 'Manage Contents' button is highlighted.

ARP immediately triggered a snapshot on the volume upon detection.

NetApp Snapshot triggered during suspected abnormal activity

Snapshot copy creation time: Aug/9/2024 6:26 AM

Snapshot restore size: 44.5 GB

Name	Snapshot copy creation time	Snapshot restore size
snapmirror.e2ad5432-3537-11ef-bd57-00a0b0f6d346_21	Aug/9/2024 9:05 AM	50.5 GB
59491296.2024-08-09_160500		
Anti_ransomware_backup.2024-08-09_1326	Aug/9/2024 6:26 AM	44.5 GB
RG_NFS04_08-09-2024_08.08.16.0981	Aug/9/2024 5:08 AM	27.8 GB
RG_NFS04_08-09-2024_07.54.48.0205	Aug/9/2024 4:55 AM	27.7 GB
	Aug/9/2024 3:27 AM	27.6 GB
RG_NFS04_08-09-2024_06.27.18.0190	Aug/9/2024 3:27 AM	27.6 GB
RG_NFS04_08-09-2024_05.00.28.0747	Aug/9/2024 2:00 AM	27.7 GB

Once the forensic analysis is complete, then the restores can be done quickly and seamlessly using SnapCenter or NetApp Ransomware Resilience. With SnapCenter, go to the affected virtual machines and select the appropriate snapshot to restore.

Entry Name	Quiescent	UUID	Location
NFS_DemoB_VM02	Yes	50121588-4E78-a116-7211-77095666e02f	[Src_NFS_D504] NFS_DemoB_VM02[NFS_DemoB_VM02.vms]
NFS_DemoB_VM01	Yes	50125aa9-70cc-319e-82b0-a48014935b05	[Src_NFS_D504] NFS_DemoB_VM01[NFS_DemoB_VM01.vms]
NFS_DemoB_VM03	Yes	50126852-4F55-3465-787a-4a4434991020	[Src_NFS_D504] NFS_DemoB_VM03[NFS_DemoB_VM03.vms]
NFS_DemoB_VM05	Yes	5012a6d8-ee25-6a33-2d6d-00137e451f1f	[Src_NFS_D504] NFS_DemoB_VM05[NFS_DemoB_VM05.vms]
NFS_DemoB_VM06	Yes	50125d7a-e4ec-af31-3253-2b2937a0f118	[Src_NFS_D504] NFS_DemoB_VM06[NFS_DemoB_VM06.vms]
NFS_DemoB_VM07	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoB_VM07[NFS_DemoB_VM07.vms]
NFS_DemoB_VM08	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoB_VM08[NFS_DemoB_VM08.vms]
NFS_DemoB_VM09	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoB_VM09[NFS_DemoB_VM09.vms]
NFS_DemoB_VM10	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoB_VM10[NFS_DemoB_VM10.vms]
NFS_DemoA	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoA[NFS_DemoA.vms]
ISCSI_DemoB	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] ISCSI_DemoB[ISCSI_DemoB.vms]
ISCSI_DemoC	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] ISCSI_DemoC[ISCSI_DemoC.vms]
ISCSI_TPS_Demo	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] ISCSI_TPS_Demo[ISCSI_TPS_Demo.vms]
NFS_DemoA	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoA[NFS_DemoA.vms]
NFS_DemoB	Yes	50126a89-4433-32a6-90137e451f1f	[Src_NFS_D504] NFS_DemoB[NFS_DemoB.vms]

This section looks at how NetApp Ransomware Resilience orchestrates recovery from a ransomware incident wherein the VM files are encrypted.

If the VM is managed by SnapCenter, NetApp Ransomware Resilience restores the VM back to its previous state using the VM-consistent process.

1. Access NetApp Ransomware Resilience and an alert appears on the NetApp Ransomware Resilience Dashboard.
2. Click on the alert to review the incidents on that specific volume for the generated alert

Protection View specific to the NFS Volume

Src_NFS_DS04

Protected

1 Alerts

Not marked for recovery

Protection

VM datastore

Storage

Location	urn:scv:scvml:Resou...	Cluster id	add38d26-348c-11ef-8...
vCenter server	vvcsalt-01.homedc.local	Working Env name	NTAP915_src
Connector	GISABXPConn	Storage VM name	svm_NFS
		Volume name	Src_NFS_DS04
		Used size	29.0iB

3. Mark the ransomware incident as ready for recovery (after incidents are neutralized) by selecting "Mark restore needed"

Mark the alert for "restore needed"

Workload: Src_NFS_DS04 | Location: urn:scv:scvml:Resou... | Type: VM datastore | Connector: GISABXPConn

4 hours ago

Potential attack

29.0iB

10 Impacted files

incident (1) | All selected

Incident ID	Volume	SVM	Working environment	Type	Status	First detected	Evidence	Automated responses
Inc12198	Src_NFS_DS04	svm_NFS	NTAP915_src	Potential attack	New	4 hours ago	1 new extensions detected	2 Snapshot copies

The alert can be dismissed if the incident turns out to be false positive.

4. Got to Recovery tab and review the workload information in the Recovery page and select the datastore volume that is in the "Restore needed" state and select Restore.

5. In this case, the restore scope is "By VM" (for SnapCenter for VMs, the restore scope is "By VM")

6. Choose the restore point to use to restore the data and select Destination and click on Restore.

7. From the top menu, select Recovery to review the workload on the Recovery page where the status of the operation moves through the states. Once restore is complete, the VM files are restored as shown below.

The recovery can be performed from SnapCenter for VMware or SnapCenter plugin depending on the application.

The NetApp solution provides various effective tools for visibility, detection, and remediation, helping you to spot ransomware early, prevent its spread, and recover quickly, if necessary, to avoid costly downtime. Traditional layered defense solutions remain prevalent, as do third parties and partner solutions for visibility and detection. Effective remediation remains a crucial part of the response to any threat.

Monitor on-premises storage with Data Infrastructure Insights

NetApp Data Infrastructure Insights (formerly Cloud Insights) is a cloud-based platform designed to monitor and analyze the performance, health, and costs of IT infrastructures, both on-premises and in the cloud. Learn how to deploy data collectors, analyze performance metrics, and use dashboards to identify issues and optimize resources.

Monitoring On-Premises Storage with Data Infrastructure Insights

Data Infrastructure Insights operates through Acquisition Unit software, which is set up with data collectors for assets such as VMware vSphere and NetApp ONTAP storage systems. These collectors gather data and transmit it to Data Infrastructure Insights. The platform then utilizes a variety of dashboards, widgets, and metric queries to organize the data into insightful analyses for users to interpret.

Data Infrastructure Insights architecture diagram:

Solution Deployment Overview

This solution provides an introduction to monitoring on-premises VMware vSphere and ONTAP storage systems using Data Infrastructure Insights.

This list provides the high level steps covered in this solution:

1. Configure Data Collector for a vSphere cluster.
2. Configure Data Collector for an ONTAP storage system.

3. Use Annotation Rules to tag assets.
4. Explore and correlate assets.
5. Use a Top VM Latency dashboard to isolate noisy neighbors.
6. Identify opportunities to rightsize VMs.
7. Use queries to isolate and sort metrics.

Prerequisites

This solution uses the following components:

1. NetApp All-Flash SAN Array A400 with ONTAP 9.13.
2. VMware vSphere 8.0 cluster.
3. NetApp Console account.
4. NetApp Data Infrastructure Insights Acquisition Unit software installed on a local VM with network connectivity to assets for data collection.

Solution Deployment

Configure Data Collectors

To configure Data Collectors for VMware vSphere and ONTAP storage systems complete the following steps:

Add a Data Collector for an ONTAP storage systems

1. Once logged into Data Infrastructure Insights, navigate to **Observability > Collectors > Data Collectors** and press the button to install a new Data Collector.

The screenshot shows the 'Data Collectors' page in NetApp Cloud Insights. The left sidebar has 'Observability' selected. The top navigation bar shows 'NetApp PCS Sandbox / Observability / Collectors'. The main area displays 'Data Collectors (84)' with columns for Name, Status, Type, Acquisition Unit, and IP. A search bar and filter options are at the top. A prominent purple box highlights the '+ Data Collector' button in the top right corner.

2. From here search for **ONTAP** and click on **ONTAP Data Management Software**.

The screenshot shows a search interface for 'Choose a Data Collector to Monitor'. A search bar at the top contains 'ontap'. Below the search bar are four cards: 'FSx for NetApp ONTAP', 'Cloud Volumes ONTAP', 'ONTAP Data Management Software' (which has a cursor arrow pointing to it), and 'ONTAP Select'.

3. On the **Configure Collector** page fill out a name for the collector, specify the correct **Acquisition Unit** and provide the credentials for the ONTAP storage system. Click on **Save and Continue** and then **Complete Setup** at the bottom of the page to complete the configuration.

The screenshot shows the 'Configure Collector' page for ONTAP Data Management Software. It includes fields for 'Name' (ntaphci-a300e9u25), 'Acquisition Unit' (bxp-au01), 'NetApp Management IP Address' (10.61.185.145), 'User Name' (admin), 'Password' (redacted), and buttons for 'Save and Continue' (with a cursor arrow pointing to it) and 'Test Connection'. There is also an 'Advanced Configuration' link at the bottom.

Add a Data Collector for a VMware vSphere cluster

1. Once again, navigate to **Observability > Collectors > Data Collectors** and press the button to install a new Data Collector.

The screenshot shows the 'Data Collectors (84)' page in the NetApp Cloud Insights Observability section. The top navigation bar includes 'Observability', 'Explore', 'Alerts', and 'Collectors'. Below the navigation is a search bar and a toolbar with 'Data Collectors (17)', 'Acquisition Units (0 3)', and 'Kubernetes Collectors'. A prominent purple box highlights the '+ Data Collector' button in the top right corner of the main content area.

2. From here search for **vSphere** and click on **VMware vSphere**.

The screenshot shows the 'Add Data Collector' page. The left sidebar is expanded to show 'Collectors' with a red notification badge. The main area is titled 'Choose a Data Collector to Monitor' with a search bar containing 'vsphere'. A list of results is shown, with 'VMware vSphere' being the top item, highlighted with a purple box and a cursor icon pointing to it.

3. On the **Configure Collector** page fill out a name for the collector, specify the correct **Acquisition Unit** and provide the credentials for the vCenter server. Click on **Save and Continue** and then **Complete Setup** at the bottom of the page to complete the configuration.

Select a Data Collector

Configure Data Collector

vmware
vSphere
Configure Collector**Add credentials and required settings**

Need Help?

Name

VCSA7

Acquisition Unit

bxp-au01

Virtual Center IP Address

10.61.181.210

User Name

administrator@vsphere.local

Password

Complete Setup**Test Connection** Advanced Configuration**Collecting:** Inventory VM Performance**Inventory Poll Interval (min)**

20

Communication Port

443

Filter VMs by

ESX_HOST

Choose 'Exclude' or 'Include' to Specify a List

Exclude

Filter Device List (Comma Separated Values For Filtering By ESX_HOST, CLUSTER, and DATACENTER Only)**Performance Poll Interval (sec)**

300

 Collect basic performance metrics only**Complete Setup****Test Connection****Add Annotations to assets**

Annotations are a useful method of tagging assets so that they can be filtered and otherwise identified in the various views and metric queries available in Cloud Insights.

In this section, annotations will be added to virtual machine assets for filtering by **Data Center**.

Use Annotation Rules to tag assets

1. In the left-hand menu, navigate to **Observability > Enrich > Annotation Rules** and click on the **+** **Rule** button in the upper right to add a new rule.

2. In the **Add Rule** dialog box fill in a name for the rule, locate a query to which the rule will be applied, the annotation field affected, and the value to be populated.

Add Rule

Name

Add tags to Solutions Engineering VMs

Query

Solutions Engineering VMs

Annotation

DataCenter

Value

Solutions Engineering

- Finally, in the upper right hand corner of the **Annotation Rules** page click on **Run All Rules** to run the rule and apply the annotation to the assets.

Name	Resource Type	Query	Annotation	Value
Annotate Tier 1 Storage Pools	Storage Pool	Find Storage Pools (no aggr0) for Tier...	Tier	Tier 1
Annotate Tier 2 Storage Pools	Storage Pool	Find Storage Pools (no aggr0) for Tier...	Tier	Tier 2

Explore and correlate assets

Cloud Insights draws logical conclusions about the assets that are running together on your storage systems and vsphere clusters.

This section illustrates how to use dashboards to correlate assets.

Correlating assets from a storage performance Dashboard

1. In the left-hand menu, navigate to **Observability > Explore > All Dashboards**.

The screenshot shows the NetApp Cloud Insights interface. The top navigation bar is blue with the NetApp Cloud Insights logo. Below it, the left-hand menu has 'Observability' selected. Under 'Explore', a dropdown menu is open, showing options like 'Home Dashboard', 'All Dashboards' (with a cursor pointing at it), '+ New Dashboard', 'Metric Queries', and 'Infrastructure Insights'. The 'Collectors' tab is also visible with a red notification badge showing '17'.

2. Click on the **+ From Gallery** button to view a list of ready-made dashboards that can be imported.

The screenshot shows the 'All Dashboards' page. The top navigation bar is blue with the NetApp Cloud Insights logo. Below it, the left-hand menu has 'Observability' selected. Under 'Explore', the 'Dashboards' tab is selected. The main area shows 'Dashboard Groups (108)' and 'All Dashboards (3,708)'. A search bar is present. A list of dashboards is shown, with the last two entries being '# Internal Volumes by IOPS Range (do not set as Home Page)' owned by 'Workneh Hilina' and '# Internal Volumes by IOPS Range' owned by 'Simon Wu'. At the bottom right of the dashboard list, there is a button labeled '+ From Gallery' with a cursor pointing at it.

3. Choose a dashboard for FlexVol performance from the list and click on the **Add Dashboards** button at the bottom of the page.

- ONTAP FAS/AFF - Cluster Capacity
- ONTAP FAS/AFF - Efficiency
- ONTAP FAS/AFF - FlexVol Performance
- ONTAP FAS/AFF - Node Operational/Optimal Points
- ONTAP FAS/AFF - PrePost Capacity Efficiencies
- Storage Admin - Which nodes are in high demand?
- Storage Admin - Which pools are in high demand?
- StorageGRID - Capacity Summary
- StorageGRID - ILM Performance Monitoring
- StorageGRID - MetaData Usage
- StorageGRID - S3 Performance Monitoring
- VMware Admin - ESX Hosts Overview
- VMware Admin - Overview
- VMware Admin - VM Performance
- VMware Admin - Where are opportunities to right size?
- VMware Admin - Where can I potentially reclaim waste?
- VMware Admin - Where do I have VM Latency?

Additional Dashboards (13)

These dashboards require additional data collectors to be installed. [Add More](#)

[Add Dashboards](#)

[Go Back](#)

- Once imported, open the dashboard. From here you can see various widgets with detailed performance data. Add a filter to view a single storage system and select a storage volume to drill into its details.

- From this view you can see various metrics related to this storage volume and the top utilized and correlated virtual machines running on the volume.

6. Clicking on the VM with the highest utilization drills into the metrics for that VM to view any potential issues.

Use Cloud Insights to identify noisy neighbors

Cloud Insights features dashboards that can easily isolate peer VMs that are negatively impacting other VMs running on the same storage volume.

Use a Top VM Latency dashboard to isolate noisy neighbors

1. In this example access a dashboard available in the **Gallery** called **VMware Admin - Where do I have VM Latency?**

NetApp PCS Sandbox / Observability / Explore / Dashboards

Dashboard Groups (108) + < My Dashboards (6)

Search groups... All Dashboards (3709) My Dashboards (6) **Infrastructure Observability** (2) 01_Monitoring_CI_Course_Patrick (15) 02_Monitoring_CI_Course_Vish (5) 1_Str Dashboards (8)

Name ↑ Owner

Name	Owner
All SAN Array Status (2)	Powell Josh
Cloud Volumes ONTAP - FlexVol Performance (6)	Powell Josh
ONTAP - Volume Workload Performance (Frontend) (7)	Powell Josh
VMware Admin - Where are opportunities to right size? (37)	Powell Josh
VMware Admin - Where can I potentially reclaim waste? (11)	Powell Josh
VMware Admin - Where do I have VM Latency? (9)	Powell Josh

2. Next, filter by the **Data Center** annotation created in a previous step to view a subset of assets.

/ VMware Admin - Where do I have VM Latency? (9)

Last 3 Hours

VirtualMachine All Data Center Solutions Engineering X diskLatency.total

Avg Latency (all hypervisors) VM Count With Latency Concern Avg Latency (all VMs)

3. This dashboard shows a list of the top 10 VMs by average latency. From here click on the VM of concern to drill into its details.

VM Count With Latency Concern

C 5m

Avg Latency (all VMs)

C 5m

50

VM's

1.55 ms

diskLatency.total

Avg VM Latency - Top 10

C 5m

Top 5 Avg VM Latency Trend

C 30s

4. The VMs potentially causing workload contention are listed and available. Drill into these VMs performance metrics to investigate any potential issues.

Resource ▶ Hide Resources

AuctionWebA0

Top Correlated

esxi7-hc-0...netapp.com 91%

ntaphcl-a3..._VMMARK_CI 84%

Workload Contention

AuctionNoSQL0 92%

AuctionWebB0 57%

Additional Resources

Search Assets...

View over and under utilized resources in Cloud Insights

By matching VM resources to actual workload requirements, resource utilization can be optimized, leading to cost savings on infrastructure and cloud services. Data in Cloud Insights can be customized to easily display over or under utilized VMs.

Identify opportunities to right size VMs

1. In this example access a dashboard available in the **Gallery** called **VMware Admin - Where are opportunities to right size?**

My Dashboards (6)

<input type="checkbox"/>	Name ↑
	All SAN Array Status (2)
	Cloud Volumes ONTAP - FlexVol Performance (6)
	ONTAP - Volume Workload Performance (Frontend) (7)
<input type="checkbox"/> ⭐	<u>VMware Admin - Where are opportunities to right size? (37)</u>
	VMware Admin - Where can I potentially reclaim waste? (11)
	VMware Admin - Where do I have VM Latency? (9)

2. First filter by all of the ESXi hosts in the cluster. You can then see ranking of the top and bottom VMs by memory and CPU utilization.

3. Tables allow sorting and provide more detail based on the columns of data chosen.

Memory Usage

C 5m :

121 items found

Virtual Machine	Memory (MiB)	Memory Ut...
DS3DB0	768.0	81.64
DeployVM0	92.0	55.06
ElasticAppB0	92.0	44.91
AuctionAppA0	336.0	38.42
Client0	480.0	37.98
AuctionAppB0	336.0	37.83
ElasticAppA0	92.0	35.63
ElasticLB0	96.0	35.13
user-cluster1-8872k-78c65dd794...	92.0	32.47
PrimeClient	48.0	30.30

CPU Utilization

C 5m :

121 items found

Virtual Machine	name
hammerdb-01	hammerdb-01
DS3DB0	DS3DB0
wc02-md-0-xwdgb-8cf48c96-qgn...	wc02-md-0-xwdgb-8cf48c96-qg...
ElasticLB0	ElasticLB0

4. Another dashboard called **VMware Admin - Where can I potentially reclaim waste?** shows powered off VM's sorted by their capacity use.

Use queries to isolate and sort metrics

The amount of data captured by Cloud Insights is quite comprehensive. Metric queries provide a powerful way to sort and organize large amounts of data in useful ways.

View a detailed VMware query under ONTAP Essentials

1. Navigate to **ONTAP Essentials > VMware** to access a comprehensive VMware metric query.

2. In this view you are presented with multiple options for filtering and grouping the data at the top. All columns of data are customizable and additional columns can be easily added.

The screenshot shows a table of 281 items found, filtered by storageResources.storage.vendor (NetApp) and host.os (vmware). The table includes columns for name, powerState, capacity.used (GiB), capacity.total (GiB), capacityRatio.us..., diskIops.total (IO/s), diskLatency.total..., and diskThroughput.t... . The table lists various virtual machines, including 01rfk8sprodclient, 02rfk8sprodserver, 03rfk8sprodmaster01, 04rfk8sprodmaster02, 05rfk8sprodmaster03, AIQUM 9.11 (vApp), AIQUM 9.12 (Linux), AN-JumpHost01, AuctionAppA0, and AuctionAppA1.

Virtual Machine	name	powerState	capacity.used (GiB)	capacity.total (GiB)	capacityRatio.us...	diskIops.total (IO/s)	diskLatency.total...	diskThroughput.t...
01rfk8sprodclient	01rfk8sprodclient	On	49.38	69.86	70.68	1.21	8.13	0.01
02rfk8sprodserver	02rfk8sprodserver	On	63.64	74.06	85.93	22.80	4.13	0.11
03rfk8sprodmaster01	03rfk8sprodmaster01	On	65.13	77.21	84.36	26.64	5.64	0.20
04rfk8sprodmaster02	04rfk8sprodmaster02	On	63.89	76.27	83.77	26.82	5.14	0.16
05rfk8sprodmaster03	05rfk8sprodmaster03	On	63.77	75.58	84.38	28.23	4.63	0.17
AIQUM 9.11 (vApp)	AIQUM 9.11 (vApp)	On	152.00	152.00	100.00	23.24	0.19	0.41
AIQUM 9.12 (Linux)	AIQUM 9.12 (Linux)	On	55.28	100.00	55.28	0.01	11.83	0.00
AN-JumpHost01	AN-JumpHost01	On	90.00	90.00	100.00	1.39	0.19	0.01
AuctionAppA0	AuctionAppA0	On	9.38	16.00	58.62	1.21	0.44	0.12
AuctionAppA1	AuctionAppA1	On	6.44	16.00	40.26	0.00	3.00	0.00

Conclusion

This solution was designed as a primer to learn how to get started with NetApp Cloud Insights and show some of the powerful capabilities that this observability solution can provide. There are hundreds of dashboards and metric queries built into the product which makes it easy to get going immediately. The full version of Cloud Insights is available as a 30-day trial and the basic version is available free to NetApp customers.

Additional Information

To learn more about the technologies presented in this solution refer to the following additional information.

- [NetApp Console landing page](#)
- [NetApp Data Infrastructure Insights landing page](#)
- [NetApp Data Infrastructure Insights documentation](#)

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.